
1

An overview of methods
for causal inference from
observational studies

Sander Greenland1

1.1 Introduction

This chapter provides a brief overview of causal-inference methods found in the
health sciences. It is convenient to divide these methods into a few broad classes:
Those based on formal models of causation, especially potential outcomes; those
based on canonical considerations, in which causality is a property of an association
to be diagnosed by symptoms and signs; and those based on methodologic modeling.
These are by no means mutually exclusive approaches; for example, one may (though
need not) base a methodologic model on potential outcomes, and a canonical approach
may use modeling methods to address specific considerations. Rather, the categories
reflect historical traditions that until recently had only limited intersection.

1.2 Approaches based on causal models

Background: potential outcomes

Most statistical methods, from orthodox Neyman–Pearsonian testing to radical sub-
jective Bayesianism, have been labeled by their proponents as solutions to problems
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of inductive inference (Greenland, 1998), and causal inference may be classified
as a prominent (if not the major) problem of induction. It would then seem that
causal-inference methods ought to figure prominently in statistical theory and train-
ing. That this has not been so has been remarked on by other reviewers (Pearl,
2000). In fact, despite the long history of statistics up to that point, it was not
until the 1920s that a formal statistical model for causal inference was proposed
(Neyman, 1923), the first example of a potential-outcome model.

Skeptical that induction in general and causal inference in particular could be
given a sound logical basis, David Hume nonetheless captured the foundation of
potential-outcome models when he wrote:

“We may define a cause to be an object, followed by another, . . .where,
if the first object had not been, the second had never existed.” (Hume,
1748, p. 115)

A key aspect of this view of causation is its counterfactual element: It refers to how
a certain outcome event (the “second object,” or effect) would not have occurred
if, contrary to fact, an earlier event (the “first object,” or cause) had not occurred.
In this regard, it is no different from standard frequentist statistics (which refer
to sample realizations that might have occurred, but did not) and some forms of
competing-risk models (those involving a latent outcome that would have occurred,
but for the competing risk). This counterfactual view of causation was adopted by
numerous philosophers and scientists after Hume (e.g., Mill, 1843; Fisher, 1918;
Cox, 1958; Simon and Rescher, 1966; MacMahon and Pugh, 1967; Lewis, 1973).

The development of this view into a statistical theory for causal inference is
recounted by Rubin (1990), Greenland, Robin, and Pearl (1999), Greenland (2000),
and Pearl (2000). To describe that theory, suppose we wish to study the effect of an
intervention variable X with potential values (range) x1, . . . , xJ on a subsequent
outcome variable Y defined on an observational unit or a population. The theory
then supposes that there is a vector of potential outcomes y = (y(x1), . . . , y(xJ )),
such that if X = xj then Y = y(xj ); this vector is simply a mapping from the X

range to the Y range for the unit. To say that intervention xi causally affects Y

relative to intervention xj then means that y(xi) �= y(xj ); and the effect of inter-
vention xi relative to xj on Y is measured by y(xi) − y(xj ) or (if Y is strictly
positive) by y(xi)/y(xj ). Under this theory, assignment of a unit to a treatment
level xi is simply a choice of which coordinate of y to attempt to observe; regard-
less of assignment, the remaining coordinates are treated as existing pretreatment
covariates on which data are missing (Rubin, 1978a). Formally, if we define the
vector of potential treatments x = (x1, . . . , xJ ), with treatment indicators ri = 1 if
the unit is given treatment xi , 0 otherwise, and r = (r1, . . . , rJ ), then the actual
treatment given is xa = r′x and the actual outcome is ya = y(xa) = r′y. Viewing r
as the item-response vector for the items in y, causal inference under potential out-
comes can be seen as a special case of inference under item nonresponse in which
�iri = 0 or 1, that is, at most one item in y is observed per unit (Rubin, 1991).
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The theory extends to stochastic outcomes by replacing the y(xi) by probability
mass functions pi(y) (Greenland, 1987; Robins, 1988; Greenland, Robin, and Pearl,
1999), so the mapping is from X to the space of probability measures on Y . This
extension is embodied in the “set” or “do” calculus for causal actions (Pearl,
1995, 2000) described briefly below. The theory also extends to continuous X by
allowing the potential-outcome vector to be infinite-dimensional with coordinates
indexed by X, and components y(x) or px(y). Finally, the theory extends to
complex longitudinal data structures by allowing the treatments to be different
event histories or processes (Robins, 1987, 1997).

Limitations of potential-outcome models

The power and controversy of this formalization derives in part from defining
cause and effect in simple terms of interventions and potential outcomes, rather
than leaving them informal or obscure. Judged on the basis of the number and
breadth of applications, the potential-outcome approach is an unqualified success,
as contributions to the present volume attest. Nonetheless, because only one of the
treatments xi can be administered to a unit, for each unit at most one potential out-
come y(xi) will become an observable quantity; the rest will remain counterfactual,
and hence in some views less than scientific (Dawid, 2000). More specifically, the
approach has been criticized for including structural elements that are in principle
unidentifiable by randomized experiments alone. An example is the correlation
among potential outcomes: Because no two potential outcomes y(xi) and y(xj )

from distinct interventions xi �= xj can be observed on one unit, nothing about the
correlation of y(xi) and y(xj ) across units can be inferred from observing inter-
ventions and outcomes alone; the correlation becomes unobservable and hence by
some usage “metaphysical.”

This sort of problem has been presented as if it is a fatal flaw of potential out-
comes models (Dawid, 2000). Most commentators, however, regard such problems
as indicating inherent limits of inference on the basis of unrepeatable “black-
box” observation: For some questions, one must go beyond observations of unit
responses, to unit-specific investigation of the mechanisms of action (e.g., dissec-
tion and physiology). This need is familiar in industrial statistics in the context of
destructive testing, although controversy does not arise there because the mech-
anisms of action are usually well understood. The potential-outcomes approach
simply highlights the limits of what statistical analyses can show without back-
ground theory about causal mechanisms, even if treatment is randomized: standard
statistical analyses address only the magnitude of associations and the average
causal effects they represent, not the mechanisms underlying those effects.

Translating potential outcomes into statistical methodology

Among the earliest applications of potential outcomes were the randomization tests
for causal effects. These applications illustrate the transparency potential outcomes
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can bring to standard methods, and show their utility in revealing the assumptions
needed to give causal interpretations to standard statistical procedures.

Suppose we have N units indexed by n and we wish to test the strong (sharp)
null hypothesis that treatment X has no effect on Y for any unit, that is, for all
i, j, n, yn(xi) = yn(xj ). Under this null, the observed distribution of Y among the
N units would not differ from its observed value, regardless of how treatment is
allocated among the units. Consequently, given the treatment-allocation probabili-
ties (propensity scores), we may compute the exact null distribution of any measure
of differences among treatment groups. In doing so, we can and should keep the
marginal distribution of Y at its observed value, for with no treatment effect on Y ,
changes in treatment allocation cannot alter the marginal distribution of Y .

The classic examples of this reasoning are permutation tests based on uniform
allocation probabilities across units (simple randomization), such as Fisher’s exact
test (Cox and Hinkley, 1974, sec. 6.4). For these tests, the fixed Y -margin is often
viewed as a mysterious assumption by students, but can be easily deduced from the
potential-outcome formulation, with no need to appeal to obscure and controversial
conditionality principles (Greenland, 1991). Potential-outcome models can also be
used to derive classical confidence intervals (which involve nonnull hypotheses and
varying margins), superpopulation inferences (in which the N units are viewed as a
random sample from the actual population of interest), and posterior distributions
for causal effects of a randomized treatment (Robins, 1988; Rubin, 1978). The
models further reveal hidden assumptions and limitations of common procedures
for instrumental-variable estimation (Angrist, Imbens, and Rubin, 1996), for intent-
to-treat analyses (Goetghebeur and van Houwelingen, 1998), for separating direct
and indirect effects (Robins and Greenland, 1992, 1994; Frangakis and Rubin,
2002), for confounding identification (Greenland, Robins, and Pearl, 1999), for
estimating causation probabilities (Greenland and Robins, 2000), for handling time-
varying covariates (Robins, 1987, 1998; Robins et al., 1992), and for handling
time-varying outcomes (Robins, Greenland, and Hu, 1999a).

A case study: g-estimation

Potential-outcome models have contributed much more than conceptual clarifica-
tion. As documented elsewhere in this volume, they have been used extensively
by Rubin, his students, and his collaborators to develop novel statistical proce-
dures for estimating causal effects. Indeed, one defense of the approach is that it
stimulates insights which lead not only to the recognition of shortcomings of pre-
vious methods but also to development of new and more generally valid methods
(Wasserman, 2000).

Methods for modeling effects of time-varying treatment regimes (generalized
treatments, or “g-treatments”) provide a case study in which the potential-outcome
approach led to a very novel way of attacking an exceptionally difficult problem.
The difficulty arises because a time-varying regime may not only be influenced
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by antecedent causes of the outcome (which leads to familiar issues of confound-
ing) but may also influence later causes, which in turn may influence the regime.
Robins (1987) identified a recursive “g-computation” formula as central to mod-
eling treatment effects under these feedback conditions and derived nonparametric
tests on the basis of this formula (a special case of which was first described by
Morrison, 1985). These tests proved impractical beyond simple null-testing con-
texts, which led to the development of semiparametric modeling procedures for
inferences about time-varying treatment effects (Robins, 1998).

The earliest of these procedures were based on the structural-nested failure-
time model (SNFTM) for survival time Y (Robins, Blevins et al., 1992; Robins
and Greenland, 1994; Robins, 1998), a generalization of the strong accelerated-life
model (Cox and Oakes, 1984). Suppressing the unit subscript n, suppose a unit is
actually given fixed treatment X = xa and fails at time Ya = y(xa), the potential
outcome of the unit under X = xa . The basic accelerated-life model assumes the
survival time of the unit when given X = 0 instead would have been Y0 = exaβYa ,
where Y0 is the potential outcome of the unit under X = 0, and the factor exaβ is the
amount by which setting X = 0 would have expanded (if xaβ > 0) or contracted
(if xaβ < 0) survival time relative to setting X = xa .

Suppose now X could vary and the actual survival interval S = (0, Ya) is
partitioned into K successive intervals of length �t1, . . . , �tK , such that X = xk

in interval k, with a vector of covariates Z = zk in the interval. A basic SNFTM
for the survival time of the unit had X been held at zero over time is then Y0 =
�k exp(xkβ)�tk; the extension to a continuous treatment history x(t) is Y0 =∫
S

ex(t)βdt . The model is semiparametric insofar as the distribution of Y0 across
units is unspecified or incompletely specified, although this distribution may be
modeled as a function of covariates, for example, by a proportional-hazards model
for Y0.

Likelihood-based inference on β is unwieldy, but testing and estimation can
be easily done with a clever two-step procedure called g-estimation (Robins et al.,
1992; Robins and Greenland, 1994; Robins, 1998). To illustrate the basic idea,
assume no censoring of Y , no measurement error, and let Xk and Zk be the
treatment and covariate random variables for interval k. Then, under the model, a
hypothesized value βh for β produces for each unit a computable value Y0(βh) =
�k exp(xkβh)�tk for Y0. Next, suppose that for all k, Y0 and Xk are independent
given past treatment history X1, . . . , Xk−1 and covariate history Z1, . . . , Zk (as
would obtain if treatment were sequentially randomized given these histories). If
β = βh, then Y0(βh) = Y0 and so must be independent of Xk given the histories.
One may test this conditional independence of Y0(βh) and the Xk with any standard
method. For example, one could use a permutation test or some approximation
to one (such as the usual logrank test) stratified on histories; subject to further
modeling assumptions, one could instead use a test that the coefficient of Y0(βh)

is zero in a model for the regression of Xk on Y0(βh) and the histories. In either
case, α-level rejection of conditional independence of Xk and Y0(βh) implies α-
level rejection of β = βh, and the set of all βh not so rejected form a 1 − α
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confidence set for β. Furthermore, the random variable corresponding to the value
b for β that makes Y0(b) and the Xk conditionally independent is a consistent,
asymptotically normal estimator of β (Robins, 1998).

Of course, in observational studies, g-estimation shares all the usual limitations
of standard methods. The assignment mechanism is not known, so inferences are
only conditional on an uncertain assumption of “no sequential confounding”; more
precisely, that Y0 and the Xk are independent given the treatment and covariate
histories used for stratification or modeling of Y0 and the Xk . If this independence
is not assumed, then rejection of βh only entails that either β �= βh or that Y0

and the Xk are dependent given the histories (i.e., there is residual confounding).
Also, inferences are conditional on the form of the model being correct, which is
not likely to be exactly true, even if fit appears good. Nonetheless, as in many
standard testing contexts (such as the classical t-test), under broad conditions the
asymptotic size of the stratified test of the no-effect hypothesis β = 0 will not
exceed α if Y0 and the Xk are indeed independent given the histories (i.e., absent
residual confounding), even if the chosen SNFTM for Y0 is incorrect, although
the power of the test may be severely impaired by the model misspecification
(Robins, 1998). In light of this “null-robustness” property, g-null testing can be
viewed as a natural extension of classical null testing to time-varying treatment
comparisons.

If (as usual) censoring is present, g-estimation becomes more complex (Robins,
1998). As a simpler though more restrictive approach to censored longitudinal
data with time-varying treatments, one may fit a marginal structural model (MSM)
for the potential outcomes using a generalization of Horvitz–Thompson inverse-
probability-of-selection weighting (Robins, 1999; Hernan, Brumback, and Robins,
2001). Unlike standard time-dependent Cox models, both SNFTM and MSM fitting
require special attention to the censoring process, but make weaker assumptions
about that process. Thus their greater complexity is the price one must pay for the
generality of the procedures, for both can yield unconfounded effect estimates in
situations in which standard models appear to fit well but yield very biased results
(Robins et al., 1992; Robins and Greenland, 1994; Robins, Greenland, and Hu,
1999a; Hernan, Brumback, and Robins, 2001).

Other formal models of causation

Most statistical approaches to causal modeling incorporate elements formally equiv-
alent to potential outcomes (Pearl, 2000). For example, the sufficient-component
cause model found in epidemiology (Rothman and Greenland, 1998, Chapter 2) is
a potential-outcome model. In structural-equation models (SEMs), the component
equations can be interpreted as models for potential outcomes (Pearl, 1995, 2000),
as in the SNFTM example. The identification calculus based on graphical models
of causation (causal diagrams) has a direct mapping into the potential-outcomes
framework, and yields the g-computation algorithm as a by-product (Pearl, 1995).
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These and other connections are reviewed by Pearl (2000), and Greenland and
Brumback (2002).

It appears that causal models lacking a direct correspondence to potential out-
comes have yet to yield generally accepted statistical methodologies for causal
inference, at least within the health sciences. This may represent an inevitable state
of affairs arising from a counterfactual element at the core of all commonsense
or practical views of causation (Lewis, 1973; Pearl, 2000). Consider the prob-
lem of predictive causality: We can recast causal inferences about future events
as predictions conditional on specific intervention or treatment-choice events. The
choice of x for X is denoted “set X = x” in Pearl (1995) and “do X = x” in Pearl
(2000); the resulting collection of predictive probabilities P {Y = y|set(X = xi)}
or P {Y = y|do(X = xi)} is isomorphic to the set of stochastic potential out-
comes pi(y). As Hume (1748) and Lewis (1973) noted, for causal inferences
about past events, we are typically interested in questions of the form “what
would have happened if X had equaled xc rather than xa ,” where the alterna-
tive choice xc does not equal the actual choice xa and so must be counterfactual;
thus, consideration of potential outcomes seems inescapable when confronting his-
torical causal questions, a point conceded by thoughtful critics of counterfactuals
(Dawid, 2000).

1.3 Canonical inference

Some approaches to causal inference bypass definitional controversy by not basing
their methods on a formal causal model. The oldest of these approaches is traceable
to John Stuart Mill in his to attempt to lay out a system of inductive logic on the
basis of canons or rules, which causal associations were presumed to obey (Mill,
1843). Perhaps the most widely cited of such lists today are the Austin Bradford
Hill considerations (misnamed “criteria” by later writers) (Hill, 1965), which are
discussed critically in numerous sources (e.g., Koepsell and Weiss, 2003; Phillips
and Goodman, 2003; Rothman and Greenland, 1998, Chapter 2), and which will
be the focus here.

The canonical approach usually leaves terms like “cause” and “effect” as primi-
tives (formally undefined concepts) around which the self-evident canons are built,
much like axioms are built around the primitives of “set” and “is an element
of” in mathematics, although the terms may be defined in terms of potential out-
comes. Only the canon of proper temporal sequence (cause must precede effect)
is a necessary condition for causation. The remaining canons or considerations are
not necessary conditions; instead, they are like diagnostic symptoms or signs of
causation—that is, properties an association is assumed more likely to exhibit if
it is causal than if it is not (Hill, 1965; Susser, 1988, 1991). Thus, the canoni-
cal approach makes causal inference appear more akin to clinical judgment than
experimental science, although experimental evidence is among the considerations
(Hill, 1965; Rothman and Greenland, 1998, Chapter 2; Susser, 1991). Some of the
considerations (such as temporal sequence, association, dose–response or predicted
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gradient, and specificity) are empirical signs and thus subject to conventional sta-
tistical analysis; others (such as plausibility) refer to prior belief and thus (as with
disease symptoms) require elicitation, and could be used to construct priors for
Bayesian analysis.

The canonical approach is widely accepted in the health sciences, subject to
many variations in detail. Nonetheless, it has been criticized for its incompleteness
and informality, and the consequent poor fit it affords to the deductive or mathemat-
ical approaches familiar to classic science and statistics (Rothman and Greenland,
1998, Chapter 2). Although there have been some interesting attempts to reinforce
or reinterpret certain canons as empirical predictions of causal hypotheses (e.g.,
Susser, 1988; Weed, 1986; Weiss, 1981, 2002; Rosenbaum, 2002b), there is no
generally accepted mapping of the entire canonical approach into a coherent statis-
tical methodology; one simply uses standard statistical techniques to test whether
empirical canons are violated. For example, if the causal hypothesis linking X to Y

predicts a strictly increasing trend in Y with X, a test of this statistical prediction
may serve as a statistical criterion for determining whether the hypothesis fails the
dose–response canon. Such usage falls squarely in the falsificationist/frequentist
tradition of twentieth century statistics, but leaves unanswered most of the policy
questions that drive causal research (Phillips and Goodman, 2003).

1.4 Methodologic modeling
In the second half of the twentieth century, a third approach emerged from battles
over the policy implications of observational data, such as those concerning the
epidemiology of cigarette smoking and lung cancer. One begins with the idea that,
conditional on some set of concomitants or covariates Z, there is a population
association or relation between X and Y that is the target of inference, usually
because it is presumed to accurately reflect the effect of X on Y in that population
(as in the canonical approach, “cause” and “effect” may be left undefined or defined
in other terms such as potential outcomes). Observational and analytic shortcomings
then distort or bias estimates of this effect: Units may be selected for observation
in a nonrandom fashion; conditioning on additional unmeasured covariates U may
be essential for the X–Y association to approximate a causal effect; inappropriate
covariates may be entered into the analysis; components of X or Y or Z may not
be adequately measured; and so on.

One can parametrically model these methodologic shortcomings and derive
effect estimates on the basis of the models. If (as is usual) the data under analysis
cannot provide estimates of the methodologic parameters, one can fix the parame-
ters at specific values, estimate effects based on those values, and see how effect
estimates change as these values are varied (sensitivity analysis). One can also
assign the parameters prior to distributions on the basis of background informa-
tion, and summarize the effect estimates over these distributions (e.g., with the
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resulting posterior distribution). These ideas are well established in engineering
and policy research and are covered in many books, albeit in a wide variety of
forms and specialized applications. Little and Rubin (2002) focus on missing-data
problems; Eddy, Hasselblad, and Schachter (1992) focus on medical and health-risk
assessment; and Vose (2000) covers general risk assessment. Nonetheless, general
methodologic or bias modeling has only recently begun to appear in epidemiologic
research (Robins, Rotnitzky, and Scharfstein, 1999b; Graham, 2000; Gustafson,
2003; Lash and Fink, 2003; Phillips, 2003; Greenland, 2003), although more basic
sensitivity analyses have been employed sporadically since the 1950s (see Rothman
and Greenland, 1998, Chapter 19, for citations and an overview).

Consider again the problem of estimating the effect of X on Y , given a vector
of antecedent covariates Z. Standard approaches are based on estimating E(Y |x, z)

and taking the fitted (partial) regression of Y on X given Z as the effect of X on
Y . Usually a parametric model r(x, z; β) for E(Y |x, z) is fit and the coefficient
for X is taken as the effect (this approach is reflected in common terminology that
refers to such coefficients as “main effects”). The fitting is almost always done as if
(1) within levels of X and Z, the data are a simple random sample and any missing-
ness is completely at random, (2) the causal effect of X on Y is accurately reflected
by the association of X and Y given Z (i.e., there is no residual confounding—as
might be reasonable to assume if X were randomized within levels of Z), and
(3) X, Y , and Z are measured without error. But, in reality, (1) sampling and
missing-data probabilities may jointly depend on X, Y , and Z in an unknown
fashion, (2) conditioning on certain unmeasured (and possibly unknown) covari-
ates U might be essential for the association of X and Y to correspond to a causal
effect of X on Y , and (3) X, Y , and Z components may be mismeasured.

Let V = (X, Y, Z). One approach to sampling (selection) biases is to posit a
model s(v; σ) for the probability of selection given v, then use this model in the
analysis along with r(x, z; β), for example, by incorporating s(v; σ) into the like-
lihood function (Eddy, Hasselblad, and Schachter, 1992; Little and Rubin, 2002;
Gelman, Carlin, Stern, and Rubin, 2003) or by using s(v; σ)−1 as a weighting factor
(Robins, Rotnitzky, and Zhao, 1994; Robins, Rotnitzky, and Scharfstein, 1999b).
The joint parameter (β, σ ) is usually not fully identified from the data under anal-
ysis, so one must either posit various fixed values for σ and estimate β for each
chosen σ (sensitivity analysis), or else give (β, σ ) a prior density and conduct a
Bayesian analysis. A third approach, Monte-Carlo risk analysis or Monte-Carlo
sensitivity analysis (MCSA), repeatedly samples σ from its marginal prior, resam-
ples (bootstraps) the data, and reestimates β using the sampled σ and data; it then
gives the distribution of results obtained from this repeated sampling-estimation
cycle. MCSA can closely approximate Bayesian results under certain (though not
all) conditions (Greenland, 2001, 2004), most notably that β and σ are a priori
independent and the prior for β is vague. The basic selection-modeling methods
can be generalized (with many technical considerations) to handle missing data
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(Little and Rubin, 2002; Robins, Rotnitzky, and Zhao, 1994; Robins, Rotnitzky,
and Scharfstein, 1999b).

One approach to problem (2) is to model the joint distribution of U , V with a
parametric model p(u, v|β, γ ) = p(y|u, x, z, β)p(u, x, z|γ ). Again, one can esti-
mate β by likelihood-based or by weighting methods, but because U is unmeasured
(latent), the parameter (β, γ ) will not be fully identified from the data and so some
sort of sensitivity analysis or prior distribution will be needed (e.g., Yanagawa,
1984; Robins, Rotnitzky, and Scharfstein, 1999b; Greenland, 2003, 2004). Results
will depend heavily on the prior specification given U . For example, U may be a
specific unmeasured covariate (e.g., smoking status) with well studied relations to
X, Y , and Z, which affords straightforward Bayesian and MCSA analyses (Steen-
land and Greenland, 2004). On the other hand, U may represent an unspecified
aggregation of latent confounders, in which case the priors and hence inferences
are more uncertain (Greenland, 2003).

Next, suppose that the “true” variable vector V = (X, Y, Z) has the corre-
sponding measurement or surrogate W (a vector with subvectors corresponding to
measurements of components of X, Y , and Z). The measurement-error problem
(problem 3) can then be expressed as follows: For some or all units, at least one of
the V components is missing, but the measurement (subvector of W ) correspond-
ing to that missing V component is present. If enough units are observed with
both V and W complete, the problem can be handled by standard missing-data
methods. For example, given a model for the distribution of (V , W) one can use
likelihood-based methods (Little and Rubin, 2002), or impute V components where
absent and then fit the model r(x, z; β) for E(Y |x, z) to the completed data (Cole,
Chu, and Greenland, 2004), or fit the model to the complete records using weights
derived from all records using a model for missing-data patterns (Robins, Rot-
nitzky, and Zhao, 1994; Robins, Rotnitzky, and Scharfstein, 1999b). Alternatively,
there are many measurement-error correction procedures that directly modify β

estimates obtained by fitting the regression using W as if it were V ; this is usu-
ally accomplished with a model relating V to W fitted to the complete records
(Ruppert, Stefanski, and Carroll, 1995).

If a component of V is never observed on any unit (or, more practically, if there
are too few complete records to support large-sample missing-data or measurement-
error procedures), one may turn to latent-variable methods (Berkane, 1997). For
example, one could model the distribution of (V , W) or a sufficient factor from
that distribution by a parametric model; the unobserved components of V are the
latent variables in the model. The parameters will not be fully identified, however,
and sensitivity analysis or prior distributions will again be needed. In practice,
a realistic specification can become quite complex, with subsequent inferences
displaying extreme sensitivity to parameter constraints or prior distribution choices
(e.g., Greenland, 2004). Nonetheless, display of this sensitivity can help provide
an honest accounting for the large uncertainty that can be generated by apparently
modest and realistic error distributions.
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1.5 Conclusion

The three approaches described above represent separate historical streams rather
than distinct methodologies, and can be blended in various ways. For example,
methodologic models for confounding or randomization failure are often based on
potential outcomes; the result of any modeling exercise is simply one more input
to larger, informal judgments about causal relations; and those judgments may be
guided by canonical considerations. Insights and innovations in any approach can
thus benefit the entire process of causal inference, especially when that process
is seen as part of a larger context. Finally, other traditions or approaches (some
perhaps yet to be imagined) may contribute to the process. Hence, I would advise
against regarding any one approach or blending as a complete solution or algorithm
for problems of causal inference; the area remains one rich with open problems
and opportunities for innovation.




