
CHAPTER 1
Introduction to the Techniques of

Derivative Modeling

1.1. INTRODUCTION

‘‘How do I model derivatives?’’
For the desk quantitative analyst (‘‘desk-quant’’), the quantitative-

programmer, the quantitative-trader or risk analyst—at a firm actively
trading, risk managing, or even auditing books of derivatives—who needs
to know the basic answer to this question, it is contained in a toolkit of
well-established mathematical models and techniques. These professionals
might be prepared to forgo mathematical rigor and the security against
subtle errors that a thorough foundation could perhaps provide. They might
be prepared to take a few shortcuts to get at these techniques relying
on another team member or risk-group reviewer who has the thorough
mathematical background to provide a safety net against subtle errors and
misunderstandings. But the desk quant, the programmer, and the trader do
not have to forgo everything. This book is aimed at such readers who want
a good quick grasp of these techniques.

This first chapter reviews in coarse outline the two most typical tech-
niques for theoretically modeling and pricing derivatives and takes the
first motivational step of mentioning the model of the process for stock
that underpins the first technique and the simplest implementations of
the second. The remainder of the book will take the reader through the
mathematical tools that underpin these two and many other techniques.

1.2. MODELS

1.2.1. What Is a Derivative?
The archetypal example of a derivative is a stock option. An equity call
option is a financial contract. It is often an exchange traded security much

3

CO
PYRIG

HTED
 M

ATERIA
L



4 THE MODELS

like the stock itself. It is the right, but not the obligation, to buy one share of
stock on a given date called the expiration date and at a price, the so-called
strike price, contractually determined on the trade date. A put option is the
right, but not the obligation, to sell at a preset strike. The action of buying
or selling stock under the terms of a put or call option is called exercise.
American-style options are exercisable on any day up to their expiration
date—and European options are exercisable only on the expiration date.

Figure 1.1 shows the value of a call option on the expiration date, the
intrinsic value, as a function of the market price of the stock (which we
obviously don’t know before expiration). Clearly, if the stock is trading
above the strike, we can make a profit by exercising the option, that is,
buying the stock for the strike price and then selling it in the marketplace
for a profit of the difference between the two. If the stock price is below
the strike on expiration date, the option is worthless. This graph of intrinsic
value is obviously the fair price for the option at the moment of expiration.
The fair price is generally different at all times previous to this. For example,
it will have a small but nonzero fair value below strike at all times previous
to expiration, representing the real, albeit small probability that the stock
might end up above the strike at expiration.

Generally, a financial derivative or, better, a contingent claim is a loosely
defined term meaning a security whose price is dependent on the price of
another security that itself is called the derivative’s underlying security.
There may be more than one underlying. In the general case of an option,
because there is some kind of choice involved, we can generally say that
there clearly must be at least two underlying securities.
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FIGURE 1.1 The value of a call option struck at 10 on maturity date as a function
of the underlying stock price at maturity.
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NOTE ON DERIVATIVE

The reader should beware of confusing the unrelated concept from
mathematics, the derivative of a function, which means the rate
of change of the given function with respect to one of its variables.
Derivative in this mathematical sense can naturally arise in a discussion
of financial derivatives, possibly even, and most confusingly, in the
same sentence!

1.2.2. What Is a Model?
The typical mathematical pricing formula for options is the Black-Scholes
formula (Figure 1.2). It outputs the theoretical fair price that a European
option on a dividendless stock should trade for given the following set
of inputs: call or put; current stock price; option strike price; time to
expiration; average future stock volatility (for example, standard deviation
of daily stock returns) from today to expiration, and current market value
of the ‘‘riskless’’ interest rate from today to maturity (as determined by
prices of treasury bonds or maybe interest rate swaps offered by big banks).

Deriving this formula requires a set of assumptions that are very
important to bear in mind when using the formula. They are discussed in
detail throughout this book. Essentially these assumptions are the model.
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FIGURE 1.2 The value of a call option struck at 10 before maturity date as a
function of the underlying stock price today.
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Different sets of assumptions are different models. The model that underpins
the Black-Scholes formula includes the following assumptions:

• Stock price changes are statistical (or stochastic), meaning the changes
are random but they have a well-defined distribution of values.

• Stock price changes are continuous. The shorter the time over which
you measure the average variation of size of changes, the smaller the
average.

• The distribution of stock price changes is only a function of today’s stock
price and other values that are determined today and these changes have
no dependence on the history of the stock or any other variables (models
with this property are referred to as Markovian models)

• Stock price returns (i.e., changes expressed as percentages) have a normal
(i.e., Gaussian) or bell-curve distribution around a mean that is the stock
percentage growth rate.

1.2.3. Two Initial Methods for Modeling Derivatives

Many options and financial optionality can be approximately, quantita-
tively, and certainly qualitatively understood using simple modifications of
the Black-Scholes formula. If this technique is lacking, the general machinery
used to derive the formula provides a framework for more complex and
thus more realistic analysis.

This means that an initial understanding of stock options and the
Black-Scholes formula immediately opens up the world of derivatives and
not just stock options themselves. The severe restriction is that the modeler
can only study options under the assumption that the underlying security
price has (continuous Markovian) normally distributed returns. Further
study, leading to an understanding of the derivation of the Black-Scholes
formula, opens that world far wider to practitioners, allowing them outside
of the assumptions of a lognormal distribution of security changes to other
perhaps more realistic distributions.

Mastering these two tools gives practitioners a strong suite of skills to
analyze the trading and risks of derivatives. The derivatives accessible with
the study of stock options include, among many others:

• Bond options and interest rate options such as swaptions
• Callable and putable bonds
• Credit default swaps (also called credit-default put options)

Indeed, any financial contract with an embedded clause that the issuer,
or holder has the right but not the obligation to exercise can poten-
tially be analyzed to some degree, even if only qualitatively, using one of
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the two methods mentioned: (1) the Black-Scholes formula with modifica-
tions or (2) the more general ideas behind the derivation of Black-Scholes
formula.

1.2.4. Price Processes

The central idea behind the financial models that price stock options is
the future distribution of stock prices. Furthermore, a random walk has
characteristics similar to a stock or bond price path and has a future
distribution of path end points. The walk may tend in a general direction, a
nonstochastic drift, such as making a general observation that ‘‘on average’’
prices increase by $1 every year or each stock makes a $1/365 step up per
day. But the walk also includes a stochastic component, referring to the
fact that any particular price path has an additional random step either up
or down.

There are many possible choices for this distribution of price changes
and empirical data from the markets can often be inconclusive (principally
because it seems the real world process itself is not stationary). More
confusingly, the mathematical form of this distribution might look very
different on different time scales. However, the normal distribution is a
very useful tool for first approximation because it turns out that if the
distribution of one-day price changes (i.e., steps) is normally distributed
and has a standard deviation of, say, 5¢ with a mean of 0.27¢, then the
distribution of annual changes (after many daily steps are added up) is also a
normal distribution just with different mean and standard deviation. In fact,
the normal distribution of annual price changes has a standard deviation
of $0.05 × √

365 ≈ $1 and a mean of $0.0027 × 365 ≈ $1. The square
root appeared because for normal distributions, the variance, the square of
the standard deviation, grows linearly with time rather than the standard
deviation itself.

This is an example of a model for the price process that starts at today’s
stock price; drifts by an average of $1 every year (and thus 0.27¢ every
day); and has a standard deviation of annual changes of $1 (equivalent to a
standard deviation of daily changes of 5¢).

A normal distribution of stock price changes with a drift could be
used to find derivative prices with qualitatively correct features. The serious
drawback, however, is that no matter where the stock starts, future stock
prices have a potentially very large probability of being negative. This is
a bad feature and will ruin even some qualitative observations, let alone
quantitative ones. We need to refine this model slightly to get the simplest
qualitatively correct model and hence make it (possibly) useful quantitatively
even if only approximately.
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1.2.5. The Archetypal Security Process: Normal Returns

This problem—of the normal distribution of future stock prices giving a
probability for negative prices in the future—is easily corrected by modeling
the price process with a normal distribution of returns on stock rather than
the stock price changes. This is because allowing all possible percentage
changes never results in negative stock prices if the path starts at a positive
stock price. Equivalently, we may say that the natural log of stock prices is
the normally distributed state variable over which the random walk occurs.
This is a simple variable change and results in a much more compelling
model qualitatively.

A normal distribution for changes of the natural log of stock price is
equivalently described as a lognormal distribution of stock price changes
(note this is a definition).

So one of the simplest models of the stock price process is given by
a process in which the natural log of stock prices follows a random path,
whose expected mean 〈S〉, grows with time (i.e., drifts) according to

〈S〉 = S0 exp(µ(t − t0)),

where the path begins at stock price S0, at time t0, and grows exponentially
with time t according to some constant µ.

The path’s size of statistical fluctuations is measured approximately
by the standard deviation of the stock price percentage returns or, more
accurately, by the standard deviation of the changes of the natural log
of stock prices. This calculated result for an actual stock (or indeed any
security) price history is common in derivatives finance and is called the
historical volatility of the security.

Historical Volatility =

√√√√√√
j=N∑
j=1

[
ln

(
Sj

Sj−1

)
− mean

(
ln

(
Sj

Sj−1

))]2

N − 1
.

Note that ln(x) denotes the natural log of x, meaning that if y = ln(x)
then x = ey.

To bring the model we are constructing into contact with reality,
imagine looking at a stock price that follows a path with a distribution of
price changes that is perfectly lognormal.

First, for a large number of observations of price changes N, the
average of the percentage changes of the stock price tends to a constant, the
expectation value, driven by the model drift, reflecting that average prices
in this model drift upward exponentially.
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Second, the measured historical volatility will tend to the input volatility
σ of the model as we calculate it using more and more stock price changes,
that is, as N tends to infinity. Taking an average of many measurements n,
of the historical variance over N stock price changes will have a distribution
with a mean that is the input volatility squared. Alternatively, taking an
average of n values for historical volatility using N market-close-price
changes for the stock (N-day historical vol’ in market parlance) will have a
mean that is only approximately the input volatility, even as the number of
observations n goes to infinity. However, as long as more than thirty price
changes are used (N > 30) for each calculation of historical volatility, the
difference between the expected value of the average and the input volatility
is less than a few percent.

Note that an N-day historical volatility has an expected standard
deviation of order volatility over

√
N. This means that an observed path

of trailing historical volatility fluctuates around its mean with percentage
difference to the mean of order 1/

√
N. For example, a graph of trailing

30-day historical volatility on a perfectly lognormal stock price with actual
volatility 0.30, will fluctuate around a mean value within a few percent of
0.30, and more than half the time will be within a band approximately
given by 0.25 and 0.35. In conclusion, we can make observations directly
comparing or contrasting real markets with this lognormal model.

These features of a lognormal distribution are already of use for some
qualitative match to the real markets. For example, historical graphs of the
major indices show long periods of something like exponential growth (most
easily seen as straight lines on log index versus time plots) and graphs of
trailing historical volatility, for a particular stock, do show a lower variance
with larger samples of daily price changes. However, while a cursory look at
the data shows some qualitative match, it simultaneously shows significant
differences that make this model a schematic fit at best. Typical stocks can
have a historical volatility graph that has a mean near 0.30 and typical
range of fluctuations between 0.25 and 0.35 for a year or more and then a
business announcement can cause a stock price change that makes historical
volatility jump to 0.60. Such events are too frequent for the lognormal
distribution and lead directly to discussions of fat tails.

Finally, if this process were to imply that there is a unique option
price, then this would obviously be a very valuable qualitative tool with the
potential to be quantitatively useful. This theoretical option price might not
match the market exactly because the real market for the stock does not have
exactly lognormally distributed stock price changes (in fact, the real market
is not continuous and is influenced by the recent past, i.e. non-Markovian),
but this price would still be a useful guide to very expensive or very cheap
options and how to trade and risk manage them.
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Many processes for stocks can indeed be used to derive option prices and
the simplest model—an option on a stock with a lognormally distributed
price process and no dividend—results in the famous Black-Scholes formula
for the price of the option. Understanding the techniques of modeling price
processes and of finding option prices consistent with a chosen underlying
price process are the principal objectives of this book.

1.2.6. Book Outline

This book outlines all of the basic mathematics to understand the derivation
of pricing equations for various derivatives from the starting point of
assuming a process for the underlying security price. It turns out that a
partial differential equation (PDE) exists for each process and which the
pricing formula of all derivatives on this underlying security solve. We
will derive this equation and solve it. Solving the equation can be done
analytically or, more likely, numerically.

After some preliminary mathematics review in chapter 2, chapters 3
and 4 deal with a formalism to describe stochastic processes and its appli-
cation to finance. Chapters 5 and 6 then derive the pricing equation based
solely on stochastic price fluctuations as the source of risk. Chapters 7
and 8 repeat the development again for interest rates with a focus on the
constraints on the form for the process that arise due to trying to con-
sistently model the stochastic movements of the interest rate curve rather
than just a single security price. Chapter 9 deals with analytic and numer-
ical solutions to the types of equations that arise in derivatives modeling.
Chapter 10 incorporates a simple binary probabilistic model of default into
the framework and finally Chapter 11 combines much of the previous work
into some specific examples of models of derivative securities. A few sample
exercises together with solutions are provided and range from the almost
inane, but actually very important, ‘‘do I get this?’’ type question to much
more difficult ‘‘I can’t do this!’’ type questions. Four topics are relegated to
appendices because they were either algebra intensive or outside the flow of
the text but nevertheless they are important.


