

Phase

1

Installing and
Configuring
Microsoft SQL
Server 2005

83492book.book Page 1 Friday, September 15, 2006 9:28 AM

CO
PYRIG

HTED
 M

ATERIA
L

Many people are so excited to start working with their new soft-
ware that they just start installing it without verifying they meet
the prerequisites; you may have even done this yourself in the

past. To ensure a successful installation of SQL Server 2005, though, you need to make sure
you have the right hardware and software in place first; otherwise, you will end up with a
mess. Once you have installed SQL Server 2005, you then need to configure it before you can
let your users start working with it. The tasks in this phase will show you how to successfully
install and configure SQL Server 2005.

Task 1.1: Verifying Prerequisites and
Installing the Default Instance

In this task, you will verify that your machine meets the prerequisites for installing SQL Server
2005, and then you will install the default instance.

Scenario

You are the database administrator (DBA) for a midsize company with offices in various cit-
ies throughout the United States and Canada. The company has decided to use SQL Server
2005 for data storage and retrieval, and you have been asked to install the software and get
it running.

As an experienced DBA, you understand the importance of installing the software right the
first time, because if you install SQL Server incorrectly or on the wrong hardware, it will work
slowly or not at all. Therefore, you have decided to verify the prerequisites and then install the
software.

Scope of Task

Duration

This task should take less than one hour.

83492book.book Page 2 Friday, September 15, 2006 9:28 AM

Task 1.1: Verifying Prerequisites and Installing the Default Instance

3

Setup

This task requires little setup. All you need is access to a copy of SQL Server 2005 Enterprise
Edition and a computer that meets the requirements to run it.

Caveat

It seems redundant, but SQL Server 2005 runs better on faster hardware. So, remember that
the minimum requirements listed later in this task are just that, minimum. If you have access
to a faster machine with more random access memory (RAM), use it.

Procedure

In this task, you will verify that your computer meets the requirements for running SQL Server
2005 and then install the default instance.

Equipment Used

Although several editions of SQL Server 2005 exist, you will be working with the Enterprise Edi-
tion in this book because it has the widest range of available features. You can download a 180-
day trial copy of Enterprise Edition from the Microsoft website (

http://www.microsoft.com/
sql

). You will also need access to a machine that meets the prerequisites for Enterprise Edition.

Details

First, you must make certain your server meets the requirements for installing SQL Server
2005. Table 1.1 lists the prerequisites for installing the Standard, Developer, and Enterprise
Editions.

T A B L E 1 . 1

Developer/Standard/Enterprise Edition Requirements

Component 32-bit x64 Itanium

Processor 600MHz Pentium III–
compatible or faster
processor; 1GHz or
faster processor
recommended

1GHz AMD Opteron,
AMD Athlon 64, Intel
Xeon with Intel EM64T
support, Intel Pentium IV
with EM64T support
processor

1GHz Itanium or faster
processor

Memory 512MB of RAM or
more; 1GB or more
recommended

512MB of RAM or
more; 1GB or more
recommended

512MB of RAM or
more; 1GB or more
recommended

Disk drive CD or DVD drive CD or DVD drive CD or DVD drive

83492book.book Page 3 Friday, September 15, 2006 9:28 AM

4

Phase 1 �

Installing and Configuring Microsoft SQL Server 2005

Second, after you have verified that your machine can handle SQL Server 2005, you can
begin the installation. Follow these steps (which are for installing Enterprise Edition, but the
steps are similar for all editions):

1.

You need to create a service account, so create a user account named SqlServer, and make
it a member of the Administrators local group. You can perform this task using one of
these tools:

�

On a Windows member server or on Windows XP, use Computer Management.
�

On a Windows domain controller, use Active Directory Users and Computers.

2.

Insert the SQL Server CD, and wait for the automenu to open.

3.

Under Install, choose Server Components �

 Tools �

 Books Online �

 Samples.

4.

You will then be asked to read and agree with the end user license agreement (EULA);
check the box to agree, and click Next.

Hard disk
space

Approximately 350MB
of available hard disk
space for the recom-
mended installation
with approximately
425MB of additional
space for SQL Server
BOL, SQL Server
Mobile BOL, and
sample databases

Approximately 350MB of
available hard disk space
for the recommended
installation with approxi-
mately 425MB of addi-
tional space for SQL
Server BOL, SQL Server
Mobile BOL, and sample
databases

Approximately 350MB
of available hard disk
space for the recom-
mended installation with
approximately 425MB of
additional space for SQL
Server BOL, SQL Server
Mobile BOL, and sample
databases

Operating
system

Microsoft Windows
2000 Server with SP4 or
newer; Windows 2000
Professional Edition
with SP4 or newer;
Windows XP with SP2
or newer; Windows
Server 2003 Enterprise
Edition, Standard Edi-
tion, or Datacenter Edi-
tion with SP1 or newer;
Windows Small Busi-
ness Server 2003 with
SP1 or newer

Microsoft Windows
Server 2003 Standard x64
Edition, Enterprise x64
Edition, or Datacenter
x64 Edition with SP1 or
newer; Windows XP
Professional x64 Edition
or newer

Microsoft Windows
Server 2003 Enterprise
Edition or Datacenter Edi-
tion for Itanium-based
systems with SP1 or
newer

T A B L E 1 . 1

Developer/Standard/Enterprise Edition Requirements

(continued)

Component 32-bit x64 Itanium

83492book.book Page 4 Friday, September 15, 2006 9:28 AM

Task 1.1: Verifying Prerequisites and Installing the Default Instance

5

5.

If your machine does not have all the prerequisite software installed, the setup will install
them for you at this time. Click Install if you are asked to do so. When complete, click Next.

6.

Next you will see a screen telling you that the setup is inspecting your system’s configu-
ration again, and then the welcome screen appears. Click Next to continue.

7.

Another, more in-depth system configuration screen appears letting you know whether
any configuration settings will prevent SQL Server from being installed. You need to
repair errors (marked with a red icon) before you can continue. You can optionally repair
warnings (marked with a yellow icon), which will not prevent SQL Server from installing.
Once you have made any needed changes, click Next.

83492book.book Page 5 Friday, September 15, 2006 9:28 AM

6

Phase 1 �

Installing and Configuring Microsoft SQL Server 2005

8.

After a few configuration setting screens, you will be asked for your product key. Enter
it, and click Next.

9.

On the next screen, you need to select the components you want to install. Check the
boxes next to the SQL Server Database Services option and the Workstation Compo-
nents, Books Online and Development Tools option.

10.

Click the Advanced button to view the advanced options for the setup.

11.

Expand Documentation �

 Samples �

 Sample Databases. Then click the button next to Sam-
ple Databases, select Entire Feature Will Be Installed on Local Hard Drive, and then click
Next. (This will install the AdventureWorks database you will be using later in this book.)

83492book.book Page 6 Friday, September 15, 2006 9:28 AM

Task 1.1: Verifying Prerequisites and Installing the Default Instance

7

12.

On the Instance Name screen, choose Default Instance, and click Next.

13.

On the next screen, enter the account information for the service account you
created in step 1. You will be using the same account for each service. When
finished, click Next.

83492book.book Page 7 Friday, September 15, 2006 9:28 AM

8

Phase 1 �

Installing and Configuring Microsoft SQL Server 2005

14.

On the Authentication Mode screen, select Mixed Mode, enter a password for the
sa account, and click Next.

15.

Select the Latin1_General collation designator on the next screen, and click Next.

83492book.book Page 8 Friday, September 15, 2006 9:28 AM

Task 1.1: Verifying Prerequisites and Installing the Default Instance

9

16.

On the following screen, you can select to send error and feature usage information
directly to Microsoft. You will not be enabling this function here. So, leave the defaults,
and click Next.

17.

On the Ready to Install screen, review your settings, and then click Install.

18.

The setup progress appears during the install process. When the setup is finished (which
may take several minutes), click Next.

19.

The final screen gives you an installation report, letting you know whether any errors
occurred and reminding you of any post-installation steps to take. Click Finish to com-
plete your install.

20.

Reboot your system if requested to do so.

Criteria for Completion

You have completed this task when you have a running instance of SQL Server 2005 installed
on your system. To verify this, select Start �

 All Programs �

 Microsoft SQL Server 2005 �

Configuration Tools �

 SQL Server Configuration Manager. Select SQL Server 2005 Services,
and check the icons. If the icon next to SQL Server (MSSQLServer) service is green, then your
installation is a success (see Figure 1.1).

83492book.book Page 9 Friday, September 15, 2006 9:28 AM

10

Phase 1 �

Installing and Configuring Microsoft SQL Server 2005

F I G U R E 1 . 1

Check SQL Server Configuration Manager to see whether your services are

running after installation.

Task 1.2: Installing a Second Instance

Using a technique called

instancing

, you can have more than one copy of SQL Server 2005
running on the same computer at the same time. Each instance has its own set of system
databases and its own security system in place. This is useful if you need a server for pro-
duction and another for testing but you do not have enough hardware for two separate
physical machines or you need to have two or more systems with disparate security settings.
Throughout this book, you will be using a named instance in order to get some practice with
the more advanced features of SQL Server 2005 (such as replication). In this task, you will
install a second instance of SQL Server 2005 on the same machine as the default instance.

Scenario

You are the database administrator (DBA) for a midsize company with offices in various cities
throughout the United States and Canada. You know you need an instance of SQL Server
2005 for testing new service packs, new database schemas, and the like, but your company
does not have the budget for new hardware at this time. The only way for you to have a test
copy of SQL Server is to install a named instance.

83492book.book Page 10 Friday, September 15, 2006 9:28 AM

Task 1.2: Installing a Second Instance

11

Scope of Task

Duration

This task should take less than one hour.

Setup

Again, all you need for this task is the machine you used in Task 1.1 and the same copy of SQL
Server 2005 you used in Task 1.1.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will install a second instance of SQL Server on the same machine used in
Task 1.1.

Equipment Used

All you need for this task is the machine you used in Task 1.1 and the same copy of SQL Server
2005 you used in Task 1.1.

Details

Follow these steps to create a second instance of SQL Server on the same machine as the
default instance:

1.

Insert the SQL Server CD, and wait for the automenu to open.

2.

Under Install, choose Server Components �

 Tools �

 Books Online �

 Samples.

3.

You will then be asked to read and agree with the end user license agreement (EULA);
check the box to agree, and click Next.

4.

If your machine does not have all the prerequisite software installed, the setup will
install them for you at this time. Click Install if you are asked to do so. When complete,
click Next.

5.

Next you will see a screen telling you the setup is inspecting your system’s configuration
again, and then the welcome screen appears. Click Next to continue.

6.

Another, more in-depth system configuration screen appears letting you know whether
any configuration settings will prevent SQL Server from being installed. You need to
repair errors (marked with a red icon) before you can continue. You can optionally repair
warnings (marked with a yellow icon), which will not prevent SQL Server from installing.
Once you have made any needed changes, click Next.

83492book.book Page 11 Friday, September 15, 2006 9:28 AM

12

Phase 1 �

Installing and Configuring Microsoft SQL Server 2005

7.

After a few configuration setting screens, you will be asked for your registration informa-
tion. Enter it, and click Next.

8.

On the next screen, you need to select the components you want to install. Check the box
next to SQL Server Database Services, and click Next.

9. On the Instance Name screen, choose Named Instance, and in the text box enter Second.
Then click Next.

10. On the next screen, enter the account information for the service account you created in
step 1 of Task 1.1. You will be using the same account for each service. When finished,
click Next.

11. On the Authentication Mode screen, select Mixed Mode, enter a password for the sa
account, and click Next.

12. Select the Latin1_General collation designator on the next screen, and click Next.

13. On the following screen, you can select to send error and feature usage information
directly to Microsoft. You will not be enabling this function here. So, leave the defaults,
and click Next.

14. On the Ready to Install screen, you can review your settings, and then click Install.

15. The setup progress appears during the install process. When the setup is finished (which
may take several minutes), click Next.

16. The final screen gives you an installation report, letting you know whether any errors
occurred and reminding you of any post-installation steps to take. Click Finish to complete
your install.

17. Reboot your system if requested to do so.

83492book.book Page 12 Friday, September 15, 2006 9:28 AM

Task 1.3: Designing and Creating a Database 13

Criteria for Completion

You have completed this task when you have a second running instance of SQL Server 2005
installed on your system. To verify this, select to Start � Microsoft SQL Server 2005 � Con-
figuration Tools � SQL Server Configuration Manager. Select SQL Server 2005 Services, and
refer to the icons. If the icon next to SQL Server (Second) instance is green, then your instal-
lation is a success (see Figure 1.2).

F I G U R E 1 . 2 Check SQL Server Configuration Manager to see whether your services are
running for the Second instance.

Task 1.3: Designing and Creating
a Database
SQL Server 2005 stores your database information in two types of files: one or more database
files and one or more transaction log files. As a database administrator (DBA), it is your duty
to design and create databases to store user data and other objects. As part of your role as a
database creator, you must decide how large to make these database files and what type of
growth characteristics they should have, as well as their physical placement on your system.

In this task, you will decide where to put the data and log files and then create a database.

83492book.book Page 13 Friday, September 15, 2006 9:28 AM

14 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Scenario

You are the DBA for a midsize company with offices in various cities throughout the United
States and Canada. You have just installed a new instance of SQL Server, and now you need
to create a database to hold data for your sales department.

Scope of Task

Duration

This task should take approximately 30 minutes.

Setup

All you need for this task is access to the machine you installed SQL Server 2005 on in Task 1.1.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will create a database that will hold data for the sales department. You will
use this database in later tasks for storing other database objects as well.

Equipment Used

All you need for this task is access to the machine you installed SQL Server 2005 on in Task 1.1.

Details

First, you must decide where to put the data and log files. Here are some guidelines to use:
� Data and log files should be on separate physical drives so that, in case of a disaster, you

have a better chance of recovering all data.
� Transaction logs are best placed on a RAID-1 array because this has the fastest sequential

write speed.
� Data files are best placed on a RAID-5 array because they have faster read speed than

other RAID-arrays.
� If you have access to a RAID-10 array, you can place data and log files on it because it has

all the advantages of RAID-1 and RAID-5.

Next, you must decide how big your files should be. Data files are broken down
into 8KB pages and 64KB extents (eight contiguous pages). To figure out how big your

83492book.book Page 14 Friday, September 15, 2006 9:28 AM

Task 1.3: Designing and Creating a Database 15

database will need to be, you must figure out how big your tables will be. You can do that
using these steps:

1. Calculate the space used by a single row of the table.

a. To do this, add the storage requirements for each datatype in the table.

b. Add the null bitmap using this formula: null_bitmap = 2 + ((number of columns
+ 7) /8).

c. Calculate the space required for variable length columns using this formula:
variable_datasize = 2 + (num_variable_columns X 2) + max_varchar_size.

d. Calculate the total row size using this formula: Row_Size = Fixed_Data_Size +
Variable_Data_Size + Null_Bitmap + Row_Header.

The row header is always 4 bytes.

2. Calculate the number of rows that will fit on one page. Each page is 8,192 bytes with a
header, so each page holds 8,096 bytes of data. Therefore, calculate the number of rows
using this formula: 8096 ÷ (RowSize + 2).

3. Estimate the number of rows the table will hold. No formula exists to calculate this; you
just need to have a good understanding of your data and user community.

4. Calculate the total number of pages that will be required to hold these rows. Use this
formula: Total Number of Pages = Number of Rows in Table / Number of Rows
Per Page.

Once you have decided where to put your files and how big they should be, follow these
steps to create a database named Sales (you will be creating the files on a single drive for
simplicity):

1. Start SQL Server Management Studio by selecting Start � Programs � Microsoft SQL
Server 2005 � Management Studio.

2. Connect to your default instance of SQL Server.

3. Expand your Databases folder.

4. Right-click either the Databases folder in the console tree or the white space in the right
pane, and choose New Database from the context menu.

5. You should now see the General tab of the Database properties sheet. Enter the database
name Sales, and leave the owner as <default>.

6. In the data files grid, in the Logical Name column, change the name of the primary data
file to Sales_Data. Use the default location for the file, and make sure the initial size is 3.

83492book.book Page 15 Friday, September 15, 2006 9:28 AM

16 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

7. Click the ellipsis button (the one with three periods) in the Autogrowth column for the
Sales_Data file. In the dialog box that opens, check the Restricted File Growth radio
button, and restrict the filegrowth to 20MB.

8. To add a secondary data file, click the Add button, and change the logical name of the new
file to Sales_Data2. Here too use the default location for the file, and make sure the initial
size is 3.

9. Restrict the filegrowth to a maximum of 20MB for Sales_Data2 by clicking the ellipsis
button in the Autogrowth column.

10. Leave all of the defaults for the Sales_Log file.

11. Click OK when you are finished. You should now have a new Sales database.

83492book.book Page 16 Friday, September 15, 2006 9:28 AM

Task 1.4: Designing and Creating a Table 17

Criteria for Completion

You have completed this task when you have a database named Sales that you can see in SQL
Server Management Studio, as shown in Figure 1.3.

F I G U R E 1 . 3 You should see a database named Sales in SQL Server
Management Studio.

Task 1.4: Designing and Creating a Table
All of the data in a database is logically organized into tables. Each table in turn is divided
into columns and rows (or fields and records). Each table holds a grouping of related data.
For example, if you are creating a database to hold sales information, you may have one
table for available products, another table for orders placed, another for salesperson terri-
tories, and so on.

To create a table, you need to know what data will be stored in the table so you can decide
which columns should be in the table and what datatype each column should be. These deci-
sions are different for each database in each company. In this task, you will be creating some
tables in your Sales database.

83492book.book Page 17 Friday, September 15, 2006 9:28 AM

18 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Scenario

You have just created a database for your sales department, and now you need to create some
tables to hold customer, product, and order data.

Scope of Task

Duration

This task should take approximately 30 minutes.

Setup

All you need for this task is access to the machine you installed SQL Server 2005 on in Task 1.1
and the Sales database you created in Task 1.3.

Caveat

Remember that this is just an exercise. In the real world, you would probably have multiple
tables for each of these categories. For example, you would have an OrderHeader table and
an OrderDetails table to store multiple line items for a single order. You are creating a single
table for each category in this task only for the sake of simplicity.

Procedure

In this task, you will create three tables in your Sales database: a Products table, a Customers
table, and an Orders table.

Equipment Used

All you need for this task is access to the machine you installed SQL Server 2005 on in Task 1.1
and the Sales database you created in Task 1.3.

Details

You will be creating three tables based on these criteria, as shown in Table 1.2, Table 1.3, and
Table 1.3.

T A B L E 1 . 2 Products Table Fields

Field Name Datatype Contains

ProdID Int, Identity A unique ID number for each product that can be refer-
enced in other tables to avoid data duplication

83492book.book Page 18 Friday, September 15, 2006 9:28 AM

Task 1.4: Designing and Creating a Table 19

Description Nvarchar(100) A brief text description of the product

InStock Int The amount of product in stock

T A B L E 1 . 3 Customers Table Fields

Field Name Datatype Contains

CustID Int, Identity A unique number for each customer that can be referenced
in other tables

Fname Nvarchar(20) The customer’s first name

Lname Nvarchar(20) The customer’s last name

Address Nvarchar(50) The customer’s street address

City Nvarchar(20) The city where the customer lives

State Nchar(2) The state where the customer lives

Zip Nchar(5) The customer’s ZIP code

Phone Nchar(10) The customer’s phone number without hyphens or paren-
theses (to save space, those will be displayed but not stored)

T A B L E 1 . 4 Orders Table Fields

Field Name Datatype Contains

CustID Int References the customer number stored in the Customers
table so you don’t need to duplicate the customer informa-
tion for each order placed

ProdID Int References the Products table so you don’t need to dupli-
cate product information

Qty Int The amount of product sold for an order

OrdDate Smalldatetime The date and time the order was placed

T A B L E 1 . 2 Products Table Fields (continued)

Field Name Datatype Contains

83492book.book Page 19 Friday, September 15, 2006 9:28 AM

20 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Follow these steps to create the Products table in the Sales database:

1. Open SQL Server Management Studio. In Object Explorer, expand your server, and
expand Databases � Sales.

2. Right-click the Tables icon, and select New Table to open the table designer.

3. In the first row, under Column Name, enter ProdID.

4. Just to the right of that, under Data Type, select Int.

5. Make certain Allow Nulls isn’t checked. The field can be completely void of data if this
option is checked, and you don’t want that here.

6. In the bottom half of the screen, under Column Properties, in the Table Designer section,
expand Identity Specification, and change (Is Identity) to Yes.

7. Just under ProdID, in the second row under Column Name, enter Description.

8. Just to the right of that, under Data Type, enter nvarchar(100).

9. Make certain Allow Nulls is cleared.

10. Under Column Name in the third row, enter InStock.

11. Under Data Type, select Int.

12. Uncheck Allow Nulls.

83492book.book Page 20 Friday, September 15, 2006 9:28 AM

Task 1.4: Designing and Creating a Table 21

13. Click the Save button on the left side of the toolbar (it looks like a floppy disk).

14. In the Choose Name box that opens, enter Products, then click OK.

15. Close the table designer by clicking the X in the upper-right corner of the window.

Now, follow these steps to create the Customers table:

1. Right-click the Tables icon, and select New Table to open the table designer.

2. In the first row, under Column Name, enter CustID.

3. Under Data Type, select Int.

4. Make certain Allow Nulls isn’t checked.

5. Under Column Properties, in the Table Designer section, expand Identity Specification,
and change (Is Identity) to Yes.

6. Just under CustID, in the second row under Column Name, enter Fname.

7. Just to the right of that, under Data Type, enter nvarchar(20).

8. Make certain Allow Nulls is unchecked.

9. Using the parameters displayed earlier, fill in the information for the remaining columns.
Don’t allow nulls in any of the fields.

83492book.book Page 21 Friday, September 15, 2006 9:28 AM

22 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

10. Click the Save button.

11. In the Choose Name box that opens, enter Customers, then click OK.

12. Close the table designer.

Now follow the same steps to create the Orders table:

1. Right-click the Tables icon, and select New Table to open the table designer.

2. In the first row, under Column Name, enter CustID.

3. Under Data Type, select Int.

4. Make certain Allow Nulls isn’t checked.

5. This won’t be an identity column like it was in the Customers table, so don’t make any
changes to the Identity Specification settings.

6. Just under CustID, in the second row under Column Name, enter ProdID with a datatype
of int. Don’t change the Identity Specification settings. Don’t allow null values.

7. Just below ProdID, create a field named Qty with a datatype of int that doesn’t allow nulls.

8. Create a column named OrdDate with a datatype of smalldatetime. Don’t allow null values.

9. Click the Save button.

10. In the Choose Name box that opens, enter Orders, then click OK.

11. Close the table designer.

83492book.book Page 22 Friday, September 15, 2006 9:28 AM

Task 1.5: Designing and Creating a Constraint 23

Criteria for Completion

You have completed this task when you have the Products, Customers, and Orders tables in
your database with the columns defined in the exercise. To verify this, just expand your Sales
database in SQL Server Management Studio and then expand Tables; you should see all three
tables, as shown in Figure 1.4.

F I G U R E 1 . 4 You should see the Products, Customers, and Orders tables in your Sales
database.

Task 1.5: Designing and Creating
a Constraint
When you first create a table, it’s wide open to your users. It’s true that they can’t violate
datatype restrictions by entering characters in an int type field and the like, but that is really the
only restriction. It’s safe to say you probably want more restrictions than that. For example,
you probably don’t want your users to enter XZ for a state abbreviation in a State field (because

83492book.book Page 23 Friday, September 15, 2006 9:28 AM

24 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

XZ isn’t a valid state abbreviation), and you don’t want them entering numbers for some-
one’s first name. You need to restrict what your users can enter in your fields, which you can
do by using constraints. In this task, you will create constraints on your Customers table in
the Sales database.

Scenario

You have just created tables in your new Sales database, one of which holds customer infor-
mation. You want to make certain that users enter only valid ZIP codes in the Zip field of the
Customers table, so you decide to create a constraint to restrict the data that can be entered
in the field.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this exercise, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers table you created in Task 1.4.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will create a constraint on the Customers table to prevent users from entering
invalid ZIP codes. Specifically, you will prevent users from entering letters; they can enter only
numbers.

Equipment Used

For this exercise, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers table you created in Task 1.4.

Details

Follow these steps to create a constraint on the Zip field of the Customers table:

1. In Object Explorer, expand the Sales database, and expand Tables � dbo.Customers.

2. Right-click Constraints, and click New Constraint.

3. In the New Constraint dialog box, enter CK_Zip in the (Name) text box.

83492book.book Page 24 Friday, September 15, 2006 9:28 AM

Task 1.5: Designing and Creating a Constraint 25

4. In the Description text box, enter Check for valid zip codes.

5. To create a constraint that will accept only five numbers that can be zero through nine,
enter the following code in the Expression text box:

(zip like '[0-9][0-9][0-9][0-9][0-9]')

6. Click Close.

7. Click the Save button at the top left of the toolbar.

8. Close the table designer (which was opened when you started to create the constraint).

Criteria for Completion

This task is complete when you have a constraint that prevents users from entering letters in
the Zip field of the Customers table. To test your new constraint, follow these steps:

1. In SQL Server Management Studio, and click the New Query button.

2. Enter the following code in the query window:

USE Sales

INSERT Customers

VALUES ('Greg','Scott','111 Main','Provo'

,'UT','88102','5045551212')

3. Click the Execute button just above the query window to execute the query, and notice
the successful results.

4. To see the new record, click the New Query button, and execute the following code:

SELECT * FROM customers

5. Notice that the record now exists with a CustID of 1 (because of the identity property
discussed earlier, which automatically added the number for you).

83492book.book Page 25 Friday, September 15, 2006 9:28 AM

26 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

6. To test the check constraint by adding characters in the Zip field, click the New Query
button, and execute the following code (note the letters in the Zip field):

USE Sales

INSERT customers

VALUES ('Amanda','Smith','817 3rd','Chicago','IL','AAB1C','8015551212')

7. Notice in the results pane that the query violated a constraint and so failed.

Task 1.6: Designing and Creating a View
Microsoft describes a view as a virtual table or a stored SELECT query. Views do not hold any
data themselves; they represent the data that is stored in a table. Of course, views offer more
advantages than just looking at the data stored in a table. For instance, you may want to see
only a subset of records in a large table, or you may want to see data from multiple tables in
a single query. Both of these are good reasons to use a view. In this task, you will create a view
based on the Person.Contact table in the AdventureWorks database.

Scenario

You have a database that has been in use for some time and has a number of records in the
Contacts table. Your users have asked you to break this data down for them by area code. You

83492book.book Page 26 Friday, September 15, 2006 9:28 AM

Task 1.6: Designing and Creating a View 27

have decided that the easiest way to accomplish this goal is to create a view that displays only
a subset of data from the table based on the area code.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this exercise, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the AdventureWorks database that is installed with the sample data.

Caveat

Realistically, views won’t be this simplistic in the real world; this is just to keep the exercise
simple.

Procedure

In this task, you will create a view based on the Person.Contact table in the AdventureWorks
database. Specifically, you will create a view that displays only those customers in the 398
area code.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the AdventureWorks database that is installed with the sample data.

Details

Follow these steps to create the Contacts_in_398 view:

1. Open SQL Server Management Studio by selecting it from the Microsoft SQL Server 2005
group under Programs on your Start menu, and connect with Windows Authentication if
requested.

2. In Object Explorer, expand your server, and then expand Databases � AdventureWorks.
Right-click Views, and select New View.

3. In the Add Table dialog box, select Contact (Person), and click Add.

4. Click Close, this opens the view designer.

5. In the Transact-SQL syntax editor text box, under the column grid, enter the following:

SELECT LastName, FirstName, Phone

FROM Person.Contact

WHERE (Phone LIKE '398%')

83492book.book Page 27 Friday, September 15, 2006 9:28 AM

28 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

6. Click the Execute button (the red exclamation point) on the toolbar to test the query.

7. Choose File � Save View – dbo.View_1.

8. In the Choose Name dialog box, enter Contacts_in_398, and click OK.

9. To test the view, click the New Query button, and execute the following code:

USE AdventureWorks

SELECT * FROM dbo.Contacts_in_398

10. To verify that the results are accurate, open a new query, and execute the code used to
create the view:

USE AdventureWorks

SELECT lastname, firstname, phone from Person.Contact

WHERE phone LIKE '398%'

Criteria for Completion

This task is complete when you can query the Contacts_in_398 view and retrieve the correct
results. To test your view, execute this code:

USE AdventureWorks

SELECT * FROM dbo.Contacts_in_398

You should see the results shown in Figure 1.5.

83492book.book Page 28 Friday, September 15, 2006 9:28 AM

Task 1.7: Designing and Creating a Stored Procedure 29

F I G U R E 1 . 5 You should see only those contacts in the 398 area code.

Task 1.7: Designing and Creating a
Stored Procedure
A stored procedure is a query that is stored in a database on SQL Server rather than being
stored in the front-end code on the client machine (also called an ad hoc query). Several good
reasons exist for doing this.

One advantage of using stored procedures is that when SQL Server receives a query, it
compiles it. In other words, it reads the query, looks at such things as JOINs and WHERE
clauses, and compares that query with all the available indexes to see which index (if any)
would return data to the user fastest. Once SQL Server determines which indexes will func-
tion best, it creates a set of instructions telling SQL Server how to run the query (called an
execution plan), which is stored in memory. Ad hoc queries must be compiled nearly every
time they’re run whereas stored procedures are precompiled. This means stored procedures
have gone through the compilation process and have a plan waiting in memory; therefore,
they execute faster than ad hoc queries.

83492book.book Page 29 Friday, September 15, 2006 9:28 AM

30 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Another advantage of using stored procedures is that they can make database management
easier. For example, if you need to modify an existing query and that query is stored on the
users’ machines, you must make those changes on all of the users’ machines. If you store the
query centrally on the server, as a stored procedure, you need to make the changes only once,
at the server. This can save you a great deal of time and effort.

Stored procedures can also accept variable input and produce variable output. This means
you can use variable placeholders for input and output data, which is extremely useful for
making stored procedures dynamic.

In this task, you will create a stored procedure that accepts an input parameter and returns
data from the Production.Product table in the AdventureWorks database.

Scenario

You have a database that has been in use for some time and has a number of records in the
Product table. Your users frequently query the table for data based on the SellStartDate col-
umn. To speed up execution time and enhance ease of management, you have decided to create
a stored procedure that accepts a date as an input parameter and returns a result set of the
most frequently queried columns.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the AdventureWorks database that is installed with the sample data.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will create a stored procedure based on the Production.Product table in the
AdventureWorks database. Specifically, you will create a stored procedure that returns prod-
uct data based on an input parameter.

83492book.book Page 30 Friday, September 15, 2006 9:28 AM

Task 1.7: Designing and Creating a Stored Procedure 31

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the AdventureWorks database that is installed with the sample data.

Details

Follow these steps to create the Production.Show_Products stored procedure:

1. Open SQL Server Management Studio. In Object Explorer, expand your server, and then
expand Databases � AdventureWorks � Programmability.

2. Right-click the Stored Procedures icon, and select New Stored Procedure to open a new
query window populated with a stored procedure template.

3. In the Transact-SQL syntax box, change the code to look like this:

CREATE PROCEDURE Production.Show_Products

 @Date datetime

AS

BEGIN

 SELECT Name, Color, ListPrice, SellStartDate

 FROM Production.Product

 WHERE SellStartDate > @Date

 ORDER BY SellStartDate, Name

END

GO

4. Click the Execute button on the toolbar to create the procedure.

5. Close the query window.

Criteria for Completion

This task is complete when you can execute the Production.Show_Products stored procedure
using an input parameter and have it return the correct results. Execute the following code in
a new query window to test your stored procedure:

USE AdventureWorks

EXEC Production.Show_Products ‘1/1/1998’

You should see the results shown in Figure 1.6.

83492book.book Page 31 Friday, September 15, 2006 9:28 AM

32 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

F I G U R E 1 . 6 You should see only those products that are available after
January 1, 1998.

Task 1.8: Designing and Creating an
INSERT Trigger
As I discuss later in this book, you can control access to data by assigning permissions for
objects (such as tables) to users. You can use these permissions to prevent users from inserting
new data or modifying or deleting existing data. If you want more granular control than that,
you can use triggers.

A trigger is a collection of SQL statements that looks and acts a great deal like a
stored procedure. The only real difference between the two is that a trigger can’t be
executed directly; they are activated (or fired) when a user executes a Transact-SQL
statement. Data Manipulation Language (DML) triggers fire on INSERT, UPDATE, and

83492book.book Page 32 Friday, September 15, 2006 9:28 AM

33

DELETE statements; and Data Definition Language (DDL) triggers fire on CREATE, ALTER,
and DROP statements.

INSERT triggers fire every time someone tries to create a new record in a table using the
INSERT command. As soon as a user tries to insert a new record into a table, SQL Server copies
the new record into a table in the database called the trigger table and a special table stored in
memory called the inserted table. SQL Server then determines whether the data being inserted
into your table meets the criteria defined in your trigger. If so, the record is inserted; if not, the
record is not inserted.

You can even record what your users are doing by adding the RAISERROR() command to
your trigger, which will write an error to the Windows event log. As you will see later in this
book, the SQL Server Agent service can read this log entry and fire an alert, which can be used
to send e-mail and text messages and even execute subsequent code.

In this task, you will create an INSERT trigger that prevents users from overselling a
product in the Products table of the Sales database. If a user tries to do so, you will use the
RAISERROR() command to write an event to the Windows event log.

Scenario

You have created a database for your sales department that contains information about orders
customers have placed. The sales manager needs to know what is in stock at all times, so she
would like to have the quantity of an item that is in stock decremented automatically when a
user places an order. You have decided that the best way to accomplish this is by using a trig-
ger on the Orders table.

Scope of Task

Duration

This task should take approximately 30 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Products table you created in Task 1.4.

Caveat

When executing a trigger, SQL Server uses two special tables: inserted and deleted. The
inserted table holds new records that are about to be added to the table, and the deleted
table holds records that are about to be removed. You will be using the inserted table in
this task.

Task 1.8: Designing and Creating an INSERT Trigger

83492book.book Page 33 Friday, September 15, 2006 9:28 AM

34 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Procedure

In this task, you will create a trigger that automatically decrements the InStock quantity in the
Products table when a user places an order.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Products table you created in Task 1.4.

Details

First, you need to add some data to the Customers and Products tables:

1. Open SQL Server Management Studio by selecting it from the Microsoft SQL Server 2005
group in Programs on the Start menu, and log in using either Windows Authentication or
SQL Server Authentication.

2. Open a new SQL Server query window, and enter and execute the following code to
populate the Customers table with customer information:

USE Sales

INSERT customers

VALUES ('Andrea','Elliott','111 Main','Oakland','CA','94312','7605551212')

INSERT customers

VALUES ('Tom', 'Smith', '609 Georgia', 'Fresno', 'CA', '33045', '5105551212')

INSERT customers

VALUES ('Janice', 'Thomas', '806 Star', 'Phoenix', 'AZ', '85202',
'6021112222')

3. To populate the Products table with product and inventory information, enter and execute
the following code:

INSERT Products

VALUES ('Giant Wheel of Brie', 200)

INSERT Products

VALUES ('Wool Blankets', 545)

INSERT Products

VALUES ('Espresso Beans', 1527)

INSERT Products

VALUES ('Notepads', 2098)

4. Close the query window.

Next, follow these steps to create the new InvUpdate trigger:

1. In Object Explorer, expand your server, and then expand Databases � Sales � Tables �
dbo.Orders.

83492book.book Page 34 Friday, September 15, 2006 9:28 AM

35

2. Right-click the Triggers folder, and select New Trigger.

3. In the Transact-SQL syntax box, enter and execute the following code to create the
trigger:

CREATE TRIGGER dbo.InvUpdate

 ON dbo.Orders

 FOR INSERT

AS

BEGIN

UPDATE p

SET p.instock = (p.instock - i.qty)

FROM Products p JOIN inserted i

ON p.prodid = i.prodid

END

GO

4. Close the query window.

Criteria for Completion

This task is complete when you have a trigger that automatically updates the InStock col-
umn of the Products table whenever a record is inserted in the Orders table. To test your new
trigger, follow these steps:

1. Open a new SQL Server query, and execute the following code to verify the InStock
quantity for item 1 (it should be 200):

USE Sales

SELECT prodid, instock

FROM Products

2. To cause the INSERT trigger to fire, you need to insert a new record in the Orders
table. To do this, open a new query window, and enter and execute the following code,
which assumes you’re selling 15 quantities of product 1 to customer ID 1 on today’s
date (GETDATE() is used to return today’s date):

USE Sales

INSERT Orders

VALUES (1,1,15,getdate())

3. To verify that the INSERT trigger fired and removed 15 from the InStock column of the
Products table, click the New Query button, and enter and execute the following code:

USE Sales

SELECT prodid, instock

FROM Products

Task 1.8: Designing and Creating an INSERT Trigger

83492book.book Page 35 Friday, September 15, 2006 9:28 AM

36 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

4. Notice that the exact quantity you sold customer 1 (15) was subtracted from the total
InStock quantity of product ID 1. You now have 185 instead of 200.

5. Close the query windows.

Task 1.9: Designing and Creating a
DELETE Trigger
Ordinarily, when a user executes a DELETE statement, SQL Server removes the record from the
table, and the record is never heard from again. That behavior changes when you add a
DELETE trigger to the table. With a DELETE trigger in place, SQL Server moves the record being
deleted to a logical table in memory called deleted; the records aren’t entirely gone, and you
can still reference them in your code. This comes in handy for complex business logic.

The special deleted table can easily be compared to the Recycle Bin in the
Windows operating system, where deleted files are moved before they’re
deleted from the system. The biggest difference is that the deleted table is
automatically purged of records after a transaction is complete whereas the
Recycle Bin must be purged manually.

83492book.book Page 36 Friday, September 15, 2006 9:28 AM

37

Suppose you want to keep your users from deleting customers who have more than
$10,000 in credit with your company. Without a DELETE trigger in place, a user could suc-
cessfully delete any record they wanted, regardless of the amount of credit the customer had.
With a DELETE trigger in place, however, SQL Server places the record in question in the
deleted table, so you can still reference the credit limit column and base the success of the
transaction on the value therein.

In this task, you will create a DELETE trigger that prevents users from deleting customers
based in Arizona.

Scenario

You have created a database for your sales department that contains information about orders
customers have placed. One of your biggest customers is in Arizona, and they have recently
had to stop placing regular orders with you, which makes them look inactive. Your sales man-
ager is concerned that someone new may accidentally delete important information about this
customer, and she has asked you to prevent that from happening. You have decided that the
best way to accomplish this is by using a trigger on the Customers table.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers table you created in Task 1.4.

Caveat

When executing a trigger, SQL Server uses two special tables named inserted and deleted. The
inserted table holds new records that are about to be added to the table, and the deleted table
holds records that are about to be removed. You will be using the deleted table in this task.

Procedure

In this task, you will create a DELETE trigger that prevents users from deleting customers based
in Arizona.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Products table you created in Task 1.4.

Task 1.9: Designing and Creating a DELETE Trigger

83492book.book Page 37 Friday, September 15, 2006 9:28 AM

38 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Details

Follow these steps to create the new AZDel trigger:

1. In Object Explorer, expand your server, and then expand Databases � Sales � Tables �
dbo.Orders.

2. Right-click the Triggers folder, and select New Trigger.

3. In the Transact-SQL syntax box, enter and execute the following code to create the
trigger:

CREATE TRIGGER dbo.AZDel

 ON dbo.Customers

 FOR DELETE

AS

BEGIN

IF (SELECT state FROM deleted) = ‘AZ’

BEGIN

PRINT ‘Cannot remove customers from AZ’

PRINT ‘Transaction has been cancelled’

ROLLBACK

END

END

GO

4. Close the query window.

Criteria for Completion

This task is complete when you have a trigger that prevents you from deleting customers who
reside in Arizona. To test your new trigger, follow these steps:

1. Open a new SQL Server query, and execute the following code to verify you have
customers from Arizona (for example, Janice Thomas should be in Arizona):

USE Sales

SELECT * FROM customers

2. To cause the DELETE trigger to fire, try to delete Janice from the Customers table. To do
this, open a new query, and enter and execute the following code (you should see an error
message upon execution):

USE Sales

DELETE from Customers

WHERE Lname = 'Thomas'

83492book.book Page 38 Friday, September 15, 2006 9:28 AM

39

3. To verify that Janice has not been deleted, enter and execute the following code (you
should still see Janice):

USE Sales

SELECT * FROM customers

4. Close the query window.

Task 1.10: Designing and Creating an
UPDATE Trigger
As discussed in the previous task, a trigger is a collection of SQL statements that fires when a
user performs an action against a record in a table. An UPDATE trigger fires when a user exe-
cutes an UPDATE statement against a table.

What makes this type of trigger unique is that it uses the same functionality as both DELETE
and INSERT triggers. When an UPDATE statement is executed, SQL Server actually deletes the
record in question from the table and holds it in the deleted table; it then inserts a new record
in the table and holds a duplicate copy in the inserted table. So, both the inserted and updated
tables are available to UPDATE triggers.

Task 1.10: Designing and Creating an UPDATE Trigger

83492book.book Page 39 Friday, September 15, 2006 9:28 AM

40 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

In this task, you will create an UPDATE trigger that prevents users from overselling a product
in the Products table of the Sales database. If a user tries to do so, you will use the RAISERROR()
command to write an event to the Windows event log.

Scenario

You have created a database for your sales department that contains product information.
Some of the new sales personnel have accidentally oversold some product, and the sales man-
ager has asked you for a technical means to prevent this in the future. You have decided to
put a trigger in place that prevents users from selling any amount of product that will set the
InStock column to a negative value. If they try to execute such a transaction, you have opted
to use the RAISERROR() command to write an event to the Windows event log for tracking
and reporting purposes.

Scope of Task

Duration

This task should take approximately 30 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Products table you created in Task 1.4.

Caveat

When executing a trigger, SQL Server uses two special tables named inserted and deleted.
The inserted table holds new records that are about to be added to the table, and the
deleted table holds records that are about to be removed. You will be using the inserted
table in this task.

Procedure

In this task, you will create a trigger that prevents users from updating a record in the Prod-
ucts table if that update would set the InStock column to a negative amount. If they try to
execute such a query, you will use the RAISERROR() command to write an event to the Win-
dows event log.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Products table you created in Task 1.4.

83492book.book Page 40 Friday, September 15, 2006 9:28 AM

41

Details

Follow these steps to create the new CheckStock trigger:

1. Expand your server, and then expand Databases � Sales � Tables � dbo.Products.

2. Right-click the Triggers folder, and select New Trigger.

3. In the Transact-SQL syntax box, enter and execute the following code to create the trigger:

CREATE TRIGGER dbo.CheckStock

 ON dbo.Products

 FOR UPDATE

AS

BEGIN

 IF (SELECT InStock from inserted) < 0

 BEGIN

 PRINT 'Cannot oversell Products'

 PRINT 'Transaction has been cancelled'

 ROLLBACK

 RAISERROR('Cannot oversell products', 10, 1) WITH LOG

 END

END

GO

4. Close the query window.

Criteria for Completion

This task is complete when you have a trigger that prevents you from entering a negative value
in the InStock column of the Products table in the Sales database and also writes an event to
the Windows event log if you try. To test your new trigger, follow these steps:

1. Open a new SQL Server query, and execute the following code to verify the quantity in
stock on available products (product ID 2 should have 545 in stock currently):

USE Sales

SELECT prodid, instock FROM Products

2. To cause the UPDATE trigger to fire, you’ll try to sell 600 units of product ID 2 (wool blan-
kets) to a customer. Open a new SQL Server query, and enter and execute the following
code (you should see an error message upon execution):

USE Sales

UPDATE Products

SET InStock = (Instock – 600)

WHERE prodid = 2

Task 1.10: Designing and Creating an UPDATE Trigger

83492book.book Page 41 Friday, September 15, 2006 9:28 AM

42 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

3. To verify that the transaction was disallowed and that you still have 545 wool blankets
in stock, click the New Query button, and enter and execute the following code (you
should still see 545 of product ID 2):

USE Sales

SELECT prodid, instock FROM Products

4. Now, open Event Viewer, and look in the Application log for the event written by
RAISERROR().

5. Close the query window.

83492book.book Page 42 Friday, September 15, 2006 9:28 AM

43

Task 1.11: Designing and Creating an
INSTEAD OF Trigger
In Task 1.6, I discussed views, which you can use to display only a few of the columns in a
table, only a subset of the rows in a table, or data from more than one table at a time. This
works great when you want to see just the data, but you can have problems when you try to
modify data through a view.

Because views may not display all the columns in a table, data modification statements can
fail. For example, suppose you have a Customers table like the one in your Sales database that
contains customer information such as name, address, city, state, ZIP code, and so on. Then
suppose you have created a view that displays all the columns except the City field. If you try
to update the Customers table through the new view, the update will fail because the City field
(which is a required field) is not available through the view. Using an INSTEAD OF trigger can
make this type of update successful.

In this task, you will create an INSTEAD OF trigger that can insert a value that is not avail-
able through a view into a table. To accomplish this, you will first create a view that does not
display the City column (which is a required column for updates), and then you will try to
update through this column. Next you will create an INSTEAD OF trigger that can insert the
missing value for you, after which you will try the insert again.

Scenario

You have created a database for your sales department with a table that contains customer infor-
mation. Your sales manager has asked you to make it easier for sales representatives to find the
customer data they need, so you have decided to create a view that displays only the necessary
data. You need to make sure the sales representatives can insert new data through the view, and
because the view does not show all the required columns, you need to create an INSTEAD OF trig-
ger to modify the INSERT statement so that INSERT statements on the view will succeed.

Scope of Task

Duration

This task should take approximately 30 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers table you created in Task 1.4.

Caveat

This task doesn’t have any caveats.

Task 1.11: Designing and Creating an INSTEAD OF Trigger

83492book.book Page 43 Friday, September 15, 2006 9:28 AM

44 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Procedure

In this task, you will create a view that shows only a subset of columns from the Customers
table in the Sales database. Then you will create a trigger that intercepts an INSERT statement
and modifies the statement so that all required columns are filled in.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers table you created in Task 1.4.

Details

First, you need to create a view based on the Customers table that does not display the
City field (which is a required field for an INSERT). Follow these steps to create the PHX_
Customers view:

1. In SQL Server Management Studio, open a new query, and enter and execute the fol-
lowing code:

USE Sales

GO

CREATE VIEW PHX_Customers AS

SELECT fname, lname, address, state, zip, phone

FROM Customers

WHERE City = 'Phoenix'

2. To verify that the view displays only the columns you want, click the New Query button,
and enter and execute the following query:

USE Sales

SELECT * FROM PHX_Customers

83492book.book Page 44 Friday, September 15, 2006 9:28 AM

45

3. Now you will try to insert a new customer through the view. Select New Query with
Current Connection from the Query menu, and enter and execute the following code:

USE Sales

INSERT PHX_Customers

VALUES ('Timothy', 'Calunod', '123 Third', 'CA', '95023', '9252221212')

Next, you can create an INSTEAD OF trigger that inserts the missing value for you when you
insert through the view:

1. Expand your server, and then expand Databases � Sales � Views � dbo.PHX_Customers.

2. Right-click the Triggers folder, and select New Trigger.

3. In the Transact-SQL syntax box, enter and execute the following code to create the trigger:

CREATE TRIGGER Add_City ON PHX_Customers

INSTEAD OF INSERT

AS

DECLARE

 @FNAME VARCHAR(20),

 @LNAME VARCHAR(20),

 @ADDR VARCHAR(50),

 @CITY VARCHAR(20),

 @STATE NCHAR(2),

Task 1.11: Designing and Creating an INSTEAD OF Trigger

83492book.book Page 45 Friday, September 15, 2006 9:28 AM

46 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

 @ZIP CHAR(5),

 @PHONE CHAR(10)

SET @CITY = 'Phoenix'

SET @FNAME = (SELECT FNAME FROM INSERTED)

SET @LNAME = (SELECT LNAME FROM INSERTED)

SET @ADDR = (SELECT ADDRESS FROM INSERTED)

SET @STATE = (SELECT STATE FROM INSERTED)

SET @ZIP = (SELECT ZIP FROM INSERTED)

SET @PHONE = (SELECT PHONE FROM INSERTED)

INSERT CUSTOMERS

VALUES(@FNAME, @LNAME, @ADDR, @CITY, @STATE, @ZIP, @PHONE)

4. To test the trigger, enter and execute the same code from step 3 in the previous series of
steps:

USE Sales

INSERT PHX_Customers

VALUES ('Timothy', 'Calunod', '123 Third', 'CA', '95023', '9252221212')

83492book.book Page 46 Friday, September 15, 2006 9:28 AM

47

5. To verify that the data was inserted into the Customers table and that the City column
was populated, select New Query with Current Connection from the Query menu, and
enter and execute the following query:

USE Sales

SELECT * FROM Customers

6. Close the query windows.

Criteria for Completion

This task is complete when you have an INSTEAD OF trigger that intercepts an INSERT state-
ment on the PHX_Customers database and adds a value to insert into the City field.

Task 1.12: Designing and Creating a
User-Defined Function
A function is a grouping of Transact-SQL statements that you can reuse. SQL Server has a
large number of built-in functions, but these may not meet all of your needs. For this reason,
SQL Server gives you the ability to create your own functions, called user-defined functions,

Task 1.12: Designing and Creating a User-Defined Function

83492book.book Page 47 Friday, September 15, 2006 9:28 AM

48 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

to perform any tasks you may need. This is especially useful for performing complex calcula-
tions in your business logic. You can create several types of functions:
� Scalar functions return a single value or the type specified in the RETURN statement, such

as a single int value.
� Table-valued functions return a table datatype.
� CLR functions are special functions created using any language available in the .NET

Framework (that is, C# or Visual Basic .NET). These can return scalar or table values.

In this task, you will create a user-defined function that determines which customer has
placed the largest order for a given product.

Scenario

You have created a database for your sales department with a table that contains order infor-
mation. Your sales manager wants to know the largest number of items for a given product
on a single order. She wants to run this calculation every week, so you decide to create a user-
defined function for ease of use and management.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Orders and Customers tables you created
in Task 1.4.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will create a user-defined function that calculates the largest number of items
for a given product on a single order. First you will add some orders to the database, and then
you will create a function to calculate the sales; finally, you will verify the function.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Orders and Customers tables you created
in Task 1.4.

83492book.book Page 48 Friday, September 15, 2006 9:28 AM

Task 1.12: Designing and Creating a User-Defined Function 49

Details

First, you need to place some orders in the Orders table so the function has some data to work with:

1. Open a new SQL Server query, and execute the following code to insert some new records
in the Orders table:

USE Sales

INSERT Orders

VALUES (3,2,15,getdate())

GO

INSERT Orders

VALUES (1,2,10,getdate())

GO

INSERT Orders

VALUES (1,1,20,getdate())

GO

INSERT Orders

VALUES (4,3,25,getdate())

GO

2. To verify that the new orders exist, enter and execute this code in a new query window:

USE Sales

SELECT * FROM Orders

83492book.book Page 49 Friday, September 15, 2006 9:28 AM

50 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Next, you are ready to create a user-defined function to calculate the largest number of
items for a given product on a single order:

1. In SQL Server Management Studio, open a new query, and enter and execute the follow-
ing code:

USE Sales

GO

CREATE FUNCTION ItemOrderCount

 (@ProductID int)

RETURNS int

AS

BEGIN

 RETURN (SELECT MAX(Qty) FROM Orders WHERE ProdID = @ProductID)

END

I’m using the GO statement here because the CREATE FUNCTION statement must
be the first statement in a batch. GO separates the statements into separate
batches.

Criteria for Completion

This task is complete when you have created a function that tells you the largest amount of
items for a specific product placed on a single order. To test your function, execute this code
in a new query window:

USE Sales

GO

SELECT dbo.ItemOrderCount(1)

As shown in Figure 1.7, you should get a value of 20; this was the most items placed on a
single order for product ID 1.

Task 1.13: Designing and Creating a
Clustered Index
SQL Server stores data on the hard disk in 8KB pages inside the database files. By default, these
pages and the data they contain aren’t organized in any way. To bring order to this chaos, you
must create an index. You can create two types of indexes on a table: clustered and nonclustered.

83492book.book Page 50 Friday, September 15, 2006 9:28 AM

Task 1.13: Designing and Creating a Clustered Index 51

F I G U R E 1 . 7 The ItemOrderCount() function should return a value of 20 for product ID 1.

Clustered indexes physically rearrange the data that users insert in your tables. The arrange-
ment of a clustered index on disk is comparable to that in a dictionary, because they both use
the same storage paradigm. If you needed to look up a word in the dictionary—for example,
satellite—how would you do it? You would turn right to the S section of the dictionary and con-
tinue through the alphabetically arranged list until you found the word satellite. The process is
similar with a clustered index; a clustered index on a Lastname column would place Adams
physically before Burns in the database file. This way, SQL Server can more easily pinpoint the
exact data pages it wants.

It might help to visualize an index in SQL Server as an upside-down tree. In fact, the index
structure is called a B-tree (binary-tree) structure. At the top of the B-tree structure, you find
the root page; it contains information about the location of other pages further down the line
called intermediate-level pages. These intermediate pages contain yet more key values that can
point to still other intermediate-level pages or data pages. The pages at the bottom of a clus-
tered index, the leaf pages, contain the actual data, which is physically arranged on disk to
conform to the constraints of the index.

Because all the data is arranged physically in the database, clustered indexes
are a good choice when users search for a range of data.

83492book.book Page 51 Friday, September 15, 2006 9:28 AM

52 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

On a table without a clustered index in place (called a heap), new data is inserted at the
end of the table, which is the bottom of the last data page. If none of the data pages has any
room, SQL Server allocates a new extent and starts filling it with data. Because you’ve told
SQL Server to physically rearrange your data by creating a clustered index, SQL Server no
longer has the freedom to stuff data wherever it finds room. The data must physically be
placed in order. To accomplish this, you need to leave some room at the end of each data
page on a clustered index. This blank space is referred to as the fill factor. A higher fill factor
gives less room, and a lower fill factor gives more room. If you specify a fill factor of 70, for
example, the data page is filled with 70 percent data and 30 percent blank space. If you spec-
ify 100, the data page is filled to nearly 100 percent, having room for only one record at the
bottom of the page.

When you need to insert data into a page that has become completely full, SQL Server per-
forms a page split. This means SQL Server takes approximately half the data from the full page
and moves it to an empty page, thus creating two half-full pages, leaving plenty of room for
new data.

Because clustered indexes physically rearrange the data, you can have only
one clustered index per table.

In this task, you will create a clustered index on the Customers table of the Sales database.

Scenario

You have created a database for your sales department with a table that contains customer
information. Your sales representatives have started complaining about slow access times.
You know that the sales representatives look up customers based on their ZIP codes quite
often, so you decide to create a clustered index on the Zip column of the Customers table to
improve data access times.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers tables you created in Task 1.4.

83492book.book Page 52 Friday, September 15, 2006 9:28 AM

Task 1.13: Designing and Creating a Clustered Index 53

Caveat

Because this is just a test system and Customers is a small table with little data, you will not
see a significant improvement in data access time.

Procedure

In this task, you will create a clustered index on the Customers table based on the Zip
column.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers table you created in Task 1.4.

Details

To create the new idx_cl_Zip clustered index, follow these steps:

1. Open SQL Server Management Studio, and connect using Windows Authentication.

2. In Object Explorer, expand your server, and then expand Databases � Sales � Tables �
dbo.Customers.

3. Right-click Indexes, and select New Index.

4. In the Index name box, enter idx_cl_Zip.

5. Select Clustered for the index type.

6. Click the Add button next to the Index Key Columns grid.

7. Check the box next to the Zip column.

83492book.book Page 53 Friday, September 15, 2006 9:28 AM

54 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

8. Click OK to return to the New Index dialog box.

9. Click OK to create the index.

Criteria for Completion

This task is complete when you have a clustered index on the Zip column of the Customers
table in the Sales database. To verify that the index is there, expand Databases � Sales �
Tables � dbo.Customers � Indexes, and you should see the idx_cl_Zip index listed, as shown
in Figure 1.8.

Task 1.14: Designing and Creating a
Nonclustered Index
Like its clustered cousin, a nonclustered index is a B-tree structure having a root page, inter-
mediate levels, and a leaf level. However, two major differences separate the index types. The
first is that the leaf level of the nonclustered index doesn’t contain the actual data; it contains
pointers to the data stored in data pages. The second big difference is that the nonclustered
index doesn’t physically rearrange the data. It functions more like the index at the back of a
topically arranged book.

83492book.book Page 54 Friday, September 15, 2006 9:28 AM

Task 1.14: Designing and Creating a Nonclustered Index 55

F I G U R E 1 . 8 The new idx_cl_Zip clustered index shows up in Object Explorer after it has
been created.

When you search for data on a table with a nonclustered index, SQL Server first queries the
sysindexes table looking for a record that contains your table name and a value in the indid
column from 2 to 251 (0 denotes a heap, and 1 is for a clustered index). Once SQL Server finds
this record, it looks at the root column to find the root page of the index (just like it did with
a clustered index). Once SQL Server has the location of the root page, it can begin traversing
the B-tree in search of your data.

If you’re searching a nonclustered index that is based on a heap (a table with no clustered
index in place), SQL Server uses the pointer in the leaf-level page to jump right to the data page
and return your data.

If your table has a clustered index in place, the nonclustered index leaf level contains a
pointer to the clustered index key value. This means once SQL Server is done searching your
nonclustered index, it has to traverse your clustered index as well. SQL Server searches two
indexes because it can actually be faster when you consider how data is updated through a
nonclustered index.

When inserting data using a nonclustered index on a heap, SQL Server inserts the data
wherever it finds room and adds a new key value that points to the new record of the associ-
ated index pages.

When you insert data into a table with a nonclustered index and a clustered index in place,
SQL Server physically inserts the data where it belongs in the order of the clustered index and

83492book.book Page 55 Friday, September 15, 2006 9:28 AM

56 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

updates the key values of the nonclustered index to point to the key values of the clustered
index. When one of the data pages becomes full and you still have more data to insert, a page
split occurs, which is why the key values of the nonclustered index point to the clustered index
instead of the data pages themselves.

When you’re using a nonclustered index without a clustered index in place, each index page
contains key values that point to the data. This pointer contains the location of the extent, as
well as the page and record number of the searched-for data. If a page split occurred and the
nonclustered index didn’t use clustered index key values, then all the key values for the data
that had been moved would be incorrect because all the pointers would be wrong. The entire
nonclustered index would need to be rebuilt to reflect the changes. However, because the non-
clustered index references the clustered index key values (not the actual data), all the pointers
in the nonclustered index will be correct even after a page split has occurred, and the nonclus-
tered index won’t need to be rebuilt. That is why you reference the key values of a clustered
index in a nonclustered index.

You can have 249 nonclustered indexes per table, though in practice you will
not have nearly that many.

In this task, you will create a nonclustered index on the Customers table of the Sales
database.

Scenario

You have created a database for your sales department with a table that contains customer
information. You want to make sure data access is as fast as possible. After some investigation,
you have discovered that your sales representatives consistently search for customer informa-
tion by searching for a last name. Because they search only for a single record at a time, you
decide to create a nonclustered index on the Lname column of the Customers table to improve
data access times.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers table you created in Task 1.4.

83492book.book Page 56 Friday, September 15, 2006 9:28 AM

Task 1.14: Designing and Creating a Nonclustered Index 57

Caveat

Because this is just a test system and Customers is a small table with little data, you will not
see a significant improvement in data access time.

Procedure

In this task, you will create a nonclustered index on the Customers table based on the Zip
column.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the Sales database you created in Task 1.3, and the Customers table you created in Task 1.4.

Details

To create the new idx_ncl_Lname nonclustered index, follow these steps:

1. Open SQL Server Management Studio, and connect using Windows Authentication.

2. In Object Explorer, expand your server, and then expand Databases � Sales � Tables �
dbo.Customers.

3. Right-click Indexes, and select New Index.

4. In the Index Name box, enter idx_ncl_Lname.

5. Select Nonclustered for the index type.

6. Click the Add button next to the Index Key Columns grid.

7. Check the box next to the Lname column.

83492book.book Page 57 Friday, September 15, 2006 9:28 AM

58 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

8. Click OK to return to the New Index dialog box.

9. Click OK to create the index.

Criteria for Completion

This task is complete when you have a nonclustered index on the Lname column of the Cus-
tomers table in the Sales database, as shown in Figure 1.9. To verify that the index is there,
expand Databases � Sales � Tables � dbo.Customers � Indexes, and you should see the
idx_ncl_Lname index listed.

Task 1.15: Designing and Creating
a Full-Text Index
Databases are excellent containers for all sorts of data, including massive amounts of text.
Many companies, in fact, have entire libraries of corporate documents stored in their data-
bases. New datatypes, such as nvarchar(max), were devised to store such large amounts of
text. Because the standard SELECT statement wasn’t designed to handle such large amounts of
text, something else had to be devised—something more robust. Enter full-text search.

83492book.book Page 58 Friday, September 15, 2006 9:28 AM

Task 1.15: Designing and Creating a Full-Text Index 59

F I G U R E 1 . 9 The new idx_ncl_Lname nonclustered index shows up in Object Explorer
after it has been created.

Full-text search is a completely separate program that runs as a service (called the SQL
Server FullText Search service, or msftesq) and can index all sorts of information from most
of the BackOffice (or even non-Microsoft) products. Thus, when you perform a full-text
search, you are telling SQL Server to make a request of the FullText Search service. To per-
form a full-text search, you need only use the CONTAINS, CONTAINSTABLE, FREETEXT, or
FREETEXTTABLE clause in your SELECT query.

You can find a detailed discussion of CONTAINS, CONTAINSTABLE, FREETEXT, and
FREETEXTTABLE in Mastering SQL Server 2005 (Sybex, 2006).

Before you can start using this powerful tool, you need to configure it. The first step you
need to take is to create a full-text index. You create full-text indexes with SQL Server tools,
such as SQL Server Management Studio, but you maintain them with the FullText Search
service; and they are stored on the disk as files separate from the database. To keep the full-
text indexes organized, they are stored in catalogs in the database. You can create as many
catalogs in your databases as you’d like to organize your indexes, but these catalogs cannot
span databases.

83492book.book Page 59 Friday, September 15, 2006 9:28 AM

60 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

In this task, you will create a full-text index on the Production.Document table of the
AdventureWorks database.

Scenario

One of the databases that your company has been using for some time contains a table that
stores large documents. Your users have been using standard SELECT statements to access the
documents in this table, but that method is proving too slow now that the table is starting to
grow. You want to make sure users can query the table and get results as quickly and easily
as possible, so you decide to create a full-text index on the table.

Scope of Task

Duration

This task should take approximately 20 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the AdventureWorks database that is installed with the sample data.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will create a full-text catalog and index on the Production.Document table of
the AdventureWorks database.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the AdventureWorks database that is installed with the sample data.

Details

To create the new full-text catalog and index on the Production.Document table, follow
these steps:

1. Open SQL Server Management Studio, and in Object Explorer, expand Databases �
AdventureWorks � Tables.

2. Right-click Production.Document, move to Full-Text Index, and click Define Full-Text
Index.

83492book.book Page 60 Friday, September 15, 2006 9:28 AM

Task 1.15: Designing and Creating a Full-Text Index 61

3. On the first screen of the Full-Text Indexing Wizard, click Next.

4. Each table on which you create a full-text index must already have a unique index asso-
ciated with it for the FullText Search service to work. In this instance, select the default
PK_Document_DocumentID index, and click Next.

5. On the next screen, you are asked which column you want to full-text index. Document-
Summary is the only nvarchar(max) column in the table, so it is the best candidate; select
the box next to it, and click Next.

83492book.book Page 61 Friday, September 15, 2006 9:28 AM

62 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

6. On the next screen, you are asked when you want changes to the full-text index applied:
� Automatically means the full-text index is updated with every change made to the

table. This is the fastest, least-hassle way to keep full-text indexes up-to-date, but it can
tax the server because it means the changes to the table and index take place all at once.

� Manually means changes to the underlying data are maintained, but you will have to
schedule index population yourself. This is a slightly slower way to update the index,
but it is not as taxing on the server because changes to the data are maintained but the
index is not updated immediately.

� Do Not Track Changes means changes to the underlying data are not tracked. This is
the least taxing, and slowest, way to update the full-text index. Changes are not main-
tained, so when the index is updated, the FullText Search service must read the entire
table for changes before updating the index.

7. Choose Automatically, and click Next.

8. The next screen asks you to select a catalog. You’ll need to create one here, because you
don’t have any available. In the Name field, enter AdventureWorks Catalog. You can also
select a filegroup to place the catalog on; leave this as default, and click Next.

83492book.book Page 62 Friday, September 15, 2006 9:28 AM

Task 1.15: Designing and Creating a Full-Text Index 63

9. On the next screen, you are asked to create a schedule for automatically repopulating the
full-text index. If your data is frequently updated, you will want to do this more often,
maybe once a day. If it is read more often than it is changed, you should repopulate less
frequently. You can schedule population for a single table or an entire catalog at a time.
Here, you will set repopulation to happen just once for the entire catalog by clicking the
New Catalog Schedule button.

10. On the New Schedule Properties screen, enter Populate AdventureWorks, and click OK.

11. When you are taken back to the Full-Text Indexing Wizard, click Next.

12. On the final screen of the wizard, you are given a summary of the choices you have made.
Click Finish to create the index.

Criteria for Completion

This task is complete when you have a full-text index on the Production.Document table of the
AdventureWorks database. To verify that the index is there, follow these steps:

1. To see your new catalog and index, in Object Explorer expand AdventureWorks �
Storage � Full Text Catalogs.

83492book.book Page 63 Friday, September 15, 2006 9:28 AM

64 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

2. Double-click the AdventureWorks catalog to open its properties.

Task 1.16: Creating a Windows Login
It is vitally important to protect the information stored in your databases. Realizing this, the
team at Microsoft implemented a world-class security system in SQL Server 2005. The foun-
dation of this security system is the login. Two types of logins exist: Windows and Standard.
To fully understand how they work, you need to know about authentication modes.

An authentication mode is how SQL Server processes usernames and passwords. SQL
Server 2005 provides two such modes: Windows Authentication mode and Mixed mode.

In Windows Authentication mode, a user can sit down at her computer, log in to the Win-
dows domain, and gain access to SQL Server using the Kerberos security protocol. Although
an in-depth discussion of Kerberos is beyond the scope of this book, here is a brief overview
of how this security protocol works:

1. When the user logs in, Windows performs a DNS lookup to locate a Key Distribution
Center (KDC).

2. The user’s machine logs in to the domain.

3. The KDC issues a special security token called a Ticket Granting Ticket (TGT) to the user.

4. To access the SQL Server, the user’s machine presents the TGT to the SQL Server; if the
ticket is accepted, the user is allowed access.

83492book.book Page 64 Friday, September 15, 2006 9:28 AM

Task 1.16: Creating a Windows Login 65

The main advantage of Windows Authentication mode is that users don’t have to remem-
ber multiple usernames and passwords. This mode also allows you to apply Windows pass-
word policies, which perform such tasks as expire passwords, require a minimum length for
passwords, keep a history of passwords, and so on.

One of the disadvantages is that only users with Windows accounts can open a trusted con-
nection to SQL Server. This means someone like a Novell client can’t use Windows Authen-
tication mode because they don’t have a Windows account. If it turns out that you have such
clients, you’ll need to implement Mixed mode.

Mixed mode allows both Windows Authentication and SQL Server Authentication. SQL
Server Authentication works as follows:

1. A user logs in to his network, Windows or otherwise.

2. The user opens a nontrusted connection to SQL Server using a username and password
other than those used to gain network access. It’s called a nontrusted connection because
SQL Server doesn’t trust the operating system to verify the user’s password.

3. SQL Server matches the username and password entered by the user to an entry in the
syslogins table.

The primary advantage is that anyone—Mac users, Novell users, Unix users, and the like—
can gain access to SQL Server using Mixed mode. You could also consider this to be a second
layer of security, because if someone hacks into the network in Mixed mode, it doesn’t mean
they have automatically hacked into SQL Server at the same time.

Ironically, multiple passwords can be a problem as well as an advantage. When users have
multiple sets of credentials, they tend to write them down and thus breach the security system
you have worked so hard to create.

In this task, you will create Windows logins for several Windows user and group
accounts.

Scenario

You have just installed a new SQL Server at your company, and you need to make sure the
right people have access. Some of these users will be using Windows accounts, so you have
decided to create Windows logins in SQL Server for these users.

Scope of Task

Duration

This task should take approximately 90 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in
Task 1.1.

83492book.book Page 65 Friday, September 15, 2006 9:28 AM

66 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Caveat

You will need administrative access to the machine you will be using for this task, because you
will be creating new groups and user accounts on the machine. This task also works best if per-
formed on Windows 2003.

Procedure

In this task, you will create several Windows user and group accounts and then create Windows
logins for these accounts in SQL Server.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1.

Details

You need to create the Windows user and group accounts in Computer Management (or
Active Directory Users and Computers if you are in a domain with Domain Admin rights):

1. Open Computer Management in the Administrative Tools group under Programs on
the Start menu, expand Local Users and Groups, click Users, and then select Action �
New User.

2. Create six new users with the criteria in the following list:

3. While in Computer Management, create a Local group called Accounting.

4. Add the new users you just created whose Description value is Accounting.

5. While still in Computer Management, create a Local group named Sales.

6. Add all the users whose Description value is Sales.

7. Open Local Security Policy from the Administrative Tools group under Programs on the
Start menu.

8. Expand Local Policies, and click User Rights Assignment.

Username Description Password Must Change Never Expires

MorrisL IT Password1 Deselect Select

RosmanD Administration Password1 Deselect Select

JohnsonK Accounting Password1 Deselect Select

JonesB Accounting Password1 Deselect Select

ChenJ Sales Password1 Deselect Select

SamuelsR Sales Password1 Deselect Select

83492book.book Page 66 Friday, September 15, 2006 9:28 AM

Task 1.16: Creating a Windows Login 67

9. Double-click the Allow Log on Locally right, and click Add User or Group.

10. Select the Everyone group, click OK, and then click OK again (on a production machine
this is not a best practice; this is only for this exercise).

11. Close the Local Policies tool, and open SQL Server Management Studio.

With your user accounts and groups created, you’re ready to create Windows logins for
these accounts in SQL Server:

1. Open SQL Server Management Studio, expand your server, and then expand Security �
Logins.

2. Right-click Logins, and select New Login.

3. In the Login Name box, enter Sqldomain\Accounting (the name of the Local group
created earlier).

4. Under Defaults, select AdventureWorks as the default database.

5. On the User Mapping page, select the Map check box next to AdventureWorks to give
your user access to the default database.

6. Click OK to create the login.

7. Right-click Logins, and select New Login.

8. In the Login Name box, enter Sqldomain\Sales (the name of the Local group created earlier).

9. Under Defaults, select AdventureWorks as the default database.

83492book.book Page 67 Friday, September 15, 2006 9:28 AM

68 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

10. On the User Mapping page, select the Map check box next to AdventureWorks to give
your user access to the default database.

11. Click OK to create the login.

12. Right-click Logins, and select New Login.

13. Enter Sqldomain\RosmanD in the Login Name field.

14. Under Defaults, select AdventureWorks as the default database.

15. On the User Mapping page, select the Permit check box next to AdventureWorks to give
your user access to the default database.

16. Click OK to create the login.

17. Right-click Logins, and select New Login.

18. Enter Sqldomain\MorrisL in the Login Name field.

19. Under Defaults, select AdventureWorks as the default database.

20. On the User Mapping page, select the Permit check box next to AdventureWorks to give
your user access to the default database.

21. Click OK to create the login.

Criteria for Completion

This task is complete when you have successfully created the Windows login accounts speci-
fied in the task. To test this, first you’ll log in as a member of one of the groups you created,
and then you’ll log in as a specific user:

1. Log out of Windows, and log back in as JonesB.

2. Open a new SQL Server query in SQL Server Management Studio, and select Windows
Authentication from the Authentication drop-down list.

3. Close SQL Server Management Studio, log out of Windows, and log back in as RosmanD.

4. Open a new SQL Server query in SQL Server Management Studio, and select Windows
Authentication from the Authentication drop-down list.

Task 1.17: Creating a Standard Login
In Task 1.16, you learned that only clients with a Windows account can make trusted con-
nections to SQL Server (where SQL Server trusts Windows to validate the user’s password).
If the user (such as a Macintosh or Novell client) for whom you’re creating a login can’t make
a trusted connection, you must create a Standard login for them. In this task, you’ll create two
Standard logins that you’ll use later in the phase.

83492book.book Page 68 Friday, September 15, 2006 9:28 AM

Task 1.17: Creating a Standard Login 69

 Although you can create Standard logins in Windows Authentication mode,
you won’t be able to use them. If you try, SQL Server will ignore you and use
your Windows credentials instead.

Scenario

You have just installed a new SQL Server at your company, and you need to make sure the
right people have access. Some of these users run Macintosh and Linux, and they do not have
Windows accounts, so you must create Standard logins in SQL Server for these users.

Scope of Task

Duration

This task should take approximately 30 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will create two Standard logins in SQL Server.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1.

Details

Follow these steps to create the Standard logins in SQL Server:

1. Open SQL Server Management Studio, and expand your server by clicking the + sign next
to the icon named after your server.

2. Expand Security, and then expand Logins.

3. Right-click Logins, and select New Login.

4. Select the SQL Server Authentication radio button.

83492book.book Page 69 Friday, September 15, 2006 9:28 AM

70 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

5. In the Name box, enter SmithB.

6. In the Password text box, enter Password1 (remember, passwords are case sensitive).

7. In the Confirm Password text box, enter Password1 again.

8. Under Defaults, select AdventureWorks as the default database.

9. Uncheck the User Must Change Password at Next Login box.

10. On the User Mapping page, select the Map check box next to AdventureWorks to give
your user access to the default database.

11. Click OK to create your new login.

12. Right-click Logins, and select New Login.

13. Select the SQL Server authentication radio button.

14. In the Name box, enter GibsonH.

15. In the Password text box, enter Password1.

16. In the Confirm Password text box, enter Password1.

17. Under Defaults, select AdventureWorks as the default database.

18. Uncheck the User Must Change Password at Next Login box.

19. Do not select the Permit check box next to AdventureWorks on the User Mapping page.
You’ll create a database user account later in this phase.

20. Click OK to create your new login.

83492book.book Page 70 Friday, September 15, 2006 9:28 AM

Task 1.18: Assigning Logins to Fixed Server Roles 71

Criteria for Completion

This task is complete when you have successfully created the Standard login accounts specified
in the task. To test this, follow these steps:

1. To test the SmithB login, click the New Query button in SQL Server Management Studio.

2. On the Query menu, hover over Connection, and then click Change Connection.

3. In the dialog box that opens, select SQL Server Authentication from the Authentication
drop-down list.

4. In the Login Name box, enter SmithB.

5. In the Password box, enter Password1.

6. Click Connect to connect to AdventureWorks.

Task 1.18: Assigning Logins to
Fixed Server Roles
You need to make sure your users have only the permissions they need once they are logged
in to SQL Server. You can accomplish this goal by assigning logins to fixed server roles, which
are specifically designed to allow you to limit the amount of administrative access that a user
has once logged in to SQL Server. Some users may be allowed to do whatever they want; other
users may be able to manage security only. You can assign users any of eight server roles. The
following list starts at the highest level and describes the administrative access granted:

Sysadmin Members of the sysadmin role have the authority to perform any task in SQL Server.
Be careful whom you assign to this role, because people who are unfamiliar with SQL Server can
accidentally create serious problems. This role is only for the database administrators (DBAs).

Serveradmin These users can set serverwide configuration options, such as how much mem-
ory SQL Server can use or how much information to send over the network in a single frame.
They can also shut down the server. If you make your assistant DBAs members of this role, you
can relieve yourself of some of the administrative burden.

83492book.book Page 71 Friday, September 15, 2006 9:28 AM

72 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Setupadmin Members here can install replication and manage extended stored procedures
(these are used to perform actions not native to SQL Server). Give this role to the assistant
DBAs as well.

Securityadmin These users manage security issues such as creating and deleting logins, read-
ing the audit logs, and granting users permission to create databases. This too is a good role
for assistant DBAs.

Processadmin SQL Server is capable of multitasking; that is, it can do more than one task at
a time by executing multiple processes. For instance, SQL Server might spawn one process for
writing to cache and another for reading from cache. A member of the processadmin group
can end (or kill, as it’s called in SQL Server) a process. This is another good role for assistant
DBAs and developers. Developers especially need to kill processes that may have been trig-
gered by an improperly designed query or stored procedure.

Dbcreator These users can create and make changes to databases. This may be a good role
for assistant DBAs as well as developers (who should be warned against creating unnecessary
databases and wasting server space).

Diskadmin These users manage files on disk. They perform tasks such as mirroring data-
bases and adding backup devices. Assistant DBAs should be members of this role.

Bulkadmin Members of this role can execute the BULK INSERT statement, which allows
them to import data into SQL Server databases from text files. Assistant DBAs should be
members of this role.

If you don’t want users to have any administrative authority, don’t assign
them to a server role. This limits them to being normal users.

Builtin\Administrators is automatically made a member of the sysadmin
server role, giving SQL Server administrative rights to all your Windows
administrators. Because not all your Windows administrators should have
these rights, you may want to create a SQLAdmins group in Windows, add
your SQL Server administrators to that group, and make the group a member
of the sysadmin role. Afterward, you should remove Builtin\Administrators
from the sysadmin role.

In this task, you will assign two of the logins you created in the previous two tasks to fixed
server roles, thereby limiting their administrative authority.

Scenario

You have just created several new logins on your SQL Server so your users can access the sys-
tem. You need to ensure that these accounts have the right amount of administrative access,
so you have decided to assign two of these logins to fixed server roles.

83492book.book Page 72 Friday, September 15, 2006 9:28 AM

Task 1.18: Assigning Logins to Fixed Server Roles 73

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the logins you created in Tasks 1.16 and 1.17.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will assign two of the logins you created to fixed server roles to limit their
administrative access.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the logins you created in Tasks 1.16 and 1.17.

Details

Follow these steps to assign the logins to fixed server roles:

1. Open SQL Server Management Studio by selecting it from the SQL Server 2005 group
under Programs on the Start menu, expand Security, and expand Server Roles.

2. Double-click the Sysadmin server role to open its properties.

3. Click Add, click Browse, select the check box next to SqlDomain\MorrisL, click OK, and
then OK again.

4. MorrisL should now appear in the Role Members list.

83492book.book Page 73 Friday, September 15, 2006 9:28 AM

74 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

5. Click OK to exit the Server Role Properties dialog box.

6. Double-click Serveradmin Server Role Properties.

7. Click Add, enter GibsonH, and click OK.

8. Click OK to exit the Server Role Properties dialog box.

Criteria for Completion

This task is complete when you have successfully added MorrisL to the sysadmins fixed server
role (as shown in Figure 1.10) and GibsonH to the serveradmin fixed server role (as shown in
Figure 1.11).

F I G U R E 1 . 1 0 MorrisL should show up in the sysadmins Role Members list.

F I G U R E 1 . 1 1 GibsonH should show up in the serveradmin Role Members list.

83492book.book Page 74 Friday, September 15, 2006 9:28 AM

Task 1.19: Creating a Database User Mapping 75

Task 1.19: Creating a Database
User Mapping
Once you have created logins for your users so they can access SQL Server, you need to give
them access to databases once they have logged in. You do so by creating database user
mappings and then assigning permissions to those user mappings (I discuss permissions
later in this book).

If you’ve looked at the existing database security, you may have noticed that two user
mappings already exist in your databases when they are first created: DBO and guest. Mem-
bers of the sysadmin fixed server role automatically become the database owner (DBO) user
in every database on the system. In this way, they can perform all the necessary administrative
functions in the databases, such as adding users and creating tables. The guest user is a catch-
all database user mapping for people who have a SQL Server login but not a user account in
the database. These users can log in to the server as themselves and access any database where
they don’t have a user mapping. The guest account should be limited in function, because
anybody with a SQL Server login can use it.

In this task, you will create a database user mapping for GibsonH to access the Adventure-
Works database.

Scenario

You have just created several new logins on your SQL Server so your users can access the sys-
tem. You didn’t create user mappings for all the logins, though, so you need to create a user
mapping for GibsonH to access the AdventureWorks database.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the GibsonH login you created in Task 1.17.

Caveat

This task doesn’t have any caveats.

83492book.book Page 75 Friday, September 15, 2006 9:28 AM

76 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Procedure

In this task, you will create a user mapping for GibsonH to access the AdventureWorks database.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the GibsonH login you created in Task 1.17.

Details

To create a user mapping for GibsonH in AdventureWorks, follow these steps:

1. Open SQL Server Management Studio, and expand your server.

2. Expand Databases by clicking the + sign next to the icon.

3. Expand the AdventureWorks database.

4. Expand Security, and click the Users icon.

5. Right-click Users, and select New User.

6. Click the ellipsis button next to the Login Name box, and click Browse. View all the
available names; note that only logins you’ve already created are available.

7. Select the check box next to GibsonH, and click OK twice.

8. Enter GibsonH in the User Name box and dbo in the Default Schema box.

9. Click OK to create the GibsonH database user account.

83492book.book Page 76 Friday, September 15, 2006 9:28 AM

Task 1.20: Assigning User Mappings to Fixed Database Roles 77

Criteria for Completion

This task is complete when you have successfully created a user mapping for GibsonH in the
AdventureWorks database, as shown in Figure 1.12.

F I G U R E 1 . 1 2 GibsonH should show up in Users list of the AdventureWorks database.

Task 1.20: Assigning User Mappings to
Fixed Database Roles
In SQL Server when several users need permission to access a database, it’s much easier to give
them all permissions as a group rather than try to manage each user separately. That is what
database roles are for—granting permissions to groups of database users, rather than granting
permissions to each database user separately. Three types of database roles exist: fixed, cus-
tom, and application.

Fixed database roles have permissions already applied; that is, all you have to do is add
users to these roles, and the users inherit the associated permissions. (This is different from

83492book.book Page 77 Friday, September 15, 2006 9:28 AM

78 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

custom database roles, as you’ll see later.) You can use several fixed database roles in SQL
Server to grant permissions:

db_owner Members of this role can do everything the members of the other roles can do as
well as some administrative functions.

db_accessadmin These users have the authority to say who gets access to the database by
adding or removing users.

db_datareader Members here can read data from any table in the database.

db_datawriter These users can add, change, and delete data from all the tables in the database.

db_ddladmin Data Definition Language (DDL) administrators can issue all DDL commands;
this allows them to create, modify, or change database objects without viewing the data inside.

db_securityadmin Members here can add and remove users from database roles, and they
can manage statement and object permissions.

db_backupoperator These users can back up the database.

db_denydatareader Members can’t read the data in the database, but they can make schema
changes (for example, add a column to a table).

db_denydatawriter These users can’t make changes to the data in the database, but they’re
allowed to read the data.

Public The purpose of this group is to grant users a default set of permissions in the database.
All database users automatically join this group and can’t be removed.

Because all database users are automatically members of the Public data-
base role, you need to be cautious about the permissions that are assigned
to the role.

In this task, you will add user mappings to fixed database roles.

Scenario

You have just created several new logins on your SQL Server and created user mappings for
them in the AdventureWorks database. You now need to make sure these users have only the
necessary permissions, so you need to add some of them to fixed database roles.

Scope of Task

Duration

This task should take approximately 15 minutes.

83492book.book Page 78 Friday, September 15, 2006 9:28 AM

Task 1.20: Assigning User Mappings to Fixed Database Roles 79

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1, the
GibsonH and SmithB logins you created in Task 1.17, the SmithB user mapping you created in
Task 1.17, and the GibsonH user mapping you created in Task 1.19.

Caveat

This task doesn’t have any caveats.

Procedure

In this task, you will add the SmithB user mapping to the db_denydatawriter fixed database
role and the GibsonH user mapping to the db_denydatareader fixed database role.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1, the
GibsonH and SmithB logins you created in Task 1.17, the SmithB user mapping you created in
Task 1.17, and the GibsonH user mapping you created in Task 1.19.

Details

To add these user mappings to the fixed database roles, follow these steps:

1. Open SQL Server Management Studio, expand your server, and then expand Databases �
AdventureWorks.

2. Expand Security, then Roles, and then Database Roles.

3. Right-click db_denydatawriter, and select Properties.

4. Click Add.

5. Enter SmithB in the Enter Object Names to Select box, and click OK.

83492book.book Page 79 Friday, September 15, 2006 9:28 AM

80 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

6. Click OK again to return to SQL Server Management Studio.

7. Right-click db_denydatareader, and select Properties.

8. Click Add.

9. Enter GibsonH in the Enter Object Names to Select box, and click OK. Then click OK again.

Criteria for Completion

This task is complete when you have successfully added the SmithB user mapping to the db_
denydatawriter fixed database role and the GibsonH user mapping to the db_denydatareader
fixed database role. Follow these steps to verify you have been successful:

1. Open a new SQL Server query in SQL Server Management Studio.

2. On the Query menu, hover over Connection, and then click Change Connection.

3. Select SQL Server Authentication from the Authentication list box.

4. In the User Name box, enter SmithB; in the Password box, enter Password1, and click
Connect.

5. Enter and execute the following query, which tries to update information in the Human-
Resources.Department table (it fails because SmithB is a member of the db_denydatawriter
role):

INSERT INTO HumanResources.Department (DepartmentID, Name, GroupName,
ModifiedDate) values (200, 'Test','TestGroup',GetDate())

83492book.book Page 80 Friday, September 15, 2006 9:28 AM

Task 1.21: Creating a Custom Database Role 81

6. On the Query menu, hover over Connection, and then click Change Connection.

7. Select SQL Server Authentication from the Authentication list box.

8. In the User Name box, enter GibsonH; in the Password box, enter Password1, and click
Connect.

9. Enter and execute the following query, which tries to read data from the Human-
Resources.Department table (it fails because GibsonH is a member of the db_
denydatareader role):

SELECT DepartmentID, Name, GroupName, ModifiedDate FROM
HumanResources.Department

10. Close the query window.

Task 1.21: Creating a Custom
Database Role
Although quite a few fixed database roles are at your disposal, they will not always meet your
security needs. For example, you may have several users who need Select, Update, and Execute
permissions in your database and nothing more. Because none of the fixed database roles give
that set of permissions, you need to create a custom database role. When you create this new

83492book.book Page 81 Friday, September 15, 2006 9:28 AM

82 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

role, you assign permissions to it and then assign users to the role; the users inherit whatever
permissions you assign to that role. That is different from the fixed database roles, where you
don’t need to assign permissions but just need to add users.

 You can make your custom database roles members of other database roles.
This is referred to as nesting roles.

In this task, you will create a custom database role, assign permissions to it, and add user
mappings to the new custom role.

Scenario

You have just created several new logins on your SQL Server and created user mappings for
them in the AdventureWorks database. You have added some of these users to fixed database
roles, but other users require combinations of permissions that none of the fixed database roles
offers. To assign the appropriate permissions to these users, you decide to create a custom data-
base role.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the AdventureWorks database, and the RosmanD login you created in Task 1.16.

Caveat

In the real world, you would not create a custom database role for just one user, and you
would grant more than a single permission.

Procedure

In this task, you will create a custom database role that grants the members permission to
select data from the HumanResources.Department table in the AdventureWorks database.
You will then add the RosmanD user mapping to the new custom database role.

83492book.book Page 82 Friday, September 15, 2006 9:28 AM

Task 1.21: Creating a Custom Database Role 83

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the AdventureWorks database, and the RosmanD login you created in Task 1.16.

Details

To create a new custom database role and add users to it, follow these steps:

1. Open SQL Server Management Studio, expand your server, and then expand Databases �
AdventureWorks.

2. Expand Security and then Roles.

3. Right-click Database Roles, and select New Database Role.

4. In the Role Name box, enter SelectOnly, and enter dbo in the Owner box.

5. Add Sqldomain\RosmanD to the Role Members list.

6. On the Securables page, click Add under the Securables list box, select the Specific Objects
radio button, and click OK.

7. Click the Objects Type button, select Tables, and click OK.

83492book.book Page 83 Friday, September 15, 2006 9:28 AM

84 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

8. Click Browse, select the HumanResources.Department check box, click OK, and then
click OK again.

9. In the Explicit Permissions for HumanResources.Department list, check the Grant check
box next to Select, and click OK.

10. Click OK to create the role and return to SQL Server Management Studio.

Criteria for Completion

This task is complete when you have successfully created a new custom database role, assigned
permissions, and added the RosmanD user mapping to the new role. Follow these steps to ver-
ify you have been successful:

1. Close all programs, log out of Windows, and log back in as RosmanD.

2. Open a new SQL Server query in SQL Server Management Studio, and connect using
Windows Authentication.

3. Notice that the following query succeeds because RosmanD is a member of the new
SelectOnly role:

USE AdventureWorks

SELECT * FROM HumanResources.Department

83492book.book Page 84 Friday, September 15, 2006 9:28 AM

Task 1.21: Creating a Custom Database Role 85

4. Now notice the failure of the next query because RosmanD is a member of a role that is
allowed to select only:

INSERT INTO HumanResources.Department (DepartmentID, [Name], GroupName,
ModifiedDate) values (200, 'Test','TestGroup',GetDate())

5. Close all programs, log out of Windows, and log back in as yourself.

83492book.book Page 85 Friday, September 15, 2006 9:28 AM

86 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Task 1.22: Creating an Application Role
Many companies have developed custom applications in-house for manipulating their data;
your company may have developed such an application. Such applications can take months,
or even years, to build and perfect, so it goes without saying that you want your employees to
use the custom application rather than find their own ways to modify the data. That is where
application roles come in to play.

An application role is a special role that is activated with a password. By implementing this
special role, your users can’t access data using just their SQL Server login and database
account; they must use the proper application. Here is how it works:

1. Create an application role, and assign it permissions.

2. Users open the approved application and are logged in to SQL Server.

3. To enable the application role, the application executes the sp_setapprole stored
procedure (which is written into the application at design time).

Once the application role is enabled, SQL Server no longer sees users as themselves; it sees
users as the application and grants them application role permissions.

In this task, you will create and assign permissions to an application role.

Scenario

Your company has written a custom application for manipulating data in one of your data-
bases. This application has taken hundreds of staff hours and has cost hundreds of thousands
of dollars, so management has insisted employees use this custom application to access the
database and nothing else. You have decided the best way to accomplish this goal is to create
an application role, which your developers can hard code into their application.

Scope of Task

Duration

This task should take approximately 15 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the AdventureWorks database.

Caveat

This task doesn’t have any caveats.

83492book.book Page 86 Friday, September 15, 2006 9:28 AM

Task 1.22: Creating an Application Role 87

Procedure

In this task, you will create an application role that grants the members permission to select
data from the HumanResources.Department table in the AdventureWorks database.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1
and the AdventureWorks database.

Details

To create an application role and assign permissions to it, follow these steps:

1. Open SQL Server Management Studio, and expand Databases � AdventureWorks �
Security.

2. Right-click Application Roles, and select New Application Role.

3. In the Role Name box, enter EntAppRole.

4. Enter dbo in the Default Schema box.

5. In the Password and Confirm Password boxes, enter Password1.

6. On the Securables page, click Add under the Securables list box, select the Specific Objects
radio button, and click OK.

83492book.book Page 87 Friday, September 15, 2006 9:28 AM

88 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

7. Click the Objects Type button, select Tables, and click OK.

8. Click Browse, select the HumanResources.Department check box, click OK, and then
click OK again.

9. In the Permissions for HumanResources.Department list, select the Grant check box next
to Select, and click OK to create the role.

Criteria for Completion

This task is complete when you have successfully created a new application role and assigned
permissions. Follow these steps to verify you have been successful:

1. Open a new SQL Server query in SQL Server Management Studio.

2. On the Query menu, hover over Connection, and click Change Connection.

3. Connect using SQL Authentication with GibsonH as the username and Password1 as the
password.

4. Enter and execute the following query. Notice that it fails because GibsonH has been
denied Select permissions because of membership in the db_denydatareader database role
(assigned in Task 1.20):

USE AdventureWorks

SELECT * FROM HumanResources.Department

83492book.book Page 88 Friday, September 15, 2006 9:28 AM

Task 1.23: Assigning Permissions 89

5. To activate the application role, execute the following query:

sp_setapprole @rolename='EntAppRole', @password='Password1'

6. Clear the query window, and execute the following query. Notice that the query is
successful this time. This is because SQL Server now sees you as EntAppRole, which
has Select permission.

SELECT * FROM HumanResources.Department

7. Close the query window.

Task 1.23: Assigning Permissions
In the past few tasks, you assigned permissions to users by adding them to roles. To under-
stand how these roles work, you need a more complete understanding of what permissions are
and how they work.

Any object to which SQL Server regulates access is referred to as a securable. Securables can
fall under three scopes:
� Server scope

� Server
� Endpoint

83492book.book Page 89 Friday, September 15, 2006 9:28 AM

90 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

� SQL Server login
� SQL Server login mapped to a Windows login
� SQL Server login mapped to a certificate
� SQL Server login mapped to an asymmetric key

� Database scope
� Database users
� Database users mapped to a Windows login
� Database users mapped to a certificate
� Database users mapped to an asymmetric key
� Database roles
� Application roles
� Assemblies
� Message type
� Service contract
� Service
� Full-text catalog
� DDL events
� Schema

� Schema scope
� Table
� View
� Function
� Procedure
� Queue
� Type
� Rule
� Default
� Synonym
� Aggregate

All of these objects are secured by applying permissions. You can work with two types of
permissions: statement and object permissions.

83492book.book Page 90 Friday, September 15, 2006 9:28 AM

Task 1.23: Assigning Permissions 91

Statement permissions have nothing to do with the actual data; they allow users to create
the structure that holds the data. It’s important not to grant these permissions haphazardly,
because doing so can lead to such problems as wasted server resources. It’s best to restrict
statement permissions to database administrators (DBAs), assistant DBAs, and developers.
These are some good examples of statement permissions:
� Create Database
� Create Table
� Create View
� Create Procedure
� Create Index
� Create Rule
� Create Default

When you create a new database, a record is added to the sysdatabases sys-
tem table, which is stored in the master database. Therefore, you can grant
the CREATE DATABASE statement only on the master database.

The second type of permissions is object permissions, which control how users work with
the actual data. Using object permissions, you can control who is allowed to read from, write
to, or otherwise manipulate your data. The 12 object permissions are as follows:

Control This permission gives the principal ownership-like capabilities on the object and all
objects under it in the hierarchy. For example, if you grant a user Control permission on the
database, then the user has Control permission on all the objects in the database, such as tables
and views.

Alter This permission allows users to create, alter, or drop the securable and any object
under it in the hierarchy. The only property the user can’t change is ownership.

Take Ownership This allows the user to take ownership of an object.

Impersonate This permission allows one login or user to impersonate another.

Create As the name implies, this permission lets a user create objects.

View Definition This permission allows users to see the Transact-SQL syntax that was used
to create the object being secured.

Select When granted, this permission allows users to read data from the table or view. When
granted at the column level, it lets users read from a single column.

Insert This permission allows users to insert new rows into a table.

83492book.book Page 91 Friday, September 15, 2006 9:28 AM

92 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Update This permission lets users modify existing data in a table but not add new rows to
or delete existing rows from a table. When this permission is granted on a column, users can
modify data in that single column.

Delete This permission allows users to remove rows from a table.

References Tables can be linked together on a common column with a foreign-key relation-
ship, which is designed to protect data across tables. When two tables are linked with a foreign
key, this permission allows the user to select data from the primary table without having Select
permission on the foreign table.

Execute This permission allows users to execute the stored procedure where the permission
is applied.

All the permissions in SQL Server can exist in one of three states:

Grant Granting allows users to use a specific permission. For instance, if you grant SmithB
Select permission on a table, then SmithB can read the data within. You know a permission
has been granted when the Allow check box is selected next to the permission in the per-
missions list.

Revoke A revoked permission isn’t specifically granted, but a user can inherit the permission
if it has been granted to another role of which they are a member. That is, if you revoke the
Select permission from SmithB, then SmithB can’t use it. If, however, SmithB is a member of a
role that has been granted Select permission, SmithB can read the data just as if SmithB had the
Select permission. A permission is revoked when neither Allow nor Deny boxes are selected
next to a permission.

Deny If you deny a permission, the user doesn’t get the permission—no matter what. If you
deny SmithB Select permission on a table, even if SmithB is a member of a role with Select per-
mission, then SmithB can’t read the data. You know a permission has been denied when the
Deny check box is selected next to the permission in the permissions list.

In this task, you’ll get some hands-on experience with assigning permissions and changing
the states of those permissions.

Scenario

You have just installed a new SQL Server for your company and want to make sure you fully
understand how permissions work, so you have decided to test permissions on your test server
before assigning them to users on production databases.

83492book.book Page 92 Friday, September 15, 2006 9:28 AM

Task 1.23: Assigning Permissions 93

Scope of Task

Duration

This task should take approximately 30 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the SmithB account you created in Task 1.17, and the AdventureWorks database.

Caveat

In a production environment, for ease of management, you will create custom roles and assign
permissions to those roles. You will usually assign permissions to a specific user only when you
want to deny a permission to that user.

Procedure

In this task, you will assign permissions to the SmithB user mapping. You will then change the
permission state and test the effects of the change.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1,
the SmithB account you created in Task 1.17, and the AdventureWorks database.

Details

To create assign and modify permissions for SmithB, follow these steps:

1. Open SQL Server Management Studio, expand your server, and then expand Databases �
AdventureWorks � Security.

2. Expand Users, right-click SmithB, and select Properties.

3. On the Securables page, click Add under the Securables list box, select the Specific Objects
radio button, and click OK.

4. Click the Objects Type button, select Tables, and click OK.

5. Click Browse, select the HumanResources.Department check box, and click OK twice.

83492book.book Page 93 Friday, September 15, 2006 9:28 AM

94 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

6. In the Permissions for HumanResources.Department list, select the Grant check box next
to Select, and click OK.

7. Open a new SQL Server query in SQL Server Management Studio.

8. On the Query menu, hover over Connection, and then click Change Connection.

9. Select SQL Server Authentication from the Authentication list box.

10. In the User Name box, enter SmithB; in the Password box, enter Password1, and click
Connect.

11. Execute the following query. It’s successful because SmithB has Select permission on the
HumanResources.Department table.

USE AdventureWorks

SELECT * FROM HumanResources.Department

12. Right-click SmithB under Users in the AdventureWorks database, and select Properties.

13. On the Securables page, click Add under the Securables list box, select the Specific Objects
radio button, and click OK.

14. Click the Objects Type button, select Tables, and click OK.

83492book.book Page 94 Friday, September 15, 2006 9:28 AM

Task 1.23: Assigning Permissions 95

15. Click Browse, select the HumanResources.Department check box, and click OK.

16. In the Permissions for HumanResources.Department list, uncheck the Grant check box
next to Select (this revokes the permission), and click OK.

17. Return to the query window, and execute the query in step 11. It fails because SmithB
doesn’t have explicit Select permission.

18. Right-click SmithB under Users in the AdventureWorks database, and select Properties.

19. Under Role Membership, select the check box next to the db_datareader role.

20. Return to the query window, and rerun the query from step 11. Now it fails because
SmithB does not have the permission expressly applied and is not a member of a role that
has this permission.

21. Right-click SmithB under Users in the AdventureWorks database, and select Properties.

22. On the Securables page, click Add under the Securables list box, select the Specific Objects
radio button, and click OK.

23. Click the Objects Type button, select Tables, and click OK.

24. Click Browse, select the HumanResources.Department check box, and click OK.

83492book.book Page 95 Friday, September 15, 2006 9:28 AM

96 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

25. In the Permissions for HumanResources.Department list, select the Deny check box next
to Select, and click OK.

26. Return to the query window, and again run the query from step 11. It fails this time
because you’ve specifically denied SmithB access.

Criteria for Completion

This task is complete when you have successfully assigned the permissions as described in the
“Details” section.

Task 1.24: Configuring
Encrypted Connections
Thus far, you’ve seen how to protect your data from intruders by granting access and applying
permissions to objects. But when someone legitimately accesses the server and starts transfer-
ring data, it travels over the network. If you need really robust security, you can go so far as
to encrypt the data as it travels between the client and the server over the network. That way,
if anyone is reading your network traffic, they will not be able to interpret the data.

83492book.book Page 96 Friday, September 15, 2006 9:28 AM

Task 1.24: Configuring Encrypted Connections 97

Just like a secure web page, SQL Server uses Secure Sockets Layer (SSL) encryption. This
means that to encrypt your connections to SQL Server, you first need to get a certificate, which
you can get from one of the major vendors such as VeriSign or can install Windows Certificate
services and supply your own.

If you want to test encryption but do not have a certificate, SQL Server can
generate a self-signed certificate for you to use.

Do not use a self-signed certificate in production; they do not provide
strong security and are susceptible to attack. They are for testing and
development only.

Although using encryption can help protect your data in a highly secured environment,
using encryption has a few drawbacks:
� An extra network round-trip is required at connect time.
� Packets sent from the application to the instance of SQL Server must be encrypted by the

client Net-Library and decrypted by the server Net-Library.
� Packets sent from the SQL Server instance to the application must be encrypted by the

server Net-Library and decrypted by the client Net-Library.

This means encryption can negatively impact SQL Server’s performance, so use encryption
only when necessary.

In this task, you’ll configure SQL Server to use encryption using a self-signed certificate.

Scenario

You have just installed a new SQL Server for your company and created a database that holds
e-commerce data. For your customers’ convenience, your company has decided to store credit
card information so users do not have to enter it every time they place an order on your site.
You know you need to use the highest level of security possible, so you have decided to con-
figure SQL Server to require encrypted connections.

Scope of Task

Duration

This task should take approximately 30 minutes.

Setup

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1.

83492book.book Page 97 Friday, September 15, 2006 9:28 AM

98 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Caveat

In production, you should not use a self-signed certificate. You are using one in this task for
simplicity’s sake.

Procedure

In this task, you will configure SQL Server to use encrypted connections using a self-signed
certificate.

Equipment Used

For this task, you need access to the machine you installed SQL Server 2005 on in Task 1.1.

Details

To configure the server to force clients to use encrypted connections, follow these steps:

1. In SQL Server Configuration Manager, expand SQL Server 2005 Network Configuration,
right-click Protocols for <server instance>, and then select Properties.

2. In the Protocols for <instance name> Properties dialog box, on the Flags tab, change
ForceEncryption to Yes.

3. Click OK twice to close the warning dialog box that opens.

4. Restart the SQL Server service.

5. Again, right-click Protocols for <server instance>, and then select Properties.

6. In the Protocols for <instance name> Properties dialog box, on the Certificate tab, select
the desired certificate (in this case the self-signed certificate) from the Certificate drop-
down list, and then click OK.

83492book.book Page 98 Friday, September 15, 2006 9:28 AM

Task 1.24: Configuring Encrypted Connections 99

7. Click OK to close the warning dialog box that opens.

8. Restart the SQL Server service.

Next, you need to configure the clients to request encrypted connections to the server.
Here’s how:

1. In SQL Server Configuration Manager, right-click SQL Native Client Configuration, and
select Properties.

2. On the Flags tab, in the Force Protocol Encryption box, select Yes, and then click OK to
close the dialog box.

3. Restart the SQL Server service.

83492book.book Page 99 Friday, September 15, 2006 9:28 AM

100 Phase 1 � Installing and Configuring Microsoft SQL Server 2005

Criteria for Completion

This task is complete when you can connect to SQL Server using an encrypted connection. To
verify this, follow these steps:

1. Open a new SQL Server query in SQL Server Management Studio.

2. On the Query menu, hover over Connection, and then click Change Connection.

3. Select Windows Authentication from the Authentication list box.

4. Click the Options button, and check the Encrypt Connection box.

5. Click Connect to make the connection.

83492book.book Page 100 Friday, September 15, 2006 9:28 AM

