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Processing of Signals

Any sequence or set of numbers, either continuous or discrete, defines a signal in
the broad sense. Signals originate from various sources. They occur in data
processing or share markets, human heartbeats or telemetry signals, a space shuttle
or the golden voice of the Indian playback singer Lata Mangeshkar, the noise of a
turbine blade or submarine, a ship or instrumented signal inside a missile.

Processing of signals, whether analogue or digital, is a prerequisite to under-
standing and analysing them. Conventionally, any signal is associated with time.
Typically, a one-dimensional signal has the form x() and a two-dimensional signal
has the form f(x,y, 7). Understanding the origin of signals or their source is of
paramount importance. In strict mathematical form, a signal is a mapping function
from the real line to the real line, or in the case of discrete signals, it is a mapping
from the integer line to the real line;' and finally it is a mapping from the integer
line to the integer line.

Typically the measured signal y(¢) is different from the emanated signal y(z).
This is due to corruption and can be represented as follows:

(1)
Yk

y(t) + (1) in continuous form, (L.1)
Vi + % in discrete form, (1.2)

where 7y is the unwanted signal, commonly referred to as noise and most of the time
statistical in nature. This is one of the reasons why processing is performed to
obtain y; from yy.

1.1 Organisation of the Book

Chapter 1 describes how analogue signals are converted into numbers and the
associated problems. It gives essential principles of converting the analogue signal
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2 Processing of Signals

to digital form, independent of technology. Also described are the various domains
in which the signals are classified and the associated mathematical transformations.
Chapter 2 looks at the basic ideas behind the concepts and provides the necessary
background to understand them. Chapter 2 will give confidence to the reader to
understand the principles of digital filters. Chapter 3 describes commonly used
filters along with practical examples. Chapter 4 focuses on Fourier transform
techniques plus computational complexities and variants. It also describes fre-
quency domain least squares in the spectral domain. Chapter 5 looks at methodol-
ogies of implementing the filters, various types of converters, limitations of fixed
points and the need for pipelining. We conclude by comparing the commercially
available processors and by looking at implementations for two practical problems:
a DSP processor and a hardware implementation using an FPGA.? Chapter 6
describes a system-level application in two domains. The MATLAB programs in
the appendices may be modified to suit readers’ requirements.

1.2 Classification of Signals

Signals can be studied using spectral characteristics and temporal characteristics.
Figure 1.1 shows the same signal as a function of time (temporal) or as a function of
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Figure 1.1 Narrowband signal x(r)

frequency (spectral). It is very important to understand the signals before we
process them. For example, the sampling for a narrowband signal will probably be
different than the sampling for a broadband signal. There are many ways to classify
signals.

“Field-programable gate array.
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1.2.1 Spectral Domain

Signals are generated as a function of time (femporal domain) but it is often
convenient to analyse them as a function of frequency (spectral domain). Figure 1.1
shows a narrowband signal in the temporal domain and the spectral domain.
Figure 1.2 does the same for a broadband signal. For historical reasons, signals

15 . . . . 0.14
i OI2f
: O1f o Broadbatd signal
o5tk 4| : EBroadaE slgnalE
0.08F - R RERRRNE || (|| AR
0 . . 1 .
0.06 SEPISNE A SATERE
-0.5 : i :
0.04 ¢ SRR 1| . EEREE
! 00af oo M
-1.5 - . - . 0 S : :
200 400 600 800 1000 0 0.1 02 03 0.4 05
Time Frequency
(a) (b)

Figure 1.2 Broadband signal x(7)

which are classified by their spectral characteristics are more popular. Here are
some examples:

1. Band-limited signals

(a) Narrowband signals
(b) Wideband signals

2. Additive band-limited signals

1.2.1.1 Band-Limited Signals

Band-limited signals, narrow or wide, are the most commonly encountered signals
in real life. They could be a signal from an RF transmitter, the noise of an engine,
etc. The signals in Figures 1.1 and 1.2 are essentially the same except that their
bandwidths are different and cannot be perceived in the time domain. Only by
obtaining the spectral characteristics using the Fourier transform we can distinguish
one from the other.

1.2.1.2 Additive Band-Limited Signals

A group of additive band-limited signals are conventionally known as composite
signals with a wide range of frequencies. Typically, a signal emitted from a radar [1]
and its reflection from the target have a carrier frequency of a few gigahertz and a
pulse repetition frequency (PRF) measured in kilohertz. The rotation frequency of
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the radar is a few hertz and the target spatial contour which gets convolved with this
signal is measured in fractions of hertz.

Composite signals are very difficult to process, and demand multi-rate signal
processing techniques. A typical composite signal in the time domain is depicted in
Figure 1.3(a), which may not give total comprehension. Looking at the spectrum of
the same signal in Figure 1.3(b) provides a better understanding. These graphs are
merely representative; in reality it is very difficult to sample composite signals due
to the wide range of frequencies present at logarithmic distances.
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Figure 1.3 Composite signal x()

1.2.2 Random Signals

Only some signals can be characterised in a deterministic way through their
spectral properties. There are some signals which need a probabilistic approach.
Random signals such as shown in Figure 1.4(a) can only be characterised by their
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Figure 1.4 Random signal x(7) with pdf \/ﬁ—aéﬁ
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probability density function (pdf). For the same signal we have estimated the pdf
by a simple histogram (Figure 1.4(b)). For this signal we have actually generated
the pdf from the given time series using a numerical technique; notice how
closely it matches with the theoretical bell-shaped curve representing a normal
distribution.

Statistical or random signals can also be characterised only by their moments,
such as first moment (mean j), second moment (variance o) and higher-order
moments [8]. In general, a statistical signal is completely defined by its pdf and in
turn this pdf is uniquely related to the moments. In some cases the entire pdf can be
generated using only y and o, as in the case of a Gaussian distribution, where the
pdf of a Gaussian random variable x is given by

1
\V27o

o (n) /20

FKlx) =

The pdf does not have to be static; it could vary with time, making the signal non-
stationary.

1.2.3 Periodic Signals

A signal x(¢) is said to be periodic if
x(t) = x(t +nT) where T is a real number and n is an integer (1.3)

The periodicity of x(¢) is min(nT), which is T. If we rewrite this using the notation
t = k 6t, where k is an integer and 6t is a real number,3 then

x(két) = x(k ot+n {ﬂ 6t) (1.4)
= x(k &t + n[N + €] 6t). (1.5)

We write the quantity 7/6r = N + ¢, where ¢ is a real number® less than 1 and N is
an integer. The practising engineer’s periodicity in a loose sense is N; in a strict
mathematical sense the periodicity min [n(N + e)] = N must be an integer. N could
be very different from N or may not exist. This illustrates that periodicity is not
preserved while moving from the continuous domain to the discrete domain in all
cases in a strict sense.

This quantity is known as sampling time.

A proper choice of 6 can make this quantity € almost zero or zero.



6 Processing of Signals

1.3 Transformations

The sole aim of this section is to introduce two common signal transformations. A
detailed discussion is available in later chapters of this book. Signals are manipu-
lated by performing various mathematical operations for better understanding,
presentation and visibility of the signal.

1.3.1 Laplace and Fourier Transforms

One such transformation is the Laplace transform (LT). If A(7) is a time-varying
signal, which is a function of time 7, then the Laplace transform’ of /() is denoted
as H(s), where s is a complex variable, and is defined as

H(s) = Joo h(r)e™* dr. (1.6)

—00

The complex variable s is often denoted as o + jw, where j = /—1. o is the real
part of s and represents the rate of decay or rise of the signal. w is the imaginary part
of s and represents the periodic variation or frequency of the signal. The variable s is
also sometimes called the complex frequency.

When we are interested only in the frequency content of the signal A(t), we use
the Fourier transform, which is denoted® H(w) and given by

H(w)ér h(t)e 7 dt. (1.7)

—00

In fact, combining the above equation with the Euler equation,” we can derive the
Fourier series, which is a fundamental transformation for periodic functions.

These transformations are linear in nature, in the sense that the Laplace or
Fourier transform of the sum of two signals is the sum of their transforms, and the
Laplace or Fourier transform of a scaled version of a signal by some time-
independent scale factor is the scaled version of its transform by the same scale
factor.

1.3.2 The z-Transform and the Discrete Fourier Transform

When we move from the continuous-time domain to the discrete-time domain,
integrands get mapped to summations. Replacing ¢* with z and &() with 7 in (1.6),
we get a new transform in the discrete-time domain known as the z-transform, one

SThis is a two-sided Laplace transform.
“We could write it as H(w) or H(jw) and there is no loss of generality.

"Euler equation e = cos wr +j sin wt.



Transformations 7

of the powerful tools representing discrete-time systems. The z-transform of a
discrete-time signal 7 is denoted as H(z) and is given by

H(z) £ zoc: Iz k. (1.8)

k=—00

As a simple illustration, consider a sequence of numbers

{05t k>0,
h"_{o, k<0, (19)

Using (1.8) for the sequence h; we get

H(z) =) 057*
k=0
=> (05271
k=0
=1405z" 402524012573 +---. (1.10)

Using the simple geometric progression relation

- 1
k
=7 <1)

k=0
we get

1

H(Z):m,

(1.11)

under the condition ’O.Sz’l| <1, that is, |z] > 0.5. Note that this condition
represents the region of the complex z-plane in which the series (1.10) converges
and (1.11) holds, and is called the region of convergence (ROC). We can also write
hy in the form

h = 0.5 h_y + &, (1.12)

where 0y is the Kronecker delta function, given by

1, k=0,
5,(_{07 k20 (1.13)
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If, instead of the variable z, we use the variable &, where € is the frequency, then
we get the discrete fourier transform (DFT), which is defined as

H(e™) 2 > e ™. (1.14)

k=—00

The z-transform is thus a discrete-time version of the Laplace transform and the
DFT is a discrete-time version of the Fourier transform.

1.3.3 An Interesting Note

We have started with an infinite sequence Ay (1.9) which is also represented in the
form H(z), known as the transfer function (TF), in (1.11) and in a recursive way in
(1.12). Thus we have multiple representations of the same signal. These representa-
tions are of prime importance and constitute the heart of learning DSP; greater
details are provided in later chapters.

1.4 Signal Characterisation

The signal y; of (1.2) could be any of the signals in Figures 1.1, 1.2 or 1.3 and it
could be characterised in the frequency domain by the non-parametric spectrum.
This spectrum is popularly known as the Fourier spectrum and is well understood
by everyone. The same signal can also be represented by its parametric spectrum,
computed from the parameters of the system where the signal originates.

Signals per se do not originate on their own; generally a signal is the output of a
process defined by its dynamics, which could be linear, non-linear, logical or a
combination. Most of the time, due to our limitations in handling the information,
we assume a signal to be the output of a linear system, either represented in the
continuous-time domain or the discrete-time domain. In this book, we always refer
to discrete-time systems. In computing the parametric spectrum, we aim to find the
system which has an output of a given signal, say y;. This constitutes a separate
subject known as parameter estimation or system identification.

1.4.1 Non-parametric Spectrum or Fourier Spectrum

If the signal y; of (1.2) is known for k = 1,2, ..., N, it can also be represented as a
vector

Yy = [y (1.15)

where ()T denotes transpose, which can be transformed into the frequency domain
by the DFT relation

1 N—1
8 N{Z(W""y,1+n)}, (1.16)

n=0
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Figure 1.5 Fourier power spectrum s(k)(1.17)

where W = ¢7>"/N _In general g is a complex quantity. However, we restrict our
interest to the power spectrum of the signal yy, a real non-negative quantity given by

Sk = gkgz = |gk\2, (1-17)

where (-)" represents the complex conjugate and | - | represents the absolute value
(Figure 1.5). The series Sy, given by

SN:{Sla"'7SN}7 (118)

is another way of representing the signal. Even though the signal in the power
spectral domain is very convenient to handle, other considerations such as resolu-
tion, limit its use for online application. Also, in this representation, the phase
information of the signal is lost.

To preserve the total information, the complex quantity g, is represented as an
ordered pair of time series, one representing the in-phase component and the other
representing the quadrature component:

{ac} = {&} +ifel}-

1.4.2 Parametric Representation

In a parametric representation the signal y; is modelled as the output of a linear
system which may be an all-pole or a pole-zero system [2]. The input is assumed to
be white noise, but this input to the system is not accessible and is only conceptual
in nature. Let the system under consideration be

)4 q—1
Xy = Zlaixkfi + Z;b_m%fj’ (1.19)
i= Jj=

Yk = X + noise, (1.20)
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Noise

Yk 1 Xk Yk
— B(2) () —

Equations (1.19) and (1.20)

where ~y, is white noise and yy is the output of the system. Equation (1.19) can also
be represented as a transfer function (TF) [3, 4]:
B(2)

H(z) =30 (1.21)

(2)

X(z) = {%}F(Z) (1.22)

or in the delay operator notation®

X = {ig}w, (1.23)

where X(z) and I'(z) are the z-transforms of x; and -, respectively, and

Alz)=1- iaiz*", (1.24)
i=1

g—1
B(z) =) bz, (1.25)
=0

are the z-transforms of {1, —ay, —ay,...,—a,} and {b1,bs,...,b,}, respectively.
We define the parameter vector as

p=la,a,...,a,b1,by,....b," (1.26)

The parameter vector p completely characterises the signal x;. The system defined
by (1.19) is also known as an autoregressive moving average (ARMA) model [1, 6].
Note that the TF H(z) of this model is a rational function of z~!, with p poles and ¢
zeros in terms of z~!. An ARMA model or system with p poles and ¢ zeros is
conventionally written ARMA (p, q).

8Some authors prefer to use the delay operator and the complex variable z~! interchangeably for

convenience. In the representation x;_; = z~'x; here, we have to treat 7! as a delay operator and not as a
complex variable. In a loose sense, we can exchange the complex variable and the delay operator without
much loss of generality.
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1.4.2.1 Parametric Spectrum

Given the parameter vector p (1.26) we obtain the parametric spectrum |H (/)| as

’H(e/ )| - ’A(ejw) (1.27)
Zq 0 bm+lefjwm

= | == 1.28

B 12

Using the given value of p, we obtain the parametric spectrum via (1.28). The
function |H(e/*)| is periodic (with period 27) in w.

When the parameter vector p is real-valued, |[H(¢/)] is also symmetric in w, and we
need to evaluate (1.28) only for 0 < w < . Figure 1.6 is the parametric spectrum of
the narrowband signal. We have obtained this spectrum by first obtaining the
parameter vector p (1.26) of the given time series and substituting this value in
(1.28).
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Figure 1.6 Parametric spectrum ||H(e/")|| using (1.28)

1.5 Converting Analogue Signals to Digital

An analogue signal y(r) is in reality a mapping function from the real line, to the
real line, defined as R — R, where R denotes the set of real numbers. When
converted to a digital signal, this function goes through transformations and
becomes modified into another signal which mostly preserves the information,
depending on how the conversion is done. The process of modification or morphing
has three distinct stages:

e Windowing
e Digitisation: sampling
e Digitisation: quantisatioin
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1.5.1 Windowing

The original signal could be very long and non-periodic, but due to physical
limitations we observe the signal only for a finite duration. This results in multi-
plication of the signal by a rectangular window function R(¢), giving an observed
signal

y(t) = y(O)R(2), (1.29)
where

1, 0<t< Ty,
R(r) = {O, otherwise. (1.30)

T,, is the observation time interval. In general, R(7) can take many forms and these
functions are known as windowing functions [5].

1.5.2 Sampling

In reality, a band-limited analogue signal y(f) needs to be sampled, resulting in a
discrete-time signal {y; }, converting the function as a mapping from the integer line
to the real line Z — R, where Z denotes the set of integers. We express {y;} as

o0

n} = > y(OR@)8(t KTy

k=—00

k=—00

i y(0)é(r — kTs)]R(t)- (1.31)

where 6(¢) is the unit impulse (Dirac delta function)

8(1) = {(1) Ségf (1.32)

T is the sampling time. The sampling process is defined via (1.31) and is shown
in Figure 1.7(a). This process generates a sampled or discrete signal. The
Fourier transform of the sampled signal y; (Figure 1.7(b)) is computed and
shown in Figure 1.8.

The striking feature in Figure 1.8 is the periodic replication of the narrowband
spectrum. Revisiting Fourier series will help us to understand the effect of
sampling. The Fourier series is indeed a discrete spectrum or a line spectrum,
and results from the periodic nature of a signal in the time domain. Any
transformation from the time domain to the frequency domain maps periodicity
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Figure 1.7 Discrete signal generation via (1.31)

L4 ! ! ! ! ! ! ! ! !

—
[}%]
T

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency (Hz)

Figure 1.8 Spectrum of sampled signal yj

into sampling, and vice versa. What it means is that sampling in the time domain
brings periodicity in the frequency domain, and vice versa, as follows.

Time domain Frequency domain
Sampling Periodicity
Periodicity Sampling

In fact, the Poisson equation depicts this as
~ n
SN =Y Sy<f—7), (1.33)
n=—00 s

where S,(-) is the Fourier spectrum of the signal y(r), which is periodic in f with
period Tl, shown in Figure 1.8.
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1.5.2.1 Aliasing Error

A careful inspection of (Equation 1.33 and Figure 1.8) shows there is no real loss of
information except for the periodicity in the frequency domain. Hence the original
signal can be reconstructed by passing it through an appropriate lowpass filter.
However, there is a condition in which information loss occurs, which is
1/Ts > 2f., where f. is the cut-off frequency of the band-limited signal. If this
condition is not satisfied, a wraparound occurs and frequencies are not preserved.
But this aliasing is put to best use for downconverting the signals without using any
additional hardware, like mixers in digital receivers, where the signals are bandpass
in nature.

1.5.3 Quantiaation

In addition, the signal gets quantised due to finite precision analogue-to-digital
converters. The signal can be modelled as

e = ] + v, (1.34)

where |y;] is a finite quantised number and vy is a uniformly distributed (UD)
random number of % LSB. Sampled signal y; and |y | are depicted in Figure 1.9(a)
and the quantisation error is shown in Figure 1.9(b). In this numerical example we
have used 10 (£5) levels of quantisation, giving an error (%) between + - 15- Which
can be seen in Figure 1.9(b). The process of moving® signal from one domain to the

1 N T T T 0.1 - M T y
N : : . X : :
’ N : : : : : :
0.5/} 1 SRR R 005 { | T
0 I N A : 0 : : |
| ‘ I
05 o oA 1 . Q.05 b
. . ] !
i NI
NIB N
1 . . ; ; -0.1
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Seconds
(@ (b)

Figure 1.9 Quantised discrete signal |yx|

This movement is because we want to do digital signal processing.
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other domain is as follows:

yo) — o — ) —

Continous Discrete Quantised Windowed
Discrete  Quantised

Discrete

In reality we get only windowed, discrete and quantised signal {|yi|} = {Jx} at the
processor. Figure 1.10 depicts a 4-bit quantised, discrete and rectangular windowed
signal.
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Figure 1.10 Windowed discrete quantised signal

1.5.4 Noise Power

The sample signal y; on passing through a quantiser such as an analogue-to-digital
(A/D) converter results in a signal |y |, and this is shown in Figure 1.9 along with
the quantisation noise. The quantisation noise v = y; — |yx] is a random variable
(rv) with uniform distribution. The variance o is given as (1/12)(27")?, where n is
the length of the quantiser in bits. The noise power in decibels (dB) is given as
10log 0? = —101og(12) — [201og(2)]n. If we assume that the signal y; is equi-
probable along the range of the quantiser, it becomes a uniformly distributed signal.
We can assume without any loss of generality the range as O to 1. Then the signal
power is 10log(12). The signal-to-noise ratio (SNR) is 20n log(2) dB or 6 dB per
bit.

Mathematically, the given original signal got corrupted due to the process of
sampling and converting into physical world, real numbers. These are the theore-
tical modifications alone.
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1.6 Signal Seen by the Computing Engine

With so much compulsive morphing, the final digitised signal' takes the form

{w} = {( i y(1)6(t — TJc))R(t)J + k. (1.35)

k=—00

Yk = Y& + . modelling of Discrete Signal

In (1.35) we have not included any noise that gets added due to the channel through
which the signal is transmitted. Besides that, in reality the impulse function 6(¢) is
approximated by a narrow rectangular pulse of finite duration.

1.6.1 Mitigating the Problems

Quantisation noise is purely controlled by the number of bits of the converter. The
windowing effect is minimised by the right choice of window functions or choosing
data of sufficient duration. There are scores of window functions [5] to suit different
applications.

1.6.1.1 Anti-Aliasing Filter

It is necessary to have a band-limited signal before converting the signal to discrete
form, and invariably an analogue lowpass filter precedes an A/D converter, making
the signal band-limited. The choice of the filter depends on the upper bound of the
sampling frequency and on the nature of the signal.

1.6.2 Anatomy of a Converter
There are three distinct parts to an A/D converter, as shown in Figure 1.11:
e Switch

e Analogue memory
e Conversion unit

Input y( Output Ly,
puty() 4’/{ Converter EEEEEEE——

Switch

Analogue memory

Figure 1.11 Model of an A/D converter

'0The signal 3 is a floating-point representation of the signal [ve ).
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The switch is controlled by an extremely accurate timing device. When it is
switched on it facilitates the transfer of the input signal y(¢) at that instant to an
analogue memory; after transfer, it is switched off, holding the value, and
conversion 1is initiated. In specifying an A/D device there are four important
timings: on time f,, of the switch is a non-zero quantity, because any switch
takes a finite time to close; hold time #,,)q is the period when the signal voltage is
transferred to analogue memory; off time . is also non-zero, because a switch
takes a finite time to open; finally, there is the conversion time ..

The sampling time 7y is the sum of all these times, thus T = fo,+
thold + foff + fc. As technology is progressing, the timings are shrinking, and with
good hardware architecture, sampling speeds are approaching 10 gigasamples per
second with excellent resolution (24-bit). Way back in 1977 all these units were
available as independent hardware blocks. Nowadays, manufacturers are also
including anti-aliasing filters in A/D converters, apart from providing as a single chip.

There are many conversion methods. The most popular ones are the successive
approximation method and a flash conversion method based on parallel conversion,
using high slew rate operational amplifiers. A wide range of these devices are
available in the commercial market.

1.6.3 The Need for Normalised Frequency

We enter the discrete domain once we pass through an A/D converter. We have only
numbers and nothing but numbers. In the discrete-time domain, only the normalised
frequency is used. This is because, once sampling is performed and the signal is
converted into numbers, the real frequencies are no longer of any importance. If
Jactal 18 the actual frequency, f;, is the normalised frequency, and f; is the sampling
frequency, then they are related by

factual :fn st- (136)

Due to the periodic and symmetric [2] nature of the spectrum, we need to consider
Jf» only in the range 0 < f, < 0.5. This essentially follows from the Nyquist
theorem, where the minimum sampling rate is twice the maximum frequency
content in the signal.

1.6.4 Care before Sampling

Once the conversion is over, damage is either done or not done; there are no
halfway houses. Information is preserved or not preserved. All the care must be
taken before conversion.

1.7 1t Is Only Numbers

Once the signal is converted into a set of finite accurate numbers that can be
represented in a finite-state machine, it is only a matter of playing with numbers.



18 Processing of Signals

Figure 1.12 It is playing with numbers

There are well-defined, logical, mathematical or heuristic rules to play with them.
To demonstrate this concept of playing (Figure 1.12), we shall conclude this chapter
with a simple example of playing with numbers.

Let {yt} = {y1,¥2,...} be a sequence of numbers so acquired. Its mean at
discrete time k is defined as

1 &
ik :%;Yi- (137)
The above way of computing the mean is known as a moving-average process. We

recast the (1.37) as kux = Zle y; and for k 4+ 1 we write it as

1

(k+ D pprr = Vi
1

=~
+

Vi + Vit (1.38)

Il
'M’“

Il
—_

ki + Yiy1- (1.39)
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We can rewrite (1.39) as

k 1
— (= _ 1.4
k1 <k+ I)Mk + <k+ 1))’k+1 (1.40)

zal(k)uk+b](k)yk+1. (141)

It can easily be seen that (1.41) is a recursive method for computing the mean of a
given sequence. Equation (1.41) is also called an autoregressive (AR) process.'" It
will be shown in a later chapter that it represents a lowpass filter.

1.7.1 Numerical Methods

The numerical methods existing today for solving differential equations, they all
convert them into digital filters [5, 7]. Consider the simplest first-order differential
equation

&= —0.5x+ u(t), (1.42)

where u(t) is finite for > 0.
We realise that slope x can be approximated'? as 7~ (xk+1 — xx), where T is the
step size, and substituting this in (1.42) gives

Xkl = (1 —0.5 T))Ck + Tuy, (143)

which is the same as
Xp =0.95x1 + 0.1 up—; (144)

for a step size of 0.1. It is very important to note that (1.12), (1.41) and (1.44) come
from different backgrounds but they have the same structure as (1.19). In (1.44) the
step size, which is equivalent to the sampling interval, is an important factor in
solving the equations and also has an effect on the coefficients. The performance of
the digital signal processing (DSP) algorithms depends quite a lot on the sampling
rate. It is here that common sense fails, when people assume that sampling at a
higher rate works better. Generally, most DSP algorithms work best when sampling
is four times or twice the Nyquist frequency.

1.8 Summary

In this chapter we discussed the types of signals and the transformations a signal
goes through before it is in a form suitable for input to a DSP processor. We

Refer to (1.19) in generic form.

2Euler method.
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introduced some common transforms, time and frequency domain interchanges, and
the concepts of windowing, sampling and quantisation plus a model of an A/D
converter. The last few sections give a flavour of DSP.
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