

Chapter

1

Designing a
Database Solution

MICROSOFT EXAM OBJECTIVES COVERED
IN THIS CHAPTER:

�

Design a logical database.

�

Design a normalized database.
�

Optimize the database design by denormalizing.
�

Design data flow architecture.
�

Design table width.

�

Design an application solution that uses appropriate

database technologies and techniques.

�

Design a solution for storage of XML data in the database.

�

Design objects that define data.

�

Design user-defined data types.
�

Design tables that use advanced features.

�

Design attributes.

�

Decide whether to persist an attribute.
�

Specify domain integrity by creating attribute
constraints.

�

Choose appropriate column data types and sizes.

�

Design entities.

�

Define entities.
�

Define entity integrity.
�

Normalize tables to reduce data redundancy.
�

Establish the appropriate level of denormalization.

�

Design entity relationships (ERs).

�

Specify ERs for referential integrity.
�

Specify foreign keys.
�

Create programmable objects to maintain referential
integrity.

40521.book Page 1 Monday, August 14, 2006 8:04 AM

CO
PYRIG

HTED
 M

ATERIA
L

Designing databases is becoming somewhat of a lost art form.
Unfortunately, not enough energy is spent on the initial data-
base design. Considering the life span of your database solution

and the dependency of this solution on the fundamental database design, you should commit
the necessary time to designing a framework that fulfills your current requirements and that
can evolve as these requirements change.

You should invest in the process of a formal logical database design, followed by a
review, before you translate that model into your physical database design. In this chapter,
I will go through the various issues you should consider in both the logical and physical
database designs.

Database developers are invariably concerned about performance. Although performance
is important, it should not be your primary concern at this stage in the implementation of your
database solution. At this stage in your database solution’s life cycle, you should be more
concerned about data integrity, so I will go through the different types of data integrity before
covering the various ways in which you can enforce your data integrity.

SQL Server 2005 has a great range of features to take advantage of, so make sure you
are aware of the product’s capabilities. This will enable you to deliver an optimal database
solution that will keep everyone happy: the developers, the database administrators
(DBAs), management, and those

“

ever-demanding” users.

Designing a Logical Database

Designing a database solution customarily begins with a logical database design. This logical
database design cycle generally involves the following processes:
�

Determining the data to be stored
�

Determining the data relationships
�

Logically structuring the data

When designing the logical database model, it is important to keep the users in mind.
(Unfortunately, they are quite important!) So, your logical database model should be orga-
nized into logical entities that are easily understood and maintained. Appropriate naming con-
ventions are also important, although beyond the scope of this chapter.

The logical database model should reduce data repetition, and it typically does this through
a process known as

normalization

.

40521.book Page 2 Monday, August 14, 2006 8:04 AM

Designing a Logical Database

3

Understanding Normalization

Simplified,

normalization

 is all about eliminating duplicate data in a relational database
design. Although you can adopt a formal process, you will find that most database developers
tend to naturally design normalized databases instead.

Basically, normalization is about converting an

entity

 into tables of progressively smaller
degree and cardinality until you reach an optimum level of decomposition. So, no (or little)
data redundancy exists.

Removing redundancy achieves a number of benefits. First, you save space by storing a data
element only once. Second, it is then easier to maintain data consistency because you have only
one instance of the data element to maintain.

However, it is important to understand the disadvantage of normalization: that you need
to join tables again to retrieve related data. Join operations are one of the most expensive oper-
ations in any relational database management system (RDBMS), including SQL Server. So, it
is possible to “overnormalize,” but I’ll talk more about that in the “Understanding Denormal-
ization” section.

The formal normalization process typically starts with unnormalized data and progres-
sively goes through a number of classifications called

normal forms

 (NFs). Several normal
forms exist; in fact, there are to date theories for six normal forms, with variations such as the
Boyce-Codd and domain/key normal forms. Generally, however, third normal form (3NF) is
commonly sufficient for most database solutions and is what is strived for in an initial, good,
logical database design.

You’ll now go through the first three normal forms using, as an example, a customer order
form that you need to design a database model for, as shown in Figure 1.1.

You can also represent the customer order form, using Victor’s Notation, as follows:

Order(OrderNumber, CustomerNumber, Name, PassportNumber, Address, Region,

PostCode, Country, OrderDate (ProductNumber, Product, Quantity, UnitPrice))

The Most Difficult Question: What Is Normalization?

How many developers or DBAs do you meet who can remember the database fundamentals,
such as “Codd’s Twelve Rules,” functional dependencies, and transitive dependencies, and
are able to define normalization and the five normal forms? I’ve been training SQL Server
worldwide for more than 10 years, and students generally struggle. Out of curiosity, I returned
to my lecture notes from the University of New South Wales to see how my lecturer, Geoff
Whale, defined

normalisation

 (we spell it differently in Australia): “Normalisation—simply
‘common sense.’” Thanks, Geoff….

40521.book Page 3 Monday, August 14, 2006 8:04 AM

4

Chapter 1 �

Designing a Database Solution

F I G U R E 1 . 1

Customer order form

Achieving First Normal Form

A table is considered to be in first normal form (1NF) if it meets the following conditions:
�

Every column is atomic; it cannot be further decomposed into more subcolumns.
�

It is a valid table, so you separate any repeating groups or multivalued columns.
�

A unique key has been identified for each row. This primary key is typically denoted as
being underlined.

�

All

attributes

 are functionally dependent on all or part of the key.

So in this example, you need to decompose the [Name] attribute and separate the repeating
group representing the OrderDetail tuple:

Order(OrderNumber, CustomerNumber, FirstName, LastName,

 PassportNumber, Address, Region, PostCode, Country,

 OrderDate)

OrderDetail(OrderNumber, ProductNumber, Product, Quantity,

 UnitPrice)

Figure 1.2 shows the end result.

F I G U R E 1 . 2

1NF

40521.book Page 4 Monday, August 14, 2006 8:04 AM

Designing a Logical Database

5

Achieving Second Normal Form

The normal forms are cumulative, so on top of being in 1NF, a table is in second normal form
(2NF) when all nonkey attributes are fully functionally dependent on the entire key. So, you
are effectively identifying and getting rid of partial dependencies. Look for composite keys and
where an attribute might be dependent on only one of the key columns. In this case, the [Prod-
uct] and [UnitPrice] attributes depend only on [ProductNumber], not on the ([OrderNumber],
ProductNumber]) combination. So to meet 2NF, you need to separate these attributes into a
distinct entity:

Order(OrderNumber, OrderDate, CustomerNumber, FirstName,

 LastName, PassportNumber, Address, Region, PostCode,

 Country)

OrderDetail(OrderNumber, ProductNumber, Quantity)

Product(ProductNumber, Product, UnitPrice)

Figure 1.3 represents this graphically.

F I G U R E 1 . 3

2NF

Achieving Third Normal Form

Once in 2NF, you now look for transitive dependencies.

“What, Victor? In plain English,
please!”

 Basically, you need to ensure that no nonkey attribute depends on another nonkey
attribute. In this case, the [FirstName], [LastName], [PassportNumber], [Address], [Region],
[PostCode], and [Country] attributes all depend on the [CustomerNumber] attribute, not on
the [OrderNumber] attribute. You are basically ensuring that an entity holds only the infor-
mation related to it. This table will finally be in 3NF:

Order(OrderNumber, CustomerNumber, OrderDate)

Customer(CustomerNumber, FirstName, LastName,

 PassportNumber, Address, Region, PostCode, Country)

OrderDetail(OrderNumber, ProductNumber, Quantity)

Product(ProductNumber, Product, UnitPrice)

Figure 1.4 shows how you have created a separate entity to store the customer data.

40521.book Page 5 Monday, August 14, 2006 8:04 AM

6

Chapter 1 �

Designing a Database Solution

F I G U R E 1 . 4

3NF

Once your logical database design is in 3NF, you have the foundation for a good data-
base solution. The next phase is typically to start the physical database design and design
your entities. However, at this stage in the book, it is appropriate for me to discuss denor-
malization techniques.

Understanding Denormalization

Denormalization

 is the process of taking a normalized database design and bringing back
levels of data redundancy to improve database performance. As discussed, a fully normal-
ized database design will increase the number of join operations that SQL Server will have
to perform, but an additional consideration of locking goes on when you are accessing
multiple tables to retrieve the required data. By deliberately recombining tables or dupli-
cating data, you can reduce the amount of work SQL Server has to perform as there are
fewer joins to perform and locks to maintain. Additionally some techniques of denormal-
ization can dramatically reduce the amount of calculations that SQL Server will have to
perform, thereby reducing processor resources.

The obvious disadvantage of denormalization is that you have multiple instances of the same
data, which will lead to update anomalies unless you design some mechanism to maintain the
denormalized data. This critical design issue depends on two factors. First, the denormalized
data has to be up-to-date. Second, you must consider the volatility of the denormalized data in
your database solution. Ideally, denormalized data should be nonvolatile.

If your denormalized data needs to be maintained in real time, then you will probably
have to take advantage of Data Manipulation Language (DML) triggers. On the other hand,
if the data does not have to be 100 percent accurate, you can perhaps get away with running
a scheduled Transact-SQL (T-SQL) script after-hours via a SQL Server Agent job.

You can denormalize using different techniques. Figure 1.5 illustrates a

foreign key

 being
replicated to reduce the number of joins that SQL Server will have to perform. In the denor-
malized design, you do not need to join the [OrderDetail] table to the [Product] table just to
retrieve [DistributorNumber], so SQL Server has one less join to perform.

This is the normalized version:

OrderDetail(OrderNumber, ProductNumber, Quantity)

Product(ProductNumber, Product, UnitPrice)

Distributor(DistributorNumber, Distributor, Address, State, PostCode, Country)

Denormalized:

40521.book Page 6 Monday, August 14, 2006 8:04 AM

Designing a Logical Database

7

OrderDetail(OrderNumber, ProductNumber, DistributorNumber Quantity)

Product(ProductNumber, Product, UnitPrice)

Distributor(DistributorNumber, Distributor, Address, State, PostCode, Country)

[DistributerNumber] is a good candidate for denormalization since it is typically non-
volatile. You could maintain the denormalized data via a

DML trigger

 without too much
performance overhead.

Figure 1.6 shows an example of a calculated year-to-date sales column being added to the
[Product] table because it is a calculation that users frequently need in their reports. So instead
of having to run a T-SQL query that would have to use the

SUM()

 aggregate function and

GROUP BY

 clause, users can simply look up the [YTDSales] column. Not only will this avoid
SQL Server having to perform a join and consequently locking the table, this could substan-
tially improve performance if you had millions of records across which the year-to-date sales
calculation would have to be made.

F I G U R E 1 . 5

Duplicating the foreign key to reduce the number of joins

F I G U R E 1 . 6

Denormalization: deriving aggregate data to improve performance

40521.book Page 7 Monday, August 14, 2006 8:04 AM

8

Chapter 1 �

Designing a Database Solution

This is the normalized version:

OrderDetail(OrderNumber, ProductNumber, Quantity)

Product(ProductNumber, Product, UnitPrice)

Denormalized:

OrderDetail(OrderNumber, ProductNumber, Quantity)

Product(ProductNumber, Product, UnitPrice, YTDSales)

The important issue here is how you’ll maintain the [YTDSales] column. This depends on
your user requirements. If the data needs to be 100 percent accurate at all times, then you have
no choice but to implement a DML trigger. On the other hand, if it is not important for the
value to be up-to-date in real time, then you could schedule an after-hours T-SQL job that
would update the [YTDSales] column at the end of each day.

So when deciding upon the potential level of denormalization in your database design, you
need to counterbalance the benefits versus the overhead of maintaining the denormalized data
so as not to lose

referential integrity

. You can achieve this only with thorough knowledge of
your actual data and the specific business requirements of the users. And understanding how
SQL Server’s engine works doesn’t hurt either!

Designing the Physical Entities

Once you have designed the logical database model, it is now time to turn your attention to the
physical implementation of that model. The physical database design generally involves the fol-
lowing processes:
�

Determining the data types to be used by the attributes
� Designing the physical table to represent the logical entities
� Designing the entity integrity mechanisms
� Designing the relational integrity mechanisms

I always believe it’s useful to know where you’re heading. So, it is constructive to see what
your end goal is when designing the physical database model. SQL Server Management Studio
easily enables you to draw a database diagram of your physical database design that shows the
physical tables that make up the database, the attributes, and the properties of the tables and
the relationships between them (see Exercise 1.1).

E X E R C I S E 1 . 1

Generating a Database Diagram

1. Open SQL Server Management Studio, and connect using Windows Authentication.

2. In Object Explorer, expand Server � Databases � AdventureWorks � Database Diagrams.

40521.book Page 8 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 9

When implementing the physical model, you always need to take into account the RDBMS
engine you are using. The same logical database model might end up being implemented dif-
ferently on SQL Server 2005 versus Microsoft Access or even SQL Server 2000.

Designing Attributes

Every RDBMS will have its own combination of data types it natively supports. The major new
additions for SQL Server 2005 are native support for XML data and the “dreaded” common lan-
guage runtime (CLR) user-defined data types. In fact, SQL Server 2005 has a number of options
as far as user-defined data types are concerned, but you will examine them in Chapter 2. You are
primarily concerned with native system supplied data types here.

3. If prompted, select Yes when asked whether you want to create one or more of the sup-
port objects required to use database diagramming.

4. Right-click the Database Diagrams folder, and select New Database Diagram.

5. Select all tables in the Add Table dialog box, and click the Add button.

6. Click the Close button.

7. Examine the physical database model in the database diagram window.

Database Design Is an Iterative Process

In 2000 I was involved in analyzing a database used in the Australian wool industry. As usual,
the database had a number of performance problems. In this particular instance, after exam-
ining the database design, I found that no constraints were defined at all. Upon further inves-
tigation, I determined this database had been upgraded originally from SQL Server 6.5 to SQL
Server 7.0 and, finally, to the then-current SQL Server 2000. At no stage did anyone examine
the database design to see whether they could leverage any new features of the latest version
of SQL Server.

Your database design should be flexible and constantly reevaluated to ensure you are max-
imizing the potential of the SQL Server database engine on which you are running. In the case
of upgrading to SQL Server 2005, you should be looking at redesigning your entities to take
advantage of features such as the XML data type, support for large object data types, per-
sisted columns, partitions, and so on.

E X E R C I S E 1 . 1 (c o n t i n u e d)

40521.book Page 9 Monday, August 14, 2006 8:04 AM

10 Chapter 1 � Designing a Database Solution

Understanding Types of Data

The modern database engine has to support a number of types of data in today’s demanding
business environments:
� Structured
� Semistructured
� Unstructured

It is important to understand the characteristics and differences of data types so as to be
able to correctly choose the appropriate data type for the attributes in your database design.

Structured Data

Structured data can be organized in semantic groups or entities. Similar entities are grouped
together by using relations or classes because they have the same descriptions or attributes.
Structured data tends to have a well-defined, well-known, and typically rigid schema. This is
the type of data that an RDBMS typically excels at storing and managing and traditionally
is what developers have all been using over the last decade.

Structured data provides various advantages. You can normalize the data into various
tables and thereby reduce redundancy, as discussed. Structured data also tends to lend itself
to efficient storage and optimized access and is easy to define data integrity and business
rules against.

Semistructured Data

Semistructured data represents data whose schema is not well defined or may evolve over a
period of time. Although semistructured data is often organized in semantic entities where sim-
ilar entities are grouped together, entities in the same group may not have the same attributes.
XML is a widely used form of semistructured data. It excels as a means of storing emails and
business-to-business (B2B) documents that tend to be semistructured.

Semistructured data is suitable, as indicated, when the structure of the data is not known
completely or is likely to change significantly in the future. However, Extensible Markup Lan-
guage (XML) also has a few disadvantages. Every element of data has to be marked with tags
(which represent the schema), and this increases storage space; therefore, it is nowhere near as
efficient as structured data types. Searching semistructured data is a little more complex
because the schema is potentially different for each record.

Unstructured Data

Unstructured data has no schema whatsoever, so it is typically unpredictable. Examples of
unstructured data include free-form text, Microsoft Office documents, and images.

The advantage of unstructured data is that you can change the format of the data at
any time without any major database redesign. However, it is difficult to search using
“traditional” techniques. SQL Server provides support for such Binary Large Objects
(BLOBs) and has a “revamped” full-text indexing search engine to facilitate searches on
free-form text.

40521.book Page 10 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 11

Choosing Data Types and Sizes

From Databases 1.01: “Choose the smallest data type possible that can contain the range of
values for that particular attribute.” It’s as simple as that. Mostly, anyway! You still need to
take into account how SQL Server 2005 stores data rows when creating your table schemas,
but generally this advice is sound.

Table 1.1 shows all the system-supplied native data types supported by SQL Server 2005,
the range of values they support, and how much space they consume on disk.

T A B L E 1 . 1 Native SQL Server 2005 Data Types

Data Type Range Storage

BIT 0 to 1 1 byte/eight BIT fields.

TINYINT 0 to 255 1 byte.

SMALLINT –32,768 to 32,767 2 bytes.

INT –2,147,483,648 to 2,147,483,647 4 bytes.

REAL –.40E+38 to –1.18E–38, 0, and 1.18E–38
to 3.40E+38

4 bytes.

SMALLMONEY –214,748.3648 to 214,748.3647 4 bytes.

SMALLDATETIME January 1, 1900, through June 6, 2079 4 bytes.

BIGINT –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

8 bytes.

MONEY –922,337,203,685,477.5808 to
922,337,203,685,477.5807

8 bytes.

DATETIME January 1, 1753, through December 31,
9999

8 bytes.

TIMESTAMP Generally used as a means of version-
stamping rows

8 bytes.

FLOAT(n) –1.79E+308 to –2.23E–308, 0, and
2.23E–308 to 1.79E+308

Variable. Depends on (n):
 (n) Value Storage

 1–24 4 bytes
 25–53 8 bytes

40521.book Page 11 Monday, August 14, 2006 8:04 AM

12 Chapter 1 � Designing a Database Solution

When choosing appropriate data types for your attributes, keep the following recommen-
dations in mind:
� Generally avoid using the FLOAT and REAL data types because they are imprecise. Remem-

ber, floating-point data is approximate and consequently cannot be represented exactly.
In other words, what you put in might not be what you get out.

UNIQUEIDENTIFIER Globally unique identifier (GUID) value
matching xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx mask

16 bytes.

DECIMAL(p, s)
NUMERIC(p, s)

Depends on fixed precision (p) and scale
(s); –10^38 +1 through 10^38 –1

Variable. Depends on (p):
 Precision (p) Storage

 1–9 5 bytes
 10–19 9 bytes
 20–28 13 bytes
 29–38 17 bytes

BINARY(n) 1 to 8,000 bytes (n) bytes.

CHAR(n) 1 to 8,000 characters (n) bytes.

NCHAR(n) 1 to 4,000 Unicode characters (n * 2) bytes.

VARBINARY(n) 1 to 8,000 bytes Variable. Storage is the
actual data length plus
2 bytes.

VARCHAR(n) 1 to 8,000 characters Variable. Storage is the
actual data length plus
2 bytes.

NVARCHAR(n) 1 to 4,000 Unicode characters Variable. Storage is the
actual data length plus
2 bytes.

SQL_VARIANT 1 to 8,000 bytes Variable. Maximum
storage of 8,016 bytes.

VARCHAR(MAX)
NVARCHAR(MAX)
VARBINARY(MAX)
XML
IMAGE
TEXT
NTEXT

Up to 2GB Variable. Maximum stor-
age of 2,147,483,647 bytes.

T A B L E 1 . 1 Native SQL Server 2005 Data Types (continued)

Data Type Range Storage

40521.book Page 12 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 13

� The DATETIME data type includes the time, down to an accuracy of 3.33 milliseconds. The
SMALLDATETIME data type includes it down to 1 second. Be careful when working with
these data types because you always need to take the time component into account. The
best solution if you are interested in storing just the date is to zero out the time component
programmatically, such as with a DML trigger.

I am pretty sure an American National Standards Institute (ANSI) DATE data
type has been one of the most requested features for SQL Server in the last
10-plus years. Not XML…. Not CLR…. The first person who explains to me
satisfactorily why Microsoft has not yet implemented this basic feature will
get lunch and drinks on me!

� Be careful with using the VARCHAR(MAX), NVARCHAR(MAX), and VARBINARY(MAX) data
types because they might slow down performance. You will examine this in more detail
shortly when you learn how SQL Server 2005 stores data rows.

� A single BIT field will still take up a byte, because SQL Server has to byte-align all fields.
You might be better off implementing such an attribute as a more meaningful CHAR(1)
field. For example, you might require a [Sex] field in the [Customer] table, which you are
considering to implement as a BIT field. However, if it is the only BIT field in the table,
you might consider implementing it as a CHAR(1) field because it will take up the same
amount of space and the M and F values will be easier to interpret.

� The NCHAR, NVARCHAR, and NTEXT data types all use 2 bytes to store data because they
use Unicode encoding (the Unicode UCS-2 character set), which is useful for storing multi-
lingual character data. However, it does take up twice the amount of space, which can affect
performance.

� Use the UNIQUEIDENTIER data type to store GUIDs, which, although not guaranteed to be
unique, can be considered unique because the total number of unique keys (2,128, or 3.4028
1038) is so large that the possibility of duplicate numbers being generated twice is slight. Some
developers use GUIDs as pseudorandom numbers. Be careful of using UNIQUEIDENTIFIER
columns with clustered indexes because they have limited value, being 16 bytes in length. You
use the NEWID() SQL Server system function to generate the GUID value.

� You should use the VARBINARY data type to store BLOBs such as Microsoft Word and
Adobe Acrobat documents, images such as JPEG files, and the like.

� Use the VARCHAR and NVCHAR data types to store free-form text. The problem with free-
form text is that it cannot be efficiently queried by using traditional SQL Server B-Tree
indexes. In this case, you should investigate how full-text search and full-text indexes have
been implemented in SQL Server 2005.

The NTEXT, TEXT, and IMAGE data types will be removed in a future version of
Microsoft SQL Server. Use NVARCHAR, VARCHAR, and VARBINARY instead.

40521.book Page 13 Monday, August 14, 2006 8:04 AM

14 Chapter 1 � Designing a Database Solution

The system-supplied native data types have not really changed significantly since SQL
Server 2000. You can still take advantage of user-defined data types. The major new additions
to SQL Server 2005 are native support for XML and CLR user-defined data types.

XML Data Type

Sigh…how many arguments have I had over this one? As with all technology, it’s all in the imple-
mentation and not the technology itself. The benefits of XML are many. XML provides a text-
based means to describe and apply a hierarchical structure to information, be it a record, list, or
tree. Being based on text, XML is simultaneously computer- and human-readable and unencum-
bered by licenses or restrictions. It supports Unicode and so natively supports multiple languages.
All these features make it a great mechanism for the following:
� Data exchange as a transport mechanism

� B2B
� Business-to-consumer (B2C)
� Application-to-application (A2A)

� Document management
� Office XML documents
� Extensible HTML (XHTML)

� Messaging
� Simple Object Access Protocol (SOAP)
� Really Simple Syndication (RSS)

� Middle-tier collaboration

The million-dollar question of course is, what do you do with XML inside SQL Server?
When working with XML data, you need to choose whether you should use the native XML
data type, use some BLOB data type, or shred the XML into relational columns. Your con-
siderations depend on a number of factors:
� Whether you need to preserve document order and structure, or fidelity. The various data

types will store the XML data differently.
� Whether you want to further query your XML data at a finer grain. The frequency of que-

rying the XML data will be a factor.
� Whether you need modify your XML data at a finer grain. You will also need to consider

how often the XML data will be modified.
� Whether you want to speed up XML queries by indexing. You can create XML indexes

on XML fields. SQL Server can index all tags, values, and paths for an XML field. I will
cover this in more detail in Chapter 2.

� Whether you have a schema for your XML data.
� Whether your database solution requires system catalog views to administer your XML

data and schemas.

40521.book Page 14 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 15

If you shred an XML document and then later reconstitute it, SQL Server does
not guarantee that it will be identical.

SQL Server 2005 implements the ISO SQL-2003 standard XML data type and supports
both untyped and typed XML. Microsoft recommends using the untyped XML in these cases:
� When you do not have a schema for your XML data
� When you do not want SQL Server to validate the XML data, although you have

the schema

Microsoft recommends using typed XML data in these cases:
� When you have schemas for your XML data and you want SQL Server to validate the

XML data accordingly
� When you want to take advantage of storage and querying compilation that comes with

the typed XML data

So, have I answered the question? Well...not exactly. I think of XML as being similar to
“nuclear weaponry”—just because you have it doesn’t mean you should use it. It depends on
your business requirements more than anything else. But if you require ad hoc modeling of
semistructured data, where an object’s properties are sparsely populated, the schema is chang-
ing, or the multivalues properties do not fit into your traditional relational schema, then you
should strongly consider using XML.

T-SQL User-Defined Data Types

SQL Server 2005 allows you to create T-SQL user-defined data types, which are basically
aliases to existing system-supplied native data types. Most new database solutions don’t
implement these alias types because “they do not bring anything new to the table.” However,
the following are still good reasons to take advantage of them:
� When you are porting a database solution from another RDBMS that uses a data type that

SQL Server does not natively support, they allow the database creation scripts to run
seamlessly. Alternatively, use them if you are implementing a database solution on differ-
ent RDBMS engines, such as when creating a [BOOLEAN] alias type so as to be compat-
ible with Microsoft Access.

� They are a great way of standardizing data types for commonly used attributes, such as
[Name], [LastName], and [PostCode], to ensure compatibility.

If you create any user-defined data types inside the model system database,
those data types will be automatically generated in any new databases that
you subsequently create. This represents a great technique of implementing
“standards” inside an organization.

40521.book Page 15 Monday, August 14, 2006 8:04 AM

16 Chapter 1 � Designing a Database Solution

The partial syntax for creating a user-defined data type is as follows:

CREATE TYPE [schema_name.] type_name

{

 FROM base_type

 [(precision [, scale])]

 [NULL | NOT NULL]

 | EXTERNAL NAME assembly_name [.class_name]

} [;]

You should no longer use the sp_addtype system stored procedure to create
user-defined data types. This system stored procedure will be removed in a
future version of Microsoft SQL Server. Use CREATE TYPE instead.

So if you decided to create a user-defined data type for sex inside your database, you would
execute the following T-SQL code:

CREATE TYPE [dbo].[Sex]

FROM CHAR (1) NOT NULL ;

GO

So let’s go through a very simple example of creating a T-SQL user-defined data type (see
Exercise 1.2).

E X E R C I S E 1 . 2

Creating a T-SQL User-Defined Data Type

1. Open SQL Server Management Studio, and connect using Windows Authentication.

2. In Object Explorer, expand Server � System Databases � tempdb � Programmability �
Types.

3. Right-click User-Defined Data Types, and click New User-Defined Data.

4. Enter Sex in the Name text box.

5. Select Char in the Data Type drop-down list.

6. Change the Length value to 1.

7. Click the Allow NULLS check box.

8. Click the OK button.

40521.book Page 16 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 17

CLR User-Defined Data Types

A new feature of SQL Server 2005 is the support for CLR user-defined data types. The capa-
bility of going beyond the traditional native data types of SQL Server is a powerful feature as
far as extensibility is concerned, but you need to consider the impact on performance, because
the data types will perform slower. You will also probably need to write your own functions
to manipulate your CLR user-defined data types because the native SQL Server 2005 functions
will have limited functionality.

Generally, you should try to use the native data types provided by SQL Server 2005. Con-
sider implementing CLR user-defined data types when you have complex requirements such
as a need for multiple elements and/or certain behavior; however, again, you could potentially
use the XML data type. CLR user-defined data types are well suited to the following:
� Geospatial data
� Custom date, time, currency, and extended numeric data
� Complex data structures such as arrays
� Custom encoded or encrypted data

Having said all that, you will probably never have to implement CLR user-defined data
types, which is probably for the best (but I sleep better at nights knowing they are there).

To create a CLR user-defined data type, follow this procedure:

1. Code and build the assembly that defines the CLR user-defined data type using a language
that supports the Microsoft .NET Framework, such as Microsoft Visual C# and
Microsoft Visual Basic .NET.

2. Register the assembly in SQL Server 2005 using the T-SQL CREATE ASSEMBLY statement,
which will copy the assembly into the database.

3. Create the CLR user-defined data type within the database by using the T-SQL CREATE
TYPE statement I covered previously.

By default, to reduce the surface area of attack, the CLR integration feature of SQL Server 2005
is turned off. You will need to enable it to create CLR user-defined data types.

Turning on CLR Integration in SQL Server 2005 is done through the Surface Area Config-
uration tool which we cover in mode detail in Chapter 4. Let’s turn on the CLR functionality
of your SQL Server 2005 instance in Exercise 1.3.

E X E R C I S E 1 . 3

Turning on CLR Integration in SQL Server 2005

1. Open SQL Server Surface Area Configuration.

2. Click Surface Area Configuration for Features.

3. Click CLR Integration.

4. Click the Enable CLR Integration check box.

5. Click the OK button.

40521.book Page 17 Monday, August 14, 2006 8:04 AM

18 Chapter 1 � Designing a Database Solution

Designing Domain Integrity

Domain (or column) integrity controls the values that are valid for a particular column. You
can enforce domain integrity through a number of mechanisms:
� The data type assigned to that column
� Whether the column definition allows NULL values
� Procedural code in an insert or update DML trigger
� A foreign key constraint that references a set of primary key values in the parent table
� A check constraint defined on that column

You should no longer use database rule objects to enforce domain integrity
because they are being deprecated in later versions of SQL Server. They are
available only for backward compatibility in SQL Server 2005.

Basically, you should use a check constraint to maintain domain integrity whenever possible
because, like the other constraints, they are fast.

The partial syntax for creating a primary key or unique constraint is as follows:

ALTER TABLE [database_name .[schema_name] . |

schema_name .] table_name

[WITH { CHECK | NOCHECK }]

ADD CONSTRAINT constraint_name

CHECK (logical_expression)

So if you decided to create a check constraint that would ensure that the [Passport-
Number] column of the [Customer] table matched a pattern, you would execute the fol-
lowing T-SQL code:

ALTER TABLE [Customer]

ADD CONSTRAINT [CK_Customer(CustomerNumber)]

CHECK ([PassportNumber]

LIKE '%[0-9][0-9][0-9][0-9][0-9][0-9][0-9]') ;

GO

The problem with using check constraint statements is that they are limited in the fol-
lowing ways:
� They can reference other columns only in the same table.
� They cannot call subqueries directly.

So for more complex domain integrity requirements, you will have to resort to some of the
other mechanisms of enforcement.

40521.book Page 18 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 19

Designing Entities

Once you have determined the appropriate data types for the attributes of your entities, you
are ready to create the physical database model. This process typically involves the following:
� Defining the entities
� Defining entity integrity
� Defining referential integrity

By now you should be done with most of the design work, so it’s more a case of being famil-
iar with the T-SQL syntax for creating a table and the various options. Well…not quite. You
still might need to redesign your entity to take into account how the SQL Server 2005 storage
engine physically stores the data rows in your database files, because this can have a dramatic
impact on performance.

Without being overly concerned with database files, extents, and pages (although it would
help dramatically, so off you go to research those terms more!), it is sufficient to say that the
basic unit of input/output (I/O) in SQL Server 2005 is an 8KB page.

Understanding How SQL Server Stores Data Rows

SQL Server 2005 stores data rows sequentially after a 96-byte header of the page, as shown
in Figure 1.7. A row offset table starts at the end of the page and contains one entry for each
row located on that page. Each entry keeps track of the beginning of the row relative to the
start of the page. The entries in the row offset table are in reverse sequence from the rows on
the page.

F I G U R E 1 . 7 SQL Server data page structure

Microsoft SQL
Server Data Page

Page Header

Data Row 1

Data Row 2

Data Row 3

Free Space

3 2 1 Row Offsets

40521.book Page 19 Monday, August 14, 2006 8:04 AM

20 Chapter 1 � Designing a Database Solution

Generally speaking, a row cannot span a page boundary. So, a table can store a maximum
of 8,060 bytes per row. However, SQL Server 2005 relaxes this restriction for the VARCHAR,
NVARCHAR, VARBINARY, SQL_VARIANT, and CLR user-defined data types. SQL Server 2005
does this by taking advantage of a special IN_ROW_DATA allocation unit that is used to store
these overflow columns and tracks them via a special 24-byte pointer in the original data row.

When the row wants to grow beyond the page limit, SQL Server automatically moves one
or more of these variable-length columns to the ROW_OVERFLOW_DATA allocation unit.
If subsequent DML operations shrink the data row, SQL Server dynamically moves the col-
umn to the original data row. Consequently, you need to take into account the percentage of
rows likely to overflow, the frequency they will be queried (as they will be slower), and the fre-
quency at which these rows will be modified (because this will also slow performance).

You might be better off redesigning your database design by storing these columns in a sep-
arate table that has a one-to-one relationship with the original table design. It is also a good
idea to calculate the page density, or how much of your 8KB page SQL Server 2005 will be
using, because it might indicate a need to redesign your database. Ideally, you want to see a
small percentage of the page not being used by SQL Server. In Exercise 1.4, you’ll learn how
to calculate page density.

E X E R C I S E 1 . 4

Calculating Page Density

1. Calculate the record size of the table, assuming the maximum for variable length data
types, using the data type lengths in Table 1.1.

Column Data Type

WhaleID INT

WhaleName NVARCHAR(20)

WhaleGender CHAR(1)

Transmitter UNIQUEIDENTIFIER

DateTagged SMALLDATETIME

WhaleSpecies VARCHAR(20)

LastSighting SMALLDATETIME

2. Divide 8,092 by the record size from step 1.

3. Round the result from step 2 down to an integer to find the number of rows that will fit
per page.

4. Multiply the record size calculated from step 1 by the integer from step 3 to determine
how much space will be consumed by the data rows.

40521.book Page 20 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 21

Defining Entities

SQL Server 2005 supports up to two billion tables per database and 1,024 columns per table.
The number of rows and total size of a table is virtually unlimited. As discussed, the maximum
number of bytes per row is 8,060, although this restriction is for the VARCHAR(n), NVARCHAR(n),
VARBINARY(n), and SQL_VARIANT data types, which can take advantage of overflow pages.
Don’t forget that the lengths of each one of these columns must still fall within the limit of 8,000
bytes, but their combined widths may exceed the 8,060-byte limit in a table.

You can use the CREATE TABLE T-SQL statement to create entities in SQL Server 2005. For
all the SQL Server 2005 exams, you should familiarize yourself with the CREATE TABLE syntax
and the various options available.

CREATE TABLE

 [database_name . [schema_name] . | schema_name .]

table_name

 ({ <column_definition> | <computed_column_definition> }

 [<table_constraint>] [,...n])

 [ON { partition_scheme_name (partition_column_name) |

 filegroup

 | "default" }]

 [{ TEXTIMAGE_ON { filegroup | "default" }]

[;]

The <column_definition> options allow you to control the columns that make up the table
schema and their data types. It is recommended that you always explicitly control nullability
instead of relying on any default behavior of SQL Server or your integrated development envi-
ronment (IDE).

<column_definition> ::=

column_name <data_type>

 [COLLATE collation_name]

 [NULL | NOT NULL]

 [

5. Subtract the figure from step 4 from 8,092 to determine the amount of space on each data
page that SQL Server will not be able to use.

So, if your record size is 3,000 bytes in size, you would have more than 2,000 bytes of free
space on each page that SQL Server 2005 could not use. This would represent more than
25 percent wasted space on each page, which is quite a high figure. In this case, I would talk
to the developers to see how you could redesign the table schema.

E X E R C I S E 1 . 4 (c o n t i n u e d)

40521.book Page 21 Monday, August 14, 2006 8:04 AM

22 Chapter 1 � Designing a Database Solution

 [CONSTRAINT constraint_name] DEFAULT

constant_expression]

 | [IDENTITY [(seed ,increment)]

[NOT FOR REPLICATION]

]

 [ROWGUIDCOL] [<column_constraint> [...n]]

The <data type> options control the schema to which the data type belongs. If the type_
schema_name is not specified, SQL Server will reference the type_name in the following order:
� The SQL Server system data type
� The default schema of the current user in the current database
� The [dbo] schema in the current database

<data_type> ::=

[type_schema_name .] type_name

 [(precision [, scale] | max |

 [{ CONTENT | DOCUMENT }] xml_schema_collection)]

The <column_constraint> options allow you to define the various data integrity types through
constraints. I’ll cover these various constraints later in this chapter. A lot of developers prefer using
the ALTER TABLE statement after the initial CREATE TABLE statement because it is easier to read
and to possibly reflect their design methodology.

<column_constraint> ::=

[CONSTRAINT constraint_name]

{ { PRIMARY KEY | UNIQUE }

 [CLUSTERED | NONCLUSTERED]

 [

 WITH FILLFACTOR = fillfactor

 | WITH (< index_option > [, ...n])

]

 [ON { partition_scheme_name (partition_column_name)

 | filegroup | "default" }]

 | [FOREIGN KEY]

 REFERENCES [schema_name .] referenced_table_name

[(ref_column)]

 [ON DELETE { NO ACTION | CASCADE | SET NULL |

SET DEFAULT }]

 [ON UPDATE { NO ACTION | CASCADE | SET NULL |

SET DEFAULT }]

 [NOT FOR REPLICATION]

 | CHECK [NOT FOR REPLICATION] (logical_expression)

}

40521.book Page 22 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 23

The <computed_column_definition> options allow you to create a column that is based on
a valid T-SQL expression. One of the more important new features to improve performance
in SQL Server 2005 is the capability of persisting a computed column in your table schema.

<computed_column_definition> ::=

column_name AS computed_column_expression

[PERSISTED [NOT NULL]]

[

 [CONSTRAINT constraint_name]

 { PRIMARY KEY | UNIQUE }

 [CLUSTERED | NONCLUSTERED]

 [

 WITH FILLFACTOR = fillfactor

 | WITH (<index_option> [, ...n])

]

 | [FOREIGN KEY]

 REFERENCES referenced_table_name [(ref_column)]

 [ON DELETE { NO ACTION | CASCADE }]

 [ON UPDATE { NO ACTION }]

 [NOT FOR REPLICATION]

 | CHECK [NOT FOR REPLICATION] (logical_expression)

 [ON { partition_scheme_name (partition_column_name)

 | filegroup | "default" }]

]

Deciding whether to persist a computed field depends entirely on your database solution
and environment. You should take a number of considerations into account, however:
� The extra space taken up by the computed field
� How frequently users will query the computed field
� Whether the computed field will be part of the result set, the SARG, or both
� The same considerations of density and selectivity that you would have with an index
� How frequently the data that the computed field is based on changes
� How volatile the table is in general

For an online transaction processing (OLTP) environment where your
data changes frequently, you’ll be less inclined to persist computed fields
because of the overhead on the database engine of having to maintain the
computed values.

40521.book Page 23 Monday, August 14, 2006 8:04 AM

24 Chapter 1 � Designing a Database Solution

Furthermore, you can create indexes on computed fields to improve performance when
searching on the computed field, but you need to meet a number of requirements:
� The computed field expression is deterministic and precise.
� The computed field expression cannot evaluate to the IMAGE, NTEXT, or TEXT data type.
� All functions referenced by the computed field have the same owner as the table.
� A number of SET options are met.

For a complete list of requirements, look up the “Creating Indexes on
Computed Columns” topic in SQL Server 2005 Books Online.

The <table_constraint > options are similar to the <column_constraint> options dis-
cussed previously:

< table_constraint > ::=

[CONSTRAINT constraint_name]

{

 { PRIMARY KEY | UNIQUE }

 [CLUSTERED | NONCLUSTERED]

 (column [ASC | DESC] [,...n])

 [

 WITH FILLFACTOR = fillfactor

 |WITH (<index_option> [, ...n])

]

 [ON { partition_scheme_name (partition_column_name)

 | filegroup | "default" }]

 | FOREIGN KEY

 (column [,...n])

 REFERENCES referenced_table_name [(ref_column

[,...n])]

 [ON DELETE { NO ACTION | CASCADE | SET NULL |

SET DEFAULT }]

 [ON UPDATE { NO ACTION | CASCADE | SET NULL |

SET DEFAULT }]

 [NOT FOR REPLICATION]

 | CHECK [NOT FOR REPLICATION] (logical_expression)

}

40521.book Page 24 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 25

The <index_option> options allow you to control some fine-tuning mechanism for indexes
that might be implemented during table creation. Generally, you should leave the defaults
alone unless you have a specific requirement.

<index_option> ::=

{

 PAD_INDEX = { ON | OFF }

 | FILLFACTOR = fillfactor

 | IGNORE_DUP_KEY = { ON | OFF }

 | STATISTICS_NORECOMPUTE = { ON | OFF }

 | ALLOW_ROW_LOCKS = { ON | OFF}

 | ALLOW_PAGE_LOCKS ={ ON | OFF}

}

So in this particular example, you would execute the following T-SQL code to create the
[Customer] table:

CREATE TABLE [Customer] (

 [CustomerNumber] INT NOT NULL,

 [FirstName] VARCHAR(20) NULL,

 [LastName] VARCHAR(20) NULL,

[PassportNumber] CHAR(8) NULL,

[Address] VARCHAR(50) NULL,

[Region] VARCHAR(20) NULL,

[PostCode] VARCHAR(10) NULL,

[Country] VARCHAR(20) NULL

)

Designing Entity Integrity

Simplified entity (or table) integrity in relational database theory requires that all rows in a
table be uniquely identified via an identifier known as a primary key. A primary key can poten-
tially be a single column or a combination of columns.

Sometimes several columns could potentially be the primary key, such as in
the case of a [Customer] table that has both a [CustomerNumber] column and
a [PassportNumber] column, both of which are guaranteed to have a value
and be unique. These columns are referred to as candidate keys.

40521.book Page 25 Monday, August 14, 2006 8:04 AM

26 Chapter 1 � Designing a Database Solution

When deciding on your primary key, you need to determine whether you are going to use
a natural key or a surrogate key. A natural key is a candidate key that naturally has a logical
relationship with the rest of the attributes in the row. A surrogate key, on the other hand, is
an additional key value that is artificially generated by SQL Server, typically implemented as
integer column with the identity property.

The advantage of using natural keys is that they already exist, and since they have a logical
relationship with the rest of the attributes, indexes defined on them will be used by both user
searches and join operations to speed up performance. Obviously, you don’t need to add a
new, unnatural column to your entity, which would take up additional space.

The main disadvantage of natural keys is that they might change if your business require-
ments change. For example, if you have a primary key based on the [CustomerNumber] field
and it subsequently changes from a numeric to an alphanumeric field, then you will need to
change both the data type of the [CustomerNumber] field and all related tables where the
[CustomerNumber] field is used as a foreign key. This might not be an easy task for a high-
availability SQL Server solution running in a 24/7 environment.

Another, potentially important consideration might exist if you have a compound or com-
posite natural key or a very wide key. This can have a dramatic impact on performance if you
have chosen to create a clustered index on such a wide natural key, abecause it will also impact
the size of all your nonclustered indexes. Likewise, join operations using a nonclustered index
on a wide natural key will not perform as well as a smaller surrogate key.

The main advantage of a surrogate key is that it acts as an efficient index, which is created
by the developer typically as an integer field, managed by SQL Server through the identity
property, and never seen by the user. Therefore, a surrogate key makes a good potential can-
didate for a clustered index because of its small size. Since the users don’t actually work with
the surrogate key, you do not need to cascade update operations as well.

You will find a number of people who believe that a primary key value, once
inserted, should never be modified. Like Fox Mulder, “I want to believe….”
In any case, the concept of a surrogate key works well in this case, because
users never work with it directly.

You can implement a primary key, or the effect of a primary key, in a number of ways. The
techniques in SQL Server include the following:
� Using a primary key constraint
� Using a unique constraint
� Using a unique index
� Using an insert and update DML trigger that verifies that the primary key value being

modified is unique

All of these will have the same effect, ensuring that entity integrity is maintained by disal-
lowing duplicates in the primary key column or columns. However, you should generally use
a primary key constraint. Maintaining entity integrity programmatically through procedural

40521.book Page 26 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 27

code in triggers or elsewhere is considered error prone (in other words, you might goof it up!),
involves more work, and is slower, since it works at a “higher” level of the SQL Server engine.
Constraints are so much easier to work with, and they perform quicker…so use them!

You can define a primary key constraint only on a column that does not allow
NULLs. If you need to allow one NULL value in your primary key, you will
need to resort to a unique constraint instead.

The other advantage of using a primary key constraint is that it highlights the “importance”
of the field on which it’s defined, so many third-party and Microsoft applications will be able
to derive the primary key from the primary key constraint, as opposed to relying on naming
conventions or indexes.

The partial syntax for creating a primary key or unique constraint is as follows:

ALTER TABLE [database_name .[schema_name] . | schema_name .] table_name

ADD CONSTRAINT constraint_name

PRIMARY KEY | UNIQUE [CLUSTERED | NONCLUSTERED] (column_name)

[WITH (index_options)]

So if you decided to create a primary key on the [CustomerNumber] column and a candi-
date key on the [PassportNumber] column of the [Customer] table, you would execute the fol-
lowing T-SQL code:

ALTER TABLE [Customer]

ADD CONSTRAINT [PK_Customer(CustomerNumber)]

PRIMARY KEY (CustomerNumber) ;

GO

ALTER TABLE [Customer]

ADD CONSTRAINT [UQ_Customer(PassportNumber)]

UNIQUE (PassportNumber) ;

By default, SQL Server 2005 will create a clustered index for the primary key
constraint in the previous T-SQL script. This might not be optimal for your
particular table. Generally, I recommend that you don’t rely on such default
behavior and always explicitly script all such options.

It is a highly recommended practice to have a primary key defined on all tables in a rela-
tional database. The main reason, of course, is that it will ensure entity integrity; however, it
also makes life a lot easier for developers—and especially for contractors coming onto your
site to help sort out the mess the developers have made. Ha! Be aware that there can also be
performance issues and other unexpected implications in the future.

40521.book Page 27 Monday, August 14, 2006 8:04 AM

28 Chapter 1 � Designing a Database Solution

Designing Entity Relationships

Relationships…I’ve implemented many. “The fundamental assumption of the relational data-
base model is that all data is represented as mathematical n-ary relations, an n-ary relation
being a subset of the Cartesian product of n sets.” What the…???

Simply put, relationships naturally come about as a consequence of the normalization process
and the resultant multiple entities. It is critical that you enforce and implement these relationships
correctly in any SQL Server database solution. Developers, DBAs, and users are always primarily
concerned about performance. Although performance is important, data integrity and especially
referential integrity should take precedence.

Maintaining Referential Integrity

Referential integrity ensures that the relationships between the primary keys (referenced table)
and foreign keys (referencing table) are always maintained; otherwise, you end up with
orphaned records. Consequently, a row in a referenced table cannot be deleted, and a primary
key can’t be changed, if a foreign key refers to that row.

In some database implementations, orphaned records are acceptable. For example, it might be
unimportant who you sold a particular item to, but it is important to keep a record of the trans-
action for accounting or taxation purposes—think drug or arms dealers, or perhaps a database
used to collect web traffic for a website where user session information quickly multiplies.

Another important decision point is whether you want SQL Server to automatically cas-
cade update and delete operations. This feature has been available at the database engine level
since SQL Server 2000.

Importance of Primary Key Constraints

Just this week in Sydney, I had to analyze a large travel agent database solution that had
been developed overseas. There were performance issues, as always…. By examining the
sysindexes table, I determined that out of the 700-plus tables in the database, only 60 percent
of them had primary keys defined.

Of course, the client had been trying to implement transactional replication, which relies upon
the primary key being defined. Without a primary key, SQL Server can replicate tables only via
a snapshot, which can be particularly slow and expensive. One of my recommendations was
to contact the developers and ask them to provide scripts that would create the “missing”
primary keys.

So in this particular instance, a primary key constraint not only had an impact on entity integrity
but also on performance. You should always have a good reason not to implement a primary key
constraint. A very, very, very good reason!

40521.book Page 28 Monday, August 14, 2006 8:04 AM

Designing the Physical Entities 29

A great way to lose referential integrity is to implement referential integrity at the applica-
tion layer. It just plain doesn’t work—trust me!

So when deciding on what technique you should use for referential integrity, you have two
options at the database engine level in SQL Server 2005: constraints or programmatic objects.

Maintaining Referential Integrity Using Foreign Key Constraints

Since SQL Server 2000, the database engine has had the capability to automatically cascade
update and delete operations. Consequently, given the ease of implementation and the perfor-
mance, you should generally implement referential integrity between two tables through a
foreign key constraint.

Another advantage of using a foreign key constraint over other means is that
various database modeling and reporting tools can automatically determine
the relationships, instead of trying to determine relationships through nam-
ing conventions or indexes.

The partial syntax for creating a foreign key constraint is as follows:

ALTER TABLE [database_name .[schema_name] .

| schema_name .] table_name

[WITH { CHECK | NOCHECK }]

ADD CONSTRAINT constraint_name

IT in ET

In 2001 I was contracted by the United Nations to analyze a civil registry system for a devel-
oping nation that had been developed by overseas developers. (Wow! I got developing,
developed, and developers in the one sentence. In any case, it was no laughing matter.)

The developers had implemented what little referential integrity there was in the application
layer. Needless to say, the database had substantial referential integrity loss. This resulted
because of a poor application design, lack of database constraints, and no security, which allowed
users to modify the data directly. The end result translated to a potential waste of money in excess
of $300,000 USD, a system that was “almost useless,” and a mammoth data cleansing undertak-
ing that took me months to perform, with no guarantee of 100 percent success.

All of this could easily have been avoided by using a foreign key constraint with
cascading actions.

40521.book Page 29 Monday, August 14, 2006 8:04 AM

30 Chapter 1 � Designing a Database Solution

FOREIGN KEY (column_name)

REFERENCES [schema_name .] referenced_table_name

[(ref_column)]

[ON DELETE { NO ACTION | CASCADE | SET NULL |

 SET DEFAULT }]

[ON UPDATE { NO ACTION | CASCADE | SET NULL |

 SET DEFAULT }]

If you decided to create a foreign key on the [CustomerNumber] column [Orders] table that
references the [Customer] table, you would execute the following T-SQL code:

ALTER TABLE [Orders]

ADD CONSTRAINT [FK_Orders(CustomerNumber)]

FOREIGN KEY (CustomerNumber)

REFERENCES [Customer](CustomerNumber)

ON UPDATE CASCADE

ON DELETE CASCADE ;

Notice that this cascades both delete and update operations in this particular case. This
decision is purely based on your business requirements.

A common mistake I see being made time and time again is a lack of indexes
on foreign key columns. Unlike with the primary key constraint, SQL Server
2005 does not create any index on the foreign key column. Considering, as
discussed, that join operations can be expensive for the database engine and
can run frequently in most SQL Server solutions, it is highly recommended
that you index your foreign keys. The real art here is to determine the best
type of index to use!

One major limitation with constraints is that they apply only within a database. So if your ref-
erential integrity requirements are between two tables that reside in different databases, you cannot
use a foreign key constraint. You will have to implement such a cascading action through a DML
trigger. Another major limitation of the foreign key constraint is that it does not support foreign
keys with multiple cascade paths and cycles. Likewise, you will most likely have to implement cas-
cading actions in relationships that are potentially cyclic through a DML trigger.

Maintaining Referential Integrity Using Procedural Code

In certain scenarios, as highlighted previously, you will not be able to implement referential
integrity through a foreign key constraint. Instead, you will have to take advantage of the pro-
grammable objects supported by SQL Sever 2005.

A DML trigger is ideal for maintaining complex referential integrity requirements that can-
not be met by a foreign key constraint. When writing such triggers, your developers should be
conscious that the triggers will be firing for all update, insert, and delete operations, so per-
formance is paramount. Make sure they implement the trigger efficiently!

40521.book Page 30 Monday, August 14, 2006 8:04 AM

Summary 31

SQL Server 2005 supports a number of triggers, which you will examine in Chapter 2. At
this stage, it is sufficient to concentrate on how to maintain referential integrity through a
DML after trigger.

The partial syntax for creating a DML after trigger is as follows:

CREATE TRIGGER [schema_name .]trigger_name

ON { table | view }

[WITH <dml_trigger_option> [,...n]]

{ FOR | AFTER | INSTEAD OF }

{ [INSERT] [,] [UPDATE] [,] [DELETE] }

[WITH APPEND]

[NOT FOR REPLICATION]

AS { sql_statement [;] [,...n] |

EXTERNAL NAME <method specifier [;] > }

<dml_trigger_option> ::=

 [ENCRYPTION]

 [EXECUTE AS Clause]

So if you had to cascade a delete operation between the [Customer] table and a related
[Orders] table that happens to be in a separate database (called [SalesDB] in this instance), you
would write the following T-SQL code:

CREATE TRIGGER [trg_Customer_CascadeDelete]

ON [Customer]

AFTER DELETE

AS

DELETE [SalesDB].[dbo].[Orders]

WHERE [CustomerNumber]

IN (SELECT [CustomerNumber] FROM inserted);

GO

Summary
The first technique you learned in this chapter was how to create a logical database design
through the process of normalization. You learned the importance of 3NF in your initial data-
base design. I then introduced the benefit of denormalization, which brings redundancy into
your logical database. I discussed the trade-offs that denormalized data takes extra space and
needs to be maintained.

You then examined the issues you face when choosing the appropriate data types for the
attributes of your entities. You learned the various data types natively supported by SQL
Server 2005 and examined the new XML and CLR user-defined data types in detail.

40521.book Page 31 Monday, August 14, 2006 8:04 AM

32 Chapter 1 � Designing a Database Solution

Next, I discussed domain integrity as well as the different SQL Server objects that help
maintain the domain of a particular attribute.

You then learned how to physically implement your entities by using the CREATE TABLE state-
ment. A further explanation of how SQL Server stores data rows physically clarified the impact
your database design has on minimizing the space wasted on the SQL Server data pages.

I then discussed the importance of entity integrity and talked about how to implement it
primarily via a primary key constraint.

You then learned the importance of referential integrity in a relational database and how
to implement it depending on your requirements.

Exam Essentials
Understand 3NF. You should understand the process of normalization and be able to nor-
malize a set of entities to 3NF.

Know how to appropriately use the XML data type. Make sure you know how SQL
Server 2005 implements the XML data type and where it is appropriate to use the XML
data type in your database design.

Understand the syntax for creating tables. SQL Server 2005 supports a rich number of options
when creating tables. Ensure you understand the various options and how to use them.

Know the different ways of implementing domain integrity. You can implement domain
integrity using different techniques. Make sure you know which technique is appropriate for
the given requirements.

Know the different ways of implementing referential integrity. You can employ a number
of mechanisms to achieve referential integrity. Make sure you understand the different mech-
anisms and when to choose the correct implementation.

40521.book Page 32 Monday, August 14, 2006 8:04 AM

Review Questions 33

Review Questions
1. You are designing the [Product] table for a large warehouse database that will stock more than

100,000 different product IDs, called SKUs. Performance is paramount in this table. You have the
possibility of amalgamating with other warehouse databases in the future, so you have decided to
implement a surrogate key. The table should keep track of [SKU], [ProductName], and other
related fields. What T-SQL commands should you run? (Choose all that apply.)

A. Run:

CREATE TABLE [Product] (

SKU VARCHAR(10) NOT NULL,

Product VARCHAR(20) NOT NULL,

...

)

B. Run:

ALTER TABLE [Product]

ADD CONSTRAINT [UQ_Product(SKU)]

UNIQUE (SKU)

C. Run:

ALTER TABLE [Product]

ADD CONSTRAINT [PK_Product(ProductId)]

PRIMARY KEY (ProductId)

D. Run:

CREATE TABLE [Product] (

ProductID INT IDENTITY (1,1),

SKU VARCHAR(10) NOT NULL,

Product VARCHAR(20) NOT NULL,

...

)

E. Run:

CREATE TABLE [Product] (

ProductID UNIQUEIDENTIFIER DEFAULT NEWID(),

SKU VARCHAR(10) NOT NULL,

Product VARCHAR(20) NOT NULL,

...

)

40521.book Page 33 Monday, August 14, 2006 8:04 AM

34 Chapter 1 � Designing a Database Solution

F. Run:

ALTER TABLE [Product]

ADD CONSTRAINT [PK_Product(SKU)]

PRIMARY KEY (SKU)

G. Run:

ALTER TABLE [Product]

ADD CONSTRAINT [UQ_Product(ProductId)]

UNIQUE (ProductId)

2. You are designing a database for the electricity market in Australia. The market has a
[DispatchInterval] field that will be used as a primary key and that uses the following mask:
YYYYMMDD###. The last three digits correspond to five-minute intervals, so there are
288 values a day. What data type should you use?

A. INT

B. BIGINT

C. NUMERIC(11,0)

D. FLOAT

3. You are developing a civil registry database for the Divided Nations nongovernmental
organization that needs to keep track of demographic information about the population
for the past 200 years. The main table contains millions of rows, so performance is critical.
What data type should you use for the [DateOfBirth] field?

A. Use a CHAR(10) data type to store dates using the DD-MM-YYYY format.

B. Use the SMALLDATE data type.

C. Use the DATETIME data type.

D. Use a CLR user-defined data type.

4. What objects in SQL Server 20005 can be used to maintain domain integrity? (Choose all
that apply.)

A. PRIMARY KEY CONSTRAINT

B. FOREIGN KEY CONSTRAINT

C. CHECK CONSTRAINT

D. Data type

E. DML trigger

F. NONCLUSTERED INDEX

G. Nullability (NULL/NOT NULL)

40521.book Page 34 Monday, August 14, 2006 8:04 AM

Review Questions 35

5. You are designing a Sales database where the tables contain millions of records and there are
thousands of users, so performance is paramount. One of the most common reports will be
returning Store, Product, and SUM(Quantity). You decide to denormalize the following data-
base schema to eliminate the need for join operations:

Product(ProductId, Product, Price)

Store(StoreId, Store, Address, PostCode, State, Country)

Sales(SalesId, StoreId, SalesDate, Status)

SalesDetail(SalesId, ProductId, Quantity)

What should you do?

A. Add the [Product] column to the [SalesDetail] table.

B. Add the [Store] column to the [Sales] table.

C. Add the [Store] column to the [SalesDetail] table.

D. Add the [Product] column to the [Sales] table.

6. You are designing a database for a university and want to ensure that query performance will
be optimal between the following two tables that will be frequently joined:

What should you do to improve query performance?

A. Create an index on the [Student].[StudentNo] column.

B. Create a unique constraint on the [Student].[StudentNo] column.

C. Create an index on the [Grade].[StudentNo] column.

D. Create a unique constraint on the [Grade].[StudentNo] column.

7. You are designing a table for a large multinational weapons manufacturer that needs to store
the Coordinated Universal Time (UTC) date and time, down to the millisecond, of when a mis-
sile is launched. What is the easiest data type to implement for such a field?

A. Use a CLR user-defined data type.

B. Use the DATETIME data type.

C. Use a T-SQL user-defined data type.

D. Use a BINARY data type.

40521.book Page 35 Monday, August 14, 2006 8:04 AM

36 Chapter 1 � Designing a Database Solution

8. You are designing a large sales database where performance is critical. You know that your
sales personnel will be running queries constantly throughout the working hours to find out
the year-to-date sales for a particular product. They want the data returned to be up-to-date.
You have more than 690,000 products and generate approximately 10,000 invoices daily.
Your database design is as follows:

CREATE TABLE [Product] (

 [ProductId] SMALLINT NOT NULL,

 [Product] VARCHAR(20) NOT NULL,

 [Price] MONEY NOT NULL,

 [StockLevel] INT NOT NULL

)

CREATE TABLE [Invoice] (

 [InvoiceNumber] INT NOT NULL,

 [InvoiceDate] DATETIME NOT NULL,

 [CustomerId] INT NOT NULL

)

CREATE TABLE [InvoiceDetails] (

 [InvoiceNumber] INT NOT NULL,

 [ProductId] SMALLINT NOT NULL,

 [SalesQuantity] TINYINT NOT NULL,

 [SalesPrice] MONEY NOT NULL

)

What two actions should you perform?

A. Use ALTER TABLE [Invoice] ADD [YTDSales] INT.

B. Use ALTER TABLE [Product] ADD [YTDSales] INT.

C. Maintain [YTDSales] using a DML trigger.

D. Maintain [YTDSales] using a T-SQL script that is scheduled to run after-hours.

9. You need to decide which data type to use to store legal documents that natively have an
XML format. The legal documents will need to be able to be searched. Government reg-
ulations stipulate that the legal documents cannot be altered by any party once submitted.
What data type should you use?

A. Use a CHAR(8000) data type.

B. Use a TEXT data type.

C. Use a VARCHAR(MAX) data type.

D. Use an XML data type.

40521.book Page 36 Monday, August 14, 2006 8:04 AM

Review Questions 37

10. You need to ensure that you do not lose referential integrity between these two tables that have
a one-to-one relationship and that SQL Server automatically cascades update but not delete
operations:

CREATE TABLE [Product] (

 [WareHouseId] TINYINT NOT NULL,

 [ProductId] INT NOT NULL,

 [ProductName] VARCHAR(20) NOT NULL,

 [Price] NCHAR(10) NOT NULL,

 [StockLevel] TINYINT NOT NULL

)

GO

ALTER TABLE [Product]

ADD CONSTRAINT [PK_Product]

PRIMARY KEY (WareHouseId, ProductId)

CREATE TABLE [ProductDetails] (

 [WarehouseId[TINYINT NULL,

 [ProductId] INT NULL,

 [ProductDescription] XML NULL,

 [ProductPhoto] VARBINARY(MAX) NULL

)

GO

What should you execute?

A. Execute:

ALTER TABLE [ProductDetails

ADD CONSTRAINT [FK_ProductDetails_Product]

FOREIGN KEY (ProductId)

REFERENCES Product (ProductId)

ON UPDATE CASCADE

ON DELETE CASCADE

B. Execute:

ALTER TABLE [ProductDetails]

ADD CONSTRAINT [FK_ProductDetails_Product]

FOREIGN KEY (WarehouseId, ProductId)

REFERENCES Product (WareHouseId, ProductId)

ON UPDATE CASCADE

ON DELETE CASCADE

40521.book Page 37 Monday, August 14, 2006 8:04 AM

38 Chapter 1 � Designing a Database Solution

C. Execute:

ALTER TABLE [ProductDetails]

ADD CONSTRAINT [FK_ProductDetails_Product]

FOREIGN KEY (WarehouseId, ProductId)

REFERENCES Product (WareHouseId, ProductId)

ON UPDATE CASCADE

ON DELETE NO ACTION

D. Execute:

ALTER TABLE [ProductDetails]

ADD CONSTRAINT [FK_ProductDetails_Product]

FOREIGN KEY (ProductId)

REFERENCES Product (ProductId)

ON UPDATE CASCADE

ON DELETE NO ACTION

11. What normal form should you typically aim for when designing the initial relational data-
base design?

A. First normal form (1NF)

B. Second normal form (2NF)

C. Third normal form (3NF)

D. Fourth normal form (4NF)

E. Fifth normal form (5NF)

12. Whenever a programmer is fired from the company and their record deleted from the
[Employee] table of the [HumanResources] database, you need to ensure that all related
records are deleted from child tables in the [HumanResources] database. What is the quickest
way to achieve this?

A. Use a check constraint.

B. Use a rule.

C. Use a DML trigger that will automatically delete the related records.

D. Use a foreign key constraint with the cascade delete option to automatically cascade delete
operations.

13. What objects in SQL Server 2005 can be used to main entity integrity? (Choose all that apply.)

A. PRIMARY KEY CONSTRAINT

B. FOREIGN KEY CONSTRAINT

C. CHECK CONSTRAINT

D. UNIQUE CONSTRAINT

E. DML trigger

40521.book Page 38 Monday, August 14, 2006 8:04 AM

Review Questions 39

14. You need to decide which data type to use to store technical documents that natively have an
XML format. The technical documents will often be searched, so performance is important.
The schema of the technical documents is expected to change over time. What data type should
you use?

A. Use a VARCHAR(MAX) data type.

B. Use a CHAR(8000) data type.

C. Use a TEXT data type.

D. Use an XML data type.

15. You have designed your logical database model as shown here. What T-SQL statements should
you execute to create the tables? (Choose all that apply in the correct order.)

A. Execute:

ALTER TABLE [Grade]

ADD CONSTRAINT [FK_Grade_Student]

FOREIGN KEY(SubjectNo)

REFERENCES [Student] (StudentNo)

B. Execute:

CREATE TABLE [Student] (

 [StudentNo] INT NOT NULL,

 [Name] NCHAR(20) NOT NULL,

 [Surname] NCHAR(20)NOT NULL,

 [DOB] SMALLDATETIME NOT NULL,

 [Address] NCHAR(50) NOT NULL,

 [State] NCHAR(20) NOT NULL,

 [PostCode] NCHAR(20) NOT NULL,

 [Country] NCHAR(20) NOT NULL

)

40521.book Page 39 Monday, August 14, 2006 8:04 AM

40 Chapter 1 � Designing a Database Solution

C. Execute:

CREATE TABLE [Student] (

 [StudentNo] INT NOT NULL,

 [Name] NCHAR(20) NOT NULL,

 [Surname] NCHAR(20)NOT NULL,

 [DOB] SMALLDATETIME NOT NULL,

 [Address] NCHAR(50) NOT NULL,

 [State] NCHAR(20) NULL,

 [PostCode] NCHAR(20) NULL,

 [Country] NCHAR(20) NOT NULL

)

D. Execute:

CREATE TABLE [Grade] (

 [StudentNo] INT ,

 [SubjectNo] INT ,

 [Session] TINYINT ,

 [Mark] NUMERIC(3, 2),

 [Grade] CHAR (1)

)

E. Execute:

ALTER TABLE [Student]

ADD CONSTRAINT [UQ_Student]

UNIQUE (StudentNo)

F. Execute:

ALTER TABLE [Grade]

ADD CONSTRAINT [PK_Grade]

PRIMARY KEY (StudentNo, SubjectNo)

G. Execute:

CREATE TABLE [Grade] (

 [StudentNo] INT NOT NULL,

 [SubjectNo] INT NOT NULL,

 [Session] TINYINT NOT NULL,

 [Mark] NUMERIC(3, 2) NULL,

 [Grade] CHAR (1) NULL

)

40521.book Page 40 Monday, August 14, 2006 8:04 AM

Review Questions 41

H. Execute:

ALTER TABLE [Grade]

ADD CONSTRAINT [PK_Grade]

PRIMARY KEY (StudentNo)

I. Execute:

ALTER TABLE [Student]

ADD CONSTRAINT [PK_Student]

PRIMARY KEY (StudentNo)

J. Execute:

ALTER TABLE [Grade]

ADD CONSTRAINT [PK_Grade]

PRIMARY KEY (SubjectNo)

16. You want to ensure that the [Name], [LastName], and [PhoneNumber] fields are implemented
in a standard way across all new SQL Server database solutions in your enterprise. What
should you do? (Choose two.)

A. Use a T-SQL user-defined data type for the [Name], [LastName], and [PhoneNumber] fields.

B. Create the user-defined types in the tempdb database.

C. Use a CLR user-defined data type for the [Name], [LastName], and [PhoneNumber] fields.

D. Create the user-defined data types in the model database.

17. You are capacity planning your database design and need to determine how much space
will be required for the [ProductDescription] table. You predict that the table will contain
6,900,000 products. The table schema is as follows:

CREATE TABLE [ProductDescription] (

 [ProductId] INT,

 [EnglishPrice] SMALLMONEY,

 [EnglishDescription] NCHAR(450),

 [RussianPrice] SMALLMONEY,

 [RussianDescription] NCHAR(450),

 [GermanPrice] SMALLMONEY,

 [GermanDescription] NCHAR(450)

)

40521.book Page 41 Monday, August 14, 2006 8:04 AM

42 Chapter 1 � Designing a Database Solution

How much space will the table consume?

A. 55,200,000KB

B. 27,600,000KB

C. 18,400,000KB

D. 13,800,000KB

18. You are designing a sales database and want ensure that a salesperson cannot issue an invoice
for more products than currently in stock. Your database design is as follows:

CREATE TABLE [Product] (

 [ProductId] SMALLINT NOT NULL,

 [Product] VARCHAR(20) NOT NULL,

 [Price] MONEY NOT NULL,

 [StockLevel] INT NOT NULL

)

CREATE TABLE [Invoice] (

 [InvoiceNumber] INT NOT NULL,

 [InvoiceDate] DATETIME NOT NULL,

 [CustomerId] INT NOT NULL

)

CREATE TABLE [InvoiceDetails] (

 [InvoiceNumber] INT NOT NULL,

 [ProductId] SMALLINT NOT NULL,

 [SalesQuantity] TINYINT NOT NULL,

 [SalesPrice] MONEY NOT NULL

)

What should you use to ensure that salespeople do not issue an invoice for more products than
currently in stock?

A. Use a check constraint.

B. Use a DML trigger.

C. Use a foreign key constraint.

D. Use a primary key constraint.

40521.book Page 42 Monday, August 14, 2006 8:04 AM

Review Questions 43

19. You need to ensure that whenever an employee is deleted from the [Employee] table of the
[HumanResources] database, all related records are deleted from the [Marketing] database.
What is the quickest way to achieve this?

A. Use a check constraint.

B. Use a DML trigger that will automatically delete the related records.

C. Use a foreign key constraint with the cascade delete option to automatically cascade delete
operations.

D. Use a rule.

20. You are helping to design a database for a Swedish bank called Darrenbank. Tobias, the chief
information officer (CIO), explains they require a field called [CreditRisk] in the [Customer]
table. This [CreditRisk] field is based on a complex calculation that involves 69 fields from the
[Customer] table. The [CreditRisk] field will generate a value ranging from 1 to 5. The [Cus-
tomer] has more than 200 fields and contains more than 307,000 records. Tobias has indicated
that the data changes “infrequently” and that “performance is important.” How do you imple-
ment the [CreditRisk] field?

A. Choose all that apply.

B. Create an index on the [CreditRisk] field.

C. Create the [CreditRisk] field.

D. Create the [CreditRisk] field as a computed field.

E. Create the [CreditRisk] field as a persisted, computed field.

F. Create a DML trigger to maintain the [CreditRisk] field.

40521.book Page 43 Monday, August 14, 2006 8:04 AM

44 Chapter 1 � Designing a Database Solution

Answers to Review Questions
1. D, C, B. Option D correctly implements an efficient surrogate key. Option C correctly imple-

ments the surrogate key, and Option B correctly implements the natural key. Option E is inap-
propriate because it uses the 16-byte UNIQUEIDENTIFIER, which is generally a poor choice for a
primary key because it slows down performance. Option A is incorrect because it does not imple-
ment a surrogate key. If the database needs to be amalgamated in the future, it is a simple matter
of altering the table to make a compound primary key to facilitate amalgamation.

2. B. The BIGINT data type is the smallest data type that can hold [DispatchInterval]. The INT
data type is not large enough. The NUMERIC(11,0) data type consumes a byte more than
BIGINT. The FLOAT data type is imprecise and is not inherently a cardinal.

3. C. The DATETIME data type will be able to accommodate your domain. The SMALLDATE data type
will not accommodate your domain because it does not allow dates before 1900. The CHAR(10)
data type will consume two more bytes than the DATETIME data type, which will impact perfor-
mance. A CLR user-defined data type will not perform as well as a native SQL Server data type
in this instance.

4. B, C, D, E, G. Foreign key constraints, check constraints, data types, nullability, and DML
triggers all can help maintain domain integrity, or the set of values that are valid for a column.
Primary key constraints help maintain entity integrity. Nonclustered indexes generally
improve performance.

5. C. By adding the [Store] column to the [SalesDetail] table, you have eliminated the need for the
query to access the [Sales] and [Store] tables.

6. C. Creating an index on the [Grade].[StudentNo] column will improve join performance because
SQL Server 2005 does not automatically create indexes on foreign keys. Creating an index on the
[Student].[StudentNo] field will worsen performance because there is already an index on that field
via the primary key constraint, which means more indexes for SQL Server 2005 to maintain.
creating a unique constraint on the [Student].[StudentNo] or [Grade].[StudentNo] column will
prevent valid data from being inserted into the [Grade] table.

7. A. None of the SQL Server–supplied data types stores the date, time, and time zone informa-
tion natively. Although a BINARY data type could in fact potentially store such information, it
would be difficult to implement and use. A CLR user-defined data type would easily be able
to store this customized data.

8. B, C. You should add the [YTDSales] column to the [Product] table because there will be only
one instance of maintaining the denormalized data and no need for a join operation. Although
maintaining performance is critical, the sales personnel needs the information to be accurate.
Performance should not be impacted because you are changing only a small percentage of rows
throughout the day on a static table. The DML trigger would have to increment only the exist-
ing [YTDSales] value, creating a minimal impact on performance.

9. C. Since the document cannot be changed, you cannot use the XML data type because it does not
guarantee that the inserted XML document will be the same as the retrieved XML document. A
CHAR(8000) data type takes up too much needless space, and the table will grow beyond SQL
Server’s page limit. The TEXT data type is being deprecated and should not be used.

40521.book Page 44 Monday, August 14, 2006 8:04 AM

Answers to Review Questions 45

10. C. Option C correctly implements referential integrity using the compound foreign key constraint
and cascades the update operation only. Options A and D do not implement the compound foreign
key correctly. Option B does not cascade the operations correctly.

11. C. When designing out initial database design, you should typically aim for 3NF.

12. D. You should always use a foreign key constraint over any other means to maintain referen-
tial integrity if possible because they are the quickest and easiest to implement. You could use
a DML trigger, but that would involved more coding, would be slower, and would require
more skills from your developers.

13. A, D, E. You can use a primary key constraint, unique constraint, and DML trigger to enforce
uniqueness and therefore entity integrity. Foreign key constraints enforce mainly referential
integrity; check constraints can maintain domain integrity.

14. D. The XML data type will give you the most flexibility, allowing the documents to be indexed
to improve query performance and facilitate a changing schema. None of the other data types
supports any schema natively, not any indexing within the SQL Server 2005 engine.

15. C, G, I, F, A. Options C, G, I, F, and A correctly implement the database schema. Options B
and D do not correctly implement the NULLs. Options H and J do not correctly implement the
composite primary key. Option E implements a unique constraint, not a primary key con-
straint.

16. A, D. T-SQL user-defined data types were designed for implementing such “standards” in multiple
databases. By creating them in the model database, you will ensure that all future user databases
will have the new user-defined data types. You should use CLR user-defined data types for much
more complex requirements. Use the tempdb database only as a temporary global workspace.

17. B. A data row will consume 2,716 bytes (4 + 4 + 900 + 4 + 900 + 4 + 900). A page has 8,092
free space. Therefore, a page can hold only two rows (8,092 / 2716 = 2.98). Consequently, the
table will consume 3,450,000 pages (6,900,000 / 2) or 27,600,000KB (3,450,000 * 8KB).

18. B. You can write a DML trigger to look up a product’s [StockLevel] from the [Product] table
and ensure that the [SalesQuantity] being entered is less than that amount before allowing a
record to be inserted into [InvoiceDetails]. A check constraint cannot look up a value in
another table. A foreign key constraint can look up a value only in a related table. A primary
key constraint maintains only entity integrity.

19. B. You can easily write a DML trigger to maintain cross-database referential integrity. A con-
straint works only within a database, so a foreign key constraint would not be appropriate in
this particular instance.

20. D. Creating a persisted, computed field finds the best balance between improving performance
without creating overhead on the system. Options B and E will be slower than creating a per-
sisted computed column. There is no point in creating an index (Option A) because the data is
not selective enough, even if it is searched on. Just creating a computed field (Option C) will not
improve performance because each time the field is retrieved, a complex calculation will have to
be done. Considering the extra space required (TINYINT), it is better to persist the field, and
Tobias has indicated, in the subtle ways that Swedes do, that the data changes “infrequently.”

40521.book Page 45 Monday, August 14, 2006 8:04 AM

40521.book Page 46 Monday, August 14, 2006 8:04 AM

