
Introduction

I.1 OUTLINE OF THE BOOK

Recent trends in the development of vacuum microwave electronics and the physics

of electron beams have been shaped in part by competition with solid-state high-

frequency electronics. So practically all information technology and microwave

devices of small power and limited frequency are based on solid-state electronics.

Contemporary vacuum microwave electronics and the physics of charged-particle

beams include the formation and transport of intense and relativistic electron

beams, electron optics, powerful microwave devices together with millimeter- and

submillimeter-wave devices, charged-particle accelerators, material procession,

and free electron lasers. This narrowing of focus has led to considerable progress

in the following aspects of theory and engineering:

. Theory of electromagnetic fields

. Dynamics of charged-particle beams

. Interaction of electron beams with high-frequency fields

. Electron emission and optics

. Development and application of vacuum electron devices

. Methods of computer simulation

. Technology and powerful and high-voltage experimental techniques and

equipment

It would thus be very difficult to embrace within a single volume a complete descrip-

tion of the state of the art in this field. There are many books on the subject of

vacuum electronics (many of which we cite in the book). They do not, however,

provide a thorough treatment of the theory of both electron beams and microwave

1

Electron Beams and Microwave Vacuum Electronics. By Shulim E. Tsimring
Copyright # 2007 John Wiley & Sons, Inc.



electronics. Two books, Modern Microwave and Millimeter-Wave Power

Electronics (Barker et al., 2005) and High Power Microwave Sources and Technol-

ogies (Barker and Schamiloglu, 2001), are the exception. These volumes are

characterized by an exceptionally wide scope of information. They do not,

however, include a systematic exposition of the theory of basic processes assuming

the reader’s familiarity with the theory. In this book I strike a compromise, providing

the reader with a foundation in the physics and theory of electron beams and vacuum

microwave electronics. The material is presented in historical sequence, and classi-

cal results and concepts are treated alongside contemporary issues.

The book is divided into two parts: Part I, Electron Beams (Chapters 1 to 5), and

Part II, Vacuum Microwave Electronics (Chapters 6 to 10). Auxiliary information

(e.g., equations of motion, Maxwell’s equations, Hamiltonian formalism, the

Liouville theorem) is presented in the Introduction. This material cannot, however,

replace corresponding background fundamental guides. It serves a reference func-

tion and provides notation and definitions.

Part I begins in Chapter 1 with a discussion of the motion of charged particles in

static electric and magnetic fields. Special attention is devoted to an analysis of rela-

tivistic beams and the motion of charged particles in weakly inhomogeneous fields

(e.g., adiabatic invariants, drift equations).

In addition to classical paraxial electron optics, in Chapter 2 we describe the

theory and applications of quadrupole lenses, which are important elements of accel-

erators and effective correctors of aberration in paraxial electron-optical systems.

Principles of electronic image construction are an important element in electron

beam formation in microwave devices and accelerators.

In Chapters 3 and 4, an extensive area of the physics of intense electron beams

that are used in most high-frequency electron devices is considered. The self-

consistent equation of steady-state space-charge beams is derived. Self-consistent

solutions for certain space-charge curvilinear flows as well as gun synthesis

methods are described. A number of electron guns with compressed electron

beams are discussed. The theory of noncongruent space-charge beams and its appli-

cation to the design of magnetron-injected guns are considered.

Electron guns that use explosive electron emission, making it possible to obtain

electron beams with energy on the order of MeV and currents of hundreds of kilo-

amperes, have acquired great significance in powerful high-frequency electronics

and electron beam technology. Guns using planar explosive emission and magneti-

cally insulated diodes are considered.

Transport problems of lengthy intense electron beams that are key problems for

microwave devices are discussed in Chapter 5. A group of relevant problems is con-

nected with the transport of nonrelativistic and relativistic Brillouin beams of

various configurations. The transport of intense beams in an infinite magnetic

field approximation and centrifugal focusing is also discussed. A theory of intense

axially symmetric paraxial electron beams with arbitrary shielding of the cathode

magnetic field is described. A criterion for stiffness beam formation is formulated.

Finally, the transport of intense electron beams in spatially periodic fields is con-

sidered. A theory of periodic magnetic focusing, which has the most practical value

for beam-type tubes, is expounded.
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Part II opens (Chapter 6) with an analysis of quasistationary microwave devices

in which the electric field is potential but the energy integral is not conserved.

Analysis of the simplest element of these systems, a planar electron gap, demon-

strates two principal effects: bunching of electrons and phasing of bunches. The

latter, and also the effects of velocity and energy modulation, are crucial for all

vacuum microwave devices. All these effects in the electron gap are not optimal,

however. Their implementation led to the first truly microwave amplifiers and oscil-

lators: klystrons based on electron-stimulated transition radiation. In Chapter 7 a

number of klystron systems, including reflex and relativistic klystrons, are

considered.

Linear and nonlinear theories of traveling-wave tubes of O type (TWTOs) based

on the synchronous radiation of rectilinearly moved electrons in the field of a slow

electromagnetic wave are discussed in Chapter 8. These tubes and backward-wave

oscillators (BWOs), in which an electron beam interacts with an electromagnetic

wave whose phase and group velocities are opposite, possess unique properties as

wideband oscillators. Relativistic TWTOs are considered there as well. These

tubes have output power on the order of gigawatts and should provide very high

gain, because only in this case can conventional low-power input sources be used.

Powerful relativistic TWTs have spatially extended electromagnetic structures.

Therefore, mode selection is an important problem in these tubes.

The energy of the electromagnetic field in TWTs and BWOs of O type is fed by

electron kinetic energy. Decrease in electron velocities in the process of interaction

violates the synchronism. So the efficiency of these tubes, especially of BWOs, is

comparatively low. An essentially different mechanism is implemented when elec-

tron beams interact with electromagnetic fields in crossed static electric and mag-

netic fields (M-type systems). In this case the energy of the electromagnetic field

is extracted from the potential energy of particles. As a result, synchronism is main-

tained along a deep conversion of the electron energy. M-type systems can have an

efficiency close to 100%. In Chapter 9, typical devices of M type are considered:

magnetrons, injected-beam traveling-wave and backward-wave amplifiers and oscil-

lators, and amplifiers of magnetron type. The very high efficiency and high pulse

power of the latter allow them to be used as basic high-frequency sources in radar

systems and electronic countermeasure devices. Also, the high efficiency, compact-

ness, and low cost of low-power magnetrons explain their exceptional use in dom-

estic microwave ovens. Relativistic magnetrons that use explosive emission

cathodes are also considered in Chapter 9. These oscillators are very promising high-

frequency sources in radar systems and countermeasure means.

A very interesting power oscillator that utilizes crossed fields is the magnetically

insulated line oscillator (MILO). In this tube, the magnetic field of the electron beam

replaces the external magnetic field of a conventional magnetron. This requires a

very high beam current that can be provided only by explosive electron emission.

The constructive simplicity of such systems provides potential advantages with

respect to other pulse sources of electromagnetic oscillation with power on the

order of gigawatts in the L and S frequency bands.

The microwave amplifiers and oscillators mentioned above exploit radiation of

electrons executing rectilinear or close to rectilinear particle motion: transition
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and Cerenkov radiation. In the latter, synchronous radiation of particles is possible,

due to their interaction with slow and therefore surface electromagnetic fields. The

output power and efficiency of corresponding devices inevitably drop with the fre-

quency. So the shortest nonrelativistic BWOs have a maximum output power on the

order of milliwatts in the submillimeter-wavelength range. Relativistic devices of

O type are an exception, but the possibilities for their practical application,

especially in continuous-wave (CW) regimes, are limited.

New ideas were put forward at the end of the 1950s and the beginning of the

1960s. The natural attenuation was turned to electron beams with curvilinear period-

ical trajectories of particles in which electrons radiate at an arbitrary ratio of their

velocity to the phase velocity of a wave in a given medium. This concept is the

idea underlying classical electron masers (CEMs), where stimulated radiation of

oscillating electrons takes place.

Chapter 10 is devoted to the mechanism, theory, and sources of stimulated radi-

ation of classical electron oscillators. This area of vacuum electronics reflects

perhaps the most significant tendencies in modern high-frequency electronic devel-

opments. The analysis of an ensemble of classical electron oscillators in electromag-

netic fields displays two important mechanisms: linear and quadratic bunching. The

latter is the result of the nonisochronism of oscillators. Among the examples of

subrelativistic classical electron masers considered in the book, the gyrotron and

the ubitron are notable, in which takes places the stimulated bremsstralung of elec-

trons in uniform and spatially periodic magnetic fields, respectively. The surprising

property of the gyrotron is the existence of a strong essentially relativistic quadratic

bunching for subrelativistic energies of electrons (on the order of tens of keV).

Another important property of a gyrotron is the possibility of using spatially devel-

oped electrodynamic and electron-optical systems, due to the existence of effective

mode selection methods for gyrotrons. That allows one to obtain record average

output power in the millimeter- and submillimeter-wave ranges. Unique gyromono-

trons have been developed that deliver CW output power up to 1 MW in a 2-mm

wavelength. Similar gyromonotrons find wide application in controlled fusion

experiments (e.g., electron–cyclotron resonance heating and electron–cyclotron

current drive in tokamak–stellarator plasmas). A substantial part of Chapter 10

covers an analysis of the gyrotron mechanism, gyrotron electron-optical systems,

methods of mode selection in gyrotrons, and various gyrotron applications.

The efficiency of gyrotrons drops, however, as the electron energy approaches the

relativistic energy, because the decrease in the relativistic electron mass in the

process of radiation violates the synchronism between oscillating electrons and

the electromagnetic field. In this case, cyclotron autoresonance masers (CARMs)

and free-electron masers (FELs) are alternatives. In a CARM, synchronism is sup-

ported when the phase velocity is closed to the light velocity c, due to compensation

of the electron relativistic gyrofrequency shift and the Doppler shift stipulated by a

change in the electron drift velocity. In a FEL, an ultrarelativistic version of the

ubitron, the stimulated radiation of electrons in wiggler (undulator) devices with a

spatially periodic magnetic field, is used. A very important property of a FEL is

the bremsstrahlung Doppler frequency up-conversion, according to which the radi-

ation frequency in the laboratory frame of reference increases approximately
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proportionally to the square of the relativistic mass of the moving radiating particle.

This property, together with those specific for the FEL pondermotive bunching

effect, allows one to obtain powerful coherent radiation in the infrared, optical, ultra-

violet, and potentially, even hard x-ray ranges.

CARMs and FELs are considered in the book comparatively briefly. FELs were

invented in 1971, and at present the number of published papers dedicated to FELs

is on the order of 104. Due to its wavelengths, coherent properties, frequency tunabi-

lity, and high output power, FELs open an unprecedented range of applications. A list

that is very far from complete includes such topics as biology, biomedicine, surgery,

solid-state physics, chemistry and the chemical industries, defense, micromachining,

photophysics of polyatomic molecules, and military and domestic applications.

Unfortunately, a reader will find very little material on electron emission,

stochastic oscillations in electron beams and microwave tubes, and charged-particle

beam problems in accelerators. That restriction certainly narrows the scope of the

book but opens additional possibilities for a more detailed discussion of theory

and methods in the main topics mentioned above. Also, there was no room for

numerous constructive implementations of devices. This is a very complicated

problem taking into account the modern dynamics of high-power vacuum elec-

tronics development.

Finally, computation algorithms and softwares that have reached a very high

level of sophistication are not considered in this book. Surely, they should now be

treated as an independent area of vacuum electronics. Certainly, numerical methods

are a necessary component of the design of all electron devices. However, the appli-

cation of the numerical simulation can turn out to be useless without a clear under-

standing of theoretical foundations.

I.2 LIST OF SYMBOLS

Vector values are denoted in bold face. MKS units are used.

A magnetic vector potential

B, B magnetic induction

c ¼ 2.997925 � 108 m/s light velocity

E, E electric field

e0 ¼ 1:602177� 10�19C absolute value of an electron

charge

h ¼ 6.626076 � 10 234 J . s Planck’s constant

I0 ¼
4p10c3

h
� 17 kA

relativistic current

i imaginary unity

j, j current density

k ¼ 1:38066� 10�23J=K Boltzmann’s constant

m electron relativistic mass

m0 ¼ 9.109390 � 10231 kg electron rest mass

n particle density

p, p momentum
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v, v velocity of a particle

vg group velocity

vph phase velocity

w0 ¼ m0c2 ¼ 8:187111� 10�14 J electron rest energy

b ¼
v

c
dimensionless velocity

b propagation constant

g ¼
m

m0

¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2

q

relativistic factor

10 ¼ (m0c2)�1 ¼ 8:854188� 10�12F=m permittivity of free space

h ¼
e0

m0

¼ 1:758820� 1011 C=kg electron specific charge

m0 ¼ 4p� 10�7 H/m permeability of free space

r space-charge density

w electric potential

w0 ¼
m0c2

e0

� 511� 103 V reduced electron rest energy

vg ¼
e0B

m
¼

e0B

m0g

gyrofrequency (electron–cyclotron

frequency)

vp ¼
nee2

0

m010

� �

1
2

electron plasma frequency

vq reduced plasma frequency

I.3 ELECTROMAGNETIC FIELDS AND POTENTIALS

Considered below are electromagnetic fields acting on a moving particle with

location r(t); therefore, the fields and potentials are expressed as

E ¼ E½r(t),t�, B ¼ B½r(tÞ,t�, w½r(t),t�, A ¼ A½r(tÞ,t� (I:1)

For static fields, @=@t ¼ 0 and

E ¼ E½r(t)�, B ¼ B½r(t)�, w½r(t)�, A ¼ A½r(t)� (I:2)

Field–potential relations according to Maxwell’s equations are

E ¼ �gradf�
@A

@t
, B ¼ curl A (I:3)

For static fields:

E ¼ �gradw, B ¼ curl A (I:4)

Maxwell’s equations (in free space):

curl B ¼ m0 jþ
1

c2

@E

@t
(I:5)

curl E ¼ �
@B

@t
(I:6)
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div E ¼
r

10

(I:7)

div B ¼ 0 (I:8)

For static fields according to Eqs. (I.4) and (I.7), Poisson’s equation is valid:

div grad w ¼ �
r

10

(I:9)

This equation is reduced to the following forms in Cartesian and cylindrical coordi-

nates, respectively:

@2w

@x2
þ
@2w

@y2
þ
@2w

@z2
¼ �

1

10

r(x,y,z) (I:10)

1

r

@

@r
r
@w

@r

� �

þ
1

r2

@2w

@u2
þ
@2w

@z2
¼ �

1

10

r(r,u,z) (I:11)

I.4 PRINCIPLE OF LEAST ACTION. LAGRANGIAN. GENERALIZED
MOMENTUM. LAGRANGIAN EQUATIONS

The principle of least action (Hamilton’s principle), is stated: For each mechanical

system, the functional (the action integral of specific function L) exists as

S ¼

ðt2

t1

L(q1, q2, . . . , qN , _q1, _q2, . . . , _qN , t) dt (I:12)

For real trajectories, qi ¼ ½qi(t)�real S has the least (in general, extreme) value. Here

L is the Lagrangian, qi and _qi(i ¼ 1, 2, . . . , N) are generalized coordinates and

velocities, and N is the number of degrees of freedom. A system of n particles

has N ¼ 3n degrees of freedom. All possible (comparable) trajectories belong to

the class

qi(t1) ¼ q(1)
i , qi(t2) ¼ q(2)

i , i ¼ 1, 2, . . . , N (I:13)

It can be shown that a necessary condition for realization of the extreme of the func-

tional S is the system of equations

d

dt

@L

@_qi

� �

�
@L

@qi

¼ 0, i ¼ 1, 2, . . . , N (I:14)
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which determines the real trajectories. These are the famous Lagrangian equations.

Generalized momenta are defined as

Pi ¼
@L

@_qi

, i ¼ 1, 2, . . . , N (I:15)

It is convenient for the particle (N ¼ 3) to use the vector notation

r(q1, q2, q3), v(_q1, _q2, _q3). Then the generalized momentum is

P ¼
@L

@v
(I:16)

An alternative Lagrangian equation to (I.14) is

d

dt

@L

@v

� �

�
@L

@r
¼

dP

dt
�
@L

@r
¼ 0 (I:17)

The Lagrangian for the electron in the electromagnetic field is given by (see, e.g.,

Landau and Lifshitz, 1987)

L ¼ �m0c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2

q

� e0 Avþ e0w (I:18)

The electron generalized momentum according to Eqs. (I.16) and (I.18) is

P ¼
@L

@v
¼

m0v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p � e0A ¼ p� e0A (I:19)

where the mechanical momentum p ¼ m0gv. Then the electron Lagrangian may be

written as

L ¼ �
m0c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p (1� b2)� e0Avþ e0f ¼ Pv� w (I:20)

where the quantity

w ¼ mc2 � e0w (I:21)

is the electron energy [see Eq. (1.3)] and m ¼ m0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p

is the relativistic

electron mass. The equation of motion according to Eqs. (I.17) and (I.19) is

dp

dt
� e0

dA

dt
þ e0

@(Av)

@r
� e0

@w

@r
¼ 0 (I:22)

Using a known relation of vector analysis,

@(Av)

@r
¼ (vr)Aþ v� curl A (I:23)
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we obtain

dp

dt
� e0

@A

@t
� e0(vr)Aþ e0(vr)Aþ e0v� B� e0 grad w ¼ 0 (I:24)

So, corresponding to Eqs. (I.3), Eq. (I.24) becomes

dp

dt
¼ �e0E� e0v� B (I:25)

This equation can also be expressed in terms of the relativistic factor g ¼ m=m0:

d(gv)

dt
¼ �h(Eþ v� B) (I:26)

The equation of motion in the nonrelativistic approximation (g ¼ 1) is

dv

dt
¼ �h(Eþ v� B) (I:27)

I.5 HAMILTONIAN. HAMILTONIAN EQUATIONS (e.g., Landau
and Lifshitz, 1987)

According to Eq. (I.20), the energy in terms of the momentum and the Lagrangian is

w ¼ Pv� L (I:28)

Here L and w are functions of r, v, and t. Using the formula for generalized momen-

tum (I.19), we can express v in terms of P, r, and t. The energy as a function of these

variables is called the Hamiltonian:

H ¼ w(P, r, t) ¼ Pv� L (I:29)

We can express the equation of motion via the Hamiltonian. The total differential of

H is

dH ¼ P dvþ v dP�
@L

dr
dr�

@L

@v
dv�

@L

@t
dt (I:30)

Taking the Lagrangian equation [Eq. (I.17)] and the Lagrangian momentum defi-

nition [Eq. (I.16)], we find that

dH ¼
@H

@r
drþ

@H

@P
dPþ

@H

@t
dt ¼ v dP�

dP

dt
dr�

@L

@t
dt (I:31)

Equating corresponding terms in Eq. (I.31), we obtain the Hamiltonian equations

dP

dt
¼ �

@H

@r
,

dr

dt
¼
@H

@P
(I:32)
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Also, we find that

dH

dt
¼
@H

@t
¼ �

@L

@t
(I:33)

The Hamiltonian equations are the equations of motion in the variables P and r.

Note that for static fields according to Eq. (I.33), dH=dt ¼ 0. This relation is equiv-

alent to the conservation of energy.

The explicit expression of the Hamiltonian for an electron in the electromagnetic

field as a function of P, r and t according to Eq. (I.19) is

H ¼ mc2 � e0w ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0c2 þ (Pþ e0A)2

q

� e0w (I:34)

Here A and w are functions of r and t. We also used the obvious relationship for the

relativistic mass:

m2c2 ¼ m2
0c2 þ p2

If one differentiates the first of Eqs. (I.32) with respect to P and the second with

respect to r and add them, we obtain

@Ṗ

@P
þ
@ṙ

@r
¼ 0 (I:35)

I.6 LIOUVILLE THEOREM

I.6.1 Liouville Theorem for Interaction Particles

When F(P, q, t) is the distribution function in the phase space (i.e., a number of par-

ticles in the unity phase volume),

F ¼
dn

dP dq

where dn is the number of particles in the phase volume dP dq. The value F denotes

density in the phase space. In general, if there are N interacting particles, the Lagran-

gian for each particle depends on the coordinates and velocities of all particles, and

the phase space has 6N dimensions.

Each element of dPi dqi is really a six-dimensional element in Euclidean space.

The 6N dimension’s current density of these particles is

j ¼ v
dn

dP dq
¼ vF
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where the 6N velocity v has the components _P and _q. According to a continuity

theorem (conservation of the particle number),

div jþ
@F

@t
¼ 0 or

@jP

@P
þ
@jq

@q
þ
@F

@t
¼ 0

Then

@(F _P)

@P
þ
@(F _q)

@q
þ
@F

@t
¼ 0 or

_P
@F

@P
þ F

@ _P

@P
þ _q

@F

@q
þ F

@_q

@q
þ
@F

@t
¼ 0

(I:36)

By letting the particles move along trajectories, Eq. (I.35) becomes valid, and the

second and fourth terms in Eq. (I.36) cancel. We obtain

@F

@P
_Pþ

@F

@q
_qþ

@F

@t
¼ 0 or

DF

Dt
¼ 0 (I:37)

This is a version of the Liouville theorem: The density F of particles moving along

trajectories is constant.

Consider a group of N particles that move along their trajectories. The number of

the particles in the group is constant:

N ¼

ð

V

F dP dq ¼ const: (I:38)

Because F ¼ const., we obtain

ð

V

dP dq ¼ const: (I:39)

The volume of the 6N phase space that encloses a chosen group of the particles is

constant. This is the second version of the Liouville theorem.

Note that the Hamiltonian equations (I.32) are valid if the forces acting on the

particles have a potential. These forces are called Hamiltonian forces. For non-

Hamiltonian forces (i.e., radiation losses, frictional forces, etc.) the first of

Eqs. (I.32) must be changed (Landau and Lifshitz, 1987). In this case, the Liouville

theorem is not valid, and the phase density as well as the phase volume of the group

of particles chosen has no more invariants.

I.6.2 Liouville Theorem for Noninteraction Identical Particles

In this case, the Lagrangian of each particle will depend on the coordinate and momen-

tum of the particle. Then we can write the Hamiltonian equations for each particle in

the same six-dimensional phase space and use a distributive function in this space for
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identical particles:

f ¼
dn

dP dq

Furthermore, formulas (I.37)–(I.39) are repeated and we obtain Liouville’s theorem

for six-dimensional phase space. In particular,

f ¼ const: or
@f

@P
Ṗþ

@f

@r
ṙþ

@f

@t
¼ 0,

ð

V6

dP dq ¼ const: (I:40)

where V6 is the six-dimensional phase volume.

I.6.3 Liouville Theorem for a Phase Space of Lesser Dimensions

The invariant phase volume in the Liouville theorem may be shortened even more if

some degree of freedom of the noninteraction particles is independent of the

other(s). In this case, the corresponding Hamiltonian may be represented as the

sum of independent components, and for each component we obtain invariants cor-

responding to Eq. (I.40) (Moss, 1968; Reiser, 1994). For example, if the motion in

the transverse plane ( p?, q?) and the longitudinal motion ( pz, qz) are independent,

the invariants are

f (P?, q?) ¼ const:,

ð

V4

d _P? dq? ¼ const: (I:41)

f (Pz, qz) ¼ const:,

ð

V2

dPz dqz ¼ const: (I:42)

Finally, if motions in the x and y directions are independent, the invariant of

Eq. (1.41) is split to

f (Px, x) ¼ const:, f (Py, y) ¼ const:
ð

V2

dPx dx ¼ const:,

ð

V2

dPy dy ¼ const.
(I:43)

I.7 EMITTANCE. BRIGHTNESS (Humphries, 1990; Lawson, 1988;
Lejuene and Aubert, 1980)

I.7.1 Emittance in a Zero Magnetic Field

In this case, P ¼ pþ e0A ¼ p. Consider the first of the integrals in Eq. (I.43):

ð

dpx dx ¼

ð

dpx

pz

pz dx ¼

ð

pz dx dx0 ¼ const. (I:44)
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Suppose that pz is constant in each transverse section of the beam. Then

pz

ð

dx dx0 ¼ pzV2 ¼ const: (I:45)

If the particles move with constant energy in the z-direction ( pz ¼ const.),

Jx ¼

ð

dx dx0 ¼ V2 ¼ const. (I:46)

The ðx, x0Þ phase space is called a trace space. The integral Jx is called an

emittance. In the literature, the emittance is often defined as ð1=pÞJx. According

to Eq. (I.40), the area of the trace space for some groups of the particles with con-

stant axial momentum along a trajectory is invariant. Note that the configuration of

the contour enclosing a chosen group of particles in the trace space can vary, but the

area into the contour is conserved. A reader can find many interesting pictures dis-

playing contour transformations in the literature (see, e.g., Humphries, 1990;

Lawson, 1988; Lejuene and Aubert, 1980).

If the beam is axially symmetric, the single emittance of Eq. (I.46) may be uti-

lized. For the nonsymmetrical paraxial beams with constant pz, only the invariance

of a hyperemittance

Jh ¼

ð

dx dx0dy dy0 ¼ V4 (I:47)

is correct. If the beam has two planes of symmetry x and y, the hyperemittance is

Jh ¼

ð

V2

dx dx0
ð

V2

dy dy0 ¼ JxJy

For a beam with variable pz momentum, the invariant is

p2
zJh � b2g2Jh ¼ b2gV4 (I:48)

In nonrelativistic approximation, that is equivalent to

w(z)Jh ¼ const: (I:49)

I.7.2 Brightness

Microscopic brightness is, by definition,

Bm ¼
dI

dV4

¼
dI

dx dx0dy dy0
A=rad2 �m2 (I:50)

where I is the beam current. Usually, the average brightness value is utilized:

B ¼
I

V4

¼
I

Jh

(I:51)
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For the small beam angles, this definition is equivalent to

B �
j

V
¼

j

pa2(z)
A=m2 � st (I:52)

where j is a current density, V is a solid angle enclosing all the rays emerging from a

point on the z-axis, and a(z) is the angle between the z-axis and the beam edging

rays. According to Eq. (I.47), the brightness is invariant if bg or w(z) is a constant.

Otherwise, invariants are

Binv ¼
Bb

2
g2

b2g2
(relativistic), Binv ¼

Bw

w(z)
(nonrelativistic) (I:53)

where b, g, and w are average values.

I.7.3 Maximum Langmuir Brightness for Thermionic Emitters

Assuming a Maxwellian distribution of initial velocities and neglecting all other

factors that can limit the beam current density, Langmuir (1937) obtained the

following formula for a theoretical maximum of current density:

j(z) ¼ jc

e0w(z)

kT
sin2a(z) (I:54)

where jc is the cathode current density, T is the cathode temperature, and k is

Boltzmann’s constant. This formula is valid in a nonrelativistic approximation

and for w(z)=kT � 1.

Substituting Eq. (I.54) for small a(z)½sina(z) � a(z)� into Eq. (I.52), we obtain

the maximum brightness:

Bmax ¼ jc
e0w(z)

pkT
(I:55)

Correspondingly, the invariance maximum brightness [Eq. (I.53)] is

Binv, max ¼ jc

e0

pkT
w (I:56)

According to Eq. (I.54), for small a the maximum current density is

jmax ¼ jc
e0w

kT
a(z)2 (I:57)

14 INTRODUCTION



PART I

ELECTRON BEAMS

Electron beams are flows of free electrons moving in the direction chosen. This is

called the axis of the beam. The trajectories of the beam particles often come

close to being rectilinear, although recently, specific devices with periodic curvi-

linear beams, in particular classical electron masers (CEMs) and free electron

lasers (FELs), are attracting more and more attention. A beam’s axis may be

either straight or curved. Finally, beams may have different symmetry: for

example, a cylindrical, a sheet, or a strip.

Let us list some properties of electrons as elementary particles. These make elec-

tron beams very important for creating and controlling images, material processing,

transferring energy with high density, generating other particles, and generating and

transforming high-frequency signals.

. Electrons are charged particles that provide effective control of a particle’s

movement by means of electric and magnetic fields. At the same time, inter-

action between the particles through self fields (space-charge and self magnetic

fields) raises many specific effects and problems connected with the control and

stability of intense electron beams.

. Electrons are stable (long-life) particles.

. Electrons are very light particles. They are the lightest among all long-living

elementary charged particles and the longest living of the light charged par-

ticles. The small mass and correspondingly, inertia of electrons forms the func-

tioning base of high-frequency systems. The transfer of an electron’s beams is

not accompanied by a large mass transport. So a 100-kA beam transfers only

2 g of electrons during 1 hour. Self fields are relatively weak, due to their

high level of electron mobility.

. Electrons are chemically neutral particles. Their transfer does not change the

chemical content of electrode surfaces.
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. Simple and effective methods are available to extract electrons from solid,

liquid, or gaseous media. It is essential that each type of electron emission

provide many important applications of corresponding electronic devices.

Usually, beams are thought of as thin flows with transverse dimensions (at least, a

single transverse dimension for sheet beams) and are quite small compared to beam

length.

The physics of electron beams certainly does not exhaust the topic of vacuum

electronics. Nevertheless, the sphere of electron beam applications is great. A list

of some important applications follows:

. Electron optics (e.g., lenses, electron guns, beam deflection systems)

. Microwave vacuum electronics, including relativistic microwave electronics

and free-electron lasers

. Electron microscopy, including electron-probe microanalysis

. Electron beam tubes in television, radar, and radio-meter systems

. Electron beam technology (e.g., precise cutting, drilling, welding, melting,

high-resolution lithography, manufacture of integrated contours)

. Electron accelerators

. Formation and transport of intense electron beams

To stay within the scope of the book, we will not give a detailed exposition of the

huge family of microwave devices and in general, devices using electron beams, or

catalogue their numerous specific properties. Only a description of key devices and

clarification of their design schemes are offered.
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CHAPTER ONE

Motion of Electrons
in External Electric and
Magnetic Static Fields

1.1 INTRODUCTION

Taking external fields into account—the sources of fields that are independent of

beam electrons—is the simplest approximation. In general, the motion of charged

particles is also determined by interaction with other particles in the beams. For

pure electron beams, this interaction is realized through macroscopic (collective)

forces created by electrons themselves (self fields, i.e., space-charged electric and

magnetic fields) and by microscopic fields (in practice, through collisions). Consid-

ering motion and ignoring space-charge fields is sufficient for rarefied beams (e.g.,

for beams in electron lenses). But to study dense beams, knowledge of motion prin-

ciples in external fields is also necessary. Beams with the essential effect of self

fields are considered in Chapters 3 to 5.

In this chapter we limit ourselves to a study of static fields. Aspects of electron

motion in nonstationary fields are considered in Chapters 6 to 10.

1.2 ENERGY OF A CHARGED PARTICLE

The important principle of charged-particle motion in static fields is energy

conservation. Let us multiply Eq. (I.25) by v:

v
dp

dt
¼ �e0 vE (1:1)
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The transformation of Eq. (1.1) for the static fields (@w=@t ¼ 0) gives

dw½ r(t)�

dt
¼
@w

@ r

d r

dt
¼ �vE

v
dp

dt
¼

1

m
p

dp

dt
¼

1

2 m

dp2

dt
¼

1

2 m

d

dt
(m2c2 � m2

0c2) ¼
d

dt
(mc2)

Here we used the relation

m2c 2 ¼ p2 þ m2
0c2 (1:2)

following the expression for the relativistic mass m ¼ m0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

. Substituting

these formulas in Eq. (1.1), we obtain the conservation of energy:

d

dt
(mc2 � e0w) ¼ 0, w ¼ mc2 � e0w ¼ const: (1:3)

The energy w can be called a full energy, one that is equal to the sum of the electron

potential e0w and kinetic mc2 energies. Often, the kinetic energy is assumed as the

difference wk ¼ w� w0 ¼ (m� m0)c2 ¼ m0c2(g� 1). Note that in the important

quasistatic approximation, where the equation E ¼ �gradw is still correct but the

electric field depends on the time explicitly, the following relation is true:

dw

dt
¼
@w

@t
(1:4)

In nonrelativistic approximation, the energy is mc 2 ¼ (m0v
2=2)þ m0c 2. Omitting

m0c2, we obtain the conservation of nonrelativistic energy:

wn ¼
m0v

2

2
� e0w ¼ const: (1:5)

1.3 POTENTIAL–VELOCITY RELATION (STATIC FIELDS)

Let us assume that an electron leaves a cathode with velocity vc and mass mc corre-

spondingly. We believe that the cathode potential wcath ¼ 0. Below m and w are the

electron mass at an arbitrary point r; e0wc is the initial energy of the electron at

the cathode. Then, according to energy conservation,

mc 2 � e0w ¼ m0c 2 þ e0wc (1:6)
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Let us divide Eq. (1.6) by m0c2:

g ¼
m

m0

¼ 1þ
e0(wþ wc)

m0c2
¼ 1þ

e0w
�

m0c2
¼ 1þ

w�

w0

¼ 1þ
hw�

c2
(1:7)

where w0 ¼ m0c2=e0 ¼ c2=h is the reduced electron rest energy in volts;

w� ; wþ wc. Taking 1 MV as a unit of potential, we obtain w0 � 0:51100 MV, and

g � 1þ 1:9569f�MV � 1þ 2f �MV (1:8)

For zero initial velocity, w� ¼ w and

g ¼ 1þ
w

w0

� 1þ 1:9569wMV � 1þ 2wMV (1:9)

where wMV is the potential in megavolts. In nonrelativistic approximation and for

wcath ¼ 0, we obtain from Eq. (1.5) the nonrelativistic dimensionless velocity

bn ¼
v

c
¼

ffiffiffiffiffiffiffiffi

2w

w0

�
s

�
1

16

ffiffiffiffiffiffiffiffi

f�kV

p

(1:10)

wherew�kV is the reduced potential in kilovolts. Using the dependenceg ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p

and Eq. (1.7), it is easy to find that

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w�(w� þ 2w0)
p

w� þ w0

, bwc¼ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w(wþ 2w0)
p

wþ w0

(1:11)

In the extreme relativistic limit w0=w� 1, according to Eq. (1.11),

bext � 1�
1

2

w0

w

� �2

(1:12)

The values of bn,b, andbext are given in Table 1.1 for different values of w.

According to the table, nonrelativistic approximation “works” until w � 10 kV.

Extreme relativistic approximation is acceptable after w ¼ 5 MV.

TABLE 1.1 Reduced Nonrelativistic, Relativistic, and Extreme Relativistic Velocities as
Functions of the Potential

w 1.0 V 100 V 1 kV 10 kV 100 kV 300 kV 1 MV 5 MV 25 MV

bn 0.001978 0.01978 0.06256 0.1976 0.625 1.083 1.976 4.42 9.9

b 0.001978 0.01978 0.06247 0.1950 0.5482 0.7253 0.9411 0.9957 0.9998

bext 213� 1010 213� 106 213� 104 21300 212 20.451 0.8694 0.9948 0.9998
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1.4 ELECTRONS IN A LINEAR ELECTRIC FIELD e0E ¼ kx

Equations of motion:

dp

dt
¼ �e0Ex ¼ �kx (1:13)

dx

dt
¼

p

m
¼

pc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
0c2

p (1:14)

1.4.1 Nonrelativistic Approximation

Equation (1.14) becomes

dx

dt
¼

p

m0

(1:14a)

Equations (1.13) and (1.14a) are the equations of a harmonic oscillator. Their

solution is

x(t) ¼ x0 cos(vt þ a)

p(t) ¼ �x0m0v sin(vt þ a)
(1:15)

where v ¼
ffiffiffiffiffiffiffiffiffiffi

k=m0

p
is the oscillation frequency. The trajectory in a phase space for

this oscillator is the ellipse:

x2

x 2
0

þ
p2

x 2
0 km0

¼ 1 (1:16)

1.4.2 Relativistic Oscillator

Return to the relativistic system of equations. Dividing Eq. (1.14) by Eq. (1.13), we

obtain

�kx dx ¼
cp dp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
0c2

p (1:17)

Integration of this equation yields the trajectory in phase space:

a2 �
kx2

2
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
0c2

q

(1:18)

where a2 is an arbitrary constant. It is readily verified that this trajectory

describes a finite (periodic) motion. Actually, the variables x and p have maximum

values (amplitudes):

xmax ¼ x p¼0 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 m0

k
(u� 1)

r

pmax ¼ px¼0 ¼ m0c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p

(1:19)
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where u ¼ a2=m 0c 2 . 0 is a reduced arbitrary constant. The results of a numerical

integration of Eqs. (1.13) and (1.14) have been given by Humphries (1990). It was

shown that phase trajectories have the form of distorted ellipses. According

to Eq. (1.19), they are transformed to correct nonrelativistic ellipses when

u� 1 � kx2=2 m0c2 � 1. This inequality means that the potential energy of an

oscillator is negligible compared with the particle rest energy.

1.5 MOTION OF ELECTRONS IN HOMOGENEOUS STATIC FIELDS

Homogeneous fields certainly are idealizations. However, the principles and

results of this theory are a basis for the solution of much more complicated

problems.

1.5.1 Electric Field

We assume that the electric field is opposite the y-axis (Fig. 1.1), so that Ey ¼ �E.

Consider two cases:

1. Initial momentum p0 of the electron turns toward the x-axis (Fig. 1.1). The

equations of motion are

dp

dt
¼ �e0 E (1:20)

dpx

dt
¼ 0,

dpy

dt
¼ e0E (1:21)

FIGURE 1.1 Motion of an electron in a homogeneous electric field. Solid curve, relativistic

trajectory; dashed curve, nonrelativistic trajectory.
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Integrating the first equation in Eq. (1.21), we obtain

px ¼ mvx ¼ p0 (1:22)

As follows from the second equation in Eq. (1.21),

dpy

dt
¼

dpy

dx

dx

dt
¼

p0

m

dpy

dx
¼ e0E (1:23)

According to Eq. (1.2), the mass may be written as

m ¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
0c2

q

¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ m2

0c2 þ p2
y

q

¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2
0

c2
þ p2

y

r

(1:24)

where W0 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0c2 þ p2

0

q

is the initial kinetic energy of the particle. Substituting m

into Eq. (1.16), we obtain

dpy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(W2
0=c

2)þ p2
y

q ¼
e0E

cp0

dx

Integration of this equation gives

sinh�1 pyc

W0

¼
e0E

cp0

x (1:25)

Note that

py ¼ m
dy

dt
¼ m

dy

dx

dx

dt
¼ px

dy

dx
¼ p0

dy

dx

After a corresponding transformation (1.25) and integration, we obtain

y ¼
W0

e0E
cosh

e0Ex

cp0

� 1

� �

(1:26)

This is the equation of a catenary curve. In the nonrelativistic approximation

(e0Ex=cp0 � 1), the energy W0 � m0c2. The first term of the Taylor expansion of

cosh in Eq. (1.19) gives the well-known parabolic trajectory

y ¼
e0E

2 m0v
2
0

x2

In Fig. 1.1 the catenary curve is situated above the parabola because of the more

rapid (almost exponential) change of the relativistic y-coordinate as a function of

x [Eq. (1.26)].
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2. Initial momentum p of the particle is parallel to the y-axis (Fig. 1.1).

According to Eqs. (1.21),

px ¼ 0

py ¼ m
dy

dt
¼ e0Et þ p

(1:27)

Then using relation (1.2) for m, we find that

dy ¼
c(e0Et þ p)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0c2 þ (e0Et þ p)2

q dt

Integrating this equating with the initial condition y0 ¼ 0, we obtain

y ¼
c

e0E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0c2 þ (e0Et þ p)2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0c2 þ p2

q

� �

1.5.2 Magnetic Field

The equation of motion

dm v

dt
¼ �e0 v� B (1:28)

Since the force is perpendicular to the velocity, the modulus of v and the electron

mass m are constants:

v ¼ jvj ¼ const:, m ¼ const: (1:29)

The same result follows from the energy integral (1.3) because the electric field is

zero. Then the potential w ¼ const: and m ¼ const. Equation (1.28) becomes

dv

dt
¼ �

e0

m
v� B (1:30)

Let us assume that vB and v? are velocity components parallel and perpendicular to

B, respectively. We obtain from Eq. (1.30)

vB ¼ const: (1:31)

dv?

dt
¼ �

e0

m
v? � B (1:32)

From Eqs. (1.29) and (1.31) follow

v? ; j v?j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � v 2
B

q

¼ const: (1:33)
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So in a static magnetic field, the values m, v, v?, and vB are constants. The

quantity a? ¼ dv?=dt is the acceleration of a plane motion. In this case, it may

be represented as a sum of the tangential and the centripetal components:

an ¼
v2
?

R
, at ¼

dv?

dt
(1:34)

where R is the radius of curvature in the given point of the trajectory. According to

Eq. (1.33), at ¼ 0. Then

an ¼
v2
?

R
¼

e0

m
j v? � Bj ¼

e0

m
v?B (1:35)

The radius of the curvature

R ¼ r? ¼
v?

(e0=m)B
¼ const: (1:36)

Hence, the electron trajectory in the plane perpendicular to B is a circle. The

quantity

vg ;
e0

m
B ¼

hB

g
(1:37)

is the angular velocity of gyration.

We find that the motion of the electron (in general, of a charged particle) is the

superposition of two motions: uniform drift along the magnetic field with velocity vB

and uniform gyration on a circle of radius r? [Eq. (1.36)] with frequency vg

[Eq. (1.37)]. Therefore, the spatial trajectory of the particle is a helical line

(Fig. 1.2) with pitch h ¼ (2p=vg)vB. It is evident that equations of the trajectory

for x0 ¼ y0 ¼ z0 ¼ 0 are

x ¼ r? sin(vgt)

y ¼ r?½cos(vgt)� 1�

z ¼ vBt

(1:38)

FIGURE 1.2 Motion of an electron in a homogeneous magnetic field.
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The circle is called a Larmor circle, the radius is a Larmor radius, the center of the

Larmor orbit is a guiding center, and vg is the gyrofrequency or cyclotron frequency.

It is essential that the relativistic gyrofrequency depends on the particle’s kinetic

energy:

vg ¼
e0c 2

w
B ¼

hB

g
(1:39)

Therefore, electrons in magnetic fields behave as nonisochronous oscillators.

This property of electrons has very important applications in electron masers

(Chapter 10).

In the nonrelativistic approximation g ¼ 1, the gyrofrequency is vg ¼ hB. In

this case, the electrons are isochronous oscillators.

Example 1.1 Find the trajectory parameters of an electron that is injected into the

uniform magnetic field B ¼ 1 T at an angle a ¼ 308 (Fig. 1.2). The electron energy

is 1 MeV.

For w ¼ 1 MeV, g ¼ 1:957 [Eq. (1.12)], and b ¼ 0:941 (Table 1.1). The gyro-

frequency is vg ¼ hB=g ¼ 8:99� 1010 rad=s. The velocity components (Fig. 2.1)

are v ¼ bc ¼ 2:82� 108 m=s; vB ¼ v cosa ¼ 2:43� 108 m=s; and v? ¼ v sina ¼

1:41�108 m=s. The pitch of the helical trajectory is h¼ (2p=wg)vB¼ 1:7�10�2 m.

The radius of the helix is r? ¼ v?=vg¼ 1:6�10�3 m.

1.5.3 Parallel Electric and Magnetic Fields

Now assume that the electric and magnetic fields are oriented along the z-axis. Let

Ez ¼ �E and Bz ¼ B (Fig. 1.3). The equations of motion are

dp?
dt
¼ �e0 v? � B (1:40)

dpz

dt
¼ e0E (1:41)

Nonrelativistic Approximation (m¼m0) Equations (1.40) and (1.41) become

d v?

dt
¼ �h v? � B (1:42)

dvz

dt
¼ hE (1:43)

FIGURE 1.3 Motion of an electron in parallel fields E and B.
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Comparison of Eq. (1.42) with Eq. (1.32) shows that motion of the electron per-

pendicular to the z-axis plane is the same as motion without an electric field; the

electron gyrates on the Larmor circle with gyrofrequency vg ¼ hB. However,

the velocity vB (the velocity of the guiding center along the magnetic field) is

now proportional to t. As a result, the trajectory is a helix with variable pitch

h. Note that for large t the velocity vB reaches arbitrarily large values that contradict

relativity theory. In fact, for a velocity of order c, the mass becomes variable and the

motion in the transversal plane is not described by Eq. (1.42).

Relativistic Motion Let us turn to Eqs. (1.40) and (1.41). According to Eq. (1.41),

pz ¼ e0Et (1:44)

(for simplicity we take pz0 ¼ 0). Since p? is perpendicular to v? � B and according

to Eq. (1.40), the magnitude of the perpendicular momentum

p? ; j p?j ¼ const: (1:45)

Then the full momentum of the particle is

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
? þ p2

z

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
? þ (e0Et)2

q

(1:46)

The mass is [Eq. (1.2)]

m ¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
0c2

q

¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
? þ m2

0c2 þ (e0Et)2

q

¼
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0

c2
þ (e0Et)2

r

(1:47)

where w0 is the initial kinetic energy of the particle.

The perpendicular velocity now decreases with time:

v? ¼
p
?

m
¼

p?c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðw 2
0=c

2Þ
p

þ (e0Et)2
(1:48)

The magnitude of the full acceleration of the particle in the plane perpendicular

to B is

a ¼
dv?

dt

�

�

�

�

�

�

�

�

(1:49)

This value may be found from Eq. (1.4):

d

dt
(mv?) ¼ m

d v?

dt
þ v?

dm

dt
¼ e0v? � B (1:50)

and

a ¼
1

m
e0v? � B� v?

dm

dt

�

�

�

�

�

�

�

�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(e0v?B)2

m2
þ

v 2
?

m2

dm

dt

� �2
s

(1:51)
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It is readily verified that the second term under the square root in Eq. (1.51) is a2
t ,

where at is the tangential acceleration in the transverse plane:

at ¼
dv?

dt
¼

d

dt

p?

m

� �

¼ �
p?

m2

dm

dt
¼ �

v?

m

dm

dt
(1:52)

Therefore, the first term equals a2
n, where an is the centripetal acceleration. Thus,

an ¼
v2
?

R
¼

e0v?B

m
(1:53)

where R is the curvature radius of the trajectory in the perpendicular plane. We

obtain

R ¼
mv?

e0B
¼

p?

e0B
¼ const: (1:54)

The angular velocity is

v ¼
v?

R
¼

e0

m
B (1:55)

This value is analogous to the gyrofrequency vg [Eq. (1.33)], but m increases with

t [Eq. (1.47)]. We find that the trajectory of the particle is a helical line of constant

radius, variable pitch, and variable angular velocity (Fig. 1.3). It may be

seen from Eqs. (1.44), (1.47), and (1.55) that v � 0, vz � c for very large t and

the trajectory becomes a straight line parallel to the z-axis at a distance from it of

R ¼ p?=e0B.

1.5.4 Perpendicular Fields E and B

Nonrelativistic Approximation The coordinate system and directions of fields

are shown in Fig. 1.4. For this configuration

Ey ¼ �E ¼ const:, Bx ¼ B ¼ const: (1:56)

The nonrelativistic equations of motion are

dvx

dt
¼ 0 (1:57)

dv?

dt
þ hv? � B ¼ �hE (1:58)

Equation (1.57) corresponds to uniform drift in the x direction with velocity

vx ; vB ¼ const: (1:59)

1.5 MOTION OF ELECTRONS IN HOMOGENEOUS STATIC FIELDS 27



The drift velocity vB is determined by the initial condition. Equation (1.58) describes

motion in the plane (Y, Z) perpendicular to B. This is an ordinary linear inhomo-

geneous differential equation of first order in v?. The general solution of this

equation is the sum of a general solution of the homogeneous equation and a

partial solution of the inhomogeneous equation.

The homogeneous equation is

dv?

dt
þ hv? � B ¼ 0 (1:60)

which we considered in Section 1.4.2. As has been shown, its general solution

describes the electron motion as gyration along the Larmor circle in the (Y, Z)

plane with gyrofrequency vg ¼ hB. The magnitude of the gyratic velocity v? is

determined by the initial conditions.

The nonhomogeneous equation is Eq. (1.58). The right side of this equation is a

constant. Because we need a partial solution, we can use any solution of the type

v? ¼ vt ¼ const: Then Eq. (1.58) is reduced to

vt � B ¼ �E (1:61)

Vector multiplication of Eq. (1.61) by B yields

B� ( vt � B) ¼ �B� E ¼ E� B (1:62)

Using the rule of vector algebra for a double cross product, we have

vtB
2 � B(Bvt) ¼ E� B (1:63)

We can further specialize the partial solution setting vt perpendicular to B. Then

vt ¼
E� B

B2
, vt ¼ j vtj ¼

E

B
(1:64)

FIGURE 1.4 Motion of an electron in perpendicular fields E and B.
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Velocity vt is perpendicular to both E and B. It is the transversal (perpendicular)

drift. Its value does not depend on initial conditions. The full velocity can be

represented as a sum:

v ¼ vv þ vd (1:65)

where vv is the velocity of gyration and vd ¼ vt þ vB is the velocity of the guiding

center. Its trajectory is evidently a straight line in the (X, Z) plane with slope vB=vt.

The trajectory in the plane perpendicular to B is the superposition of the drift vt and

gyration vv. The character of the trajectory depends on the velocities vt and vv. In

the lower part of the trajectory, the resulting velocity is (see Fig. 1.4).

vr ¼ vt � vv

The following are possible types of trajetories:

. Extended trochoid: vr . 0, vt . vv

. Cycloid: vr ¼ 0, vt ¼ vv

. Contracted trochoid: vr , 0, vt , vv

These trajectories are shown in Fig. 1.5 and can be described in kinematic terms as

trajectories of the point on the rim of rolling wheel.

Note that for the electric field direction chosen, the magnitude of the electron

velocity on the lower point of the trajectory is less than that on the upper point,

where the potential is higher.

Perpendicular Fields E and B: Relativistic Version One method of solving

this problem is based on the transformation of electromagnetic fields E and B by

transition to another inertial frame of reference. Below we limit ourselves to a

FIGURE 1.5 Electron trajectories in perpendicular E and B fields for different values of

vt=v?: (a) extended trochoid; (b) cycloid; (c) contracted trochoid.
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qualitative discussion. According to the properties of the electromagnetic field

tensor (see, e.g., Landau and Lifshitz, 1987; Lehnert, 1964), there are two invariants

that are conserved with the transition:

E2 � c2B2 ¼ invariant; EB ¼ invariant (1:66)

In the case of perpendicular E and B, the second invariant is EB ¼ 0. Therefore, it is

possible to find an inertial frame of reference in which either the E or the B field

is zero.

A field that is not zero depends on the first invariant. Let’s assume that E/B . c,

so the first invariant is positive E 2 � c 2B 2 . 0. Hence, it is possible to find an iner-

tial frame of reference with a purely electric field where the first invariant is equal to

E02 and is also positive. According to Eq. (1.62), E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E 2 � c2B2
p

. As can be

shown, the velocity of the reference frame must be V=c ¼ cB=E. In the

new frame the particle velocity as a function of time would not be periodical. It

is clear that after returning to the old frame of reference, the motion will not be

periodical either.

In the alternative case, E 2 � c2B2 , 0, a transition is possible to an inertial frame

with a purely magnetic field. In the new inertial frame of reference, the motion evi-

dently would be a superposition of the gyration and the uniform drift along the new

magnetic field (it is equal to B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � E 2=c2
p

and has the same direction as the

initial magnetic field). However, the coordinates are functions of time within a

moving inertial frame of reference. It is readily verified that this time is

dt 0 ¼
1� Ev=Bc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� E 2=B2c2
p dt (1:67)

It is not the proper time (the time in the frame of reference linked with the moving

particle). We can return to the old system by recalculating coordinates and time

simultaneously using the Lorentz transformation. Numerically, this operation

is very simple. However, the result computed for the analysis does not have

a simple physical interpretation such as that for superposition of the gyration and

uniform drift as in nonrelativistic approximation. Therefore, we do not discuss

this topic in greater detail. Another possible solution of this problem is given by

Landau and Lifshitz (1987), but their result is also not very obvious.

1.5.5 Arbitrary Orientation of Fields E and B.
Nonrelativistic Approximation

Let us draw an (X, Y ) plane through fields E and B and decompose vector E on the

components EB and E? parallel and perpendicular to the magnetic field (Fig. 1.6).

The nonrelativistic equations of motion are

dvB

dt
¼ hEB (1:68)

dv?

dt
þ hv? � B ¼ �hE? (1:69)
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Equation (1.68) describes uniformly accelerated drift in the direction of the

magnetic field:

vB ¼ hEBt þ vB0 (1:70)

The only difference between Eqs. (1.69) and (1.58) is the replacement of field E
by E?; therefore, all characteristics of motion perpendicular to the B plane

coincide in both cases except for the substitution of transversal drift velocity

[Eq. (1.64)]:

vt ¼
1

B2
E? � B (1:71)

The full velocity of the guiding center is

vd ¼ vB þ vt ¼ vB

B

B
þ

1

B2
E? � B (1:72)

The electron gyrates on the Larmor circle in the plane perpendicular to B with gyro-

frequency vg ¼ hB, and the guiding center moves with uniform acceleration along

B. Evidently, the trajectory of the guiding center is a parabola in the (X, Z ) plane

(Fig. 1.6).

1.6 MOTION OF ELECTRONS IN WEAKLY INHOMOGENEOUS
STATIC FIELDS (Lehnert, 1964; Northrop, 1963;
Vandervoort, 1960)

The motion of electrons in weakly inhomogeneous fields is the next approximation

in the dynamics of charged particles. A physical system in general may be

considered as slowly varying when change in its properties is small on a character-

istically finite scale (temporal or spatial) for the system. Small varying systems

FIGURE 1.6 Electron velocities for arbitrary orientation of fields E and B. Trajectory T of

the guiding center in the (X, Z) plane is parabolic.
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often display important specific properties. Typical are dynamic oscillatory systems

with slowly varying parameters. Here the finite scale is a period T of oscillations.

The condition of slow changes is

T
dX

dt

�

�

�

�

�

�

�

�

� jXj (1:73)

or

T
dX

dt

�

�

�

�

�

�

�

�

¼ 1jXj (1:74)

where X is some parameter of the system and 1� 1 is the smallness parameter.

1.6.1 Small Variations in Electromagnetic Fields Acting on Moving
Charged Particles

If one passes from a laboratory frame where a particle moves in inhomogeneous

static fields to a frame moving with a guiding center, the particle will experi-

ence action of the variables in time fields. The conditions of slow change in fields

(adiabatic approximation) according to Eq. (1.74) are

Tg

dB

dt

�

�

�

�

�

�

�

�

¼ 1BjB j, Tg

dE

dt

�

�

�

�

�

�

�

�

¼ 1EjEj (1:75)

where Tg ¼ 2p=vg is the cyclotron period (gyroperiod), and 1B and 1E are the

smallness parameters. Below we assume for simplicity that 1B,E ¼ 1 and B,E ¼ F.

Let us return to the laboratory frame. The velocity magnitude is jvj ¼ jdr=dtj

and dt ¼ jdrj=jvj. Substituting in Eq. (1.75) gives conditions for a small inhomo-

geneity of

Tgj v j
dF

dr

�

�

�

�

�

�

�

�

¼ 1jFj (1:76)

The full velocity of a particle in homogeneous fields [Eq. (1.65)] is

v ¼ vv þ vB þ vt (1:77)

Assume that the gyratic velocity magnitude is

j vvj � j vBj þ j vtj (1:78)

This means that jvj � jvvj ¼ v?. From Eq. (1.76) we obtain

2pr?
dF

dr

�

�

�

�

�

�

�

�

¼ 1jFj (1:79)
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where r? ¼ (1=2p)Tgv? is the Larmor radius. Usually, these conditions are written

without a factor 2p. This means that changes in field magnitudes on the Larmor

radius scale must be much smaller than full field magnitudes. The alternative

condition takes place when

j vBj � j vvj þ j vtj and hence j v j � vB (1:80)

In this case, we obtain from Eq. (1.72)

h
dF

dr

�

�

�

�

�

�

�

�

¼ 1jF j (1:81)

where h ¼ vBTg is the pitch of the helical trajectory. Hence, Eq. (1.79) must be

fulfilled as a condition of small field changes on the helical trajectory pitch. Note

that this is possible only if the component of the electric field EB parallel to the

magnetic field is notzero in the limited time interval, and EB � E?. Thus, in

the presence of magnetic fields, two natural spatial scales of the weak inhomo-

geneous electromagnetic field appear: the Larmor radius and the pitch of the

helical trajectory.

Example 1.2 It is instructive to calculate the parameter 1B for electrons in a near-

Earth space magnetic field Be � 2� 10�5 T. The characteristic scale of change of

the magnetic field is Earth’s radius, �104 km. Therefore, the value jrBej=Be is on

the order of �1027m21. Let us assume that the electron moves toward the Earth

perpendicular to the magnetic field. Find the value of 1B for various electron

energies.

1. Nonrelativistic Electron Velocity. b ¼ 0:2, g � 1. The gyrofrequency is

vg ¼ hBe=g � 3:5� 106 rad/s. The Larmor radius is R ¼ bc=vg � 17 m.

1B ¼ R(jrBej=Be) � 1:7� 10�6. As shown in this case, Earth’s magnetic field is

essentially adiabatic.

2. Relativistic Velocity. b ¼ 0:995, g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p

� 10, the electron energy

is �5 MeV, vg � 3:5� 105 rad=s, R � 800 m, and 1B � 8� 10�5. The magnetic

field is again adiabatic.

3. Supreme Relativistic Energy. �50 GeV (g ¼ 1� 105), vg � 35 rad=s,

R � 107 m, and 1B � 1. The magnetic field is nonadiabatic.

1.6.2 Adiabatic Invariants (Landau and Lifshitz, 1987; Northrop, 1963)

Consider an oscillatory system with a slowly varying parameter X so that condition

(1.74) is being fulfilled. Let us assume that only one of the system’s degrees of

freedom is oscillatory with the coordinate q and generalized momentum P. The

Lagrangian equation of the system is

dP

dt
�
@L

@q
¼ 0 (1:82)
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Because the Lagrangian L depends on X as a parameter,

@L

@q
¼

@L

@q

� �

X¼const:

þ
@L

@X

dX

dq
(1:83)

The first term in Eq. (1.83) can be found by integrating Eq. (1.82) with X ¼ const.

Then we obtain a nonperturbed trajectory, and this term must be a strictly periodic

function of q. Evidently, the second term is nonperiodic if the function X ¼ X(t) does

not have periodicities commensurable with the system oscillation. We can represent

this term as

@L

@X

dX

dq
¼
@L

@X

dX

dt

dt

dq
(1:84)

Now let us integrate Eq. (1.82) along the closed contour corresponding to the

nonperturbed particle trajectory:

d

dt

þ

P dq ¼

þ

@L

@q

� �

X¼const

dqþ

þ

@L

@X

dX

dt

dt

dq
dq (1:85)

The first term on the right-hand side equals zero as an integral over the period of a

periodic function. The second term is

ðT

0

@L

@X

dX

dt
dt ¼

@L

@X

dX

dt

ðT

0

dt ¼
@L

@X
T

dX

dt

So taking Eq. (1.74) into account, we obtain

d

dt

þ

P dq ¼ 1
@L

@X
X (1:86)

This equality means that at least in the first order of the smallness parameter 1, the

integral

I ¼

þ

P dq ¼ const: (1:87)

Remember that the integration in Eq. (1.87) is performed along a nondisturbed oscillat-

ing trajectory. This integral is called the adiabatic invariant. The number of adiabatic

invariants for any system is equal to the number of its oscillatory degrees of freedom.

For one particle the maximum possible number of degrees is 3. Particle motion

described by three adiabatic invariants is an uncommon event. For example, oscillations

of charged particles captured in Earth’s Van Allen radiation belt have three invariants,

corresponding to three types of oscillating motions (see, e.g., Northrop, 1963): gyration

on the Larmor orbits, north–south oscillations, and precession about the Earth.
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Transversal Adiabatic Invariant of an Electron in an Electromagnetic Field Let

us consider the integral from Eq. (1.87) within the frame of reference of the

guiding center. In this frame the contour in Eq. (1.87) is the Larmor circle of

the electron gyrating in the static electromagnetic field if E=cB , 1. Then, taking

into account the fact that the momentum on the circle is P ¼ P? ¼ const:, we obtain

þ

P dl ¼

þ

P?dl ¼ 2pp?r? � e02pr?A? (1:88)

Application of Stokes’ theorem to Eq. (I.3) yields

ð

S

BndS ¼

ð

S

curln A dS ¼

þ

A?dl ¼ 2pr?A? (1:89)

The integral (1.89) is taken over by the Larmor circle, where normal components

of a weakly inhomogeneous magnetic field Bn ¼ B ¼ const: Therefore,
Ð

S
Bn dS ¼pr2

?B. By substituting this in Eqs. (1.88) and (1.89), we obtain

þ

P dl ¼ p(2p?r? � e0r2
?B) (1:90)

The Larmor radius is equal to

r? ¼
v?

vg

¼
v?m

e0B
¼

p?

e0B
(1:91)

Then we obtain from Eqs. (1.87) and (1.90),

I ¼
p

e0

p2
?

B
(1:92)

This invariant refers to the gyrating degree of freedom and is called the transversal

(perpendicular) adiabatic invariant. Usually, I is written

I? ¼
p2
?

B
¼ const: (1:93)

In nonrelativistic approximation we can replace p? by v?, and

I?n ¼
v2
?

B
(1:94)

It is instructive to calculate the invariant I? directly, considering the gyration of

an electron in weakly inhomogeneous magnetic fields. Assume that the guiding

center drifts along an increasingly magnetic field (Fig. 1.7). The magnetic field

lines are shown in Fig. 1.7. The magnetic field in the moving frame would increase

in time. In this frame of reference, the electron experiences the action of the inducing
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electric field E? directed along the Larmor circle clockwise (looking from the mag-

netic field side; Fig. 1.7). The field E? can be found by integrating Maxwell’s

equation (I.6) over the Larmor circle and using Stokes’ theorem:

ð

S

@Bn

@t
dS ¼ �

ð

S

curln E ds ¼ �

þ

E? dl (1:95)

Obviously, Bn ¼ B, and as a result of Eq. (1.79), fields B and E? are almost uniform

on the Larmor circle. We now obtain

dB

dt
pr2
? ¼ �2pr?E? (1:96)

E? ¼ �
r?

2

dB

dt
¼ �

p?

2e0B

dB

dt
(1:97)

This electric field (according to Fig. 1.7) accelerates the electron along the Larmor

orbit (the particle has a negative charge). The corresponding change in momentum is

dp?

dt
¼ �e0E ¼

p?

2B

dB

dt
(1:98)

By integrating this equation, we obtain conservation of the perpendicular

adiabatic invariant:

I? ¼
p2
?

B
¼ const: (1:99)

The electron motion on the Larmor circle forms the elementary current

I ¼
e0

T
¼

e0vg

2p
(1:100)

FIGURE 1.7 Perpendicular adiabatic invariant.
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The magnetic moment of this circular current is M ¼ (m0=4p)IS (Northrop,

1963), where S is the area of the circle. Thus, the magnetic moment of the

electron is

M ¼
m0

4p

e0vg

2p
pr2
? ¼

m0

8pm
I? (1:101)

We see that for E ¼ 0 (m ¼ const.) in the nonrelativistic approximation, the

magnetic moment of the electron is the adiabatic invariant. The transversal adiabatic

invariant has the meaning of a magnetic flux through the Larmor circle:

C ¼ pr2
?B ¼

p

e2
0

I? (1:102)

Accuracy of Conservation of an Adiabatic Invariant According to numerical

calculations in many specific problems, the accuracy of the conservation of the

transversal adiabatic invariant generally is higher than the first power of 1

[see Eq. (1.86)]. But a rigorous consideration of this problem is complicated

(Arnold et al., 1988; Kruskal, 1960; Littlejohn, 1980). Let us suppose, following

Arnold et al. (1988), that the state of some system depends on a slow parameter l,

which quickly pushes the adiabatic invariant I to its limits: I(t ¼ �1) and

I(t ¼ þ1). Then one can introduce an increment of I: DI ¼ I(þ1)� I(�1).

Although for finite t, oscillations of I are of order 1, the increment DI is much

smaller than 1. If l depends analytically on 1t, then DI � O(exp (�c=1))(c . 0). So

the increment of an adiabatic invariant decays faster than any power of 1 as 1! 0.

1.6.3 Motion of the Guiding Center

Drift Equations The conditions (1.74) and (1.81) of the small inhomogeneity

allow us to set the following scaling orders for the particle trajectory parameters:

r?� 1, Tg � 1, vg ¼
2p

Tg

� 1

1
(1:103)

In the inhomogeneous fields considered, the particles [as seen from Eq. (1.103)]

perform oscillations of very high frequency but small amplitude. As a result, the

vibrations do not perturb slow movement of the guiding center (evolution of

the system). This effect is typical for oscillatory systems with slowly varying para-

meters. The key method in the theory is the averaging procedure, which separates

small oscillations from the drift. This procedure, applying the motion of particles

in inhomogeneous static electromagnetic fields, is described briefly below. We

use nonrelativistic approximation as well as the conditions

E

B
, v EB � E (1:104)
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Let us write the instantaneous position of the particle (see, e.g., Morozov and

Solov’ev, 1960; Northrop, 1963) as

r(t) ¼ Rd(t)þ r?(t) (1:105)

where Rd is the position of the guiding center and r? is a radius vector of the particle

relative to the guiding center (Fig. 1.8). Thus, the particle velocity is

v ¼
dRd

dt
þ v? (1:106)

Substituting Eq. (1.104) in the nonrelativistic equation of motion, we obtain

R̈þ r̈? ¼ �h½E( Rþ r?)þ ( Ṙþ ṙ?)� B( Rþ r?)�

Expand the fields in a Taylor series about R up to the first degree of r?. In this case

the error is of order O(1). We obtain

R̈þ r̈? ¼ �h{E( R)þ r?rE( R)þ ( Ṙþ ṙ?)� ½B( R)þ r?rB(R)�}

þ O(1) (1:107)

Now we must express the gyration of vector r? explicitly. Let us introduce three

orthogonal unit vectors t1, t2, and t3, where t1 ¼ B=B is parallel to the magnetic

field and t2 and t3 are perpendicular to the B plane (Fig. 1.8). The particles

gyrate in the plane perpendicular to B. Therefore, we can write

r? ¼ r?(t2 sin uþ t3 cos u), u ¼

ð

vg dt (1:108)

Repeated differentiation of Eq. (1.108) gives

ṙ? ¼ vr?(t2 cos u� t3 sin u)þ ( r?t2) sin uþ ( r?t3) cos u (1:109)

FIGURE 1.8 Motion of a particle as a superposition of the guiding center on a gyrating

cyclotron.
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We have omitted the corresponding expression of r̈? (Northrop, 1963). The next

step is the substitution of Eqs. (1.108) and (1.109) and a similar expression for

r̈? into Eq. (1.107) and integration of the resulting expression:

R̈ ¼ F½R, Ṙ, E(R), B( R),r?,u�

over u with a 2p period
Ð 2p

0
(� � �)du. After a complicated iterative procedure which

takes into account the estimations of Eq. (1.103) and the conditions of Eq. (1.104),

the following basic equation of the guiding center’s motion is given by Morozov and

Solov’ev (1960) and Northrop (1963):

d R d

dt
¼ vB

B

B
þ

E� B

B2
�

v2
? þ 2v2

B

2hB3
B� rB (1:110)

Let us augment the energy relation to this equation:

W ¼
m0

2
v2 � e0U ¼

m0

2
(v2

B þ v2
?)� e0w (1:111)

where vB is the velocity component parallel to B. Recall that the drift equation

(1.110) is correct in nonrelativistic approximation. Relativistic drift equations

may be found in an article by Vandervoort (1960).

We see that the guiding center velocity consists of three components: (1) drift

along the curvilinear line of the magnetic field, (2) transversal (perpendicular)

drift, and (3) gradient drift. The first two components are similar to the drifts in

uniform fields. The third component exists only in an inhomogeneous magnetic field.

Equation (1.10) is a first-order differential equation, a significant simplification of

the original second-order equation of motion because Eq. (1.110) gives the velocity

of the particle directly. It is interesting to compare the accuracy of the numerical cal-

culation of the velocity using the original equation of motion in second order and

Eqs. (1.110) and (1.111). The latter gives acceptable accuracy for the times

t � 1�1, whereas the accuracy of the numerical methods is reduced with time.

Integration of the Drift Equation The right-hand side of Eq. (1.110) can be

expressed explicitly in terms of the potential U ¼ U(r) and the magnetic field

B ¼ B(r). Let us suppose that the cathode potential and the initial velocity

are zeros and the oscillatory velocity v?0 is given at the point where B ¼ B0. The

full velocity is

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hU(r)
p

(1:112)

The oscillatory velocity can be found from the nonrelativistic adiabatic invariant

I ¼ In ¼
v2
?

B(r)
¼ const: (1:113)
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The value of I is determined by the initial condition

I ¼ I0 ¼
v?0

B0

2

The oscillatory velocity then is v? ¼ v?0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B(r)=B0

p
. The longitudinal velocity

according to the relation of the energy [Eq. (1.11)] is

vB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � v2
?

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � IB(r)
p

(1:114)

The electric field E(r) ¼ �rU(r). Thus, all values on the right-hand side of

Eq. (1.110) have been expressed as functions of r.

Example 1.3: Drift Motion of Electrons in an Adiabatic Magnetic Trap The

scheme of a magnetic trap (elementary mirror machine or magnetic bottle) is

shown in Fig. 1.9. The particle moves in the magnetic field, which is assumed to

be weakly inhomogeneous, so that Eq. (1.113) is valid. As can be seen, the magnetic

field in the bottle ends B ¼ BM is maximum. According to Eq. (1.14), the

velocity component vB is reduced when the particle moves in the direction of

increasing magnetic field. This effect can be interpreted as an action of the radial

component Br existing in the region of an inhomogeneous magnetic field. The cor-

responding force FB ¼ �e0v? � Br is directed along magnetic lines. In increasing

magnetic field, one is opposite to the velocity component vB. When the oscillatory

velocity v? achieves the full velocity v, the value vB ¼ 0 and the particle is reflected.

The corresponding planes are named magnetic mirrors. Regions where v? . v,

called magnetic corks, are unattainable for the particle.

Let us suppose that the particle is injected into the magnetic field B at the angle a

with the magnetic line (Fig. 1.9). The adiabatic invariant

I ¼
v2
?

B
¼

v2 sin2a

B
(1:115)

FIGURE 1.9 Adiabatic magnetic trap (mirror machine).
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The velocity vB of the particle in the maximum of the magnetic field BM according to

Eq. (1.114) is

vB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � IBM

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 1�
BM

B
sin2a

� �

s

(1:116)

Particles injected with sina .
ffiffiffiffiffiffiffiffiffiffiffiffi

B=BM

p
are reflected and captured in the adiabatic trap.

When the particles emerge in the medium plane of the trap, where the magnetic field Bn

is minimal, the critical angle is also minimal.

sinamin ¼

ffiffiffiffiffiffiffi

Bn

BM

r

(1:117)

1.7 MOTION OF ELECTRONS IN FIELDS WITH AXIAL AND
PLANE SYMMETRY. BUSCH’S THEOREM

Similar to the way that field independence (Lagrangian independence) of time leads

to a conservation of energy, any symmetry of fields (i.e., independence of the

Lagrangian of some other variables) leads to conservation of the corresponding

momenta. These laws of conservation are the foundation of mechanics.

Assume that the Lagrangian L does not depend on the generalized coordinate q

(i.e., @L=@q ¼ 0), which is a cyclic variable. The Lagrangian equation (I.17) for

this case is

dPq

dt
¼
@L

dq
¼ 0 (1:118)

Pq ¼ const: (1:119)

1.7.1 Systems with Axial Symmetry. Busch’s Theorem

Consider a cylindrical coordinate system (Fig. 1.10). For axially symmetric fields, the

cyclic variable is u. This tells us that a turning does not change an electromagnetic

field in the system. We can find corresponding generalized momentum by writing

the Lagrangian as a function of u and _u. According to Eq. (I.18), the Lagrangian is

L ¼ �m0c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
v2

c2

r

� e0 Avþ e0U

¼ �m0c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
1

c2
(_r2 þ r2 _u

2
þ _z2)

r

� e0(_rAr þ r _uAu þ _zAz)þ e0w

(1:120)

where @A=@u ¼ @w=@u ¼ 0. Then the angular generalized momentum is

Pu ¼
@L

@_u
¼

m0c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

r2 _u

c2
� e0rAu ¼ mr2 _u� e0rAu ¼ const: (1:121)
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To obtain Au, let us apply Stokes’ theorem to Maxwell’s equation (I.3):

ð

Bn dS ¼

ð

curln A dS ¼

þ

Au rdu (1:122)

Integration is performed along the circle of radius r shown in Fig. 1.1. Here Bn ¼ Bz.

The value rAu is constant on the contour; therefore,

rAu ¼
1

2p
C ¼

1

2p

ð

Bz dS (1:123)

So the equation of angular momentum conservation is

Pu ¼ mr2_u�
e0

2p
C ¼ const: (1:124)

whereC ¼ 2p
Ð r

0
Bz(r, z)r dr is the magnetic flux through a circle of radius r. Suppose

that the electron leaves the cathode at a distance rc from the axis of symmetry with

angular velocity _uc. Then, according to Eq. (1.124),

mr2 _u�
e0

2p
C ¼ mcr2

c
_uc �

e0

2p
Cc (1:125)

We obtain the formula for angular velocity:

_u ¼
mcr2

c

mr2
_uc þ

e0

2pmr2
(C�Cc) ¼

gc

g

rc

r

� �2
_uc þ

h

2pg r2
(C�Cc) (1:126)

This relation is known as Busch’s theorem. In nonrelativistic approximation,

_u ¼
rc

r

� �2
_uc þ

h

2p r 2
(C�Cc) (1:127)

FIGURE 1.10 Cylindrical coordinate system.
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Busch’s theorem for zero cathode velocity is

u̇ ¼
h

2p r2
(C�Cc) (1:128)

1.7.2 Formation of Helical Trajectories at a Jump in a Magnetic Field

The electron in an axially symmetric system is injected into a jump in the magnetic

field so that in the plane z ¼ 0 the magnetic field changes from B ¼ B1 to B ¼ B2

(Fig. 1.11). Before the jump (z , 0) the electron moves parallel to the z-axis. In the

plane of the jump, the magnetic field is radial. One rotates the particle, and

the latter continues to gyrate after the jump in the magnetic field B2 along the

helical trajectory. The magnetic fields on both sides of the jump are assumed uniform.

Let us find the parameters of the electron trajectory. For z , 0, _u ¼ 0 and we can

write Busch’s theorem similar to Eq. (1.128):

_u ¼
h

2pr2
(C2 �C1) (1:129)

C1 and C2 are the magnetic fluxes through circles of radii r1 and r2, which are the

distances of the electron from the z-axis before and just after the jump. We assume

that the radial position of the particle does not change across the jump. Therefore,

r1 ¼ r2 ¼ r and

C1 ¼ pr2B1, C2 ¼ pr2B2 (1:130)

The angular velocity according to Eqs. (1.129) and (1.130) is

_u ¼
h

2
(B2 � B1) (1:131)

The azimuthal velocity is

vu ¼ r _u ¼
hr

2
(B2 � B1) ¼ v? (1:132)

FIGURE 1.11 Jump of a magnetic field as the formation system of a helical trajectory.
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where v? is the velocity of the cyclotron gyration. The Larmor radius is

r? ¼
v?

vg2

¼
v?

hB2

¼
r

2
1�

B1

B2

� �

(1:133)

The guiding center radius (see Fig. 1.11) is

R ¼ r � r? ¼
r

2
1þ

B1

B2

� �

(1:134)

Thus, Busch’s theorem allows us to solve the problem.

Let us consider two particular cases:

1. Injection from a Region with Zero Magnetic Field. B1 ¼ 0: We find from

Eqs. (1.131)–(1.134) that

_u ¼
hB2

2
, r? ¼

r

2
, R ¼

r

2
(1:135)

We see that the Larmor circle touches the z-axis. According to Fig. 1.12, angle u of

the turn of the radius vector about the axis equals the half-angle b of the Larmor

radius turn. Therefore, _u ¼ 1
2

_b ¼ 1
2
vg.

2. Reverse (cusp) of the Magnetic Field. B1 ¼ �B2. We find from Eqs. (1.131),

(1.133), and (1.134) that _u ¼ hB2, r? ¼ r, and R ¼ 0. So in this case, after the jump

the electron gyrates at cyclotron frequency around the guiding center located on the

z-axis. The Larmor radius after the cusp is equal to the initial distance of the electron

from the axis (Fig. 1.13). Axis-encircling helical electron beams that are formatted

in the magnetic cusp are used last time in high-harmonic gyrotrons (Appendix 9,

Idehara et al., 2004).

1.7.3 Systems with Plane Symmetry

Consider the Cartesian coordinate system in Fig. 1.14. By definition the plane

symmetric system is the electromagnetic system that is uniform along one

FIGURE 1.12 Motion of an electron injected from a region with zero magnetic field.
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coordinate (e.g., in the y direction) and symmetrical about a plane parallel to this

direction [e.g., the (Y, Z) plane]. It means that the Lagrangian is independent of y;

that is,

@L

@y
¼ 0 (1:136)

and the potential and z-components of the fields are symmetrical functions of x:

w(x) ¼ w(�x); Ez(x) ¼ Ez(�x); Bz(x) ¼ Bz(�x)

Ay(x) ¼ �Ay(�x); Ex(x) ¼ �Ex(�x); Bx(x) ¼ �Bx(�x)

Ax ¼ Az ¼ Ey ¼ By ¼ 0

(1:137)

FIGURE 1.13 Motion of an electron through a magnetic cusp.

FIGURE 1.14 Derivation of Busch’s theorem for a plane symmetrical system.
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The generalized momentum for a plane symmetrical system according to

Eq. (1.136) is

Py ¼ py � e0Ay ¼ m_y� e0Ay ¼ const: (1:138)

Applying Eq. (1.3) and Stokes’ theorem to the contour abcd (Fig. 1.14), we find that

ð

Bz ds ¼

þ

abcd

Al dl (1:139)

Taking into account the relations (1.137), we obtain 2L
Ð x

0
Bz dx ¼ 2LAy; that is,

Ay ¼ C ¼

ðx

0

Bz dx (1:140)

where C is the magnetic flux through a strip of width x and unit length in the y

direction. So

m_y� e0C ¼ const: (1:141)

Let us assume that the electron leaves the cathode at distance xc from the plane of

symmetry with the velocity _yc. Then the velocity for the particle in the question is

_y ¼ _yc þ
h

g
(C�Cc) ¼ _yc þ

h

g

ðx

0

Bz(x, z) dx�

ðxc

0

Bz(x, zc) dx

� �

(1:142)

Equation (1.142) is a version of Busch’s theorem for a plane symmetric system.
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