
Chapter1
Elementary Concepts

This book is primarily about graphics programming and
mathematics. Rather than discussing general graphics sub-
jects for end users or how to use graphics software, we will
deal with more fundamental subjects, required for graphics
programming. In this chapter, we will first understand and
appreciate the nature of discreteness of displayed graph-
ics on computer screens. We will then see that x- and y-
coordinates need not necessarily be pixel numbers, also
known as device coordinates. In many applications logical
coordinates are more convenient, provided we can convert
them to device coordinates. Especially with input from a
mouse, we also need the inverse conversion, as we will see
at the end of this chapter.

CO
PYRIG

HTED
 M

ATERIA
L

2 1 ELEMENTARY CONCEPTS

1.1 L I N E S , C O O R D I N AT E S A N D P I X E L S
The most convenient way of specifying a line segment on a computer screen is
by providing the coordinates of its two endpoints. In mathematics, coordinates
are real numbers, but primitive line-drawing routines may require these to be
integers. This is the case, for example, in the Java language, which we will use
in this book. The Java Abstract Windows Toolkit (AWT) provides the class
Graphics containing the method drawLine, which we use as follows to draw
the line segment connecting A and B:

g.drawLine(xA, yA, xB, yB);

The graphics context g in front of the method is normally supplied as a
parameter of the paint method we are using, and the four arguments of
drawLine are integers, ranging from zero to some maximum value. The above
call to drawLine produces exactly the same line as this one:

g.drawLine(xB, yB, xA, yA);

We will now use statements such as the above one in a complete Java program.
Fortunately, you need not type these programs yourself, since they are available
from the Internet, as specified in the Preface. It will also be necessary to install
the Java Development Kit (JDK), which you can also download, using the
following Web page:

http://java.sun.com/

If you are not yet familiar with Java, you should consult other books, such as
some mentioned in the Bibliography, besides this one.

The following program draws the largest possible rectangle in a canvas. The
color red is used to distinguish this rectangle from the frame border:

// RedRect.java: The largest possible rectangle in red.

import java.awt.*;

import java.awt.event.*;

public class RedRect extends Frame

{ public static void main(String[] args){new RedRect();}

RedRect()

{ super("RedRect");

addWindowListener(new WindowAdapter()

1.1 LINES, COORDINATES AND PIXELS 3

{public void windowClosing(WindowEvent e){System.exit(0);}});

setSize (200, 100);

add("Center", new CvRedRect());

show();

}

}

class CvRedRect extends Canvas

{ public void paint(Graphics g)

{ Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

g.drawString("d.width = " + d.width, 10, 30);

g.drawString("d.height = " + d.height, 10, 60);

g.setColor(Color.red);

g.drawRect(0, 0, maxX, maxY);

}

}

The call to drawRect almost at the end of this program has the same effect as
these four lines:

g.drawLine(0, 0, maxX, 0); // Top edge

g.drawLine(maxX, 0, maxX, maxY); // Right edge

g.drawLine(maxX, maxY, 0, maxY); // Bottom edge

g.drawLine(0, maxY, 0, 0); // Left edge

The program contains two classes:

RedRect: The class for the frame, also used to close the application.
CvRedRect: The class for the canvas, in which we display graphics output.

However, after compiling the program by entering the command

javac RedRect.java

we notice that three class files have been generated: RedRect.class, CvRe-
dRect.class and RedRect$1. class. The third one is referred to as an anonymous
class since it has no name in the program. It is produced by the two program
lines

addWindowListener(new WindowAdapter()

{public void windowClosing(WindowEvent e){System.exit(0);}});

4 1 ELEMENTARY CONCEPTS

which enable the user of the program to terminate it in the normal way. We
could have written the same program code as

addWindowListener

(new WindowAdapter()

{ public void windowClosing(WindowEvent e)

{ System.exit(0);

}

}

);

to show more clearly the structure of this fragment. The argument of the
method addWindowListener must be an object of a class that implements
the interface WindowListener. This implies that this class must define seven
methods, one of which is windowClosing. The base class WindowAdapter
defines these seven methods as do-nothing functions. In the above fragment, the
argument of addWindowListener denotes an object of an anonymous subclass
of WindowAdapter. In this subclass we override the method windowClosing.
A further discussion of this compact program code for event handling can be
found in Appendix B.

The RedRect constructor shows that the frame size is set to 200 × 100. If we
do not modify this size (by dragging a corner or an edge of the window), the
canvas size is somewhat less. After compilation, we run the program by typing
the command

java RedRect

which produces the output shown in Figure 1.1.

Figure 1.1: Largest possible rectangle and canvas dimensions

The blank area in a frame, which we use for graphics output, is referred to as a
client rectangle in Microsoft Windows programming. We will consistently use a
canvas for it, which is a subclass, such as CvRedRect in program RedRect.java, of
the AWT class Canvas. If, instead, we displayed the output directly in the frame,

1.1 LINES, COORDINATES AND PIXELS 5

we would have a problem with the coordinate system: its origin would be in
the top-left corner of the frame; in other words, the x-coordinates increase from
left to right and y-coordinates from top to bottom. Although there is a method
getInsets to obtain the widths of all four borders of a frame so that we could com-
pute the dimensions of the client rectangle ourselves, we prefer to use a canvas.

The tiny screen elements that we can assign a color are called pixels (short for
picture elements), and the integer x- and y-values used for them are referred to
as device coordinates. Although there are 200 pixels on a horizontal line in the
entire frame, only 192 of these lie on the canvas, the remaining 8 being used for
the left and right borders. On a vertical line, there are 100 pixels for the whole
frame, but only 73 for the canvas. Apparently, the remaining 27 pixels are used
for the title bar and for the top and bottom borders. Since these numbers may
differ in different Java implementations and the user can change the window
size, it is desirable that our program can determine the canvas dimensions.
We do this by using the getSize method of the class Component, which is a
superclass of Canvas. The following program lines in the paint method show
how we obtain the canvas dimensions and how we interpret them:

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

The getSize method of Component (a superclass of Canvas) supplies us with the
numbers of pixels on horizontal and vertical lines of the canvas. Since we begin
counting at zero, the highest pixel numbers, maxX and maxY, on these lines are
one less than these numbers of pixels. Remember that this is similar with arrays
in Java and C. For example, if we write

int[] a = new int[8];

the highest possible index value is 7, not 8. Figure 1.2 illustrates this for a very
small canvas, which is only 8 pixels wide and 4 high, showing a much-enlarged

0 1 2 3 4 5 6 7
0

1

2

3

d.width = 8

d.height
= 4

x

y

Figure 1.2: Pixels as coordinates in an 8 × 4 canvas (with maxX = 7 and
maxY = 3)

6 1 ELEMENTARY CONCEPTS

screen grid structure. It also shows that the line connecting the points (0, 0) and
(7, 3) is approximated by a set of eight pixels.

The big dots approximating the line denote pixels that are set to the foreground
color. By default, this foreground color is black, while the background color is
white. These eight pixels are made black as a result of this call:

g.drawLine (0, 0, 7, 3);

In the program RedRect.java, we used the following call to the drawRect method
(instead of four calls to drawLine):

g.drawRect(0, 0, maxX, maxY);

In general, the call

g.drawRect(x, y, w, h);

draws a rectangle with (x, y) as its top-left and (x + w, y + h) as its bottom-
right corners. In other words, the third and fourth arguments of the drawRect
method specify the width and height, rather than the bottom-right corner, of the
rectangle to be drawn. Note that this rectangle is w + 1 pixels wide and h + 1
pixels high. The smallest possible square, consisting of 2 × 2 pixels, is drawn by
this call

g.drawRect(x, y, 1, 1);

To put only one pixel on the screen, we cannot use drawRect, because nothing
at all appears if we try to set the third and fourth arguments of this method
to zero. Curiously enough, Java does not provide a special method for this
purpose, so we have to use this call:

g.drawLine(x, y, x, y);

Note that the call

g.drawLine(xA, y, xB, y);

draws a horizontal line consisting of | xB − xA | +1 pixels.

1.2 THE BOUNDARIES OF FILLED REGIONS 7

A B

CD

A B

CD

(a) (b)

Figure 1.3: Small filled regions

1.2 T H E B O U N D A R I E S O F F I L L E D R E G I O N S

In mathematics, lines are continuous and have no thickness, but they are
discrete and at least one pixel thick in our graphics output. This difference in
the interpretation of the notion of lines may not cause any problems if the pixels
are very small in comparison with what we are drawing. However, we should
be aware that there may be such problems in special cases, as Figure 1.3(a)
illustrates. Suppose that we have to draw a filled square ABCD of, say, 4×4
pixels, consisting of the bottom-right triangle ABC and the upper-left triangle
ACD, which we want to paint in dark gray and light gray, respectively, without
drawing any lines. Strangely enough, it is not clear how this can be done: if
we make the diagonal AC light gray, triangle ABC contains fewer pixels than
triangle ACD; if we make it dark gray, it is the other way round.

A much easier but still non-trivial problem, illustrated by Figure 1.3(b), is filling
the squares of a checker-board with, say, dark and light gray squares instead of
black and white ones. Unlike squares in mathematics, those on the computer
screen deserve special attention with regard to the edges belonging or not
belonging to the filled regions. We have seen that the call

g.drawRect(x, y, w, h);

draws a rectangle with corners (x, y) and (x + w, y + h). The method fillRect,
on the other hand, fills a slightly smaller rectangle. The call

g.fillRect(x, y, w, h);

assigns the current foreground color to a rectangle consisting of w × h pixels.
This rectangle has (x, y) as its top-left and (x + w − 1, y + h − 1) as its bottom-
right corner. To obtain a generalization of Figure 1.3(b), the following method,
checker, draws an n × n checker board, with (x, y) as its top-left corner and
with dark gray and light gray squares, each consisting of w × w pixels. The

8 1 ELEMENTARY CONCEPTS

bottom-left square will always be dark gray because for this square we have
i = 0 and j = n − 1, so that i + n − j = 1:

void checker(Graphics g, int x, int y, int n, int w)

{ for (int i=0; i<n; i++)

for (int j=0; j<n; j++)

{ g.setColor((i + n - j) % 2 == 0 ?

Color.lightGray : Color.darkGray);

g.fillRect(x + i * w, y + j * w, w, w);

}

}

If we wanted to draw only the edges of each square, also in dark gray and light
gray, we would have to replace the above call to fillRect with

g.drawRect(x + i * w, y + j * w, w - 1, w - 1);

in which the last two arguments are w − 1 instead of w.

1.3 L O G I C A L C O O R D I N AT E S
1.3.1 The Direction of the Y-axis

As Figure 1.2 shows, the origin of the device-coordinate systems lies at the
top-left corner of the canvas, so that the positive y-axis points downward. This
is reasonable for text output, where we start at the top and increase y as we
go to the next line of text. However, this direction of the y-axis is different
from normal mathematical practice and therefore often inconvenient in graphics
applications. For example, in a discussion about a line with a positive slope,
we expect to go upward when we move along this line from left to right.
Fortunately, we can arrange for the positive y direction to be reversed by
performing this simple transformation:

y′ = maxY − y

1.3.2 Continuous vs. Discrete Coordinates

Instead of the discrete (integer) coordinates we are using at the lower,
device-oriented level, we want to use continuous (floating-point) coordinates
at the higher, problem-oriented level. Other usual terms are device and logical
coordinates, respectively. Writing conversion routines to compute device coor-
dinates from the corresponding logical ones and vice versa is a bit tricky. We
must be aware that there are two solutions to this problem, even in the simple

1.3 LOGICAL COORDINATES 9

case in which increasing a logical coordinate by one results in increasing the
device coordinate also by one. We want to write the following methods:

iX(x), iY(y): the device coordinates of the point with logical coordinates x
and y;

fx(x), fy(y): the logical coordinates of the point with device coordinates x
and y.

With regard to x-coordinates, the first solution is based on rounding:

int iX(float x){return Math.round(x);}

float fx(int x){return (float)x;}

For example, with this solution we have

iX(2.8) = 3 and fx(3) = 3.0

The second solution is based on truncating:

int iX(float x){return (int)x;} // Not used in

float fx(int x){return (float)x + 0.5F;} // this book.

With these conversion functions, we would have

iX(2.8) = 2 and fx(2) = 2.5

With both solutions, the difference between any value x and fx(iX(x)) is not
greater than 0.5. We will use the first solution throughout this book, since it is
the better one if logical coordinates frequently happen to be integer values. In
these cases the practice of truncating floating-point numbers will often lead to
worse results than we would have with rounding.

Besides the above methods iX and fx (based on the first solution) for x-
coordinates, we need similar methods for y-coordinates, taking into account the
opposite directions of the two y-axes. At the bottom of the canvas the device
y-coordinate is maxY while the logical y-coordinate is 0, which may explain the
two expressions of the form maxY − . . . in the following methods:

int iX(float x){return Math.round(x);}

int iY(float y){return maxY - Math.round(y);}

float fx(int x){return (float)x;}

float fy(int y){return (float)(maxY - y);}

Figure 1.4 shows a fragment of a canvas, based on maxY = 16.

10 1 ELEMENTARY CONCEPTS

5.0 6.0 7.0 8.0

12.0

13.0

14.0
(5, 2) (6, 2) (7, 2) (8, 2)

(5, 3) (6, 3) (7, 3) (8, 3)

(5, 4) (6, 4) (7, 4) (8, 4)

y

x

Figure 1.4: Logical and device coordinates, based on ymax = 16

The pixels are denoted as black dots, each placed in the center of a square
of dashed lines. In this discussion and elsewhere in this book, let us write x
and y for logical and X and Y for device coordinates. (Since it is customary in
Java to use lower-case letters at the beginning of variable names, we will not
write X and Y in program text.) In Figure 1.4, the device-coordinates (X, Y) are
placed between parentheses near each dot. For example, the pixel with device
coordinates (8, 2), at the upper-right corner of this canvas fragment, has logical
coordinates (8.0, 14.0). We have

iX (8.0) = Math.round (8.0) = 8

iY (14.0) = 16 - Math.round (14.0) = 2

fx (8) = (float)8 = 8.0

fy (2) = (float) (16 - 2) = 14.0

The dashed square around this dot denotes all points (x, y) satisfying

7.5 ≤ x < 8.5

13.5 ≤ y < 14.5

All these points are converted to the pixel (8, 2) by our methods iX and iY.

Let us demonstrate this way of converting floating-point logical coordinates to
integer device coordinates in a program that begins by drawing an equilateral tri-
angle ABC, with the side AB at the bottom and the point C at the top. Then, using

q = 0.05 p = 1 − q = 0.95

we compute the new points A′, B′ and C′ near A, B and C and lying on the sides
AB, BC and CA, respectively, writing

1.3 LOGICAL COORDINATES 11

xA1 = p * xA + q * xB;

yA1 = p * yA + q * yB;

xB1 = p * xB + q * xC;

yB1 = p * yB + q * yC;

xC1 = p * xC + q * xA;

yC1 = p * yC + q * yA;

We then draw the triangle A′B′C′, which is slightly smaller than ABC and
turned a little counter-clockwise. Applying the same principle to triangle A′B′C′
to obtain a third triangle, A′′B′′C′′, and so on, until 50 triangles have been
drawn, the result will be as shown in Figure 1.5.

Figure 1.5: Triangles drawn inside each other

If we change the dimensions of the window, new equilateral triangles appear,
again in the center of the canvas and with dimensions proportional to the size
of this canvas. Without floating-point logical coordinates and with a y-axis
pointing downward, this program would have been less easy to write:

// Triangles.java: This program draws 50 triangles inside each other.

import java.awt.*;

import java.awt.event.*;

12 1 ELEMENTARY CONCEPTS

public class Triangles extends Frame

{ public static void main(String[] args){new Triangles();}

Triangles()

{ super("Triangles: 50 triangles inside each other");

addWindowListener(new WindowAdapter()

{public void windowClosing(WindowEvent e){System.exit(0);}});

setSize (600, 400);

add("Center", new CvTriangles());

show();

}

}

class CvTriangles extends Canvas

{ int maxX, maxY, minMaxXY, xCenter, yCenter;

void initgr()

{ Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

minMaxXY = Math.min(maxX, maxY);

xCenter = maxX/2; yCenter = maxY/2;

}

int iX(float x){return Math.round(x);}

int iY(float y){return maxY - Math.round(y);}

public void paint(Graphics g)

{ initgr();

float side = 0.95F * minMaxXY, sideHalf = 0.5F * side,

h = sideHalf * (float)Math.sqrt (3),

xA, yA, xB, yB, xC, yC,

xA1, yA1, xB1, yB1, xC1, yC1, p, q;

q = 0.05F;

p = 1 - q;

xA = xCenter - sideHalf;

yA = yCenter - 0.5F * h;

xB = xCenter + sideHalf;

yB = yA;

xC = xCenter;

yC = yCenter + 0.5F * h;

for (int i=0; i<50; i++)

{ g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));

g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));

1.3 LOGICAL COORDINATES 13

g.drawLine(iX(xC), iY(yC), iX(xA), iY(yA));

xA1 = p * xA + q * xB;

yA1 = p * yA + q * yB;

xB1 = p * xB + q * xC;

yB1 = p * yB + q * yC;

xC1 = p * xC + q * xA;

yC1 = p * yC + q * yA;

xA = xA1; xB = xB1; xC = xC1;

yA = yA1; yB = yB1; yC = yC1;

}

}

}

In the canvas class CvTriangles there is a method initgr. Together with the other
program lines that precede the paint method in this class, initgr may also be
useful in other programs.

It is important to notice that, on each triangle edge, the computed floating-
point coordinates, not the integer device coordinates derived from them, are
used for further computations. This principle, which applies to many graphics
applications, can be depicted as follows:

float → float → float → float
↓ ↓ ↓ ↓
int int int int

which is in contrast to the following scheme, which we should avoid. Here
int device coordinates containing rounding-off errors are used not only for
graphics output but also for further computations, so that such errors will
accumulate:

float float float float
↓ ↗ ↓ ↗ ↓ ↗ ↓
int int int int

In summary, we compare and contrast the logical and device coordinate systems
in the following table, in terms of (1) the convention used in the text, but not in
Java programs, of this book; (2) the data types of the programming language;
(3) the coordinate value domain; and (4) the direction of the positive y-axis:

Coordinate
system Convention Data type Value domain Positive y-axis
logical lower-case letters float continuous upward
device upper-case letters integer discrete downward

14 1 ELEMENTARY CONCEPTS

1.4 A N I S OT R O P I C A N D I S OT R O P I C
M A P P I N G M O D E S
1.4.1 Mapping a Continuous Interval to a Sequence of Integers
Suppose we want to map an interval of real logical coordinates, such as

0 ≤ x ≤ 10.0

to the set of integer device coordinates {0, 1, 2, . . . , 9}. Unfortunately, the method

int iX(float x){return Math.round(x);}

used in the previous section is not suitable for this purpose because for any x
greater than 9.5 (and not greater than 10) it returns 10, which does not belong
to the allowed sequence 0, 1, . . . , 9. In particular, it gives

ix (10.0) = 10

while we want

ix (10.0) = 9

This suggests that in an improved method iX we should use a multiplication
factor of 0.9. We can also come to this conclusion by realizing that there are
only nine small intervals between ten pixels labeled 0, 1, . . . , 9, as Figure 1.6
illustrates. If we define the pixel width (= pixelWidth) as the distance between
two successive pixels on a horizontal line, the above interval 0 ≤ x ≤ 10 of
logical coordinates (being real numbers) corresponds to 9 × pixelWidth. So in
this example we have:

9 × pixelWidth = 10.0(the length of the interval of logical coordinates)

pixelWidth = 10/9 = 1.111 . . .

In general, if a horizontal line of our window consists of n pixels, numbered
0, 1, . . . , maxX (where maxX = n − 1), and the corresponding (continuous)

10 logical units

1 20 4 6 83 5 7 9

Logical x

Pixel number X

0 2 4 6 8 101 3 5 7 9

9 × pixel Width

Figure 1.6: Pixels lying 10/9 logical units apart

1.4 ANISOTROPIC AND ISOTROPIC MAPPING MODES 15

interval of logical coordinates is 0 ≤ x ≤ rWidth, we can use the following
method:

int iX(float x){return Math.round(x/pixelWidth);}

where pixelWidth is computed beforehand as follows:

maxX = n - 1;

pixelWidth = rWidth/maxX;

In the above example the integer n is equal to the interval length rWidth, but it
is often desirable to use logical coordinates x and y satisfying

0 ≤ x ≤ rWidth

0 ≤ y ≤ rHeight

where rWidth and rHeight are real numbers, such as 10.0 and 7.5, respectively,
which are quite different from the numbers of pixels that lie on horizontal and
vertical lines. It will then be important to distinguish between isotropic and
anisotropic mapping modes, as we will discuss in a moment.

As for the simpler method

int iX(float x){return Math.round(x);}

of the previous section, this can be regarded as a special case of the improved
method we have just seen, provided we use pixelWidth = 1, that is rWidth =
maxX, or rWidth = n − 1. For example, if the drawing rectangle is 100 pixels
wide, so that n = 100 and we can use the pixels 0, 1, 2, . . . , 99 = maxX on a
horizontal line, this simpler method iX works correctly if it is applied to logical
x-coordinates satisfying

0 ≤ x ≤ rWidth = 99.0

The point to be noticed is that, due to the value pixelWidth = 1, the logical
width is 99.0 here although the number of available pixels is 100.

1.4.2 Anisotropic Mapping Mode

The term anisotropic mapping mode implies that the scale factors for x and y
are not necessarily equal, as the following code fragment shows:

Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

pixelWidth = rWidth/maxX;

pixelHeight = rHeight/maxY;

16 1 ELEMENTARY CONCEPTS

...

int iX(float x){return Math.round(x/pixelWidth);}

int iY(float y){return maxY - Math.round(y/pixelHeight);}

float fx(int x){return x * pixelWidth;}

float fy(int y){return (maxY - y) * pixelHeight;}

We will use this in a demonstration program. Regardless of the window dimen-
sions, the largest possible rectangle in this window has the logical dimensions
10.0 × 7.5. After clicking on a point of the canvas, the logical coordinates are
shown, as Figure 1.7 illustrates.

Figure 1.7: Logical coordinates with anisotropic mapping mode

Since there are no gaps between this largest possible rectangle and the window
edges, we can only see this rectangle with some difficulty in Figure 1.7. In
contrast, the screen will show this rectangle very clearly because we will make it
red instead of black. Although the window dimensions in Figure 1.7 have been
altered by the user, the logical canvas dimensions are still 10.0 × 7.5. The text
displayed in the window shows the coordinates of the point near the upper-right
corner of the rectangle, as the cross-hair cursor indicates. If the user clicks
exactly on that corner, the coordinate values 10.0 and 7.5 are displayed. This
demonstration program is listed below.

// Anisotr.java: The anisotropic mapping mode.

import java.awt.*;

import java.awt.event.*;

public class Anisotr extends Frame

{ public static void main(String[] args){new Anisotr();}

Anisotr()

{ super("Anisotropic mapping mode");

addWindowListener(new WindowAdapter()

1.4 ANISOTROPIC AND ISOTROPIC MAPPING MODES 17

{public void windowClosing(WindowEvent e){System.exit(0);}});

setSize (400, 300);

add("Center", new CvAnisotr());

setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));

show();

}

}

class CvAnisotr extends Canvas

{ int maxX, maxY;

float pixelWidth, pixelHeight,

rWidth = 10.0F,

rHeight = 7.5F,

xP = -1, yP;

CvAnisotr()

{ addMouseListener(new MouseAdapter()

{ public void mousePressed(MouseEvent evt)

{ xP = fx(evt.getX()); yP = fy(evt.getY());

repaint();

}

});

}

void initgr()

{ Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

pixelWidth = rWidth/maxX; pixelHeight = rHeight/maxY;

}

int iX(float x){return Math.round(x/pixelWidth);}

int iY(float y){return maxY - Math.round(y/pixelHeight);}

float fx(int x){return x * pixelWidth;}

float fy(int y){return (maxY - y) * pixelHeight;}

public void paint(Graphics g)

{ initgr();

int left = iX (0), right = iX(rWidth),

bottom = iY (0), top = iY(rHeight);

if (xP >= 0) g.drawString(

"Logical coordinates of selected point: "

+ xP + " " + yP, 20, 100);

g.setColor(Color.red);

g.drawLine(left, bottom, right, bottom);

18 1 ELEMENTARY CONCEPTS

g.drawLine(right, bottom, right, top);

g.drawLine(right, top, left, top);

g.drawLine(left, top, left, bottom);

}

}

With the anisotropic mapping mode, the actual length of a vertical unit can be
different from that of a horizontal unit. This is the case in Figure 1.7: although
the rectangle is 10 units wide and 7.5 units high, its real height is less than
0.75 of its width. In particular, the anisotropic mapping mode is not suitable
for drawing squares, circles and other shapes that require equal units in the
horizontal and vertical directions.

1.4.3 Isotropic Mapping Mode

We can arrange for horizontal and vertical units to be equal in terms of their
real size by using the same scale factor for x and y. Let us use the term drawing
rectangle for the rectangle with dimensions rWidth and rHeight, in which we
normally draw graphical output. Since these logical dimensions are constant, so
is their ratio, which is not the case with that of the canvas dimensions. It follows
that, with the isotropic mapping mode, the drawing rectangle will in general
not be identical with the canvas. Depending on the current window size, either
the top and bottom or the left and right edges of the drawing rectangle lie on
those of the canvas.

Since it is normally desirable for a drawing to appear in the center of the canvas,
it is often convenient with the isotropic mapping mode to place the origin of
the logical coordinate system at that center. This implies that we will use the
following logical-coordinate intervals:

−1/2 rWidth ≤ x ≤ +1/2 rWidth

−1/2 rHeight ≤ y ≤ +1/2 rHeight

Our methods iX and iY will map each logical coordinate pair (x, y) to a pair
(X, Y) of device coordinates, where

X ∈ {0, 1, 2, . . . , maxX}
Y ∈ {0, 1, 2, . . . , maxY}

To obtain the same scale factor for x and y, we compute rWidth/maxX and
rHeight/maxY and take the larger of these two values; this maximum value,
pixelSize, is then used in the methods iX and iY, as this fragment shows:

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth/maxX, rHeight/maxY);

1.4 ANISOTROPIC AND ISOTROPIC MAPPING MODES 19

centerX = maxX/2; centerY = maxY/2;

...

int iX(float x){return Math.round(centerX + x/pixelSize);}

int iY(float y){return Math.round(centerY - y/pixelSize);}

float fx(int x){return (x - centerX) * pixelSize;}

float fy(int y){return (centerY - y) * pixelSize;}

We will use this code in a program that draws a square, two corners of which
touch either the midpoints of the horizontal canvas edges or those of the vertical
ones. It also displays the coordinates of a point on which the user clicks, as the
left window of Figure 1.8 shows.

Figure 1.8: Windows after changing their sizes

In this illustration, we pay special attention to the corners of the drawn square
that touch the boundaries of the drawing rectangle. These corners do not lie on
the window frame, but they lie just inside it. For the square on the left we have:

Figure 1.8, left logical coordinate y device coordinate iY(y)
top corner +rHeight/2 0
bottom corner −rHeight/2 maxY

By contrast, for the square that has been drawn in the narrow window on the
right, it is the corners on the left and the right that lie just within the frame:

Figure 1.8, right logical coordinate x device coordinate iX(x)
left corner −rWidth/2 0
right corner +rWidth/2 maxX

20 1 ELEMENTARY CONCEPTS

The following program uses a drawing rectangle with logical dimensions
rWidth = rHeight = 10.0. If we replaced this value 10.0 with any other positive
constant, the output would be the same.

// Isotrop.java: The isotropic mapping mode.

// Origin of logical coordinate system in canvas

// center; positive y-axis upward.

// Square (turned 45 degrees) just fits into canvas.

// Mouse click displays logical coordinates of

// selected point.

import java.awt.*;

import java.awt.event.*;

public class Isotrop extends Frame

{ public static void main(String[] args){new Isotrop();}

Isotrop()

{ super("Isotropic mapping mode");

addWindowListener(new WindowAdapter()

{public void windowClosing(WindowEvent e){System.exit(0);}});

setSize (400, 300);

add("Center", new CvIsotrop());

setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));

show();

}

}

class CvIsotrop extends Canvas

{ int centerX, centerY;

float pixelSize, rWidth = 10.0F, rHeight = 10.0F, xP = 1000000, yP;

CvIsotrop()

{ addMouseListener(new MouseAdapter()

{ public void mousePressed(MouseEvent evt)

{ xP = fx(evt.getX()); yP = fy(evt.getY());

repaint();

}

});

}

void initgr()

{ Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

1.5 DEFINING A POLYGON BY USING THE MOUSE 21

pixelSize = Math.max(rWidth/maxX, rHeight/maxY);

centerX = maxX/2; centerY = maxY/2;

}

int iX(float x){return Math.round(centerX + x/pixelSize);}

int iY(float y){return Math.round(centerY - y/pixelSize);}

float fx(int x){return (x - centerX) * pixelSize;}

float fy(int y){return (centerY - y) * pixelSize;}

public void paint(Graphics g)

{ initgr();

int left = iX(-rWidth/2), right = iX(rWidth/2),

bottom = iY(-rHeight/2), top = iY(rHeight/2),

xMiddle = iX (0), yMiddle = iY (0);

g.drawLine(xMiddle, bottom, right, yMiddle);

g.drawLine(right,yMiddle, xMiddle, top);

g.drawLine(xMiddle, top, left, yMiddle);

g.drawLine(left, yMiddle, xMiddle, bottom);

if (xP != 1000000)

g.drawString(

"Logical coordinates of selected point: "

+ xP + " " + yP, 20, 100);

}

}

1.5 D E F I N I N G A P O LY G O N BY U S I N G
T H E M O U S E

We will use the conversion methods of the previous program in a more interesting
application, which enables the user to define a polygon by clicking on points to
indicate the positions of the vertices. Figure 1.9 shows such a polygon, just after
the user has defined successive vertices, ending at the first one on the left, which
is marked with a tiny rectangle.

The large rectangle surrounding the polygon is the drawing rectangle: only
vertices inside this rectangle are guaranteed to appear again if the user changes
the dimensions of the window. The very wide window of Figure 1.9 was
obtained by dragging one of its corners. After the polygon was drawn, the
dimensions of the window were again changed, to obtain Figure 1.10. It is also
possible to change these dimensions during the process of drawing the polygon.
We now summarize the requirements for this application program:

22 1 ELEMENTARY CONCEPTS

Figure 1.9: Polygon defined by a user

Figure 1.10: Polygon still in the center of the window after resizing the
window

• The first vertex is drawn as a tiny rectangle.

• If a later vertex is inside the tiny rectangle, the drawing of one polygon is
complete.

• Only vertices in the drawing rectangle are drawn.

• The drawing rectangle (see Figures 1.9 and 1.10) is either as high or as wide as
the window, yet maintaining its height/width ratio regardless of the window
shape.

• When the user changes the shape of the window, the size of the drawn
polygon changes in the same way as that of the drawing rectangle, as does the
surrounding white space of the polygon.

1.5 DEFINING A POLYGON BY USING THE MOUSE 23

We will use the isotropic mapping mode to implement this program, and use
a data structure called vertex vector to store the vertices of the polygon to be
drawn. We then design the program with the following algorithmic steps:

1. Activate the mouse;
2. When the left mouse button is pressed

2.1 Get x- and y-coordinates at where the mouse is clicked;
2.2 If it is the first vertex

Then empty vertex vector;
Else If the vertex is inside the tiny rectangle (i.e. last vertex)

Then finish the current polygon;
Else store this vertex in vertex vector (i.e. not last vertex);

3. Draw all vertices in vertex vector.

The last step to draw all the polygon vertices can be detailed as follows:

1. Obtain the dimensions of the drawing rectangle based on logical coordinates;
2. Draw the drawing rectangle;
3. Get the first vertex from vertex vector;
4. Draw a tiny rectangle at the vertex location;
5. Draw a line between every two consecutive vertices stored in vertex vector.

In both Figures 1.9 and 1.10 the drawing rectangle has a width of 10 and a
height of 7.5 logical units, as the following program shows:

// DefPoly.java: Drawing a polygon.

// Uses: CvDefPoly (discussed below).

import java.awt.*;

import java.awt.event.*;

public class DefPoly extends Frame

{ public static void main(String[] args){new DefPoly();}

DefPoly()

{ super("Define polygon vertices by clicking");

addWindowListener(new WindowAdapter()

{public void windowClosing(WindowEvent e){System.exit(0);}});

setSize (500, 300);

add("Center", new CvDefPoly());

setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));

show();

}

}

24 1 ELEMENTARY CONCEPTS

The class CvDefPoly, used in this program, is listed below. We define this class
in a separate file, CvDefPoly.java, so that it is easier to use elsewhere, as we will
see in Section 2.13:

// CvDefPoly.java: To be used in other program files.

// A class that enables the user to define

// a polygon by clicking the mouse.

// Uses: Point2D (discussed below).

import java.awt.*;

import java.awt.event.*;

import java.util.*;

class CvDefPoly extends Canvas

{ Vector v = new Vector();

float x0, y0, rWidth = 10.0F, rHeight = 7.5F, pixelSize;

boolean ready = true;

int centerX, centerY;

CvDefPoly()

{ addMouseListener(new MouseAdapter()

{ public void mousePressed(MouseEvent evt)

{ float xA = fx(evt.getX()), yA = fy(evt.getY());

if (ready)

{ v.removeAllElements();

x0 = xA; y0 = yA;

ready = false;

}

float dx = xA - x0, dy = yA - y0;

if (v.size() > 0 &&

dx * dx + dy * dy < 4 * pixelSize * pixelSize)

ready = true;

else

v.addElement(new Point2D(xA, yA));

repaint();

}

});

}

void initgr()

{ Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth/maxX, rHeight/maxY);

1.5 DEFINING A POLYGON BY USING THE MOUSE 25

centerX = maxX/2; centerY = maxY/2;

}

int iX(float x){return Math.round(centerX + x/pixelSize);}

int iY(float y){return Math.round(centerY - y/pixelSize);}

float fx(int x){return (x - centerX) * pixelSize;}

float fy(int y){return (centerY - y) * pixelSize;}

public void paint(Graphics g)

{ initgr();

int left = iX(-rWidth/2), right = iX(rWidth/2),

bottom = iY(-rHeight/2), top = iY(rHeight/2);

g.drawRect(left, top, right - left, bottom - top);

int n = v.size();

if (n == 0) return;

Point2D a = (Point2D)(v.elementAt (0));

// Show tiny rectangle around first vertex:

g.drawRect(iX(a.x)-2, iY(a.y)-2, 4, 4);

for (int i=1; i<=n; i++)

{ if (i == n && !ready) break;

Point2D b = (Point2D)(v.elementAt(i % n));

g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));

a = b;

}

}

}

The class Point2D, used in the above file, will also be useful in other programs,
so that we define this in another separate file, Point2D.java:

// Point2D.java: Class for points in logical coordinates.

class Point2D

{ float x, y;

Point2D(float x, float y){this.x = x; this.y = y;}

}

After a complete polygon has been shown (which is the case when the user has
revisited the first vertex), the user can once again click a point. The polygon
then disappears and that point will then be the first vertex of a new polygon.

Note that the comment line

// Uses: CvDefPoly (discussed below).

26 1 ELEMENTARY CONCEPTS

occurring in the file DefPoly.java, indicates that the file CvDefPoly.java should
be available in the current directory. Since the comment line

// Uses: Point2D (discussed below).

occurs in the file CvDefPoly.java, the program DefPoly.java also requires the
class Point2D. Comments such as those above are very helpful if different
directories are used, for example, one for each chapter. However, since class
names are unique throughout this book, it is possible to place all program files
in the same directory. In this way, each required class will be available.

E X E R C I S E S

1.1 How many pixels are put on the screen by each of the following
calls?

g.drawLine (10, 20, 100, 50);

g.drawRect (10, 10, 8, 5);

g.fillRect (10, 10, 8, 5);

1.2 Replace the triangles of program Triangles.java with squares and
draw a great many of them, arranged in a chessboard, as shown in
Figure 1.11.
As usual, this chessboard consists of n × n normal squares (with
horizontal and vertical edges), where n = 8. Each of these actually
consists of k squares of different sizes, with k = 10. Finally, the value
q = 0.2 (and p = 1 − q = 0.8) was used to divide each edge into two
parts with ratio p : q (see also program Triangles.java in Section 1.3),
but the interesting pattern of Figure 1.11 was obtained by reversing the
roles of p and q in half of the n × n ‘normal’ squares, which is similar
to the black and white squares of a normal chessboard. Your program
should accept the values n, k and q as program arguments.

1.3 Draw a set of concentric pairs of squares, each consisting of
a square with horizontal and vertical edges and one rotated through
45◦. Except for the outermost square, the vertices of each square are
the midpoints of the edges of its immediately surrounding square, as
Figure 1.12 shows. It is required that all lines are exactly straight, and
that vertices of smaller squares lie exactly on the edges of larger ones.

EXERCISES 27

Figure 1.11: A chessboard of squares

Figure 1.12: Concentric squares

28 1 ELEMENTARY CONCEPTS

Figure 1.13: Hexagons

Figure 1.14: Dashed lines

EXERCISES 29

1.4 Write a program that draws a pattern of hexagons, as shown
in Figure 1.13. The vertices of a (regular) hexagon lie on its so-called
circumscribed circle. The user must be able to specify the radius of
this circle by clicking a point near the upper-left corner of the drawing
rectangle. Then the distance between that point and that corner is to be
used as the radius of the circle just mentioned. There must be as many
hexagons of the specified size as possible and the margins on the left
and the right must be equal. The same applies to the upper and lower
margins, as Figure 1.13 shows.

1.5 Write a class Lines containing a static method dashedLine to
draw dashed lines, in such a way that we can write

Lines.dashedLine(g, xA, yA, xB, yB, dashLength);

where g is a variable of type Graphics, xA, yA, xB, yB are the
device coordinates of the endpoints A and B, and dashLength is the
desired length (in device coordinates) of a single dash. There should be
a dash, not a gap, at each endpoint of a dashed line. Figure 1.14
shows eight dashed lines drawn in this way, with dashLength =
20.

