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Processing of Signals

Any sequence or set of numbers, either continuous or discrete, defines a signal in

the broad sense. Signals originate from various sources. They occur in data

processing or share markets, human heartbeats or telemetry signals, a space shuttle

or the golden voice of the Indian playback singer Lata Mangeshkar, the noise of a

turbine blade or submarine, a ship or instrumented signal inside a missile.

Processing of signals, whether analogue or digital, is a prerequisite to under-

standing and analysing them. Conventionally, any signal is associated with time.

Typically, a one-dimensional signal has the form xðtÞ and a two-dimensional signal

has the form f ðx; y; tÞ. Understanding the origin of signals or their source is of

paramount importance. In strict mathematical form, a signal is a mapping function

from the real line to the real line, or in the case of discrete signals, it is a mapping

from the integer line to the real line;1 and finally it is a mapping from the integer

line to the integer line.

Typically the measured signal ŷyðtÞ is different from the emanated signal yðtÞ.
This is due to corruption and can be represented as follows:

yðtÞ ¼ ŷyðtÞ þ �ðtÞ in continuous form; ð1:1Þ
yk ¼ ŷyk þ �k in discrete form; ð1:2Þ

where � is the unwanted signal, commonly referred to as noise and most of the time

statistical in nature. This is one of the reasons why processing is performed to

obtain ŷyk from yk.

1.1 Organisation of the Book

Chapter 1 describes how analogue signals are converted into numbers and the

associated problems. It gives essential principles of converting the analogue signal
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to digital form, independent of technology. Also described are the various domains

in which the signals are classified and the associated mathematical transformations.

Chapter 2 looks at the basic ideas behind the concepts and provides the necessary

background to understand them. Chapter 2 will give confidence to the reader to

understand the principles of digital filters. Chapter 3 describes commonly used

filters along with practical examples. Chapter 4 focuses on Fourier transform

techniques plus computational complexities and variants. It also describes fre-

quency domain least squares in the spectral domain. Chapter 5 looks at methodol-

ogies of implementing the filters, various types of converters, limitations of fixed

points and the need for pipelining. We conclude by comparing the commercially

available processors and by looking at implementations for two practical problems:

a DSP processor and a hardware implementation using an FPGA.2 Chapter 6

describes a system-level application in two domains. The MATLAB programs in

the appendices may be modified to suit readers’ requirements.

1.2 Classification of Signals

Signals can be studied using spectral characteristics and temporal characteristics.

Figure 1.1 shows the same signal as a function of time (temporal) or as a function of

frequency (spectral). It is very important to understand the signals before we

process them. For example, the sampling for a narrowband signal will probably be

different than the sampling for a broadband signal. There are many ways to classify

signals.
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Figure 1.1 Narrowband signal xðtÞ
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1.2.1 Spectral Domain

Signals are generated as a function of time (temporal domain) but it is often

convenient to analyse them as a function of frequency (spectral domain). Figure 1.1

shows a narrowband signal in the temporal domain and the spectral domain.

Figure 1.2 does the same for a broadband signal. For historical reasons, signals

which are classified by their spectral characteristics are more popular. Here are

some examples:

1. Band-limited signals

(a) Narrowband signals

(b) Wideband signals

2. Additive band-limited signals

1.2.1.1 Band-Limited Signals

Band-limited signals, narrow or wide, are the most commonly encountered signals

in real life. They could be a signal from an RF transmitter, the noise of an engine,

etc. The signals in Figures 1.1 and 1.2 are essentially the same except that their

bandwidths are different and cannot be perceived in the time domain. Only by

obtaining the spectral characteristics using the Fourier transform we can distinguish

one from the other.

1.2.1.2 Additive Band-Limited Signals

A group of additive band-limited signals are conventionally known as composite

signals with a wide range of frequencies. Typically, a signal emitted from a radar [1]

and its reflection from the target have a carrier frequency of a few gigahertz and a

pulse repetition frequency (PRF) measured in kilohertz. The rotation frequency of
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Figure 1.2 Broadband signal xðtÞ
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the radar is a few hertz and the target spatial contour which gets convolved with this

signal is measured in fractions of hertz.

Composite signals are very difficult to process, and demand multi-rate signal

processing techniques. A typical composite signal in the time domain is depicted in

Figure 1.3(a), which may not give total comprehension. Looking at the spectrum of

the same signal in Figure 1.3(b) provides a better understanding. These graphs are

merely representative; in reality it is very difficult to sample composite signals due

to the wide range of frequencies present at logarithmic distances.

1.2.2 Random Signals

Only some signals can be characterised in a deterministic way through their

spectral properties. There are some signals which need a probabilistic approach.

Random signals such as shown in Figure 1.4(a) can only be characterised by their
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Figure 1.3 Composite signal xðtÞ
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probability density function (pdf). For the same signal we have estimated the pdf

by a simple histogram (Figure 1.4(b)). For this signal we have actually generated

the pdf from the given time series using a numerical technique; notice how

closely it matches with the theoretical bell-shaped curve representing a normal

distribution.

Statistical or random signals can also be characterised only by their moments,

such as first moment (mean �), second moment (variance �2) and higher-order

moments [8]. In general, a statistical signal is completely defined by its pdf and in

turn this pdf is uniquely related to the moments. In some cases the entire pdf can be

generated using only � and �2, as in the case of a Gaussian distribution, where the

pdf of a Gaussian random variable x is given by

fxðxÞ ¼
1ffiffiffiffiffiffi
2�

p
�

e�ðx��Þ2=2�2

:

The pdf does not have to be static; it could vary with time, making the signal non-

stationary.

1.2.3 Periodic Signals

A signal xðtÞ is said to be periodic if

xðtÞ ¼ xðt þ nTÞ where T is a real number and n is an integer ð1:3Þ

The periodicity of xðtÞ is minðnTÞ, which is T . If we rewrite this using the notation

t ¼ k �t, where k is an integer and �t is a real number,3 then

xðk �tÞ ¼ x k �t þ n
T

�t

� �
�t

� �
ð1:4Þ

¼ x k �t þ n½N̂N þ 	� �t
� �

: ð1:5Þ

We write the quantity T=�t ¼ N̂N þ 	, where 	 is a real number4 less than 1 and N̂N is

an integer. The practising engineer’s periodicity in a loose sense is N̂N; in a strict

mathematical sense the periodicity min nðN̂N þ 	Þ
� 	

¼ N must be an integer. N could

be very different from N̂N or may not exist. This illustrates that periodicity is not

preserved while moving from the continuous domain to the discrete domain in all

cases in a strict sense.

3This quantity is known as sampling time.
4A proper choice of �t can make this quantity 	 almost zero or zero.
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1.3 Transformations

The sole aim of this section is to introduce two common signal transformations. A

detailed discussion is available in later chapters of this book. Signals are manipu-

lated by performing various mathematical operations for better understanding,

presentation and visibility of the signal.

1.3.1 Laplace and Fourier Transforms

One such transformation is the Laplace transform (LT). If hðtÞ is a time-varying

signal, which is a function of time t, then the Laplace transform5 of hðtÞ is denoted

as HðsÞ, where s is a complex variable, and is defined as

HðsÞ,
ð1
�1

hðtÞe�st dt: ð1:6Þ

The complex variable s is often denoted as �þ j!, where j ¼
ffiffiffiffiffiffiffi
�1

p
. � is the real

part of s and represents the rate of decay or rise of the signal. ! is the imaginary part

of s and represents the periodic variation or frequency of the signal. The variable s is

also sometimes called the complex frequency.

When we are interested only in the frequency content of the signal hðtÞ, we use

the Fourier transform, which is denoted6 Hð!Þ and given by

Hð!Þ,
ð1
�1

hðtÞe�j!t dt: ð1:7Þ

In fact, combining the above equation with the Euler equation,7 we can derive the

Fourier series, which is a fundamental transformation for periodic functions.

These transformations are linear in nature, in the sense that the Laplace or

Fourier transform of the sum of two signals is the sum of their transforms, and the

Laplace or Fourier transform of a scaled version of a signal by some time-

independent scale factor is the scaled version of its transform by the same scale

factor.

1.3.2 The z-Transform and the Discrete Fourier Transform

When we move from the continuous-time domain to the discrete-time domain,

integrands get mapped to summations. Replacing es with z and hðtÞ with hk in (1.6),

we get a new transform in the discrete-time domain known as the z-transform, one

5This is a two-sided Laplace transform.
6We could write it as Hð!Þ or Hðj!Þ and there is no loss of generality.
7Euler equation ej!t ¼ cos !t þ j sin !t.
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of the powerful tools representing discrete-time systems. The z-transform of a

discrete-time signal hk is denoted as HðzÞ and is given by

HðzÞ,
X1

k¼�1
hkz�k: ð1:8Þ

As a simple illustration, consider a sequence of numbers

hk ¼ 0:5k; k 
 0;
0; k < 0:

�
ð1:9Þ

Using (1.8) for the sequence hk we get

HðzÞ ¼
X1
k¼0

0:5kz�k

¼
X1
k¼0

ð0:5 z�1Þk

¼ 1 þ 0:5 z�1 þ 0:25 z�2 þ 0:125 z�3 þ � � � : ð1:10Þ

Using the simple geometric progression relation

X1
k¼0

ak ¼ 1

1 � a
; jaj < 1;

we get

HðzÞ ¼ 1

ð1 � 0:5 z�1Þ ; ð1:11Þ

under the condition 0:5z�1


 

 < 1, that is, zj j > 0:5. Note that this condition

represents the region of the complex z-plane in which the series (1.10) converges

and (1.11) holds, and is called the region of convergence (ROC). We can also write

hk in the form

hk ¼ 0:5 hk�1 þ �k; ð1:12Þ

where �k is the Kronecker delta function, given by

�k ¼
1; k ¼ 0;
0; k 6¼ 0:

�
ð1:13Þ
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If, instead of the variable z, we use the variable ej�, where � is the frequency, then

we get the discrete fourier transform (DFT), which is defined as

Hðe j�Þ,
X1

k¼�1
hke�j�k: ð1:14Þ

The z-transform is thus a discrete-time version of the Laplace transform and the

DFT is a discrete-time version of the Fourier transform.

1.3.3 An Interesting Note

We have started with an infinite sequence hk (1.9) which is also represented in the

form HðzÞ, known as the transfer function (TF), in (1.11) and in a recursive way in

(1.12). Thus we have multiple representations of the same signal. These representa-

tions are of prime importance and constitute the heart of learning DSP; greater

details are provided in later chapters.

1.4 Signal Characterisation

The signal yk of (1.2) could be any of the signals in Figures 1.1, 1.2 or 1.3 and it

could be characterised in the frequency domain by the non-parametric spectrum.

This spectrum is popularly known as the Fourier spectrum and is well understood

by everyone. The same signal can also be represented by its parametric spectrum,

computed from the parameters of the system where the signal originates.

Signals per se do not originate on their own; generally a signal is the output of a

process defined by its dynamics, which could be linear, non-linear, logical or a

combination. Most of the time, due to our limitations in handling the information,

we assume a signal to be the output of a linear system, either represented in the

continuous-time domain or the discrete-time domain. In this book, we always refer

to discrete-time systems. In computing the parametric spectrum, we aim to find the

system which has an output of a given signal, say yk. This constitutes a separate

subject known as parameter estimation or system identification.

1.4.1 Non-parametric Spectrum or Fourier Spectrum

If the signal yk of (1.2) is known for k ¼ 1; 2; . . . ;N, it can also be represented as a

vector

YN ¼ y1 � � � yN½ �T ; ð1:15Þ

where ð�ÞT
denotes transpose, which can be transformed into the frequency domain

by the DFT relation

gk ¼
1

N

XN�1

n¼0

Wnkynþ1

� �( )
; ð1:16Þ

8 Processing of Signals



where W ¼ e�j 2�=N . In general gk is a complex quantity. However, we restrict our

interest to the power spectrum of the signal yk, a real non-negative quantity given by

sk ¼ gkg�
k ¼ jgkj2; ð1:17Þ

where ð�Þ� represents the complex conjugate and j � j represents the absolute value

(Figure 1.5). The series SN , given by

SN ¼ s1; . . . ; sNf g; ð1:18Þ

is another way of representing the signal. Even though the signal in the power

spectral domain is very convenient to handle, other considerations such as resolu-

tion, limit its use for online application. Also, in this representation, the phase

information of the signal is lost.

To preserve the total information, the complex quantity gk is represented as an

ordered pair of time series, one representing the in-phase component and the other

representing the quadrature component:

fgkg ¼ fgi
kg þ jfg

q
kg:

1.4.2 Parametric Representation

In a parametric representation the signal yk is modelled as the output of a linear

system which may be an all-pole or a pole–zero system [2]. The input is assumed to

be white noise, but this input to the system is not accessible and is only conceptual

in nature. Let the system under consideration be

xk ¼
Xp

i¼1

aixk�i þ
Xq�1

j¼0

bjþ1�k�j; ð1:19Þ

yk ¼ xk þ noise; ð1:20Þ

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.02

0.04

0.06

0.08

0.1

Frequency (Hz)

Figure 1.5 Fourier power spectrum sðkÞð1:17Þ

Signal Characterisation 9



1
A (z)B (z)

k xk

Noise

yk

Equations (1.19) and (1.20)

γ ∑

where �k is white noise and yk is the output of the system. Equation (1.19) can also

be represented as a transfer function (TF) [3, 4]:

HðzÞ ¼ BðzÞ
AðzÞ ð1:21Þ

or

XðzÞ ¼ BðzÞ
AðzÞ

� �
�ðzÞ ð1:22Þ

or in the delay operator notation8

xk ¼
BðzÞ
AðzÞ

� �
�k; ð1:23Þ

where XðzÞ and �ðzÞ are the z-transforms of xk and �k, respectively, and

AðzÞ ¼ 1 �
Xp

i¼1

aiz
�i; ð1:24Þ

BðzÞ ¼
Xq�1

j¼0

bjþ1z�j; ð1:25Þ

are the z-transforms of f1;�a1;�a2; . . . ;�apg and fb1; b2; . . . ; bqg, respectively.

We define the parameter vector as

p ¼ ½a1; a2; . . . ; ap; b1; b2; . . . ; bq�T : ð1:26Þ

The parameter vector p completely characterises the signal xk. The system defined

by (1.19) is also known as an autoregressive moving average (ARMA) model [1, 6].

Note that the TF HðzÞ of this model is a rational function of z�1, with p poles and q

zeros in terms of z�1. An ARMA model or system with p poles and q zeros is

conventionally written ARMA ðp; qÞ.

8Some authors prefer to use the delay operator and the complex variable z�1 interchangeably for

convenience. In the representation xk�1 ¼ z�1xk here, we have to treat z�1 as a delay operator and not as a

complex variable. In a loose sense, we can exchange the complex variable and the delay operator without

much loss of generality.
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1.4.2.1 Parametric Spectrum

Given the parameter vector p (1.26) we obtain the parametric spectrum H ej!ð Þj j as

H e j!
� �

 

 ¼ B ej!ð Þ

A ej!ð Þ










 ð1:27Þ

¼
Pq

m¼0 bmþ1e�j!m

1 �
Pp

n¼1 ane�j!n










: ð1:28Þ

Using the given value of p, we obtain the parametric spectrum via (1.28). The

function jHðej!Þj is periodic (with period 2�Þ in !.

When the parameter vector p is real-valued, H ej!ð Þj j is also symmetric in !, and we

need to evaluate (1.28) only for 0 < ! < �. Figure 1.6 is the parametric spectrum of

the narrowband signal. We have obtained this spectrum by first obtaining the

parameter vector p (1.26) of the given time series and substituting this value in

(1.28).

1.5 Converting Analogue Signals to Digital

An analogue signal yðtÞ is in reality a mapping function from the real line, to the

real line, defined as R ! R, where R denotes the set of real numbers. When

converted to a digital signal, this function goes through transformations and

becomes modified into another signal which mostly preserves the information,

depending on how the conversion is done. The process of modification or morphing

has three distinct stages:

� Windowing

� Digitisation: sampling

� Digitisation: quantisatioin
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Figure 1.6 Parametric spectrum jjHðe jwÞjj using (1.28)
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1.5.1 Windowing

The original signal could be very long and non-periodic, but due to physical

limitations we observe the signal only for a finite duration. This results in multi-

plication of the signal by a rectangular window function RðtÞ, giving an observed

signal

~yyðtÞ ¼ yðtÞRðtÞ; ð1:29Þ

where

RðtÞ ¼ 1; 0 � t < Tw;
0; otherwise:

�
ð1:30Þ

Tw is the observation time interval. In general, RðtÞ can take many forms and these

functions are known as windowing functions [5].

1.5.2 Sampling

In reality, a band-limited analogue signal yðtÞ needs to be sampled, resulting in a

discrete-time signal fykg, converting the function as a mapping from the integer line

to the real line I ! R, where I denotes the set of integers. We express fykg as

fykg ¼
X1

k¼�1
yðtÞRðtÞ�ðt � kTsÞ

¼
X1

k¼�1
yðtÞ�ðt � kTsÞ

" #
RðtÞ: ð1:31Þ

where �ðtÞ is the unit impulse (Dirac delta function)

�ðtÞ ¼ 1; t ¼ 0;
0; t 6¼ 0:

�
ð1:32Þ

Ts is the sampling time. The sampling process is defined via (1.31) and is shown

in Figure 1.7(a). This process generates a sampled or discrete signal. The

Fourier transform of the sampled signal yk (Figure 1.7(b)) is computed and

shown in Figure 1.8.

The striking feature in Figure 1.8 is the periodic replication of the narrowband

spectrum. Revisiting Fourier series will help us to understand the effect of

sampling. The Fourier series is indeed a discrete spectrum or a line spectrum,

and results from the periodic nature of a signal in the time domain. Any

transformation from the time domain to the frequency domain maps periodicity
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into sampling, and vice versa. What it means is that sampling in the time domain

brings periodicity in the frequency domain, and vice versa, as follows.

Time domain Frequency domain

Sampling Periodicity
Periodicity Sampling

In fact, the Poisson equation depicts this as

Syðf Þ ¼
X1

n¼�1
Sy f � n

Ts

� �
; ð1:33Þ

where Syð�Þ is the Fourier spectrum of the signal yðtÞ, which is periodic in f with

period 1
Ts

, shown in Figure 1.8.
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Figure 1.7 Discrete signal generation via (1.31)
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Figure 1.8 Spectrum of sampled signal yk
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1.5.2.1 Aliasing Error

A careful inspection of (Equation 1.33 and Figure 1.8) shows there is no real loss of

information except for the periodicity in the frequency domain. Hence the original

signal can be reconstructed by passing it through an appropriate lowpass filter.

However, there is a condition in which information loss occurs, which is

1=Ts 
 2fc, where fc is the cut-off frequency of the band-limited signal. If this

condition is not satisfied, a wraparound occurs and frequencies are not preserved.

But this aliasing is put to best use for downconverting the signals without using any

additional hardware, like mixers in digital receivers, where the signals are bandpass

in nature.

1.5.3 Quantiaation

In addition, the signal gets quantised due to finite precision analogue-to-digital

converters. The signal can be modelled as

yk ¼ bykc þ 
k; ð1:34Þ

where bykc is a finite quantised number and 
k is a uniformly distributed (UD)

random number of 1
2

LSB. Sampled signal yk and bykc are depicted in Figure 1.9(a)

and the quantisation error is shown in Figure 1.9(b). In this numerical example we

have used 10 (�5) levels of quantisation, giving an error (�k) between � 1
10

, which

can be seen in Figure 1.9(b). The process of moving9 signal from one domain to the
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Figure 1.9 Quantised discrete signal jykj

9This movement is because we want to do digital signal processing.
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other domain is as follows:

yðtÞ ! yk ! bykc ! fŷykg

Continous Discrete Quantised Windowed

Discrete Quantised

Discrete

In reality we get only windowed, discrete and quantised signal fbykcg ¼ fŷykg at the

processor. Figure 1.10 depicts a 4-bit quantised, discrete and rectangular windowed

signal.

1.5.4 Noise Power

The sample signal yk on passing through a quantiser such as an analogue-to-digital

(A/D) converter results in a signal bykc, and this is shown in Figure 1.9 along with

the quantisation noise. The quantisation noise 
k ¼ yk � bykc is a random variable

(rv) with uniform distribution. The variance �2 is given as ð1=12Þ 2�nð Þ2
, where n is

the length of the quantiser in bits. The noise power in decibels (dB) is given as

10 log �2 ¼ �10 logð12Þ � ½20 logð2Þ�n. If we assume that the signal yk is equi-

probable along the range of the quantiser, it becomes a uniformly distributed signal.

We can assume without any loss of generality the range as 0 to 1. Then the signal

power is 10 logð12Þ. The signal-to-noise ratio (SNR) is 20n logð2Þ dB or 6 dB per

bit.

Mathematically, the given original signal got corrupted due to the process of

sampling and converting into physical world, real numbers. These are the theore-

tical modifications alone.
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Figure 1.10 Windowed discrete quantised signal
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1.6 Signal Seen by the Computing Engine

With so much compulsive morphing, the final digitised signal10 takes the form

fykg ¼
X1

k¼�1
yðtÞ�ðt � TskÞ

 !
RðtÞ

$ %
þ 
k: ð1:35Þ

yk ¼ ŷyk þ 
k: modelling of Discrete Signal

In (1.35) we have not included any noise that gets added due to the channel through

which the signal is transmitted. Besides that, in reality the impulse function �ðtÞ is

approximated by a narrow rectangular pulse of finite duration.

1.6.1 Mitigating the Problems

Quantisation noise is purely controlled by the number of bits of the converter. The

windowing effect is minimised by the right choice of window functions or choosing

data of sufficient duration. There are scores of window functions [5] to suit different

applications.

1.6.1.1 Anti-Aliasing Filter

It is necessary to have a band-limited signal before converting the signal to discrete

form, and invariably an analogue lowpass filter precedes an A/D converter, making

the signal band-limited. The choice of the filter depends on the upper bound of the

sampling frequency and on the nature of the signal.

1.6.2 Anatomy of a Converter

There are three distinct parts to an A/D converter, as shown in Figure 1.11:

� Switch

� Analogue memory

� Conversion unit

Converter
Input y(t) Output yk

Switch

Analogue memory

Figure 1.11 Model of an A/D converter

10 The signal ŷyk is a floating-point representation of the signal bykc.
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The switch is controlled by an extremely accurate timing device. When it is

switched on it facilitates the transfer of the input signal yðtÞ at that instant to an

analogue memory; after transfer, it is switched off, holding the value, and

conversion is initiated. In specifying an A/D device there are four important

timings: on time ton of the switch is a non-zero quantity, because any switch

takes a finite time to close; hold time thold is the period when the signal voltage is

transferred to analogue memory; off time toff is also non-zero, because a switch

takes a finite time to open; finally, there is the conversion time tc.

The sampling time Ts is the sum of all these times, thus Ts ¼ tonþ
thold þ toff þ tc. As technology is progressing, the timings are shrinking, and with

good hardware architecture, sampling speeds are approaching 10 gigasamples per

second with excellent resolution (24-bit). Way back in 1977 all these units were

available as independent hardware blocks. Nowadays, manufacturers are also

including anti-aliasing filters in A/D converters, apart from providing as a single chip.

There are many conversion methods. The most popular ones are the successive

approximation method and a flash conversion method based on parallel conversion,

using high slew rate operational amplifiers. A wide range of these devices are

available in the commercial market.

1.6.3 The Need for Normalised Frequency

We enter the discrete domain once we pass through an A/D converter. We have only

numbers and nothing but numbers. In the discrete-time domain, only the normalised

frequency is used. This is because, once sampling is performed and the signal is

converted into numbers, the real frequencies are no longer of any importance. If

factual is the actual frequency, fn is the normalised frequency, and fs is the sampling

frequency, then they are related by

factual ¼ fn � fs: ð1:36Þ

Due to the periodic and symmetric [2] nature of the spectrum, we need to consider

fn only in the range 0 < fn < 0:5. This essentially follows from the Nyquist

theorem, where the minimum sampling rate is twice the maximum frequency

content in the signal.

1.6.4 Care before Sampling

Once the conversion is over, damage is either done or not done; there are no

halfway houses. Information is preserved or not preserved. All the care must be

taken before conversion.

1.7 It Is Only Numbers

Once the signal is converted into a set of finite accurate numbers that can be

represented in a finite-state machine, it is only a matter of playing with numbers.
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There are well-defined, logical, mathematical or heuristic rules to play with them.

To demonstrate this concept of playing (Figure 1.12), we shall conclude this chapter

with a simple example of playing with numbers.

Let fykg ¼ fy1; y2; . . .g be a sequence of numbers so acquired. Its mean at

discrete time k is defined as

�k ¼
1

k

Xk

i¼1

yi: ð1:37Þ

The above way of computing the mean is known as a moving-average process. We

recast the (1.37) as k�k ¼
Pk

i¼1 yi and for k þ 1 we write it as

ðk þ 1Þ�kþ1 ¼
Xkþ1

i¼1

yi

¼
Xk

i¼1

yi þ ykþ1 ð1:38Þ

¼ k�k þ ykþ1: ð1:39Þ

Figure 1.12 It is playing with numbers
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We can rewrite (1.39) as

�kþ1 ¼ k

k þ 1

� �
�k þ

1

k þ 1

� �
ykþ1 ð1:40Þ

¼ a1ðkÞ�k þ b1ðkÞykþ1: ð1:41Þ

It can easily be seen that (1.41) is a recursive method for computing the mean of a

given sequence. Equation (1.41) is also called an autoregressive (AR) process.11 It

will be shown in a later chapter that it represents a lowpass filter.

1.7.1 Numerical Methods

The numerical methods existing today for solving differential equations, they all

convert them into digital filters [5, 7]. Consider the simplest first-order differential

equation

_xx ¼ �0:5x þ uðtÞ; ð1:42Þ

where uðtÞ is finite for t 
 0.

We realise that slope _xx can be approximated12 as T�1 xkþ1 � xkð Þ, where T is the

step size, and substituting this in (1.42) gives

xkþ1 ¼ ð1 � 0:5 TÞxk þ Tuk; ð1:43Þ

which is the same as

xk ¼ 0:95 xk�1 þ 0:1 uk�1 ð1:44Þ

for a step size of 0.1. It is very important to note that (1.12), (1.41) and (1.44) come

from different backgrounds but they have the same structure as (1.19). In (1.44) the

step size, which is equivalent to the sampling interval, is an important factor in

solving the equations and also has an effect on the coefficients. The performance of

the digital signal processing (DSP) algorithms depends quite a lot on the sampling

rate. It is here that common sense fails, when people assume that sampling at a

higher rate works better. Generally, most DSP algorithms work best when sampling

is four times or twice the Nyquist frequency.

1.8 Summary

In this chapter we discussed the types of signals and the transformations a signal

goes through before it is in a form suitable for input to a DSP processor. We

11Refer to (1.19) in generic form.
12Euler method.
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introduced some common transforms, time and frequency domain interchanges, and

the concepts of windowing, sampling and quantisation plus a model of an A/D

converter. The last few sections give a flavour of DSP.
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