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1.1 Introduction

While coding and signal processing are key elements to successful implementation of a
MIMO system, the communication channel represents a major component that determines
system performance. A considerable volume of work has been performed to characterize
communication channels for general wireless applications. However, because MIMO sys-
tems operate at an unprecedented level of complexity to exploit the channel space-time
resources, a new level of understanding of the channel space-time characteristics is required
to assess the potential performance of practical multiantenna links.

This chapter will focus on experimental measurements and models aimed at char-
acterizing the MIMO channel spatio-temporal properties. Generally, we will define this
channel to include the electromagnetic propagation, antennas, and transmit/receive radio
circuitry, although different measurement and modeling techniques may include all or
only part of this set. When evaluating the results of these modeling and measurement
campaigns, much of the discussion will focus on the pertinent properties of the propa-
gation environment. However, an examination of the topic of MIMO channels would be
incomplete without some discussion of the impact of antenna element properties – such
as directivity, polarization, and mutual coupling – antenna array configuration, and radio
frequency (RF) architecture on communication behavior. Therefore, we will highlight tech-
niques for including these channel aspects in MIMO system characterization and will
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2 MIMO CHANNEL MODELING

show examples that demonstrate the impact that different design features can have on
system performance.

1.1.1 MIMO system model
Figure 1.1 depicts a generic MIMO system that will serve as a reference for defining the MIMO
communication channel. For this discussion and throughout this chapter, boldface uppercase
and lowercase letters will represent matrices (matrix H with mnth element Hmn) and column
vectors (vector h with mth element hm), respectively. A stream of Q × 1 vector input symbols
b(k), where k is a time index, are fed into a space-time encoder, generating a stream of NT × 1
complex vectors x(k), where NT represents the number of transmit antennas. Pulse shaping
filters transform each element of the vector to create a NT × 1 time-domain signal vector x(t),
which is up-converted to a suitable transmission carrier (RF, microwave, optical, acoustic). The
resulting signal vector xA(t) drives the transmit transducer array (antennas, lasers, speakers),
which in turn radiates energy into the propagation environment.

The function hP (t, τ, θR, φR, θT , φT ) represents the impulse response relating field radi-
ated by the transmit array to the field incident on the receive array. The dependence on time
t suggests that this impulse response is time variant because of motion of scatterers within
the propagation environment or motion of the transmitter and receiver. The variable τ repre-
sents the time delay relative to the excitation time t . We assume a finite impulse response, so
that hP (t, τ, θR, φR, θT , φT ) = 0 for τ > τ0. We also assume that hP (t, τ, θR, φR, θT , φT )

remains constant over a time interval (in t) of duration τ0 so that over a single transmission,
the physical channel can be treated as a linear, time-invariant system.

Assume now that the input signal xA(t) creates the field xP (t, θT , φT ) radiated from the
transmit array, where (θT , φT ) denote the elevation and azimuthal angles taken with respect
to the coordinate frame of the transmit array. At the receive array, the field distribution
yP (t, θR, φR), where (θR, φR) represent angles referenced to the receive array coordinate
frame, and can be expressed as the convolution

yP (t, θR, φR) =
2π∫

0

π∫
0

∞∫
−∞

hP (t, τ, θR, φR, θT , φT )xP (t − τ, θT , φT ) sin θT dτ dθT dφT

(1.1)
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Figure 1.1 A generic MIMO communication system.
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The NR-element receive array then samples this field and generates the NR × 1 signal vector
y′
A(t) at the array terminals. Noise in the system is typically generated in the physical

propagation channel (interference) and the receiver front-end electronics (thermal noise). To
simplify the discussion, we will lump all additive noise into a single contribution represented
by the NR × 1 vector η(t) that is injected at the receive antenna terminals. The resulting
signal plus noise vector yA(t) is then downconverted to produce the NR × 1 baseband output
vector y(t). Finally, y(t) is passed through a matched filter whose output is sampled once

per symbol to produce y(k), after which the space-time decoder produces estimates b̂
(k)

of
the originally transmitted symbols.

This chapter focuses on the characteristics of the channel, although the specific definition
of this channel can vary depending on the goal of the analysis. For example, in some
cases we wish to focus on the physical channel impulse response and use it to generate
a channel matrix relating the signals xA(t) and yA(t). A common assumption will be that
all scattering in the propagation channel is in the far field and that a discrete number of
propagation “paths” connects the transmit and receive arrays. Under this assumption, the
physical channel response for L paths may be written as

hP (t, τ, θR, φR, θT , φT ) =
L∑

�=1

A�δ(τ − τ�)δ(θT − θT ,�)

× δ(φT − φT,�)δ(θR − θR,�)δ(φR − φR,�), (1.2)

where A� is the gain of the �th path with angle of departure (AOD) (θT ,�, φT,�), angle of
arrival (AOA) (θR,�, φR,�), and time of arrival (TOA) τ�. The term δ(·) represents the Dirac
delta function. The time variation of the channel is included by making the parameters of
the multipaths (L, A�, τ�, θT ,�, . . .) time dependent. To use this response to relate xA(t)

to yA(t), it is easier to proceed in the frequency domain. We take the Fourier transform
of the relevant signals to obtain x̃A(ω), ỹA(ω), and η̃(ω), and take the Fourier transform
of hP with respect to the delay variable τ to obtain h̃P (t, ω, θR, φR, θT , φT ) where ω is
the radian frequency. Assuming single-polarization array elements, the frequency domain
radiation patterns of the nth transmit and mth receive array elements are eT,n(ω, θT , φT )

and eR,m(ω, θR, φR), respectively. We must convolve these patterns with h̃P in the angular
coordinates to obtain

ỹA(ω) = HP (ω)x̃A(ω) + η̃(ω) (1.3)

where

HP,mn(ω) =
L∑

�=1

β� eR,m(ω, θR,�, φR,�)eT ,n(ω, θT ,�, φT,�) (1.4)

and β� = A� exp{−jωτ�} is the complex gain of the �th path. HP (ω) is referred to as the
channel transfer matrix or simply channel matrix. Although this representation is usually
inconvenient for closed-form analysis of space-time code behavior, it explicitly uses the
antenna properties in constructing the channel matrix, and therefore facilitates examination
of a variety of antenna configurations for a single physical propagation channel. Also,
because it is based on the physical channel impulse response, it is appropriate for wideband
or frequency selective channels for which the elements of HP (ω) vary significantly over the
bandwidth of interest.
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While the physical channel model in (1.3) is useful for certain cases, in most signal-
processing analyses the channel is taken to relate the input to the pulse shaping block
x(k) to the output of the matched filter y(k). This model is typically used for cases where
the frequency domain channel transfer function remains approximately constant over the
bandwidth of the transmitted waveform, often referred to as the frequency nonselective or
flat fading scenario. In this case, the frequency domain transfer functions can be treated as
complex constants that simply scale the complex input symbols. We can therefore write the
input/output relationship as

y(k) = H(k)x(k) + η(k) (1.5)

where η(k) denotes the noise that has passed through the receiver and has been sampled at
the matched-filter output. The term H(k) represents the channel matrix for the kth transmitted
symbol, with the superscript explicitly indicating that the channel can change over time.
Throughout this chapter, we will sometimes drop this superscript for convenience. We
emphasize here that H(k) is based on the value of HP (ω) evaluated at the carrier frequency
but includes the additional effects of the transmit and receive electronics. This model forms
the basis of the random matrix models covered in Section 1.3.1 and is very convenient for
closed-form analysis. The main drawbacks of this approach are the modeling inaccuracy,
the difficulty of specifying H(k) for all systems of practical interest, and the fact that it does
not lend itself to the description of frequency selective channels.

The discussion thus far has ignored certain aspects of the MIMO system that may be
important in some applications. For example, realistic microwave components will experi-
ence complicated interactions due to coupling and noise, factors that may be treated with
advanced network models as detailed in Section 1.4.3. The effects of non-ideal matched
filters and sampling may also be of interest, which can be analyzed with the appropriate
level of modeling detail [1].

1.1.2 Channel normalization

Consider the channel model in (1.5) where the noise η(k) is assumed to be a random vector
with zero-mean complex normal entries and covariance σ 2

η I, where I is the identity matrix.
The average noise power in each receiver is therefore given by the variance σ 2

η of the
complex random variables. The signal power averaged in time as well as over all receive
ports is given as

PR = 1

NR

E
{

x(k)H H(k)H H(k)x(k)
}

= 1

NR

Tr
(

E
{

x(k)x(k)H
}

E
{

H(k)H H(k)
})

, (1.6)

where E {·} denotes expectation, {·}H represents a matrix conjugate transpose and Tr(·) is a
matrix trace. We have used the statistical independence of the signal x(k) and channel matrix
H(k) to manipulate this expression. If the transmitter divides the total transmit power PT

equally across statistically independent streams on the multiple antennas, E
{
x(k)x(k)H

} =
(PT /NT )I. If the expectation E

{
H(k)H H(k)

}
is approximated using a sample mean over a

series 1 ≤ k ≤ K , the average received signal power is

PR = PT

NT NRK

K∑
k=1

∥∥H(k)
∥∥2

F
, (1.7)
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where
∥∥·∥∥

F
is the Frobenius norm. The signal-to-noise ratio (SNR) averaged in time as well

as over all receive ports is therefore

SNR = PT

σ 2
η

1

NT NRK

K∑
k=1

∥∥H(k)
∥∥2

F︸ ︷︷ ︸
ϒ

. (1.8)

We recognize that ϒ represents the average of the power gains between each pair of transmit
and receive antennas. The resulting SNR is equivalent to what would be obtained if the
power were transmitted between a single pair of antennas with channel power gain ϒ . We
therefore refer to (1.8) as the single-input single-output (SISO) SNR.

When performing simulations and analyses using channel matrices obtained from mea-
surements or models, it is often useful to be able to properly scale H(k) to achieve a specified
average SNR. We therefore define a new set of channel matrices H(k)

0 = �H(k), where �

is a normalizing constant. To achieve a given average SNR, � should be chosen accord-
ing to

�2 = SNR
σ 2

η

PT

NT NRK∑K
κ=1

∥∥H(κ)
∥∥2

F

. (1.9)

If K = 1, this implies that each individual channel matrix is normalized to have the spec-
ified SNR. If K > 1, the average SNR over the group of K matrices will be as specified,
although the SNR for each individual matrix will fluctuate about this mean value. This
allows investigation of the relative variations in received signal strength over an ensemble
of measurements or simulations.

1.2 MIMO Channel Measurement

The most direct way to gain an understanding of the MIMO wireless channel is to experi-
mentally measure the NR × NT channel matrix H. These measurements include the effects
of the RF subsystems and the antennas, and therefore the results are dependent on the array
configurations used. A variety of such measurements have been reported [2–11], and results
obtained include channel capacity, signal correlation structure (in space, frequency, and
time), channel matrix rank, path loss, delay spread, and a variety of other quantities. True
array systems, where all antennas operate simultaneously, most closely model real-world
MIMO communication, and can accommodate channels that vary in time. However, the
implementation of such a system comes at significant cost and complexity because of the
requirement of multiple parallel transmit and receive electronic subsystems.

Other measurement systems are based on either switched array or virtual array archi-
tectures. Switched array designs use a single transmitter and single receiver, sequentially
connecting all array elements to the electronics using high-speed switches [12, 13]. Switch-
ing times for such systems are necessarily low (2 µs to 100 ms) to allow the measurement
over all antenna pairs to be completed before the channel changes. Virtual array architec-
tures use precision displacement (or rotation) of a single antenna element rather than a set
of fixed antennas connected via switches [14–16]. Although this method has the advantage
of eliminating mutual coupling, a complete channel matrix measurement often takes several
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seconds or minutes. Therefore, such a technique is appropriate for fixed indoor measurement
campaigns when the channel remains constant for relatively long periods.

In this section, we will provide details regarding a true array system for direct trans-
fer matrix measurement and illustrate MIMO performance for representative propagation
environments. While the approach taken here is not unique, particularly with regard to the
modulation constellation used and specific system architecture, the system shown is repre-
sentative of typical platforms used in MIMO channel probing. Following the discussion of
the system, we will discuss additional processing that can be accomplished using MIMO
system measurements to allow estimation of the physical multipath characteristics associated
with the propagation channel.

1.2.1 Measurement system

The platform detailed here, as depicted in Figure 1.2, uses a narrowband MIMO commu-
nications system operating at a center frequency of 2.45 GHz. Up to 16 unique binary
sequences are constructed using a shift-generator employing a maximal length sequence
polynomial [17] and then output using a digital pattern generator (±5V). The sequences are
individually multiplied by a common microwave local oscillator (LO) signal to generate
binary phase shift keyed (BPSK) waveforms that are amplified and fed to one of the NT

transmit antennas. The signal on each of the NR ≤ 16 receive antennas is amplified, down-
converted to an intermediate frequency (IF), filtered, and sampled on a 16-channel 1.25
Msample/s analog-to-digital (A/D) conversion card for storage and postprocessing. The sys-
tem is calibrated before each measurement to remove the effects of unequal complex gains
in the electronics.

Once the IF data is collected, postprocessing is used to perform carrier and symbol
timing recovery and code synchronization. To locate the start of the codes, the signal from
one of the NR receive antennas is correlated with a baseband representation of one of the
transmit codes. A Fast Fourier Transform (FFT) of this result produces a peak at the IF when
the selected transmit code is aligned with the same code in the receive signal. The search
for this alignment is simplified by using shortened correlating codes and coarse steps at the
beginning of the process and adaptively reducing the step size and switching to full-length
codes as the search converges. Additionally, if the specified code is weakly represented in
the received signal chosen, the maximum correlation may not occur at code alignment. The

Microwave
local

oscillator

Binary
sequence
generator

Physical
channel

Microwave
local

oscillator

Data
acquisition

Microwave

illator

Binary
e
r

Physical
nnel

Microwave
al
tor

Data
n

Figure 1.2 High level system diagram of the narrowband wireless MIMO measurement
system.
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procedure therefore searches over all combinations of receive channel and code to ensure
accurate code synchronization.

The IF is approximately given by the frequency at which the peak in the FFT occurs.
This frequency estimate is refined using a simple optimization that maximizes the magnitude
of the Discrete Time Fourier Transform (DTFT) of the known aligned code multiplied by
the receive signal (despread signal). Subsequently, the waveform generated by moving a
window along the despread signal is correlated against a complex sinusoid at the IF, and
the phase of the result is taken as the carrier phase at the center of the recovery window. A
moving average filter is finally used to smooth this phase estimate.

With the carrier and timing recovery performed, the channel transfer matrix can be
extracted from the data using a maximum likelihood (ML) channel inversion technique. Let
Amn and φmn represent the amplitude and phase, respectively, of the signal from transmit
antenna n as observed on receive antenna m. Therefore, the estimate of the mnth element of
the transfer matrix is Ĥmn = Amne

jφmn = HR
mn + jHI

mn, where HR
mn and HI

mn represent the
real and imaginary parts of Ĥmn, respectively. If f

(k)
n represents the kth sample of the code

from the nth transmit antenna, the discrete signal at the port of the mth receive antenna is
given as

y(k)
m =

NT∑
n=1

Amnf
(k)
n cos(�0k + φ(k) + φmn) + η(k)

m (1.10)

where �0 is the discrete (recovered) carrier frequency, φ(k) is the randomly varying carrier
phase, and η

(k)
m represents the discrete noise sample that is assumed to be spectrally white

with a zero-mean Gaussian amplitude distribution.
We now consider a sequence of k2 − k1 + 1 samples, which is the length of the code

multiplied by the number of samples per symbol. If ŷ
(k)
m represents the observed signal, then

the ML estimate of the channel transfer function results from finding the values of Ĥmn that
minimize

Tm =
k2∑

k=k1

∣∣∣∣∣ŷ(k)
m −

NT∑
n=1

{
HR

mn cos(�0k + φ(k)) − HI
mn sin(�0k + φ(k))

}
f (k)

n

∣∣∣∣∣
2

. (1.11)

Taking the derivative of Tm with respect to both HR
ms and HI

ms , 1 ≤ s ≤ NT , and setting
the result to zero produces the equations

2
k2∑

k=k1

ŷ(k)
m f (k)

s cos(�0k + φ(k)) =
k2∑

k=k1

NT∑
n=1

f (k)
n f (k)

s

{
HR

mn(1 + αk) − HI
mnβk

}
(1.12)

2
k2∑

k=k1

ŷ(k)
m f (k)

s sin(�0k + φ(k)) =
k2∑

k=k1

NT∑
n=1

f (k)
n f (k)

s

{
HI

mn(1 − αk) − HR
mnβk

}
(1.13)

where 1 ≤ m ≤ NR , αk = cos[2(�0k + φ(k))] and βk = sin[2(�0k + φ(k))]. For a given
value of m, these equations form a linear system that can be solved for the unknown
coefficients HR

mn and HI
mn.
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1.2.2 Channel matrix characteristics

Measurements were taken in a building constructed with cinder-block partition walls and
steel-reinforced concrete structural walls and containing classrooms, laboratories, and sev-
eral small offices. Data were collected using 1000-bit binary codes at a chip rate of 12.5
kbps, producing one channel matrix estimate every 80 ms (representing the average chan-
nel response over the code length). Because channel changes occur on the timescales of
relatively slow physical motion (people moving, doors closing, etc.), this sample inter-
val is adequate for the indoor environment under investigation. For all measurements,
the SISO SNR is set to 20 dB and, unless explicitly stated, is computed for K = 1
in (1.9).

The three different measurement scenarios considered here are listed in the table below.
In this list, “Room A” and “Room B” are central labs separated by a hallway (designated as
“Hall”), while “Many Rooms” indicates that the receiver was placed at several locations in
different rooms. The arrays were all linear with the element type and spacing as indicated in
the table, where λ represents the free-space wavelength of the excitation. Multiple 10-second
data records (200–700) were taken for each scenario.

Name Transmitter Receiver Antenna elements Spacing
(NR × NT ) location location

4 × 4-V Room A Many rooms 4 vertical monopoles λ/2
4 × 4-VH Hall Room B 2 dual-polarization patches λ/2

10 × 10-V Many rooms Many rooms 10 vertical monopoles λ/4

For the data collected, the marginal probability density functions (PDF) for the magnitude
and phase of the elements of H can be estimated using the histograms

pmag[x] = 1

KNRNT �x
HIST

K,NR,NT

(|H(k)
mn |, �x) (1.14)

ppha[x] = 1

KNRNT �x
HIST

K,NR,NT

( � H(k)
mn , �x) (1.15)

where HIST(f, �x) represents a histogram of the function f with bins of size �x and K

is the number of transfer matrix samples. These histograms are computed by treating each
combination of matrix sample, transmit antenna, and receive antenna as an observation.
Figure 1.3 shows the empirical PDFs for sets 4 × 4-V (subplots (a) and (b)) and 10 × 10-V
(subplots (c) and (d)). The fitting curves for magnitude and phase are the Rayleigh PDF
with a variance of 0.5 and the uniform distribution on [−π, π ], respectively. The agreement
between the analytical and empirical PDFs is excellent.

The timescale of channel variation is an important consideration since this indicates
the frequency with which channel estimation (and perhaps channel feedback) must occur
to maintain reliable communication. To assess this temporal variability, we can examine
the temporal autocorrelation function for each element of the transfer matrix. Assuming the
channel matrix elements are zero mean, the average autocorrelation is given as

X� = E
{
H(k)

mnH ∗(k+�)
mn

}
(1.16)
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Figure 1.3 Empirical PDFs for the magnitude and phase of the 4 × 4 H matrix elements
compared with Rayleigh and uniform PDFs, respectively.

where � is a sample shift, {·}∗ denotes complex conjugate, and the expectation is approx-
imated as a sample mean over all combinations of transmit antenna (n), receive antenna
(m), and starting time sample (k). The temporal correlation coefficient is then given by
ρ� = X�/X0. Figure 1.4 plots the magnitude of ρ� over a period of 5 seconds for the two
different 4 × 4 data sets. For all measurements, the correlation remains relatively high, indi-
cating that the channel remains relatively stationary in time. The more dramatic decrease
in ρ� for set 4 × 4-VH is likely a consequence of the fact that this data was taken during
the day when activity was high, while the data for set 4 × 4-V was taken while activity
was low.

The correlation between the signals on the antennas is another important indicator of
performance since lower signal correlation tends to produce higher average channel capacity.
We assume that the correlation functions at transmit and receive antennas are shift-invariant,
and we therefore treat all pairs of antennas with the same spacing as independent observa-
tions. This allows us to define the transmit and receive correlation functions

RT,q = 1

NRNq

Nq∑
n=1

NR∑
m=1

E
{
HmnH

∗
m,n+q

}
(1.17)

RR,p = 1

NT Np

NT∑
n=1

Np∑
m=1

E
{
HmnH

∗
m+p,n

}
. (1.18)

where Nq (Np) represents the number of unique pairs of transmit (receive) antennas sepa-
rated by the distance q�z (p�z), where �z represents the antenna element spacing. For the
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Figure 1.5 Magnitude of the shift-invariant transmit and receive spatial correlation coeffi-
cients compared with Jakes’ model.

measured data, the expectation is replaced by an average over all time samples. The transmit
and receive correlation coefficients are then constructed using ρT,q = RT,q/RT,0 and ρR,p =
RR,p/RR,0, respectively. Figure 1.5 shows the shift-invariant spatial transmit and receive
correlation coefficient computed from the 10 × 10 data versus antenna separation p�z and
q�z. For comparison, results obtained from Jakes’ model [18], where an assumed uniform
distribution on multipath arrival angles leads to RR,s = RT,s = J0(2πs�z/λ) with J0(·) the
Bessel function of order zero, are also included. These results show that for antenna spacings
where measurements were performed, Jakes’ model predicts the trends observed in the data.

Finally, we examine the channel capacities associated with the measured channel matri-
ces. Capacities are computed using the water-filling solution [19], which provides the upper
bound on data throughput across the channel under the condition that the transmitter is
aware of the channel matrix H. For this study, we consider transmit and receive arrays
each confined to a 2.25λ aperture and consisting of 2, 4, and 10 equally spaced monopoles.
Figure 1.6 shows the complementary cumulative distribution functions (CCDF) of capac-
ity for these scenarios. Also, Monte Carlo simulations were performed to obtain capacity
CCDFs for channel matrices whose elements are independent, identically distributed (i.i.d.)
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Figure 1.6 Complementary cumulative distribution functions of capacity for transmit/receive
arrays of increasing number of elements. The array length is 2.25 λ for all cases.

zero-mean complex Gaussian random variables, as outlined in Section 1.3.1. The agreement
between the measured and modeled 2 × 2 channels is excellent because of the very wide
separation of the antennas (2.25λ). However, as the array size increases, the simulated
capacity continues to grow while the measured capacity per antenna decreases because of
higher correlation between adjacent elements.

The capacity results of Figure 1.6 neglect differences in received SNR among the differ-
ent channel measurements since each channel matrix realization is independently normalized
to achieve the 20 dB average SISO SNR. To examine the impact of this effect more closely,
the 10 × 10 linear arrays of monopoles with λ/4 element separation were deployed in a
number of different locations. Figure 1.7 shows the different locations, where each arrow
points from transmit to receive location. The top number in the circle on each arrow repre-
sents the capacity obtained when the measured channel matrix is independently normalized
to achieve 20 dB SISO SNR (K = 1 in (1.9)). The second number (in italics) represents
the capacity obtained when the normalization is applied over all H matrices considered
in the study. Often, when the separation between transmit and receive is large (E → C,
for example), the capacity degradation observed when propagation loss is included is sig-
nificant. In other cases (such as G → D), the capacity computed with propagation loss
included actually increases because of the high SNR resulting from the small separation
between transmit and receive.

1.2.3 Multipath estimation

Another philosophy regarding MIMO channel characterization is to directly describe the
properties of the physical multipath propagation channel, independent of the measurement
antennas. Most such system-independent representations use the double-directional channel
concept [20, 21] in which the AOD, AOA, TOA, and complex gain of each multipath
component are specified. Once this information is known, the performance of arbitrary
antennas and array configurations placed in the propagation channel may be analyzed by
creating a channel transfer function from the measured channel response as in (1.4).
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Figure 1.7 Study showing the impact of including the effects of propagation loss in comput-
ing the capacity. Arrows are drawn from transmit to receive positions. The top and bottom
number in each circle give capacity without and with propagation loss, respectively.

Conceptually, the simplest method for measuring the physical channel response is to
use two steerable (manually or electronically) high-gain antennas. For each fixed position
of the transmit beam, the receive beam is rotated through 360◦, thus mapping out the
physical channel response as a function of azimuth angle at the transmit and receive antenna
locations [22, 23]. Typically, broad probing bandwidths are used to allow resolution of the
multipath plane waves in time as well as angle. The resolution of this system is proportional
to the antenna aperture (for directional estimation) and the bandwidth (for delay estimation).
Unfortunately, because of the long time required to rotate the antennas, the use of such a
measurement arrangement is limited to channels that are highly stationary.

To avoid the difficulties with steered-antenna systems, it is more common and convenient
to use the same measurement architecture as is used to directly measure the channel transfer
matrix (Figure 1.2). However, attempting to extract more detailed information about the
propagation environment requires a much higher level of postprocessing. Assuming far-field
scattering, we begin with relationship (1.4), where the radiation patterns for the antennas
are known. Our goal is then to estimate the number of arrivals L, the directions of departure
(θT ,�, φT,�) and arrival (θR,�, φR,�), and times of arrival τ�. Theoretically, this information
could be obtained by applying an optimal ML estimator. However, since many practical
scenarios will have tens to hundreds of multipath components, this method quickly becomes
computationally intractable.
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On the other hand, subspace parametric estimators like ESPRIT provide an efficient
method of obtaining the multipath parameters without the need for computationally expen-
sive search algorithms. The resolution of such methods is not limited by the size of the
array aperture, as long as the number of antenna elements is larger than the number of
multipaths. These estimators usually require knowledge about the number of multipath com-
ponents, which can be obtained by a simple “Scree” plot or minimum description length
criterion [24–26].

While this double-directional channel characterization is very powerful, there are several
basic problems inherent to this type of channel estimation. First, the narrowband assumption
in the signal space model precludes the direct use of wideband data. Thus, angles and
times of arrival must be estimated independently, possibly leading to suboptimal parameter
estimation. Second, in their original form, parametric methods such as ESPRIT only estimate
directions of arrival and departure separately, and therefore the estimator does not pair
these parameters to achieve an optimal fit to the data. This problem can be overcome by
either applying alternating conventional beamforming and parametric estimation [20] or by
applying advanced joint diagonalization methods [27, 28]. Third, in cases where there is
near-field or diffuse scattering [21, 29] the parametric plane-wave model is incorrect, leading
to inaccurate estimation results. However, in cases where these problems are not severe,
the wealth of information obtained from these estimation procedures gives deep insight into
the behavior of MIMO channels and allows development of powerful channel models that
accurately capture the physics of the propagation environment.

1.3 MIMO Channel Models

Direct channel measurements provide definitive information regarding the potential perfor-
mance of MIMO wireless systems. However, owing to the cost and complexity of conducting
such measurement campaigns, it is important to have channel models available that accu-
rately capture the key behaviors observed in the experimental data [30–33, 1]. Modeling of
SISO and MIMO wireless systems has also been addressed extensively by several working
groups as part of European COST Actions (COST-231 [34], COST-259 [21], and COST-
273), whose goal is to develop and standardize propagation models.

When accurate, these models facilitate performance assessment of potential space-time
coding approaches in realistic propagation environments. There are a variety of different
approaches used for modeling the MIMO wireless channel. This section outlines several
of the most widely used techniques and discusses their relative complexity and accuracy
tradeoffs.

1.3.1 Random matrix models

Perhaps the simplest strategy for modeling the MIMO channel uses the relationship (1.5),
where the effects of antennas, the physical channel, and matched filtering have been lumped
into a single matrix H(k). Throughout this section, the superscript (k) will be dropped
for simplicity. The simple linear relationship allows for convenient closed-form analysis,
at the expense of possibly reduced modeling accuracy. Also, any model developed with
this method will likely depend on assumptions made about the specific antenna types and
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array configurations, a limitation that is overcome by the more advanced path-based models
presented in Section 1.3.3.

The multivariate complex normal distribution

The multivariate complex normal (MCN) distribution has been used extensively in early
as well as recent MIMO channel modeling efforts, because of simplicity and compatibility
with single-antenna Rayleigh fading. In fact, the measured data in Figure 1.3 shows that the
channel matrix elements have magnitude and phase distributions that fit well to Rayleigh
and uniform distributions, respectively, indicating that these matrix entries can be treated
as complex normal random variables.

From a modeling perspective, the elements of the channel matrix H are stacked into
a vector h, whose statistics are governed by the MCN distribution. The PDF of an MCN
distribution may be defined as

f (h) = 1

πN det{R} exp[−(h − µ)H R−1(h − µ)], (1.19)

where
R = E

{
(h − µ)(h − µ)H

}
(1.20)

is the (non-singular) covariance matrix of h, N is the dimensionality of R, µ is the mean
of h, and det{·} is a determinant. In the special case where the covariance R is singular,
the distribution is better defined in terms of the characteristic function. This distribution
models the case of Rayleigh fading when the mean channel vector µ is set to zero. If µ

is nonzero, a non-fading or line-of-sight component is included and the resulting channel
matrix describes a Rician fading environment.

Covariance matrices and simplifying assumptions

The zero mean MCN distribution is completely characterized by the covariance matrix R
in (1.20). For this discussion, it will be convenient to represent the covariance as a tensor
indexed by four (rather than two) indices according to

Rmn,pq = E
{
HmnH

∗
pq

}
. (1.21)

This form is equivalent to (1.20), since m and n combine and p and q combine to form
row and column indices, respectively, of R.

While defining the full covariance matrix R presents no difficulty conceptually, as
the number of antennas grows, the number of covariance matrix elements can become
prohibitive from a modeling standpoint. Therefore, the simplifying assumptions of separa-
bility and shift invariance can be applied to reduce the number of parameters in the MCN
model.

Separability assumes that the full covariance matrix may be written as a product of
transmit covariance (RT ) and receive covariance (RR) or

Rmn,pq = RR,mpRT,nq, (1.22)
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where RT and RR are defined in (1.17) and (1.18). When this assumption is valid, the
transmit and receive covariance matrices can be computed from the full covariance matrix as

RT,nq = 1

α

NR∑
m=1

Rmn,mq (1.23)

RR,mp = 1

β

NT∑
n=1

Rmn,pn, (1.24)

where α and β are chosen such that

αβ =
NR∑

k1=1

NT∑
k2=1

Rk1k2,k1k2 . (1.25)

In the case where R is a correlation coefficient matrix, we may choose α = NR and β = NT .
The separability assumption is commonly known as the Kronecker model in recent literature,
since we may write

R = RT ⊗ RR, (1.26)

RT = 1

α
E
{

HH H
}T

, (1.27)

RR = 1

β
E
{

HHH
}
, (1.28)

αβ = Tr(R) = E
{∥∥H

∥∥2
F

}
, (1.29)

where {·}T is a matrix transpose. The separable Kronecker model appeared in early MIMO
modeling work [31, 35, 7] and has demonstrated good agreement for systems with relatively
few antennas (2 or 3). However, for systems with a large number of antennas, the Kronecker
relationship becomes an artificial constraint that leads to modeling inaccuracy [36, 37].

Shift invariance assumes that the covariance matrix is only a function of antenna sepa-
ration and not absolute antenna location [24]. The relationship between the full covariance
and shift-invariant covariance RS is

Rmn,pq = RS
m−p,n−q . (1.30)

For example, shift invariance is valid for the case of far-field scattering for linear antenna
arrays with identical, uniformly spaced elements.

Computer generation

Computer generation of a zero mean MCN vector for a specified covariance matrix R is
performed by generating a vector a of i.i.d. complex normal elements with unit variance.
The transformation

y = ��� ���1/2 a (1.31)

produces a new complex normal vector with the proper covariance, where ��� and ��� are the
matrix of eigenvectors and the diagonal matrix of eigenvalues of R, respectively.
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For the case of the Kronecker model, applying this method to construct H results in

H = R1/2
R HIIDR1/2 T

T , (1.32)

where HIID is an NR × NT matrix of i.i.d. complex normal elements.

Complex and power envelope correlation

The complex correlation in (1.20) is the preferred way to specify the covariance of the com-
plex normal channel matrix. However, for cases in which only power information is available,
a power envelope correlation may be constructed. Let RP = E

{
(|h|2 − µP )(|h|2 − µP )T

}
,

where µP = E
{|h|2}, and | · |2 is an element-wise squaring of the magnitude. Interestingly,

for a zero-mean MCN distribution with covariance R, the power correlation matrix is simply
RP = |R|2. This can be seen by considering a bivariate complex normal vector [a1 a2]T

with covariance matrix

R =
[

R11 RR,12 − jRI,12
RR,12 + jRI,12 R22

]
, (1.33)

where all R{·} are real scalars, and subscripts R and I correspond to real and imaginary parts,
respectively. Letting um = Re {am} and vm = Im {am}, the complex normal distribution may
also be represented by the 4-variate real Gaussian vector [u1 u2 v1 v2]T with covariance
matrix

R′ = 1

2


R11 RR,12 0 RI,12

RR,12 R22 −RI,12 0

0 −RI,12 R11 RR,12
RI,12 0 RR,12 R22

 . (1.34)

The power correlation of the mth and nth elements of the complex normal vector is

RP,mn = E
{
|am|2|an|2

}
− E

{
|am|2

}
E
{
|an|2

}
= E

{
(u2

m + v2
m)(u2

n + v2
n)
}

− 4 E
{
u2

m

}
E
{
u2

n

}
= 4E2 {umun} + 4E2 {umvn}, (1.35)

where the structure of (1.34) was used in conjunction with the identity

E
{
A2B2

}
= E

{
A2
}

E
{
B2
}

+ 2E2 {AB}. (1.36)

This identity is true for real zero-mean Gaussian random variables A and B and is easily
derived from tabulated multidimensional normal distribution moment integrals [38]. The
magnitude squared of the complex envelope correlation is

|Rmn|2 = | E {umun} + E {vmvn} + j (− E {umvn} + E {vmun})|2

= 4E2 {umun} + 4E2 {umvn}, (1.37)

and therefore, RP = |R|2. Thus, for a given power correlation RP , we usually have a
family of compatible complex envelope correlations. For simplicity, we may let R = √

RP ,
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where
√· is element-wise square root, to obtain the complex-normal covariance matrix for

a specified power correlation. However, care must be taken, since
√

RP is not guaranteed
to be positive semi definite. Although this method is convenient, for many scenarios it can
lead to very high modeling error since only power correlations are required [39].

Covariance models

Research in the area of random matrix channel modeling has proposed many possible
methods for defining the covariance matrix R. Early MIMO studies assumed an i.i.d. MCN
distribution for the channel matrix (R = I) resulting in high channel capacity [40]. This
model is appropriate when the multipath scattering is sufficiently rich and the spacing
between antenna elements is large. However, for most realistic scenarios the i.i.d. MCN
model is overly optimistic, motivating the search for more detailed specification of the
covariance.

Although only approximate, closed-form expressions for covariance are most convenient
for analysis. Perhaps the most obvious expression for covariance is that obtained by extend-
ing Jakes’ model [18] to the multiantenna case as was performed in generating Figure 1.5.
Assuming shift invariance and separability of the covariance, we may write

Rmn,pq = J0
(
2π

∥∥xR,m − xR,p

∥∥) J0
(
2π

∥∥xT ,n − xT ,q

∥∥) , (1.38)

where xP,m, P ∈ {T , R} is the vectorial location of the mth transmit or receive antenna
in wavelengths and ‖ · ‖ is the vector Euclidean norm. Alternatively, let rT and rR repre-
sent the real transmit and receive correlation, respectively, for signals on antennas that are
immediately adjacent to each other. We can then assume the separable correlation function
is exponential, or

Rmn,pq = r
−|m−p|
R r

−|n−q|
T . (1.39)

This model builds on our intuition that correlation should decrease with increasing antenna
spacing. Assuming only correlation at the receiver so that

Rmn,pq = r
−|m−p|
R δnq, (1.40)

where δmp is the Kronecker delta, bounds for channel capacity may be computed in closed
form, leading to the observation that increasing rR is effectively equivalent to decreasing
SNR [41]. The exponential correlation model has also been proposed for urban measure-
ments [5].

Other methods for computing covariance involve the use of the path-based models in
Section 1.3.3 and direct measurement. When path-based models assume that the path gains,
given by β� in (1.4), are described by complex normal statistics, the resulting channel matrix
is MCN. Even when the statistics of the path gains are not complex normal, the statistics
of the channel matrix may tend to the MCN from the central limit theorem if there are
enough paths. In either case, the covariance for a specific environment may be computed
directly from the known paths and antenna properties. On the other hand, direct measure-
ment provides an exact site-specific snapshot of the covariance [42, 43, 14], assuming that
movement during the measurement is sufficiently small to achieve stationary statistics. This
approach potentially reduces a large set of channel matrix measurements into a smaller set
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of covariance matrices. When the Kronecker assumption holds, the number of parameters
may be further reduced.

Modifications have been proposed to extend the simpler models outlined above to
account for dual polarization and time-variation. For example, given existing models for
single-polarization channels, a new dual-polarized channel matrix can be constructed as [44]

H =
[

HVV
√

XHVH√
XHHV HHH

]
, (1.41)

where the subchannels HQP are single-polarization MIMO channels that describe propaga-
tion from polarization P to polarization Q, and X represents the ratio of the power scattered
into the orthogonal polarization to the power that remains in the originally transmitted polar-
ization. This very simple model assumes that the various single-polarization subchannels
are independent, an assumption that is often true in practical scenarios. The model may also
be extended to account for the case where the single-polarization subchannels are corre-
lated [45]. Another example modification includes the effect of time variation in the i.i.d.
complex normal model by writing [46]

H(r+t) = √
αtH(r) +

√
1 − αtW(r+t), (1.42)

where H(t) is the channel matrix at the t th time step, W(t) is an i.i.d. MCN-distributed
matrix at each time step, and αt is a real number between 0 and 1 that controls the channel
stationarity. For example, for αt = 1, the channel is time-invariant, and for αt = 0, the
channel is completely random.

Unconventional random matrix models

Although most random matrix models have focused on the MCN distribution for the ele-
ments of the channel matrix, here we highlight two interesting exceptions. In order to
describe rank-deficient channels with low transmit/receive correlation (i.e., the keyhole or
pinhole channel [47]), random channel matrices of the form [48]

H = R1/2
R HIID,1R1/2

S HIID,2R1/2 T
T (1.43)

have been proposed, where RT and RR represent the separable transmit and receive covari-
ances present in the Kronecker model, HIID,1 and HIID,2 are NR × S and S × NT matrices
containing i.i.d. complex normal elements, RS is the so-called scatterer correlation matrix,
and the dimensionality S corresponds roughly to the number of scatterers. Although heuris-
tic in nature, this model has the advantage of separating local correlation at the transmit and
receive and global correlation because of long-range scattering mechanisms, thus allowing
adequate modeling of rank-deficient channels.

Another very interesting random matrix modeling approach involves allowing the num-
ber of transmit and receive antennas as well as the scatterers to become infinite, while setting
finite ratios for transmit to receive antennas and transmit antennas to scatterers [42, 49].
Under certain simplifying assumptions, closed-form expressions may be obtained for the
singular values of the channel matrix as the matrix dimension tends to infinity. Therefore,
for systems with many antennas, this model provides insight into the overall behavior of
the eigenmodes for MIMO systems.
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1.3.2 Geometric discrete scattering models

By appealing more directly to the environment propagation physics, we can obtain channel
models that provide MIMO performance estimates which closely match measured observa-
tions. Typically, this is accomplished by determining the AOD, AOA, TOA (generally used
only for frequency selective analyses), and complex channel gain (attenuation and phase
shift) of the electromagnetic plane waves linking the transmit and receive antennas. Once
these propagation parameters are determined, the transfer matrix can be constructed using
(1.4).

Perhaps the simplest models based on this concept place scatterers within the propagation
environment, assigning a complex electromagnetic scattering cross-section to each one.
The cross-section is generally assigned randomly on the basis of predetermined statistical
distributions. The scatterer placement can also be assigned randomly, although often some
deterministic structure is used in scatterer placement in an effort to match a specific type
of propagation environment or even to represent site-specific obstacles. Simple geometrical
optics is then used to track the propagation of the waves through the environment, and the
time/space parameters are recorded for each path for use in constructing the transfer matrix.
Except in the case of the two-ring model discussed below, it is common to only consider
waves that reflect from a single scatterer (single bounce models).

One commonly used discrete scattering model is based on the assumption that scatterers
surrounding the transmitter and receiver control the AOD and AOA respectively. There-
fore, two circular rings are “drawn” with centers at the transmit and receive locations and
whose radii represent the average distance between each communication node and their
respective scatterers. The scatterers are then placed randomly on these rings. Comparison
with experimental measurements has revealed that when determining the propagation of a
wave through this simulated environment, each transmit and receive scatterer participates
in the propagation of only one wave (transmit and receive scatterers are randomly paired).
The scenario is depicted in Figure 1.8. These two-ring models are very simple to generate
and provide flexibility in modeling different environments through adaptation of the scat-
tering ring radii and scatterer distributions along the ring. For example, in something like a
forested environment the scatterers might be placed according to a uniform distribution in
angle around the ring. In contrast, in an indoor environment a few groups of closely spaced
scatterers might be used to mimic the “clustered” multipath behavior frequently observed.

Figure 1.8 Geometry of a typical two-ring discrete scattering model showing some repre-
sentative scattering paths.
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Another practical method for choosing scatterer placement is to draw a set of ellipses
with varying focal lengths whose foci correspond to the transmit and receive positions.
Scatterers are then placed according to a predetermined scheme on these ellipses, and only
single reflections are considered. In this model, all waves bouncing off scatterers located
on the same ellipse will have the same propagation time delay, leading to the designation
of constant delay ellipses. The spacing of the ellipses should be determined according to
the arrival time resolution desired from the model, which would typically correspond to
the inverse of the frequency bandwidth of the communication signal. With the spacing so
determined, the number of rings should be chosen to provide the proper average delay
spread associated with the propagation environment of interest.

In addition to their relative simplicity, these models have two interesting features. First,
once the scattering environment has been realized using an appropriate mechanism, one or
both of the communication nodes can move within the environment to simulate mobility.
Second, with certain statistical scatterer distributions, convenient, closed-form statistical
distributions can be found for delay spread, angular spread, and spatial correlation [50–52].

1.3.3 Statistical cluster models

Statistical cluster models directly specify distributions on the multipath AOD/AOA, TOA,
and complex amplitude. Most current models are based on initial work by Turin, et al. [53]
who observed that multipath components can be grouped into clusters that decay exponen-
tially with increasing delay time. Intuitively, a single cluster of arrivals might correspond to
a single scattering object and the arrivals within the cluster arise because of smaller object
features. Later work applied the model to indoor scenarios [54] and added directional infor-
mation [44, 22, 55, 56]. Statistical descriptions of the multipath arrival parameters can be
obtained from measurements or from ray-tracing simulations [57]. Provided that the under-
lying statistical distributions are properly specified, these models can offer highly accurate
channel representations (in a statistical sense). As a result, in this section we will detail
one implementation of such a model that extends the well-known Saleh-Valenzuela model
of [54] to include AOA/AOD in addition to TOA and multipath amplitude. This model will
be referred to as the Saleh-Valenzuela Model with Angle or simply SVA model.

The SVA model is based on the experimentally observed phenomenon that multipath
arrivals appear at the receiver in clusters in both space and time. We will refer to arrivals
within a cluster as rays, and will restrict our discussion to the horizontal plane for simplicity
(θT = θR = π/2). If we assume we have L clusters with K rays per cluster, then the
directional channel impulse response of (1.2) can be written as

hP (τ, φR, φT ) = 1√
LK

L−1∑
�=0

K−1∑
k=0

βk�δ(τ − T� − τk�)

× δ(φT − �T,� − φT,k�)δ(φR − �R,� − φR,k�) (1.44)

where we have removed the time dependence, and the summation now explicitly reveals the
concept of clusters (index �) and rays within the cluster (index k). The parameters T�, �T,�,
and �R,� represent the initial arrival time, mean departure angle, and mean arrival angle,
respectively, of the �th cluster. Also, in this context, the kth ray arrival time τk�, departure
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angle φT,k�, and arrival angle φR,k� are taken with respect to the mean time/angle values
for the �th cluster.

It is conventional to specify the cluster and ray parameters as random variables that
obey a predefined statistical distribution. We must first identify the times of arrivals of the
multipath components. One common description defines the PDF of the cluster arrival time
T� conditioned on the value of the prior cluster arrival time as

p (T�|T�−1) = �T e−�T (T�−T�−1), T� > T�−1, T0 > 0 (1.45)

where �T is a parameter that controls the cluster arrival rate for the environment of interest.
Similarly, the arrival time for the kth ray in the �th cluster obeys the conditional PDF

p
(
τk�|τk−1,�

) = λτ e
−λτ (τk�−τk−1,�), τk� > τk−1,�, τ0� > 0 (1.46)

where λτ controls the ray arrival rate.
With the arrival times defined, we focus on the complex gain βk�. This gain has a

magnitude that is Rayleigh distributed, with the expected power (or variance) satisfying

E
{
|βk�|2

}
= E

{
|β00|2

}
e−T�/�T e−τk�/γτ , (1.47)

which makes the amplitudes of the clusters as well as the amplitudes of the rays within the
clusters decay exponentially with the time constants �T and γτ , respectively. The phase of
the complex gain is assumed uniformly distributed on [0, 2π ].

Finally, the angles of departure and arrival must be specified. For indoor and dense
urban areas where scattering tends to come from all directions, the cluster departure and
arrival angles can be modeled as uniformly distributed random variables on [0, 2π ]. On the
basis of measured data taken in [22], a two-sided Laplacian distribution is assumed for the
ray AOA/AOD distribution with PDF given by

p(φP ) = 1√
2σP,φ

exp
(
−
∣∣∣√2φP /σP,φ

∣∣∣) (1.48)

where P ∈ {T , R} and σP,φ is the standard deviation of angle in radians. Other distributions,
such as a simple Gaussian, can also be used to describe this parameter.

When using the model for narrowband implementation (the maximum multipath delay is
much shorter than a symbol duration), the system cannot temporally resolve all of the arrivals
within each cluster. The rays within a cluster all appear to arrive at the same time, and
therefore we can simplify the model by letting the average ray power in each cluster remain
constant rather than decaying exponentially. This implies that λτ and γτ are not important
for model implementation. Similarly, we can arbitrarily set �T = 1, since the narrowband
assumption already specifies that the system cannot resolve the clusters temporally, making
the absolute value of T� unimportant. Under this narrowband approximation, we will use
the terminology SVA(�T , σφ) to denote the SVA model with constant average ray power
and unit cluster arrival rate and where σφ = σR,φ = σT,φ .

With all of the parameters and distributions of the SVA model specified, a statisti-
cal realization of a propagation channel can be generated. The transfer matrix for this
channel realization may then be constructed directly by computing (1.4) for the antennas
of interest. When statistics of the channel behavior are desired, an ensemble of realiza-
tions must be created and a new channel matrix created for each realization. Statistics can
then be constructed concerning the transfer matrix (matrix element distributions, spatial
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correlation) or concerning the performance of the MIMO system using the transfer matrix
(capacity).

Comparison of model and data

In [22], high-resolution AOA measurements were performed on the same floor of the
same building the transfer matrix measurements summarized in Section 1.2.2 were taken.
Although the AOA measurements were at a higher frequency (≈7 GHz), the extracted
parameters serve as a logical starting point. The key parameters discovered during that
study are σφ = 26◦, �T = 2, �T = 1. For simulation, transmit and receive cluster arrival
angles are assumed to be uniform on [0, 2π ] radians. The data below is compared to two
measured data sets: (i) the data from a 4 × 4 system using vertically polarized patch antennas
with λ/2 element separation, and (ii) the data from set 10 × 10-V discussed in Section 1.2.
For the monopole array used in the 10 × 10 measurements, the radiation pattern of the mth
monopole is specified as

eP,m(φP ) = exp{jk0(xP,m cos φP + yP,m sin φP )}, (1.49)

where P ∈ {T , R}, k0 = 2π/λ is the free-space wavenumber, and (xP,m, yP,m) is the loca-
tion of the mth antenna referenced to the appropriate array coordinate frame. For the patch
array used in the 4 × 4 measurements, the radiation patterns were obtained using an electro-
magnetic solver. In all model simulations, 105 channels are used (100 cluster configurations
with 1000 channels each).

Figure 1.9 compares CCDFs of capacity (obtained using the water-filling algorithm)
for channel matrices obtained by measurement and by Monte Carlo simulations of the
SVA model. The fit between the measured and modeled channels is very good, implying
that the SVA model is able to capture the important mechanisms that contribute to the
channel capacity. Additional work has shown that the SVA model not only captures the
capacity behavior but also accurately models pairwise joint statistics of the channel transfer
matrix [44]. These results suggest that from a statistical perspective, models such as the
SVA model detailed here can accurately represent physical propagation channels.
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Figure 1.9 Comparison of capacity CCDFs for measured data and SVA model simulations
for 4 × 4 and 10 × 10 MIMO systems.
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Comparison with random matrix models

Figure 1.10 plots capacity CCDFs for channel matrices obtained from the SVA model with
parameters �T = 2, σφ = 26◦, and uniform cluster AOA/AOD. Results for matrices drawn
from the MCN with the covariance R computed directly from the measured data are also
shown. Both sets of data use linear arrays of monopoles, with the 4 × 4 and 8 × 8 config-
urations using antenna element spacings of λ/2 and λ/4, respectively.

For the 4 × 4 results, use of the complex correlation provides a somewhat optimistic
estimate of the capacity, while the power correlation works surprisingly well, given that
this approach neglects phase information in the covariance. However, for the 8 × 8 chan-
nels, the addition of antennas and reduction in antenna spacing amplifies the deficiencies
associated with the random matrix models, leading to significant discrepancies in the results
produced by both techniques. In particular, neglecting phase information by using the power
correlation technique creates significant error in the results.

Other model considerations

A variety of other extensions to statistical path-based models such as the SVA model
outlined here are possible. For example, the SVA model as presented above is valid
only for a single polarization. For dual polarizations, it has been found that generating
a different SVA model realization for each different polarization works effectively [44].
Also, if movement of one of the nodes is to be considered, the path configuration should
evolve. This is commonly handled through statistically determining “death” of clusters
and “birth” of new ones [57]. Finally, some studies have used cluster models to describe
the impact of distant scatterers with discrete scattering models to represent the effect of
local scatterers [58, 59].
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Figure 1.10 Capacity CCDFs for the 4 × 4 channels with λ/2 interelement spacing and
8 × 8 channels with λ/4 interelement spacing. Results are shown for the SVA model and
MCN model with complex and power covariances obtained directly from experimental
observations.
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1.3.4 Deterministic ray tracing

Deterministic site-specific modeling begins by creating a two- or three-dimensional com-
puter model of a propagation environment. The response of the model to electromagnetic
excitation may then be obtained through computational techniques. Such models can also
provide statistical channel information by applying Monte Carlo analysis on many random
transmit/receive locations and/or model geometries.

Ray tracing [60–64] has emerged as the most popular technique for the analysis of
site-specific scenarios, due to its ability to analyze very large structures with reasonable
computational resources. The technique is based on geometrical optics, often supplemented
by diffraction theory to enhance accuracy in shadowed regions. Recent studies have further
combined ray tracing with full-wave electromagnetic solvers to model objects with features
that are comparable to the illumination wavelength [65, 66].

Ray-tracing techniques have demonstrated reasonable accuracy in predicting large-scale
path loss variation, with error standard deviations of 3–7 dB being reported. However,
preliminary comparisons of ray-tracing predictions with measurements indicate that the
simulations tend to underestimate MIMO channel capacity [67], likely due more to over-
simplification of the geometrical scenario representation than failure of the electromagnetic
simulation approach. Other recent work [68] shows promising agreement in AOAs of mea-
sured and simulated microcells. In this case, the results can be combined with a random
distribution for phase [68–71] to create a complete model. Further work is needed to identify
how much model detail is required to correctly represent the channel.

Ray-tracing simulations have been used to study MIMO channel characteristics such
as spatial-signature variation with small-scale movement [72], capacity variation with array
location and antenna spacing [73, 74], and angular clustering of multipath arrivals [75].
Ray-tracing studies have also led to the development of simpler statistical models such as
those described in Section 1.3.3.

1.4 The Impact of Antennas on MIMO Performance

The propagation environment plays a dominant role in determining the capacity of the
MIMO channel. However, robust MIMO performance depends also on proper implemen-
tation of the antenna system. To see this, consider two receive antennas with vector field
patterns e1(θ, φ) and e2(θ, φ) and placed at the coordinates (−d/2, 0, 0) and (d/2, 0, 0) in
Cartesian space. A set of L plane waves, with the �th plane wave characterized by com-
plex strength E�, arrival angles (θ�, φ�), and electric field polarization ê�, impinges on the
antenna array. The signals received by the two antennas are given as

s1 =
L∑

�=1

E� [e1(θ�, φ�) · ê�] e−j (πd/λ) sin θ� cos φ�

s2 =
L∑

�=1

E� [e2(θ�, φ�) · ê�] ej (πd/λ) sin θ� cos φ�, (1.50)

where λ is the free-space wavelength. For the MIMO system to work effectively, the signals
s1 and s2 must be unique, despite the fact that both antennas observe the same set of plane
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waves, which can be accomplished when each antenna provides a unique weighting to each
of the plane waves. Equation (1.50) reveals that this can occur in three different ways:

1. On the basis of the different antenna element positions, each antenna places a unique
phase on each multipath component based on its arrival angles. This is traditional
spatial diversity.

2. If the radiation patterns e1(θ, φ) and e2(θ, φ) are different, then each multipath will
be weighted differently by the two antennas. When the antennas share the same
polarization but have different magnitude and phase responses in different directions,
this is traditional angle diversity.

3. If in case 2 the two antennas have different polarizations, the dot product will lead
to a unique weighting of each multipath component. This is traditional polarization
diversity.

It is noteworthy that both angle and polarization diversity are subsets of the more inclusive
pattern diversity, which simply implies that the two antenna radiation patterns (magnitude,
phase, and polarization) differ to create the unique multipath weighting.

Many of the measurement and modeling approaches outlined above, particularly those
based on the multipath wave parameters, provide a provision for including these antenna
properties into the formulation of the channel matrix. In fact, direct measurement of the
channel matrix inherently includes all antenna properties, although the direct channel matrix
models typically do not. This section uses some of these appropriate measurement and
modeling techniques to demonstrate the performance impact of antenna properties on MIMO
system performance. Such a discussion must include the impact of antenna mutual coupling
both on the antenna radiation/reception properties and the power collection capabilities of
the antenna when interfaced to the RF subsystem. Therefore, an extension of the modeling
approaches is presented that accurately accounts for mutual coupling as well as amplifier
noise on MIMO system performance.

1.4.1 Spatial diversity

It is important to emphasize that the transfer matrix H in (1.5) depends not only on the
propagation environment but also on the array configurations. The question becomes which
array topology is best in terms of maximizing capacity (perhaps in an average sense over
a variety of propagation channels) or minimizing symbol error rates. This is difficult to
answer definitively, since the optimal array shape depends on the site-specific propagation
characteristics. One rule of thumb is to place antennas as far apart as possible to reduce the
correlation between the received signals.

There has been one notable study where several different array types were explored
for both the base station and the mobile unit in an outdoor environment [76]. The base
station antennas included single and dual polarization array and multibeam structures. The
arrays on the mobile were constructed from monopoles to achieve spatial, angle, and/or
polarization diversity. All of the array configurations provided very similar performance,
with the exception of the multibeam base station antennas, which resulted in a 40–50%
reduction in measured capacity since generally only one of the beams pointed in the direction
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of the mobile. These results suggest that average capacity is relatively insensitive to array
configuration provided the signal correlation is adequately low.

1.4.2 Pattern (angle and polarization) diversity

If the radiation patterns of the antenna elements are orthogonal when integrated over the
range of multipath arrival angles, the goal of having the antenna apply a unique weighting
to the incident multipath waves is optimally achieved [77]. For now neglecting the pattern
polarization, this can be accomplished with proper element design to achieve the appropriate
angular distribution of field strength. For example, one suggested approach for realizing such
a situation involves the use of a single multimode antenna where the patterns for different
modes exhibit high orthogonality (low correlation) [78]. However, in such a case it is
important to use modes that not only provide the high orthogonality required but also all
properly direct their energy in angular regions where multipath power is the highest. Failure
to do so can reduce the effective received signal power so severely that the benefit gained by
pattern orthogonality can be outweighed by the loss in SNR due to poor excitation/reception
within the environment of interest [79].

A more common application of pattern diversity is the use of antennas with different
polarizations. This is an intriguing concept, since polarization allows pattern orthogonality
that can increase communication capacity even when no multipath is present. Therefore,
when implementing MIMO systems, use of different polarizations can enable MIMO per-
formance to remain high even when a mobile subscriber moves into a region where the
multipath richness is low. However, proper implementation of polarization diversity for
MIMO systems requires understanding of the physics involved.

To begin this analysis, consider the case of infinitesimal electric and magnetic current
elements (dipoles) radiating into free space. For a three-dimensional coordinate frame, we
may orient each of the two current types in the x̂, ŷ, and ẑ directions. Each of these six
possible currents will create a unique vector far-field radiation pattern given by

Current Pattern: Pattern:
orientation electric current magnetic current
x̂ e1 = −θ̂ cos θ cos φ + φ̂ sin φ e4 = θ̂ sin φ + φ̂ cos θ cos φ

ŷ e2 = −θ̂ cos θ sin φ − φ̂ cos φ e5 = −θ̂ cos φ + φ̂ cos θ sin φ

ẑ e3 = θ̂ sin θ e6 = −φ̂ sin θ

These results make it very clear that polarization diversity cannot be completely independent
of angle diversity, since the angular distribution of power is dependent on the orientation
(polarization) of the radiating current.

Now, consider all six possible infinitesimal dipoles located at the same point in space and
receiving an incident multipath field. Assuming that on average, the power in the multipath
field is uniformly distributed in angle over a solid angle sector �� = (�θ, �φ) and equally
represents both polarizations, we can express the elements of the covariance matrix of the
signals received by the six antennas as [80]

Rpq =
∫

��

ep(�) · e∗
q(�) d�. (1.51)

We then define the eigenvalues of the matrix R as λ̂p, 1 ≤ p ≤ 6. If all eigenvalues are
equal and nonzero, this implies that six spatial degrees of freedom are created by the antenna
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Figure 1.11 Normalized sum of the eigenvalues of the correlation matrix versus incident
field angle spread parameters assuming ideal point sensors.

structure. From a MIMO perspective, this would mean the creation of six independent spatial
communication channels. To assess this number of communication channels, we will use
the parameter

κ = 1

λ̂max

6∑
p=1

λ̂p, (1.52)

where λ̂max represents the maximum eigenvalue. The quantity κ can assume values in the
range 1 ≤ κ ≤ 6, and gives some indication of the number of spatial degrees of freedom
available in the channel.

Figure 1.11 plots κ versus angular spread parameter �φ for three different values of
�θ . As can be seen, for a single propagation path (�θ = �φ = 0), only two channels exist
corresponding to the two possible polarizations of the incident plane wave. As the angle
spread increases, κ increases to a maximum value of six, indicating the availability of six
independent communication modes [81]. Because observed elevation spread in indoor and
urban environments is relatively small, the curve for �θ = 0 is particularly interesting.
Most noteworthy for this case is the fact that if full azimuthal spread is considered, the
correlation matrix becomes diagonal, indicating six independent channels. These channels,
however, are not all equally “good” since the power received by the ẑ oriented sensors is
twice as large as the power received by the other sensors [18].

From a practical standpoint, constructing a multipolarized antenna that can achieve the
performance suggested in Figure 1.11 is problematic. Using half-wavelength dipoles and
full-wavelength loops leads to strong mutual coupling and nonideal pattern characteristics
that can reduce the number of independent channels. One interesting geometry is a cube
consisting of dipole antennas to obtain a high degree of polarization diversity in a compact
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Figure 1.12 CCDFs for 2 × 2 channels employing different types of polarization/spatial
separation with realistic normalization.

form [82]. It is, however, much more common to simply construct antennas with two
polarizations and use a combination of polarization and spatial diversity to achieve MIMO
capacity. The linear patch arrays employed in the measurements outlined in Section 1.2
consist of four dual-polarization elements separated by a half-wavelength, and therefore
allow some assessment of the performance achievable with practical geometries. In this
study, four transmit/receive channels (set 4 × 4-VH) were used to excite both vertical and
horizontal polarizations on two λ/2 separated patches on each side of the link. By looking
at the appropriate submatrices of H, the capacity can be compared for three different 2 ×
2 subchannels: (i) Two elements with the same polarization (vertical or horizontal) but
separated by λ/2, (ii) Two elements that have orthogonal polarization and are co-located,
and (iii) Two elements that have both orthogonal polarization and are separated by λ/2.

When considering the effect of polarization, it is important to keep in mind that if the
vertical polarization is transmitted, the received power in the horizontal polarization will
typically be 3–10 dB lower than the power received in the horizontal polarization. A similar
statement can be made for transmission of the horizontal polarization. This suggests that
entries in the channel matrix corresponding to reception on a different polarization than the
transmission will tend to be weaker than those entries corresponding to transmission and
reception on the same polarization. When normalizing the channel matrix, therefore, the
normalization constant is set to achieve an average SISO SNR of 20 dB for the copolarized
matrix elements only. Figure 1.12 depicts the CCDFs resulting from the measured data. As
can be seen, using polarization diversity tends to increase capacity over what is possible
using spatial separation alone. It is also interesting that combining spatial separation and
polarization does not increase the capacity over what is possible with polarization alone for
this scenario.

1.4.3 Mutual coupling and receiver network modeling

In many compact devices, the antenna elements must be closely spaced, and the resulting
antenna mutual coupling can impact communication performance. Evaluating the effect of



MIMO CHANNEL MODELING 29

this coupling is often approached by examining how the altered radiation patterns change
the signal correlation [77] and using this correlation to derive the system capacity [83–85].
When applying this technique, however, it is important to understand that there are two
different physical phenomena that impact these radiation patterns:

1. When an open-circuited (coupled) antenna is placed near an antenna connected to a
generator, the electromagnetic boundary conditions are changed, leading to a change
in the radiation behavior. However, because the coupled antenna is open-circuited,
the impact on the pattern of the driven element is often relatively minor for most
practical configurations.

2. The open-circuit voltage Vc induced at the coupled antenna terminals is related to the
current Id in the driven element according to Vc = ZmId , where Zm is the mutual
impedance. If the coupled antenna is now terminated with a load, the induced voltage
will create a current in the coupled antenna that depends on the termination impedance.
Therefore, the effective radiation pattern will be the superposition of the driven ele-
ment pattern and the coupled element pattern weighted by this induced current. The
composite pattern therefore depends on the load attached to the coupled element.

Item 2 makes it clear that ambiguity exists in defining the pattern to use in standard cor-
relation analysis. Furthermore, since the composite pattern is a linear combination of the
individual element patterns, compensation for the impact of this effect can theoretically
be achieved through proper signal combination after reception, and therefore any analy-
sis conducted in this manner only represents the performance achievable for the specific
load configuration used in the computations. In this section, we present an extension to the
channel modeling approaches discussed in this chapter that rigorously incorporates the elec-
tromagnetic coupling and accurately models the receiver subsystem in terms of impedance
characteristics and thermal noise properties.

MIMO network model

Figure 1.13 shows a block diagram of the system model, which includes all major channel
components between the coupled transmit antennas and terminated receive amplifiers, used
in this analysis. We use scattering parameters (S-parameters) referenced to a real impedance
Z0 [86] to describe the network signal flow wherein the forward and reverse traveling
waves are denoted as a and b, respectively. The various specific traveling wave vectors,
S-parameter matrices (symbol S), and reflection coefficient matrices (symbol �) appearing
in Figure 1.13 will be identified in the following derivation.

The signal aT excites the transmit array consisting of NT mutually coupled antenna
elements characterized by an S-matrix ST T . The net power flowing into the network is
‖aT ‖2 − ‖bT ‖2, which, for lossless antennas, equals the instantaneous radiated transmit
power P inst

T . Since bT = ST T aT , we have

P inst
T = aH

T (I − SH
T T ST T )︸ ︷︷ ︸
A

aT . (1.53)

For zero mean signals, the average radiated power is given by

PT = E
{
P inst

T

}
= Tr(RaA), (1.54)
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Figure 1.13 Block diagram of the MIMO system of Subsection 1.4.3 including mutually
coupled arrays, propagation channel, matching network, receiver amplifiers, and loads.

where Ra = E
{
aT aH

T

}
. We emphasize that in traditional analysis of MIMO systems, the

total power is taken as Tr(Ra). Eq. (1.54) therefore illustrates one way in which antenna
coupling impacts the system analysis.

The radiation pattern for the qth element of the transmit array for a unit driving current
and all other elements in the array terminated in an open circuit is denoted as eT ,q(θT , φT ),
where (θT , φT ) represent the angular spherical coordinates referenced to the transmit array
origin. The two elements of the column vector represent the θ̂ and φ̂ polarizations. The total
transmitted field is then

eT (θT , φT ) =
NT∑
q=1

eT ,q(θT , φT ) iT ,q = ET (θT , φT )iT , (1.55)

where iT ,q , the qth element of iT , is the excitation current on the qth antenna and eT ,q(θT , φT )

is the qth column of the 2 × NT matrix ET (θT , φT ).
We now represent the radiation pattern of the pth coupled receive element (1 ≤ p ≤ NR)

referenced to the receiver coordinate origin as eR,p(θR, φR). Using a path-based propagation
model, the open circuit voltage on the pth receive element is (see (1.4))

vR,p =
NT∑
q=1

L∑
�=1

eT
R,p(θR,�, φR,�)β� eT ,q(θT ,�, φT,�)︸ ︷︷ ︸

2Z0HP,pq

iT ,q, (1.56)

where the term 2Z0 is isolated for later convenience. The vector of received open-circuit
voltages at the antenna terminals is then

vR = 2Z0HP iT . (1.57)

We emphasize that HP represents the channel matrix derived from the physical channel
impulse response as discussed in several sections of this chapter. The analysis that fol-
lows demonstrates how this model can be extended to include other effects present in the
electronic subsystems.
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The signal bS represents the traveling wave delivered by the receive antenna terminals
to a set of independent loads of resistance Z0 (so that b1 = 0). If a general termination is
attached to the array, the composite array output signal is

a1 = bS + SRRb1. (1.58)

For an open-circuit termination (a1 = b1), this becomes bS = (I − SRR)a1. We can also
express the voltage at the open-circuit antenna terminals using vR = Z

1/2
0 (a1 + b1) =

2Z
1/2
0 a1. Using these results in (1.57) and recognizing that the transmit current is iT =

Z
−1/2
0 (aT − bT ) = Z

−1/2
0 (I − ST T )aT , we obtain

bs = (I − SRR) HP (I − ST T )︸ ︷︷ ︸
SRT

aT . (1.59)

The multiport matching network is described by the block S-parameter matrix

SM =
[

S11 S12
S21 S22

]
, (1.60)

where 1 and 2 refer to input and output ports, respectively. With this notation, network
analysis shows that the signal b2 at the matching network output is

b2 = S21 (I − SRRS11)
−1 bS +

[
S22 + S21 (I − SRRS11)

−1 SRRS12

]
︸ ︷︷ ︸

�0

a2 (1.61)

where �0 represents the reflection coefficient at the matching network output as shown in
Figure 1.13.

The pth noisy amplifier injects forward and reverse traveling noise waves aη,p and bη,p,
respectively, at the amplifier input. The amplifier signal-plus-noise output waves are of the
form [87]

a2 = SA,11b2 + SA,12bL − SA,11aη + bη (1.62)

aL = SA,21b2 + SA,22bL − SA,21aη, (1.63)

where the subscript ‘A’ denotes the S-parameters of the amplifiers. Using additional network
analysis with these expressions and (1.61) leads to the vector of voltages across the amplifier
terminations (characterized by the reflection coefficient matrix �L) given by

vL = Q
[
GSRT aT + �0 bη − aη

]
. (1.64)

where

G = S21(I − SRRS11)
−1 (1.65)

Q = Z
1/2
0 (I + �L)

[(
I − �0SA,11

)
S−1

A,21

(
I − SA,22�L

)− �0SA,12�L

]−1
. (1.66)



32 MIMO CHANNEL MODELING

Matching network specification

Practical amplifier design involves specifying an amplifier performance goal and synthesiz-
ing the source and load terminations that achieve this goal. Signal amplifiers are typically
designed to provide minimum noise figure, optimal power gain, or some compromise
between the two [88]. Our task is to define a desired value of �0, which is the source
termination seen by the amplifier, and use this value to determine the SM for the matching
network.

If the matching network is constrained to be lossless, the problem of determining SM for
a given �0 can be solved. Let �0 = U0�

1/2
0 VH

0 represent the singular value decomposition

(SVD) of �0, where U0 and V0 are unitary matrices of singular vectors and �
1/2
0 is a

diagonal matrix of real singular values. Similarly, let SRR = URR�
1/2
RRVH

RR be the SVD of
SRR . The matrix SM can be written using the block matrix product

SM =
[

VRR 0
0 U0

][
�

1/2
11 j (I − �11)

1/2

j (I − �11)
1/2 �

1/2
11

][
URR 0
0 V0

]H

. (1.67)

We assume uncoupled amplifiers (SA,ij and �L are diagonal), so that typical design
goals are achieved for diagonal �0. If �opt and �MS represent the (scalar) source reflection
coefficient for achieving amplifier minimum noise figure and maximum power gain [88],
respectively, then achieving the these goals are accomplished by setting �0 = �optI and
�0 = �MSI. Since MIMO capacity depends on SNR, we expect a design for minimum
noise figure to outperform one for maximum power gain.

To achieve diagonal �0, the matching network must be coupled to “undo” the coupling
created by the antenna, and it therefore acts as an array combining network as well as
an impedance transforming network. This is an important observation, since the linear
combination of the signals in the matching network is performed before injection of the
noise by the amplifiers. In fact, it has been shown that if the matching network produces
diagonal �0, the capacity of a MIMO system with mutually coupled antennas can be greater
than the capacity obtained when uncoupled antennas are assumed. This observation will be
reinforced by the example later in this section.

Finally, while optimal matching networks must be coupled, practically speaking it is
easier to design an uncoupled network. We assume that the coupled antenna impedance can
be represented using only the diagonal elements of the full impedance matrix ZRR to obtain
ZRR and compute a diagonal SRR with elements SRR,ii = (ZRR,ii − Z0)/(ZRR,ii + Z0).
This value of SRR is then used in place of SRR in (1.67). However, when analyzing the
performance of this self-impedance match, the nondiagonal form of SRR must be used in
(1.64).

Coupled system capacity

Computing the capacity for the MIMO signal relationship in (1.64) requires that we formu-
late the covariance of vL assuming the input signal aT and noise are drawn from zero-mean
complex Gaussian distributions. Using the statistical properties of the noise vectors aη and
bη [87] and assuming that the noise in each amplifier is statistically uncorrelated with that
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of all other amplifiers, we can express the covariance as

RL = E
{

vLvH
L

}
= Q

[
GSRT RaSH

RT GH + Rη

]
QH (1.68)

Rη = E
{
(�0bη − aη)(�0bη − aη)

H
}

= kBB
(
TαI + Tβ�0�

H
0 − T��0 − T ∗

��H
0

)
︸ ︷︷ ︸

TαRηo

(1.69)

where kB is the Boltzmann constant and B is the system noise power bandwidth. The effec-
tive noise temperatures (Tα, Tβ, T� = Tγ ejφγ ), which can be determined from the amplifier
noise characteristics [87], are assumed identical for all amplifiers.

The capacity for the system in (1.64) can now be determined by finding the covariance
Ra that maximizes the mutual information expression

I (vL, aT ) = log2
det

{
GSRT RaSH

RT GH + Rη

}
det

{
Rη

} . (1.70)

Computing the eigenvalue decomposition Rηo = ξη�ηξ
H
η where ξη is unitary, the mutual

information expression becomes

I (vL, aT ) = log2 det

{
YRT YH

kBBTα

+ I

}
, (1.71)

where Y = �
−1/2
η ξH

η GSRT . The capacity results when the transmit covariance matrix Ra

is specified according to the water-filling solution, with the total transmit power limited
according to Tr(RaA) ≤ PT as derived in (1.54). Because this power constraint is a departure
from the typical constraint Tr(Ra) ≤ PT , the water-filling procedure must be modified, as
detailed in [89, 90].

Computational example

To demonstrate application of the analysis framework and to illustrate the impact of antenna
coupling and amplifier matching on MIMO system capacity, we use a model problem
consisting of two half-wave dipoles at transmit and receive. The coupled dipoles, which have
a wire radius of 0.01λ, are characterized using the finite-difference time-domain method [91].
We use a bipolar junction transistor that for Z0 = 50 � has noise and S-parameters

S11 = 0.552� 169◦ S12 = 0.049� 23◦

S21 = 1.681� 26◦ S22 = 0.839� − 67◦

Fmin = 2.5 dB �opt = 0.475� 166◦

Rn = 3.5 Ohms, (1.72)

where Fmin, �opt , and Rn represent the minimum noise figure, optimal source termination
for noise figure, and effective noise resistance respectively. These parameters are converted
to the effective noise temperatures Tα , Tβ , and T� using standard techniques.
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Figure 1.14 Average capacity as a function of receive dipole separation with mutual cou-
pling (optimal and self-impedance match) as well as without mutual coupling. Matching for
both minimum noise figure and maximum power gain are considered.

We use 5000 realizations of the SVA model to create a set of transfer matrices HP as
in (1.56). For each realization, we place single dipoles in the transmit and receive spaces
and create a lossless receive matching network with S11 = S∗

RR so that �0 = 0 (all terms
are scalars). We then can simplify the SISO SNR as

SNR = |SRT |2
1 − |SRR|2

PT

kBBTα

. (1.73)

This SNR value is then averaged in space by moving each dipole in 0.1λ steps over a linear
range of 1.5λ. For a given transmit power, the value of kBBTα can be computed to achieve
an average SISO SNR (20 dB in this work) for the channel realization.

We next construct the matching network to achieve the specified design goal for each
transmit/receive dipole spacing, as outlined in Section 1.4.3. For each configuration, we
compute the capacity averaged over the 5000 channel matrices with the corresponding
noise power levels kBBTα. The transmit array spacing is fixed at 0.5λ for all computations.

Figure 1.14 plots the capacity as a function of receive dipole spacing for matching
networks that achieve minimum noise figure and maximum amplifier gain. Results for a
coupled match and a simpler self-impedance match as well as for no receiver coupling are
included. We first observe that the match achieving minimum amplifier noise figure (noise
figure of F = Fmin = 2.5 dB) produces notably higher capacity than the match providing
maximum power transfer, which generates a much higher noise figure of F = 7.2 dB.
This result is intuitive, since ultimately capacity depends on SNR as opposed to absolute
signal strength. We also observe that for close antenna spacings with high coupling, the
shortcomings of the self-impedance match are evident. However, once the spacing reaches
approximately d = λ/4, this match provides near optimal performance. Finally, Figure 1.14
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indicates that for small antenna spacings, coupled dipoles can have a higher capacity than
uncoupled ones. This possibility was discussed in Section 1.4.3.
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[36] H. Özcelik, M. Herdin, W. Weichselberger, J. Wallace, and E. Bonek, “Deficiencies of ‘Kro-
necker’ MIMO radio channel model,” Electron. Lett., vol. 39, pp. 1209–1210, Aug. 7, 2003.

[37] T. Svantesson and J. W. Wallace, “Tests for assessing multivariate normality and the covariance
structure of MIMO data,” in Proc. 2003 IEEE Intl. Conf. Acoust. Speech Signal Process., vol. 4,
Hong Kong, Apr. 6-10, 2003, pp. 656–659.

[38] D. Zwillinger, Ed., Standard Mathematical ‘s and Formulae, 30th ed. CRC Press, 1996.

[39] J. Wallace, H. Özcelik, M. Herdin, E. Bonek, and M. Jensen, “Power and complex envelope
correlation for modeling measured indoor MIMO channels: A beamforming evaluation,” in Proc.
2003 IEEE 58th Veh. Technol. Conf., vol. 1, Orlando, FL, Oct. 6-9, 2003, pp. 363–367.

[40] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment
when using multiple antennas,” Wireless Pers. Commun., vol. 6, pp. 311–335, Mar. 1998.

[41] S. Loyka and A. Kouki, “The impact of correlation on multi-antenna system performance: Cor-
relation matrix approach,” in Proc. 2001 IEEE 54th Veh. Technol. Conf., vol. 2, Atlantic City,
NJ, Oct. 7-11, 2001, pp. 533–537.

[42] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and M. Beach, “A wideband
statistical model for NLOS indoor MIMO channels,” in Proc. 2002 IEEE 55th Veh. Technol.
Conf., vol. 1, Birmingham, AL, May 6-9, 2002, pp. 370–374.

[43] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A stochastic
MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas Commun., vol. 20,
pp. 1211–1226, Aug. 2002.

[44] J. W. Wallace and M. A. Jensen, “Modeling the indoor MIMO wireless channel,” IEEE Trans.
Antennas Propag., vol. 50, pp. 591–599, May 2002.

[45] J. Kermoal, L. Schumacher, F. Frederiksen, and P. Mogensen, “Polarization diversity in MIMO
radio channels: Experimental validation of a stochastic model and performance assessment,” in
Proc. 2001 IEEE 54th Veh. Technol. Conf., vol. 1, Atlantic City, NJ, Oct. 7-11, 2001, pp. 22–26.

[46] C. B. Peel and A. L. Swindlehurst, “Effective SNR for space-time modulation over a time-
varying Rician channel,” IEEE Trans. Commun., vol. 52, pp. 17–23, Jan. 2004.

[47] D. Chizhik, G. J. Foschini, M. J. Gans, and R. A. Valenzuela, “Keyholes, correlations, and capac-
ities of multielement transmit and receive antennas,” IEEE Trans. Wireless Commun., vol. 2, pp.
361–368, Apr. 2002.

[48] D. Gesbert, H. Bölcskei, D. A. Gore, and A. J. Paulraj, “Performance evaluation for scattering
MIMO channel models,” in Conf. Rec. 34th Asilomar Conf. Signals Syst. Comput., vol. 1, Pacific
Grove, CA, Oct. 29 - Nov. 1, 2000, pp. 738–742.

[49] D. W. Bliss, K. W. Forsythe, and A. F. Yegulalp, “MIMO communication capacity using infinite
dimension random matrix eigenvalue distributions,” in Conf. Rec. 35th Asilomar Conf. Signals
Syst. Comput., vol. 2, Pacific Grove, CA, Nov. 4-7, 2001, pp. 969–974.

[50] R. B. Ertel and J. H. Reed, “Angle and time of arrival statistics for circular and elliptical scat-
tering models,” IEEE J. Sel. Areas Commun., vol. 17, pp. 1829–1840, Nov. 1999.

[51] A. Abdi and M. Kaveh, “A space-time correlation model for multielement antenna systems in
mobile fading channels,” IEEE J. Sel. Areas Commun., vol. 20, pp. 550–560, Apr. 2002.

[52] O. Nørklit and J. B. Andersen, “Diffuse channel model and experimental results for array anten-
nas in mobile environments,” IEEE Trans. Antennas Propag., vol. 46, pp. 834–840, Jun. 1998.

[53] G. L. Turin, F. D. Clapp, T. L. Johnston, B. F. Stephen, and D. Lavry, “A statistical model of
urban multipath propagation,” IEEE Trans. Veh. Technol., vol. VT-21, pp. 1–9, Feb. 1972.



38 MIMO CHANNEL MODELING

[54] A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,”
IEEE J. Sel. Areas Commun., vol. SAC-5, pp. 128–137, Feb. 1987.

[55] A. F. Molisch, “A generic model for MIMO wireless propagation channels,” in Proc. 2002 IEEE
Intl. Conf. Commun., vol. 1, New York, Apr. 28 - May 2, 2002, pp. 277–282.

[56] C.-C. Chong, C.-M. Tan, D. I. Laurenson, S. McLaughlin, M. A. Beach, and A. R. Nix, “A new
statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems,” IEEE J.
Sel. Areas Commun., vol. 21, pp. 139–150, Feb. 2003.

[57] T. Zwick, C. Fischer, D. Didascalou, and W. Wiesbeck, “A stochastic spatial channel model
based on wave-propagation modeling,” IEEE J. Sel. Areas Commun., vol. 18, pp. 6–15, Jan.
2000.

[58] J. Fuhl, A. F. Molisch, and E. Bonek, “Unified channel model for mobile radio systems with
smart antennas,” IEE Proc. Radar Sonar Navigation, vol. 145, pp. 32–41, Feb. 1998.

[59] M. Stege, J. Jelitto, M. Bronzel, and G. Fettweis, “A multiple input-multiple output channel
model for simulation of Tx- and Rx-diversity wireless systems,” in Proc. 2000 IEEE 52nd Veh.
Technol. Conf., vol. 2, Boston, MA, Sep. 24-28, 2000, pp. 833–839.

[60] T. Kurner, D. J. Cichon, and W. Wiesbeck, “Concepts and results for 3D digital terrain-based
wave propagation models: An overview,” IEEE J. Sel. Areas Commun., vol. 11, pp. 1002–1012,
Sep. 1993.

[61] H. L. Bertoni, W. Honcharenko, L. R. Macel, and H. H. Xia, “UHF propagation prediction for
wireless personal communications,” Proc. IEEE, vol. 82, pp. 1333–1359, Sep. 1994.

[62] S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building
personal communication system design,” IEEE Trans. Veh. Technol., vol. 43, pp. 879–891, Nov.
1994.

[63] G. E. Athanasiadou, A. R. Nix, and J. P. McGeehan, “A microcellular ray-tracing propaga-
tion model and evaluation of its narrow-band and wide-band predictions,” IEEE J. Sel. Areas
Commun., vol. 18, pp. 322–335, Mar. 2000.

[64] M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication sys-
tems,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 662–673, Mar 2002.

[65] Y. Wang, S. Safavi-Naeini, and S. K. Chaudhuri, “A hybrid technique based on combining ray
tracing and FDTD methods for site-specific modeling of indoor radio wave propagation,” IEEE
Trans. Antennas Propag., vol. 48, pp. 743–754, May 2000.

[66] Z. Zhang, R. Sorensen, Z. Yun, M. F. Iskander, and J. F. Harvey, “A ray-tracing approach for
indoor/outdoor propagation through window structures,” IEEE Trans. Antennas Propag., vol. 50,
pp. 742–748, May 2002.

[67] A. L. Swindlehurst, G. German, J. Wallace, and M. Jensen, “Experimental measurements of
capacity for MIMO indoor wireless channels,” in IEEE Third Workshop Signal Process. Adv.
Wireless Commun. 2001. (SPAWC ’01), Taoyuan, Taiwan, R.O.C. Mar. 2001, pp. 30–33.

[68] H. Zhu, J. Takada, and T. Kobayashi, “The verification of a deterministic spatio-temporal channel
modeling approach by applying a deconvolution technique in the measurement,” in Proc. 2001
IEEE 53rd Veh. Technol. Conf., vol. 1, Rhodes, Greece, May 6-9, 2001, pp. 362–366.

[69] A. Muller, “Monte-carlo multipath simulation of ray tracing channel models,” in Proc. 1994 IEEE
Global Telecomm. Conf., vol. 3, San Francisco, CA, Nov. 11 - Dec. 2, 1994, pp. 1446–1450.

[70] R. A. Valenzuela, “Ray tracing prediction of indoor radio propagation,” in Proc. 1994 IEEE
5th Intl. Symp. Pers. Indoor Mobile Radio Commun., vol. 1, The Hague, The Netherlands, Sep.
18-23, 1994, pp. 140–144.

[71] P. Marques, J. Fernandes, and J. Neves, “Complex impulse response modeling for wideband
channels,” in Proc. 1998 IEEE Spring Veh. Technol. Conf., vol. 2, Ottawa, Ontario, Canada, May
18-21, 1998, pp. 702–706.



MIMO CHANNEL MODELING 39

[72] K. R. Dandekar, A. Arredondo, G. Xu, and H. Ling, “Using ray tracing to study urban vector
channel propagation characteristics,” in Proc. 1999 IEEE Spring Veh. Technol. Conf., vol. 1,
Houston, TX, May 16-20, 1999, pp. 381–385.

[73] C.-N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity scaling in MIMO
wireless systems under correlated fading,” IEEE Trans. Inf. Theory, vol. 48, pp. 637–650, Mar.
2002.

[74] F. Tila, P. R. Shepherd, and S. R. Pennock, “Theoretical capacity evaluation of indoor micro-
and macro-MIMO systems at 5 GHz using site specific ray tracing,” Electron. Lett., vol. 39, pp.
471–472, Mar. 6 2003.

[75] J.-H. Jo, M. A. Ingram, and N. Jayant, “Angle clustering in indoor space-time channels based on
ray tracing,” in Proc. 2001 IEEE 54th Veh. Technol. Conf., vol. 4, Atlantic City, NJ, Oct. 7-11,
2001, pp. 2067–2071.

[76] C. Martin, J. Winters, and N. Sollenberger, “MIMO radio channel measurements: Performance
comparison of antenna configurations,” in Proc. 2001 IEEE 54th Veh. Technol. Conf., vol. 2,
Atlantic City, NJ, Oct. 7-11, 2001, pp. 1225–1229.

[77] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Trans.
Veh. Technol., vol. VT-36, pp. 147–172, Nov. 1987.

[78] T. Svantesson, “Correlation and channel capacity of MIMO systems employing multimode anten-
nas,” IEEE Trans. Veh. Technol., vol. 51, pp. 1304–1312, Nov. 2002.

[79] C. Waldschmidt, T. Fugen, and W. Wiesbeck, “Spiral and dipole antennas for indoor MIMO-
systems,” IEEE Antennas Wireless Propag. Lett., vol. 1, no. 1, pp. 176–178, 2002.

[80] T. Svantesson, M. A. Jensen, and J. W. Wallace, “Analysis of electromagnetic field polarizations
in multi-antenna systems,” IEEE Trans. Wireless Commun., vol. 3, pp. 641–646, Mar. 2004.

[81] R. A. Andrews, P. P. Mitra, and R. deCarvalho, “Tripling the capacity of wireless communica-
tions using electromagnetic polarization,” Nature, vol. 409, pp. 316–318, Jan. 2001.

[82] J. B. Andersen and B. N. Getu, “The MIMO cube - a compact MIMO antenna,” in Proc. 5th
Intl. Symp. Wireless Pers. Multimedia Commun., vol. 1, Honolulu, HI, Oct. 27-30, 2002, pp.
112–114.

[83] T. Svantesson and A. Ranheim, “Mutual coupling effects on the capacity of multielement antenna
systems,” in Proc. 2001 IEEE Intl. Conf. Acoust. Speech Signal Process., vol. 4, Salt Lake City,
UT, May 7-11, 2001, pp. 2485–2488.

[84] C. Waldschmidt, J. v. Hagen, and W. Wiesbeck, “Influence and modeling of mutual coupling in
MIMO and diversity systems,” in Proc. 2002 IEEE Antennas Propag. Soc. Intl. Symp., vol. 3,
San Antonio, TX, Jun. 16-21, 2002, pp. 190–193.

[85] B. Clerckx, D. Vanhoenacker-Janvier, C. Oestges, and L. Vandendorpe, “Mutual coupling effects
on the channel capacity and the space-time processing of MIMO communication systems,” in
Proc. 2003 IEEE Intl. Conf. Commun., vol. 4, Anchorage, AK, May 11-15, 2003, pp. 2638–2642.

[86] D. M. Pozar, Microwave Engineering. John Wiley & Sons, 1998.
[87] J. Engberg and T. Larsen, Noise Theory of Linear and Nonlinear Circuits. John Wiley & Sons,

1995.
[88] G. Gonzalez, Microwave Transistor Amplifiers. Prentice-Hall, 1997.
[89] J. W. Wallace and M. A. Jensen, “Mutual coupling in MIMO wireless systems: A rigorous

network theory analysis,” IEEE Trans. Wireless Commun., vol. 3, pp. 1317–1325, Jul. 2004.
[90] J. W. Wallace and M. A. Jensen, “The capacity of MIMO wireless systems with mutual cou-

pling,” in Proc. 2002 IEEE 56th Veh. Technol. Conf., vol. 2, Vancouver, British Columbia,
Canada, Sep. 24-28, 2002, pp. 696–700.

[91] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-
Domain Method, 2nd ed. Artech House, Boston, 2000.




