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BASIC CONCEPTS IN
F INANCE

Aims

• To consider different methods of measuring returns for pure discount bonds, coupon-
paying bonds and stocks.

• Use discounted present value techniques, DPV, to price assets.

• Show how utility functions can be used to incorporate risk aversion, and derive asset
demand functions from one-period utility maximisation.

• Illustrate the optimal level of physical investment and consumption for a two-period
horizon problem.

The aim of this chapter is to quickly run through some of the basic tools of analysis
used in finance literature. The topics covered are not exhaustive and they are discussed
at a fairly intuitive level.

1.1 Returns on Stocks, Bonds and Real Assets
Much of the theoretical work in finance is conducted in terms of compound rates of
return or interest rates, even though rates quoted in the market use ‘simple interest’. For
example, an interest rate of 5 percent payable every six months will be quoted as a sim-
ple interest rate of 10 percent per annum in the market. However, if an investor rolled
over two six-month bills and the interest rate remained constant, he could actually earn
a ‘compound’ or ‘true’ or ‘effective’ annual rate of (1.05)2 = 1.1025 or 10.25 percent.
The effective annual rate of return exceeds the simple rate because in the former case
the investor earns ‘interest-on-interest’.



2 C H A P T E R 1 / B A S I C C O N C E P T S I N F I N A N C E

We now examine how we calculate the terminal value of an investment when the
frequency with which interest rates are compounded alters. Clearly, a quoted interest
rate of 10 percent per annum when interest is calculated monthly will amount to more
at the end of the year than if interest accrues only at the end of the year.

Consider an amount $A invested for n years at a rate of R per annum (where R is
expressed as a decimal). If compounding takes place only at the end of the year, the
future value after n years is FV n, where

FV n = $A(1 + R)n (1)

However, if interest is paid m times per annum, then the terminal value at the end of
n years is

FV m
n = $A(1 + R/m)mn (2)

R/m is often referred to as the periodic interest rate. As m, the frequency of compound-
ing, increases, the rate becomes ‘continuously compounded’, and it may be shown that
the investment accrues to

FV c
n = $AeRcn (3)

where Rc = the continuously compounded rate per annum. For example, if the quoted
(simple) interest rate is 10 percent per annum, then the value of $100 at the end of
one year (n = 1) for different values of m is given in Table 1. For daily compounding,
with R = 10% p.a., the terminal value after one year using (2) is $110.5155. Assuming
Rc = 10% gives FV c

n = $100e0.10(1) = $100.5171. So, daily compounding is almost
equivalent to using a continuously compounded rate (see the last two entries in Table 1).

We now consider how to switch between simple interest rates, periodic rates, effec-
tive annual rates and continuously compounded rates. Suppose an investment pays a
periodic interest rate of 2 percent each quarter. This will usually be quoted in the mar-
ket as 8 percent per annum, that is, as a simple annual rate. At the end of the year,
$A = $100 accrues to

$A(1 + R/m)m = 100(1 + 0.08/4)4 = $108.24 (4)

The effective annual rate Re is 8.24% since $100(1 + Re) = 108.24. Re exceeds the
simple rate because of the payment of interest-on-interest. The relationship between

Table 1 Compounding frequency

Compounding Frequency Value of $100 at End of Year
(R = 10% p.a.)

Annually (m = 1) 110.00
Quarterly (m = 4) 110.38
Weekly (m = 52) 110.51
Daily (m = 365) 110.5155
Continuous (n = 1) 110.5171
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the quoted simple rate R with payments m times per year and the effective annual rate
Re is

(1 + Re) = (1 + R/m)m (5)

We can use (5) to move from periodic interest rates to effective rates and vice versa.
For example, an interest rate with quarterly payments that would produce an effective
annual rate of 12 percent is given by 1.12 = (1 + R/4)4, and hence,

R = [(1.12)1/4 − 1]4 = 0.0287(4) = 11.48% (6)

So, with interest compounded quarterly, a simple interest rate of 11.48 percent per
annum is equivalent to a 12 percent effective rate.

We can use a similar procedure to switch between a simple interest rate R, which
applies to compounding that takes place over m periods, and an equivalent continuously
compounded rate Rc. One reason for doing this calculation is that much of the advanced
theory of bond pricing (and the pricing of futures and options) uses continuously
compounded rates.

Suppose we wish to calculate a value for Rc when we know the m-period rate R.
Since the terminal value after n years of an investment of $A must be equal when
using either interest rate we have

AeRcn = A(1 + R/m)mn (7)

and therefore,
Rc = m ln[1 + R/m] (8)

Also, if we are given the continuously compounded rate Rc, we can use the above
equation to calculate the simple rate R, which applies when interest is calculated m

times per year:
R = m(eRc/m − 1) (9)

We can perhaps best summarise the above array of alternative interest rates by using
one final illustrative example. Suppose an investment pays a periodic interest rate of
5 percent every six months (m = 2, R/2 = 0.05). In the market, this might be quoted
as a ‘simple rate’ of 10 percent per annum. An investment of $100 would yield 100[1 +
(0.10/2)]2 = $110.25 after one year (using equation 2). Clearly, the effective annual
rate is 10.25% p.a. Suppose we wish to convert the simple annual rate of R = 0.10 to
an equivalent continuously compounded rate. Using (8), with m = 2, we see that this
is given by Rc = 2 ln(1 + 0.10/2) = 0.09758 (9.758% p.a.). Of course, if interest is
continuously compounded at an annual rate of 9.758 percent, then $100 invested today
would accrue to 100 eRc·n = $110.25 in n = 1 year’s time.

Arithmetic and Geometric Averages

Suppose prices in successive periods are P0 = 1, P1 = 0.7 and P2 = 1, which cor-
respond to (periodic) returns of R1 = −0.30 (−30%) and R2 = 0.42857 (42.857%).
The arithmetic average return is R = (R1 + R2)/2 = 6.4285%. However, it would be
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incorrect to assume that if you have an initial wealth W0 = $100, then your final wealth
after 2 periods will be W2 = (1 + R)W0 = $106.4285. Looking at the price series it
is clear that your wealth is unchanged between t = 0 and t = 2:

W2 = W0[(1 + R1)(1 + R2)] = $100 (0.70)(1.42857) = $100

Now define the geometric average return as

(1 + Rg)
2 = (1 + R1)(1 + R2) = 1

Here Rg = 0, and it correctly indicates that the return on your ‘wealth portfolio’
Rw(0 → 2) = (W2/W0) − 1 = 0 between t = 0 and t = 2. Generalising, the geometric
average return is defined as

(1 + Rg)
n = (1 + R1)(1 + R2) · · · (1 + Rn) (10)

and we can always write
Wn = W0(1 + Rg)

n

Unless (periodic) returns Rt are constant, the geometric average return is always less
than the arithmetic average return. For example, using one-year returns Rt , the geo-
metric average return on a US equity value weighted index over the period 1802–1997
is 7% p.a., considerably lower than the arithmetic average of 8.5% p.a. (Siegel 1998).

If returns are serially uncorrelated, Rt = µ + εt with εt ∼ iid(0, σ 2), then the arith-
metic average is the best return forecast for any randomly selected future year. Over
long holding periods, the best forecast would also use the arithmetic average return
compounded, that is, (1 + R)n. Unfortunately, the latter clear simple result does not
apply in practice over long horizons, since stock returns are not iid.

In our simple example, if the sequence is repeated, returns are negatively serially
correlated (i.e. −30%, +42.8%, alternating in each period). In this case, forecasting
over long horizons requires the use of the geometric average return compounded,
(1 + Rg)

n. There is evidence that over long horizons stock returns are ‘mildly’ mean
reverting (i.e. exhibit some negative serial correlation) so that the arithmetic average
overstates expected future returns, and it may be better to use the geometric average
as a forecast of future average returns.

Long Horizons

The (periodic) return is (1 + R1) = P1/P0. In intertemporal models, we often require
an expression for terminal wealth:

Wn = W0(1 + R1)(1 + R2) · · · (1 + Rn)

Alternatively, this can be expressed as

ln(Wn/W0) = ln(1 + R1) + ln(1 + R2) + · · · + ln(1 + Rn)

= (Rc1 + Rc2 + · · · + Rcn) = ln(Pn/P0)
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where Rct ≡ ln(1 + Rt) are the continuously compounded rates. Note that the term in
parentheses is equal to ln(Pn/P0). It follows that

Wn = W0 exp(Rc1 + Rc2 + · · · + Rcn) = W0(Pn/P0)

Continuously compounded rates are additive, so we can define the (total continuously
compounded) return over the whole period from t = 0 to t = n as

Rc(0 → n) ≡ (Rc1 + Rc2 + · · · + Rcn)

Wn = W0 exp[Rc(0 → n)]

Let us now ‘connect’ the continuously compounded returns to the geometric average
return. It follows from (10) that

ln(1 + Rg)
n = (Rc1 + Rc2 + · · · + Rcn) ≡ Rc(0 → n)

Hence
Wn = W0 exp[ln(1 + Rg)

n] = W0(1 + Rg)
n

as we found earlier.

Nominal and Real Returns

A number of asset pricing models focus on real rather than nominal returns. The real
return is the (percent) rate of return from an investment, in terms of the purchasing
power over goods and services. A real return of, say, 3% p.a. implies that your initial
investment allows you to purchase 3% more of a fixed basket of domestic goods (e.g.
Harrod’s Hamper for a UK resident) at the end of the year.

If at t = 0 you have a nominal wealth W0, then your real wealth is W r
0 = W0/P

g
o ,

where P g = price index for goods and services. If R = nominal (proportionate) return
on your wealth, then at the end of year-1 you have nominal wealth of W0(1 + R) and
real wealth of

W r
1 ≡ W1

P
g
1

= (W r
0P

g
o )(1 + R)

P
g
1

Hence, the increase in your real wealth or, equivalently, your (proportionate) real
return is

(1 + Rr) ≡ W r
1/W r

0 = (1 + R)/(1 + π) (11)

Rr ≡ �W r
1

W r
0

= R − π

1 + π
≈ R − π (12)

where 1 + π ≡ (P
g
1 /P

g
0 ). The proportionate change in real wealth is your real return

Rr, which is approximately equal to the nominal return R minus the rate of goods
price inflation, π . In terms of continuously compounded returns,

ln(W r
1/W r

0) ≡ Rr
c = ln(1 + R) − ln(P

g
1 /P g

o ) = Rc − πc (13)
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where Rc = (continuously compounded) nominal return and πc = continuously
compounded rate of inflation. Using continuously compounded returns has the advan-
tage that the log real return over a horizon t = 0 to t = n is additive:

Rr
c(0 → n) = (Rc1 − πc1) + (Rc2 − πc2) + · · · + (Rcn − πcn)

= (Rr
c1 + Rr

c2 + · · · + Rr
cn) (14)

Using the above, if initial real wealth is W r
0, then the level of real wealth at t =

n is W r
n = W r

0e
Rn

c (0→n) = W r
0e

(Rr
c1+Rr

c2+···+Rr
cn). Alternatively, if we use proportionate

changes, then
W r

n = W r
0(1 + Rr

1)(1 + Rr
2) · · · (1 + Rr

n) (15)

and the annual average geometric real return from t = 0 to t = n, denoted Rr,g is
given by

(1 + Rr,g) = n
√

(1 + Rr
1)(1 + Rr

2) · · · (1 + Rn)r

and W r
n = W r

0(1 + Rr,g)
n

Foreign Investment

Suppose you are considering investing abroad. The nominal return measured in terms of
your domestic currency can be shown to equal the foreign currency return (sometimes
called the local currency return) plus the appreciation in the foreign currency. By
investing abroad, you can gain (or lose) either from holding the foreign asset or from
changes in the exchange rate. For example, consider a UK resident with initial nominal
wealth W0 who exchanges (the UK pound) sterling for USDs at a rate S0 (£s per $)
and invests in the United States with a nominal (proportionate) return Rus. Nominal
wealth in Sterling at t = 1 is

W1 = W0(1 + Rus)S1

S0
(16)

Hence, using S1 = S0 + �S1, the (proportionate) nominal return to foreign investment
for a UK investor is

R(UK → US ) ≡ (W1/W0) − 1 = Rus + �S1/S0 + Rus(�S1/S0) ≈ RUS + RFX

(17)

where RFX = �S1/S0 is the (proportionate) appreciation of FX rate of the USD against
sterling, and we have assumed that Rus(�S1/S0) is negligible. The nominal return to
foreign investment is obviously

Nominal return(UK resident) = local currency(US)return + appreciation of USD

In terms of continuously compound returns, the equation is exact:

Rc(UK → US ) ≡ ln(W1/W0) = Rus
c + �s (18)
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where Rus
c ≡ ln(1 + Rus) and �s ≡ ln(S1/S0). Now suppose you are concerned about

the real return of your foreign investment, in terms of purchasing power over domestic
goods. The real return to foreign investment is just the nominal return less the domestic
rate of price inflation. To demonstrate this, take a UK resident investing in the United
States, but ultimately using any profits to spend on UK goods. Real wealth at t = 1,
in terms of purchasing power over UK goods is

W r
1 = (W r

0P
g
o )(1 + Rus)S1

P
g
1 S0

(19)

It follows that the continuously compounded and proportionate real return to foreign
investment is

Rr
c(UK → US ) ≡ ln(W r

1/W r
0) = Rus

c + �s − πuk
c (20)

Rr(UK → US ) ≡ �W r
1/W r

0 ≈ Rus + RFX − πuk (21)

where �s = ln(S1/S0). Hence, the real return Rr(UK → US ) to a UK resident in
terms of UK purchasing power from a round-trip investment in US assets is

Real return (UK resident) = nominal ‘local currency’ return in US

+ appreciation of USD − inflation in UK

From (20) it is interesting to note that the real return to foreign investment for a UK
resident Rr

c(UK → US ) would equal the real return to a US resident investing in the
US, (Rus

c − πus
c ) if

πuk
c − πus

c = �s (22)

As we shall see in Chapter 24, equation (22) is the relative purchasing power parity
(PPP) condition. Hence, if relative PPP holds, the real return to foreign investment
is equal to the real local currency return Rus

c − πus
c , and the change in the exchange

rate is immaterial. This is because, under relative PPP, the exchange rate alters to just
offset the differential inflation rate between the two countries. As relative PPP holds
only over horizons of 5–10 years, the real return to foreign investment over shorter
horizons will depend on exchange rate changes.

1.2 Discounted Present Value, DPV

Let the quoted annual rate of interest on a completely safe investment over n years
be denoted as rn. The future value of $A in n years’ time with interest calculated
annually is

FV n = $A(1 + rn)
n (23)

It follows that if you were given the opportunity to receive with certainty $FVn in
n years’ time, then you would be willing to give up $A today. The value today of
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a certain payment of FV n in n years’ time is $A. In a more technical language, the
discounted present value DPV of FV n is

DPV = FV n/(1 + rn)
n (24)

We now make the assumption that the safe interest rate applicable to 1, 2, 3, . . . , n

year horizons is constant and equal to r . We are assuming that the term structure of
interest rates is flat. The DPV of a stream of receipts FV i (i = 1 to n) that carry no
default risk is then given by

DPV =
n∑

i=1

FV i/(1 + r)i (25)

Annuities

If the future payments are constant in each year (FV i = $C) and the first payment
is at the end of the first year, then we have an ordinary annuity. The DPV of these
payments is

DPV = C

n∑
i=1

1/(1 + r)i (26)

Using the formula for the sum of a geometric progression, we can write the DPV of
an ordinary annuity as

DPV = C · An,r where An,r = (1/r)[1 − 1/(1 + r)n] (27)

and DPV = C/r as n → ∞
The term An,r is called the annuity factor, and its numerical value is given in annuity
tables for various values of n and r . A special case of the annuity formula is when
n approaches infinity, then An,r = 1/r and DPV = C/r . This formula is used to
price a bond called a perpetuity or console, which pays a coupon $C (but is never
redeemed by the issuers). The annuity formula can be used in calculations involving
constant payments such as mortgages, pensions and for pricing a coupon-paying bond
(see below).

Physical Investment Project

Consider a physical investment project such as building a new factory, which has a
set of prospective net receipts (profits) of FV i . Suppose the capital cost of the project
which we assume all accrues today (i.e. at time t = 0) is $KC . Then the entrepreneur
should invest in the project if

DPV ≥ KC (28)

or, equivalently, if the net present value NPV satisfies

NPV = DPV − KC ≥ 0 (29)

If NPV = 0, then it can be shown that the net receipts (profits) from the investment
project are just sufficient to pay back both the principal ($KC ) and the interest on the
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Cost of funds, r (%)

NPV

0
105 15

Figure 1 NPV and the discount rate

loan, which was taken out to finance the project. If NPV > 0, then there are surplus
funds available even after these loan repayments.

As the cost of funds r increases, then the NPV falls for any given stream of profits
FV i from the project (Figure 1). There is a value of r (= 10% in Figure 1) for which
the NPV = 0. This value of r is known as the internal rate of return IRR of the
investment project. Given a stream of net receipts FV i and the capital cost KC for
a project, one can always calculate a project’s IRR. It is that constant value of y

for which

KC =
n∑

i=1

FV i/(1 + y)i (30)

An equivalent investment rule to the NPV condition (28) is to invest in the project if

IRR(= y) ≥ cost of borrowing (= r) (31)

There are some technical problems with IRR (which luckily are often not problematic
in practice). First, a meaningful solution for IRR assumes all the FV i > 0, and hence
do not alternate in sign, because otherwise there may be more than one solution for
the IRR. Second, the IRR should not be used to compare two projects as it may not
give the same decision rule as NPV (see Cuthbertson and Nitzsche 2001a).

We will use these investment rules throughout the book, beginning in this chapter,
with the derivation of the yield on bills and bonds and the optimal scale of physical
investment projects for the economy. Note that in the calculation of the DPV, we
assumed that the interest rate used for discounting the future receipts FV i was constant
for all horizons. Suppose that ‘one-year money’ carries an interest rate of r1, two-year
money costs r2, and so on, then the DPV is given by

DPV = FV 1/(1 + r1) + FV 2/(1 + r2)
2 + · · · + FV n/(1 + rn)

n =
∑

δiFV i (32)

where δi = 1/(1 + ri)
i . The ri are known as spot rates of interest since they are the

rates that apply to money that you lend over the periods r1 = 0 to 1 year, r2 = 0 to
2 years, and so on (expressed as annual compound rates). At any point in time, the
relationship between the spot rates, ri , on default-free assets and their maturity is known
as the yield curve. For example, if r1 < r2 < r3 and so on, then the yield curve is said



10 C H A P T E R 1 / B A S I C C O N C E P T S I N F I N A N C E

to be upward sloping. The relationship between changes in short rates over time and
changes in long rates is the subject of the term structure of interest rates.

The DPV formula can also be expressed in real terms. In this case, future receipts
FV i are deflated by the aggregate goods price index and the discount factors are
calculated using real rates of interest.

In general, physical investment projects are not riskless since the future receipts are
uncertain. There are a number of alternative methods of dealing with uncertainty in
the DPV calculation. Perhaps, the simplest method, and the one we shall adopt, has
the discount rate δi consisting of the risk-free spot rate ri plus a risk premium rpi .

δi = (1 + ri + rpi)
−1 (33)

Equation (33) is an identity and is not operational until we have a model of the risk
premium. We examine alternative models for risk premia in Chapter 3.

Stocks

The difficulty with direct application of the DPV concept to stocks is that future
dividends are uncertain and the discount factor may be time varying. It can be shown
(see Chapter 4) that the fundamental value Vt is the expected DPV of future dividends:

Vt = Et

[
Dt+1

(1 + q1)
+ Dt+2

(1 + q1)(1 + q2)
+ · · ·

]
(34)

where qi is the one-period return between time period t + i − 1 and t + i. If there are
to be no systematic profitable opportunities to be made from buying and selling shares
between well-informed rational traders, then the actual market price of the stock Pt

must equal the fundamental value Vi . For example, if Pt < Vt , then investors should
purchase the undervalued stock and hence make a capital gain as Pt rises towards Vt .
In an efficient market, such profitable opportunities should be immediately eliminated.

Clearly, one cannot directly calculate Vt to see if it does equal Pt because expected
dividends (and discount rates) are unobservable. However, in later chapters, we discuss
methods for overcoming this problem and examine whether the stock market is efficient
in the sense that Pt = Vt . If we add some simplifying assumptions to the DPV formula
(e.g. future dividends are expected to grow at a constant rate g and the discount rate
q = R is constant each period), then (34) becomes

V0 = Do(1 + g)/(R − g) (35)

which is known as the Gordon Growth Model. Using this equation, we can calculate the
‘fair value’ of the stock and compare it to the quoted market price P0 to see whether
the share is over- or undervalued. These models are usually referred to as dividend
valuation models and are dealt with in Chapter 10.

Pure Discount Bonds and Spot Yields

Instead of a physical investment project, consider investing in a pure discount bond
(zero coupon bond). In the market, these are usually referred to as ‘zeros’. A pure
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discount bond has a fixed redemption price M , a known maturity period and pays no
coupons. The yield on the bond if held to maturity is determined by the fact that it is
purchased at a market price Pt below its redemption price M . For a one-year bond, it
seems sensible to calculate the yield or interest rate as

r1t = (M1 − P1t )/P1t (36)

where r1t is measured as a proportion. However, when viewing the problem in terms
of DPV, we see that the one-year bond promises a future payment of M1 at the end
of the year in exchange for a capital cost of P1t paid out today. Hence the IRR, y1t ,
of the bond can be calculated from

P1t = M1/(1 + y1t ) (37)

But on rearrangement, we have y1t = (M1 − P1t )/P1t , and hence the one-year spot
yield r1t is simply the IRR of the bill. Applying the above principle to a two-year bill
with redemption price M2, the annual (compound) interest rate r2t on the bill is the
solution to

P2t = M2/(1 + r2t )
2 (38)

which implies
r2t = (M2/P2t )

1/2 − 1 (39)

If spot rates are continuously compounded, then

Pnt = Mne
−rnt n (40)

where rnt is now the continuously compounded rate for a bond of maturity n at time
t . We now see how we can, in principle, calculate a set of (compound) spot rates at t

for different maturities from the market prices at time t of pure discount bonds (bills).

Coupon-Paying Bonds

A level coupon (non-callable) bond pays a fixed coupon $C at known fixed intervals
(which we take to be every year) and has a fixed redemption price Mn payable when the
bond matures in year n. For a bond with n years left to maturity, the current market price
is Pnt . The question is how do we measure the return on the bond if it is held to maturity?

The bond is analogous to our physical investment project with the capital outlay
today being Pnt and the future receipts being $C each year (plus the redemption price).
The internal rate of return on the bond, which is called the yield to maturity yt , can
be calculated from

Pnt = C/(1 + yt ) + C/(1 + yt )
2 + · · · + (C + Mn)/(1 + yt )

n (41)

The yield to maturity is that constant rate of discount that at a point in time equates the
DPV of future payments with the current market price. Since Pnt , Mn and C are the
known values in the market, (41) has to be solved to give the quoted rate for the yield
to maturity yt . There is a subscript ‘t’ on yt because as the market price falls, the yield
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to maturity rises (and vice versa) as a matter of ‘actuarial arithmetic’. Although widely
used in the market and in the financial press, there are some theoretical/conceptual
problems in using the yield to maturity as an unambiguous measure of the return
on a bond even when it is held to maturity. We deal with some of these issues in
Part III.

In the market, coupon payments C are usually paid every six months and the interest
rate from (41) is then the periodic six-month rate. If this periodic yield to maturity is
calculated as, say, 6 percent, then in the market the quoted yield to maturity will be
the simple annual rate of 12 percent per annum (known as the bond-equivalent yield
in the United States).

A perpetuity is a level coupon bond that is never redeemed by the primary issuer
(i.e. n → ∞). If the coupon is $C per annum and the current market price of the bond
is P∞,t , then from (41) the yield to maturity on a perpetuity is

y∞,t = C/P∞,t (42)

It is immediately obvious from (42) that for small changes, the percentage change in
the price of a perpetuity equals the percentage change in the yield to maturity. The flat
yield or interest yield or running yield yrt = (C/Pnt )100 and is quoted in the financial
press, but it is not a particularly theoretically useful concept in analysing the pricing
and return on bonds.

Although compound rates of interest (or yields) are quoted in the markets, we often
find it more convenient to express bond prices in terms of continuously compounded
spot interest rates/yields. If the continuously compounded spot yield is rnt , then a
coupon-paying bond may be considered as a portfolio of ‘zeros’, and the price is
(see Cuthbertson and Nitzsche 2001a)

Pnt =
n∑

k=1

Cke
−rkt k + Mne

−rnt n =
n∑

k=1

P ∗
kt + P ∗

nt (43)

where P ∗
k = Cke

−rkk and P ∗
n are the prices of zero coupon bonds paying Ck at time

t + k and Mn at time t + n, respectively.

Holding Period Return

Much empirical work on stocks deals with the one-period holding period return Ht+1,
which is defined as

Ht+1 = Pt+1 − Pt

Pt

+ Dt+1

Pt

(44)

The first term is the proportionate capital gain or loss (over one period) and the second
term is the (proportionate) dividend yield. Ht+1 can be calculated ex-post but, of course,
viewed from time t, Pt+1 and (perhaps) Dt+1 are uncertain, and investors can only try
and forecast these elements. It also follows that

1 + Ht+i+1 = [(Pt+i+1 + Dt+i+1)/Pt+i] (45)
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where Ht+i is the one-period return between t + i and t + i + 1. Hence ex-post if $A

is invested in the stock (and all dividend payments are reinvested in the stock), then
the $Y payout after n periods is

Y = A[1 + Ht+1][1 + Ht+2] · · · [1 + Ht+n] (46)

The continuously compounded holding period return (or ‘log-return’) is defined as

ht+1 = ln(Pt+1/Pt ) = pt+1 − pt (47)

The continuously compounded return over period t to t + n is

ht+n = pt+n − pt = ht + ht+1 + · · · + ht+n (48)

Throughout the book, we will demonstrate how expected one-period returns Ht+1 can
be directly related to the DPV formula. Much of the early empirical work on whether
the stock market is efficient centres on trying to establish whether one-period returns
Ht+1 are predictable. Later empirical work concentrated on whether the stock price
equalled the DPV of future dividends, and the most recent empirical work brings
together these two strands in the literature.

With slight modifications, the one-period holding period return can be defined for
any asset. For a coupon-paying bond with initial maturity of n periods and coupon
payment of C, we have

Hn,t+1 = [(Pn−1,t+1 − Pn,t )/Pn,t ] + C/Pn,t (49)

and is also often referred to as the (one-period) holding period yield HPY. Note that
the n-period bond becomes an n − 1 period bond at t + 1. The first term is the capital
gain on the bond and the second is the coupon (or running) yield. For a zero coupon
bond, C = 0. In models of the term structure, we usually use continuously compounded
returns on zero coupon bonds, and hence ht+1 is given by

ht+1 = pn−1,t − pn,t (50)

Often, we can apply the same type of economic model to explain movements in holding
period returns for both stock and bonds (and other speculative assets), and we begin
this analysis with the Capital Asset Pricing Model (CAPM) in the next chapter.

1.3 Utility and Indifference Curves
In this section, we briefly discuss the concept of utility but only to a level such
that the reader can follow the subsequent material on portfolio choice and stochastic
discount factor (SDF) models. Economists frequently set up portfolio models in which
the individual chooses a set of assets in order to maximise some function of terminal
wealth or portfolio return or consumption. For example, a certain level of wealth will
imply a certain level of satisfaction for the individual as he contemplates the goods
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and services he could purchase with the wealth. If we double his wealth, we may
not double his level of satisfaction. Also, for example, if the individual consumes one
bottle of wine per night, the additional satisfaction from consuming an extra bottle may
not be as great as from the first. This is the assumption of diminishing marginal utility.
Utility theory can also be applied to decisions involving uncertain (strictly ‘risky’)
outcomes. In fact, we can classify investors as ‘risk averters’, ‘risk lovers’ or ‘risk
neutral’ in terms of the shape of their utility function. Finally, we can also examine
how individuals might evaluate ‘utility’, which arises at different points in time, that
is, the concept of discounted utility in a multiperiod or intertemporal framework.

Fair Lottery

A fair lottery (game) is defined as one that has an expected value of zero (e.g. tossing
a coin with $1 for a win (heads) and −$1 for a loss (tails)). Risk aversion implies that
the individual would not accept a ‘fair’ lottery, and it can be shown that this implies
a concave utility function over wealth. Consider the random payoff x:

x =
{
k1 with probability p

k2 with probability 1 − p
(51)

A fair lottery must have an expected value of zero

E(x) = pk 1 + (1 − p)k2 = 0 (52)

which implies k1/k2 = −(1 − p)/p or p = −k2/(k1 − k2). For our ‘coin toss’, p =
1/2, k1 = −k2 = $1.

Expected Utility

Suppose a random variable end-of-period wealth W can have n possible values Wi with
probability pi

(∑n
i=1 pi = 1

)
. The utility from any wealth outcome Wi is denoted

U(Wi), and the expected utility from the risky outcomes is

E[U(W)] =
n∑

i=1

piU(Wi) (53)

Uncertainty and Risk

The first restriction placed on utility functions is that more is always preferred to less
so that U ′(W) > 0, where U ′(W) = ∂U(W)/∂W . Now, consider a simple gamble of
receiving $16 for a ‘head’ on the toss of a coin and $4 for tails. Given a fair coin, the
probability of a head is p = 1/2 and the expected monetary value of the risky outcome
is $10:

EW = pW H + (1 − p)WT = (1/2)16 + (1/2)4 = $10 (54)
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We can see that the game is a fair bet when it costs c = $10 to enter, because then
E(x) = EW − c = 0. How much would an individual pay to play this game? This
depends on the individual’s attitude to risk. If the individual is willing to pay $10 to
play the game, so that she accepts a fair bet, we say she is risk neutral. If you dislike
risky outcomes, then you would prefer to keep your $10 rather than gamble on a fair
game (with expected value of $10) – you are then said to be risk averse. A risk lover
would pay more than $10 to play the game.

Risk aversion implies that the second derivative of the utility function is negative,
U ′′(W) < 0. To see this, note that the utility from keeping your $10 and not gambling
is U (10) and this must exceed the expected utility from the gamble:

U(10) > 0.5U(16) + 0.5U(4) or U(10) − U(4) > U(16) − U(10) (55)

so that the utility function has the concave shape, marked ‘risk averter’, as given in
Figure 2. An example of a utility function for a risk-averse person is U(W) = W 1/2.
Note that the above example fits into our earlier notation of a fair bet if x is the risky
outcome with k1 = WH − c = 6 and k2 = WT − c = −6, because then E(x) = 0.

We can demonstrate the concavity proposition in reverse, namely, that concavity
implies an unwillingness to accept a fair bet. If z is a random variable and U(z) is
concave, then from Jensen’s inequality:

E{U(z)} < U [E(z)] (56)

Let z = W + x where W is now the initial wealth, then for a fair gamble, E(x) = 0
so that

E{U(W + x)} < U [E(W + x)] = U(W) (57)

and hence you would not accept the fair bet.
It is easy to deduce that for a risk lover the utility function over wealth is convex

(e.g. U = W 2), while for a risk-neutral investor who is just indifferent between the
gamble or the certain outcome, the utility function is linear (i.e. U(W) = bW , with
b > 0). Hence, we have

U ′′(W) < 0 risk averse; U ′′(W) = 0 risk neutral; U ′′(W) > 0 risk lover

Wealth

Utility U(W ) Risk neutral

Risk lover

U(16)

U(4)

U(10)

4

Risk averter

10 16

Figure 2 Utility functions
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A risk-averse investor is also said to have diminishing marginal utility of wealth:
each additional unit of wealth adds less to utility, the higher the initial level of wealth
(i.e. U ′′(W) < 0). The degree of risk aversion is given by the concavity of the utility
function in Figure 2 and equivalently by the absolute size of U ′′(W). Note that the
degree of risk aversion even for a specific individual may depend on initial wealth
and on the size of the bet. An individual may be risk-neutral for the small bet above
and would be willing to pay $10 to play the game. However, a bet of $1 million for
‘heads’ and $0 for tails has an expected value of $500,000, but this same individual
may not be prepared to pay $499,000 to avoid the bet, even though the game is in his
or her favour – this same person is risk-averse over large gambles. Of course, if the
person we are talking about is Bill Gates of Microsoft, who has rather a lot of initial
wealth, he may be willing to pay up to $500,000 to take on the second gamble.

Risk aversion implies concavity of the utility function, over-risky gambles. But how
do we quantify this risk aversion in monetary terms, rather than in terms of utility?
The answer lies in Figure 3, where the distance π is the known maximum amount you
would be willing to pay to avoid a fair bet. If you pay π , then you will receive the
expected value of the bet of $10 for certain and end up with $(10 − π). Suppose the
utility function of our risk-averse investor is U(W) = W 1/2. The expected utility from
the gamble is

E[U(W)] = 0.5U(WH) + 0.5U(WT) = 0.5(16)1/2 + 0.5(4)1/2 = 3

Note that the expected utility from the gamble E[U(W)] is less than the utility from
the certain outcome of not playing the game U(EW ) = 101/2 = 3.162. Would our risk-
averse investor be willing to pay π = $0.75 to avoid playing the game? If she does
so, then her certain utility would be U = (10 − 0.75)1/2 = 3.04, which exceeds the
expected utility from the bet E[U(W)] = 3, so she would pay $0.75 to avoid playing.
What is the maximum insurance premium π that she would pay? This occurs when the
certain utility U(W − π) from her lower wealth (W − π) just equals E[U(W)] = 3,
the expected utility from the gamble:

U(W − π) = (10 − π)1/2 = E[U(W)] = 3

Wealth

Utility

0

AE[U(W )] = 3
= 0.5(4) + 0.5(2)

(W–p) = 9 

EW = 10 164

p

U(4) = 2

U(W ) = W1/2
U(EW ) = 101/2 = 3.162

U(16) = 4

Figure 3 Monetary risk premium
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which gives the maximum amount π = $1 that you would pay to avoid playing the
game. The amount of money π is known as the risk premium and is the maximum
insurance payment you would make to avoid the bet (note that ‘risk premium’ has
another meaning in finance, which we meet later – namely, the expected return on a
risky asset in excess of the risk-free rate). A fair bet of plus or minus $x = 6 gives
you expected utility at point A. If your wealth is reduced to (W − π), then the level
of utility is U(W − π). The risk premium π is therefore defined as

U(W − π) = E{U(W + x)} (58)

where W is initial wealth. To see how π is related to the curvature of the utility
function, take a Taylor series approximation of (58) around the point x = 0 (i.e. the
probability density is concentrated around the mean of zero) and the point π = 0:

U(W − π) ≈ U(W) − πU ′(W)

= E{U(W + x)} ≈ E{U(W) + xU ′(W) + (1/2)x2U ′′(W)}
= U(W) + (1/2)σ 2

x U ′′(W) (59)

Because E(x) = 0, we require three terms in the expansion of U(W + x). From (59),
the risk premium is

π = −1

2
σ 2

x

U ′′(W)

U ′(W)
= 1

2
σ 2

x RA(W) (60)

where RA(W) = −U ′′(W)/U ′(W) is the Arrow (1970)–Pratt (1964) measure of abso-
lute (local) risk aversion. The measure of risk aversion is ‘local’ because it is a function
of the initial level of wealth.

Since σ 2
x and U ′(W) are positive, U ′′(W) < 0 implies that π is positive. Note that

the amount you will pay to avoid a fair bet depends on the riskiness of the outcome
σ 2

x as well as both U ′′(W) and U ′(W). For example, you may be very risk-averse
(−U ′′(W) is large) but you may not be willing to pay a high premium π , if you are
also very poor, because then U ′(W) will also be high. In fact, two measures of the
degree of risk aversion are commonly used:

RA(W) = −U ′′(W)/U ′(W) (61)

RR(W) = RA(W)W (62)

RA(W) is the Arrow–Pratt measure of (local) absolute risk aversion, the larger RA(W)

is, the greater the degree of risk aversion. RR(W) is the coefficient of relative risk
aversion. RA and RR are measures of how the investor’s risk preferences change with
a change in wealth around the initial (‘local’) level of wealth.

Different mathematical functions give rise to different implications for the form of
risk aversion. For example, the function U(W) = ln(W) exhibits diminishing abso-
lute risk aversion and constant relative risk aversion (see below). Now, we list some
of the ‘standard’ utility functions that are often used in the asset pricing and portfo-
lio literature.
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Power (Constant Relative Risk Aversion)

With an initial (safe) level of wealth W0, a utility function, which relative to the starting
point has the property U(W)/U(W0) = f (W/W0) so that utility reacts to the relative
difference in wealth, is of the relative risk aversion type. The latter condition is met by
power utility, where the response of utility to W/W0 is constant, hence the equivalent
term constant relative risk aversion CRRA utility function:

U(W) = W(1−γ )

1 − γ
γ > 0, γ 	= 1

U ′(W) = W−γ U ′′(W) = −γW−γ−1

RA(W) = γ/W and RR(W) = γ (a constant) (63)

Since ln [U ′(W)] = −γ ln W , then γ is also the elasticity of marginal utility with
respect to wealth.

Logarithmic

As γ → 1 in (63), it can be shown that the limiting case of power utility is logarithmic.

U(W) = ln(W) and RR(W) = 1 (64)

This has the nice simple intuitive property that your satisfaction (utility) doubles each
time you double your wealth.

Quadratic

U(W) = W − b

2
W 2 b > 0

U ′(W) = 1 − bW U ′′(W) = −b

RA(W) = b/(1 − bW) and RR(W) = bW/(1 − bW) (65)

Since U ′(W) must be positive, the quadratic is only defined for W < 1/b, which is
known as the ‘bliss point’. Marginal utility is linear in wealth and this can sometimes be
a useful property. Note that both RR and RA are not constant but functions of wealth.

Negative Exponential (Constant Absolute Risk Aversion)

With an initial (safe) level of wealth W0, a utility function, which relative to the
starting point has the property U(W)/U(W0) = f (W − W0) so that utility reacts to
the absolute difference in wealth, is of the absolute risk aversion type. The only
(acceptable) function meeting this requirement is the (negative) exponential, where the
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response of utility to changes in W − W0 is constant, hence the term constant absolute
risk aversion CARA utility function:

U(W) = a − be−cW c > 0

RA(W) = c and RR(W) = cW (66)

It can be shown that the negative exponential utility function plus the assumption of
normally distributed asset returns allows one to reduce the problem of maximising
expected utility to a problem involving only the maximisation of a linear function
of expected portfolio return ERp and risk, that is (unambiguously) represented by the
variance σ 2

p . Then, maximising the above CARA utility function E[U(W)] is equivalent
to maximising

ERp − (c/2)σ 2
p (67)

where c = the constant coefficient of absolute risk aversion. Equation (67) depends
only on the mean and variance of the return on the portfolio: hence the term mean-
variance criterion. However, the reader should note that, in general, maximising
E[U(W)] cannot be reduced to a maximisation problem in terms of a general function
ERp and σ 2

p only (see Appendix), and only for the negative exponential can it be
reduced to maximising a linear function. Some portfolio models assume at the outset
that investors are only concerned with the mean-variance maximand and they, therefore,
discard any direct link with a specific utility function.

HARA (Hyperbolic Absolute Risk Aversion)

U(W) = 1 − γ

γ

(
αW

1 − γ
+ β

)γ

(68)

RA(W) =
(

W

1 − γ
+ β

α

)−1

(69)

RA(W) > 0 when γ > 1, β > 0

The restrictions are γ 	= 1, [αW/(1 − γ )] + β > 0, and α > 0. Also β = 1 if γ =
−∞. HARA (Hyperbolic Absolute Risk Aversion) is of interest because it nests con-
stant absolute risk aversion (β = 1, γ = −∞), constant relative risk aversion (γ <

1, β = 0) and quadratic (γ = 2), but it is usually these special cases that are used in
the literature.

1.4 Asset Demands
Frequently, we want to know what determines the optimal demand for stocks, bonds
and other assets, in investors’ portfolios. Not surprisingly, the answer depends on how
we set up the maximisation problem and the constraints facing the investor. Here we
concentrate on one-period models with relatively simple solutions – later chapters deal
with more complex cases.
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Mean-Variance Optimisation

The simplest model is to assume investors care only about one-period expected portfolio
returns and the standard deviation (risk) of these portfolio returns. Let α = proportion
of initial wealth W0 held in the single risky asset with return R and (1 − α) = amount
held in the risk-free asset with return r . The budget constraint (with zero labour
income) is

W1 = (αW0)(1 + R) + [(1 − α)W0](1 + r)

and therefore the return and variance of the portfolio are

Rp ≡ W1

W0
− 1 = α(R − r) + r

σp = ασR

where σR is the standard deviation of the only stochastic variable R. Investors are
assumed to maximise

max
α

θ = ERp − c

2
σ 2

p

where c > 0 is a measure of risk aversion (more precisely, the trade-off between
expected portfolio return and the variance of portfolio returns). The first-order condition
FOC is

ER − r − αcσR = 0

so that the optimal share of the risky asset is independent of wealth:

α∗ = (ER − r)

cσR

Hence, the absolute (dollar) amount held in the risky asset A0 = α∗W0 is proportional
to initial wealth, and is positively related to the excess return on the risky asset and
inversely related to the degree of risk aversion and the volatility of the risky asset.
The share of the risk-free asset is simply (1 − α∗) ≡ Aof /W0. The above is Tobin’s
(1956) mean-variance model of asset demands, and the reason for the simple closed
form solution is that the maximand is quadratic in α (because σ 2

p = α2σ 2
R). If we had

included known non-stochastic labour income y in the budget constraint, this would not
alter the solution. This one-period model is sometimes used in the theoretical literature
because it is linear in expected returns, which provides analytic tractability.

The mean-variance approach is easily extended to n-risky assets R = (R1, R2, . . .,
Rn)

′, and the maximand is

max
α

θ = α
′
(R − r.e) + r − c

2
α

′
�α

where α = (α1, α2, . . . , αn)
′, e is an n × 1 column vector of ones and � = (n × n)

variance–covariance matrix of returns. The FOCs give

α∗ = (c�)−1(ER − r.e)



S E C T I O N 1 . 4 / A S S E T D E M A N D S 21

and the share of the risk-free asset is α∗
f = 1 − ∑n

i=1 α∗
i . For two risky assets,

�−1 = (σ11σ22 − σ12σ21)
−1

(
σ22 −σ21

−σ12 σ11

)

and therefore the relative weights attached to the expected returns (ER1 –r) and (ER2 –r)
depend on the individual elements of the variance–covariance matrix of returns. The
second-order conditions guarantee that ∂α∗

i /∂ERi > 0 (i = 1 or 2).

Negative Exponential Utility

It is worth noting that the maximand θ does not, in general, arise from a second-order
Taylor series expansion of an arbitrary utility function depending only on termi-
nal wealth U(W1). The latter usually gives rise to a non-linear function EU (W) =
U(ERp) + 1

2σ 2
p U ′′(ERp), whereas the mean-variance approach is linear in expected

return and variance. However, there is one (very special) case where the maximand θ

can be directly linked to a specific utility function, namely,

max
α

E[U(W)] = −E{exp(−bW 1)} = −E{exp(−bW 0(1 + Rp))}
subject to Rp ≡ (W1/W0) − 1 = α

′
(R − r.e) + r

where b is the constant coefficient of absolute risk aversion. Thus, the utility function
must be the negative exponential (in end-of-period wealth, W1), and as we see below,
asset returns must also be multivariate normal. If a random variable x is normally
distributed, x ∼ N(µ, σ 2), then z = exp(x) is lognormal. The expected value of z is

Ez = exp

(
µ + 1

2
σ 2

)

In our case, µ ≡ Rp and σ 2 ≡ var(Rp). The maximand is monotonic in its exponent,
therefore, max E[U(W)] is equivalent to

max
α

E[U(W1)] = α
′
(ER − r.e) − 1

2
bW 0α

′
�α

where we have discarded the non-stochastic term exp(−bW0). The maximand is now
linearly related to expected portfolio return and variance. The solution to the FOCs is

α∗ = (bW 0 �)−1(ER − r.e)

This is the same form of solution as for the mean-variance case and is equivalent if
c = bW0. Note, however, that the asset demand functions derived from the negative
exponential utility function imply that the absolute dollar amount A = α∗W0 invested
in the risky asset is independent of initial wealth. Therefore, if an individual obtains
additional wealth next period, then she will put all of the extra wealth into the risk-free
asset – a somewhat implausible result.
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Quadratic Utility

In this section, we will outline how asset shares can be derived when the utility function
is quadratic – the math gets rather messy (but not difficult) and therefore we simplify
the notation (as in Cerny 2004). We assume one risky asset and a risk-free asset. The
budget constraint is

W = α̃W0R
∗ + (1 − α̃)W0R

∗
f + y

where α̃ = A/W0 is the risky asset share, y is the known labour income and R∗ =
1 + R is the gross return on the risky asset. The risk-free asset share is α̃f = 1 − α̃.
After some rearrangement, the budget constraint becomes

W = Wsafe(1 + αX)

where Wsafe ≡ R∗
f W0 + y, X = R − Rf and α = α̃W0/Wsafe

Hence, α is just a scaled version of α̃. The utility function is quadratic with a fixed
‘bliss level’ of wealth Wbliss:

U(W) = −1

2
(W − Wbliss)

2 = −1

2
(W 2 − 2WWbliss + W 2

bliss)

We assume investors are always below the bliss point. It is easy to see from the above
that E[U(W)] depends on α, α2, EX and E(X2). The FOCs will therefore be linear
in α. In addition, E(X2) ≡ var(X) − (EX )2 so that the optimal α will depend only on
expected excess returns EX and the variance of returns on the risky assets (but the
relationship is not linear). Substituting the budget constraint in E[U(W)] and solving
the FOC with respect to α gives (after tedious algebra)

α∗ = qk

EX

E (X 2 )

where qk = 2 k(1 − k)/2 k2 and k = Wsafe/Wbliss.
Note that no explicit measure of risk aversion appears in the equation for α∗ but

it is implicit in the squared term ‘2’ in the utility function, and is therefore a scaling
factor in the solution for α∗. (Also see below for the solution with power utility that
collapses to quadratic utility for γ = −1.)

In order that we do not exceed the bliss point, we require k 
 1 and to simplify
the algebra, take k = 1/2 so that qk = 1 (Equation 3.53, p. 68 in Cerny 2004). Hence,

α∗ = EX

E (X 2 )
= µx

σ 2
x + µ2

x

= 1

µx(1 + 1/SR2
x)

where SRx = µx/σx is known as the Sharpe ratio, and appears through the book as a
measure of return per unit of risk (reward-to-risk ratio). Here the optimal α (and α̃) is
directly related to the Sharpe ratio. It can be shown that α∗ for quadratic utility (and
for W(α∗) < Wbliss) is also that value that gives the maximum Sharpe ratio (and this
generalises when there are many risky assets, (see Cerny 2004, Chapter 4)).
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Choosing a portfolio (i.e. α = (α1, α2, . . . , αn)) to maximise the Sharpe ratio can
therefore be directly linked to maximising expected quadratic utility (for W(α∗) <

Wbliss) – although the Sharpe ratio criterion would not be valid if the optimal α implies
that W(α∗) > Wbliss. The link between the (basic) Sharpe ratio and utility cannot be
established for other types of utility function. Nevertheless, the Sharpe ratio is often
used in practice to rank alternative risky portfolios without trying to link the decision
to any specific utility function – as we see in later chapters. Also, if the ‘basic’ Sharpe
ratio above can be generalised to link it to a constant CARA utility function, then it
can be referred to as the Hodges ratio (see Cerny 2004, Hodges 1998).

Power Utility

A closed form solution for asset shares for most utility functions is not possible.
We then have to use numerical techniques. We demonstrate this outcome for power
utility over (one period) final wealth for one risky and one risk-free asset. The budget
constraint is

W(α̃) = α̃W0R
∗ + (1 − α̃)W0R

∗
f + y = Wsafe(1 + αX)

Suppose we have a simple set-up where R∗
u = 1.20 and R∗

D = 0.90 so that the risky
asset has only two possible outcomes, up or down (i.e. 20% or −10%), with equal prob-
ability of 1/2. Let γ = 5, r = 0.03, W0 = $1 m and y = $200,000. The maximisation
problem with power utility is then

max
α

θ = E

[
W 1−γ

(1 − γ )

]
=

{
1

2

W
1−γ
u

(1 − γ )
+ 1

2

W
1−γ

D

(1 − γ )

}

= W
1−γ

safe

{
1

2

(1 + αXu)

(1 − γ )
+ 1

2

(1 + αXu)
1−γ

(1 − γ )

}

Everything in θ is known except for α. Actually, an analytic solution for this case is
possible. We would set ∂θ/∂α = 0, and the resulting equation is solved for α∗ and then
for α̃∗ = α∗Wsafe/W0 = 0.3323 (see Cerny 2004, p. 60). Alternatively, any numerical
optimiser would also directly give the solution. Having obtained α∗, we can substitute
this in the above equation to give the expected utility at the optimum.

θ∗ = E[U [W(α∗)]] = −1.110397(10−25)

The certainty equivalent level of wealth Wcert can be calculated from

U(Wcert) = E{U [W(α∗)]} that is,
W

1−γ
cert

1 − γ
= −1.110397(10−25)

which for (γ = 5) gives Wcert = $1,224,942. We have Wsafe = R∗
f W0 + y =

$1,220,000, so the investor is better off by $4,942 compared to holding only the
risk-free asset.
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The above is easily extended to the case where we still have only one risky asset
but there are m possible outcomes (‘states’) for the risky asset excess return X with
probabilities pi . The maximand θ summed over all states is

θ = max
α

m∑
i=1

piU(Wi)

where U(Wi) = W
1−γ

i /(1 − γ ) and Wi = Wsafe(1 + αXi). Again, the only unknown in
θ is the risky asset share α (or α̃), and the optimal α can be obtained from a numerical
optimiser (or ‘by hand’ if you have numerous sheets of paper).

Now let us be a little more adventurous and assume we choose a set of risky assets
α = (α1, α2, . . . , αn)

′
, but for the moment assume there are only m = 4 states of nature

for each excess return with an associated joint probability distribution:

X(i) = (X
(i)

1 , . . . , X(i)
n )′ (n × 1)

Wi = Wsafe(1 + α
′
X(i)) (i = 1 − 4)

pi = (p1, p2, p3, p4) (1 × 4)

Wi is a scalar, and each outcome for the n-vector X(i) has an associated joint probability
pi . There are only four possible outcomes for the four vectors X(i) with probabilities pi

and hence four outcomes for Wi and U(Wi). So, θ contains a sum over four states and
is easily calculated but it now depends on the n values of αi . The FOCs are ∂θ/∂αi =
0 (for i = 1, 2, . . . , n) and, in general, these non-linear equations cannot be solved
analytically and hence an optimiser must be used to obtain the α∗

i (i = 1, 2, . . . , n),
which maximises θ .

Continuous Distribution

Suppose we have n assets but the distribution of returns R is continuous and for expo-
sitional purposes, assume the (n × 1) vector X = R − r.e (where e = n × 1 vector of
ones) is multivariate normal with conditional density f (x|�), where � is information
at t − 1 or earlier. We have

W = Wsafe(1 + α′X)

U(W) = W 1−γ /(1 − γ )

Hence:

θ = E{U [W(α)]} = W
1−γ

safe

(1 − γ )
·
∫ ∞

−∞
(1 + α

′
x)

1−γ
f (x/�) dx

For illustrative purposes, assume n = 2 and X|� ∼ N(µ, �), then

f (x) = 1

(2π)n| det �| exp

[
−1

2
(x − µ)�−1(x − µ)

]

The conditional mean and covariance matrix are assumed ‘known’ (i.e. estimated by a
statistician from historic data), and the term in square brackets is a scalar function of
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x. In the simplest case where each xit is iid over time but there is cross-correlation at
time t

xi = µ + εi � = E(ε
′
ε)

and the conditional and unconditional moments are equal. The (multiple) integral may
be solvable analytically, but usually has to be evaluated numerically. In effect, the
optimiser chooses alternative trial values for α = (α1, α2, . . . , αn), calculates θ(α) and
chooses that value α = α∗ that achieves the largest value of θ(α∗). A clear exposition
of optimisation, including some useful GAUSS programmes, can be seen in Chapter 4
of Cerny (2004).

Risk Aversion and Portfolio Choice

When investors have a one-period horizon and maximise U(W), there is a little more
we can say about the response of the demands for risky assets to a change in initial
wealth. For simplicity, we assume only one risky asset. We state these results without
proof, but they are based on an analysis of the FOC, for any concave utility function:

E[U ′(W)(R − Rf)] = 0

where W = W0(1 + Rf) + A(R − Rf) and W0 = initial wealth, A = $-amount invested
in the risky asset (and (W0 − A) is invested in the risk-free asset). Our first result is
easily seen from the FOC. If ER = Rf, then A = 0 satisfies the FOC, W = W0(1 +
Rf) is non-stochastic, so E[U ′(W)(R − Rf)] = U ′(W)E(R − Rf) = 0. Hence, a risk-
averse individual would not accept a fair gamble, namely, ER − Rf = 0, since the latter
implies A = 0. Other results for any concave utility function are:

(i) If ER > Rf, then A > 0, the investor holds a positive amount of the risky asset – she
is willing to accept a small gamble with positive expected return.

(ii) Declining absolute risk aversion (i.e. ∂RA/∂W0 < 0, where RA is the coefficient
of absolute risk aversion) implies that ∂A/∂W0 > 0, that is, the individual invests
more ‘dollars’ in the risky asset if initial wealth is higher (and vice versa).

(iii) If the coefficient of relative risk aversion RR is decreasing in wealth (i.e.
∂RR/∂W0 < 0), then (∂A/A0)/(∂W/W0) > 1, so the individual invests a greater
proportion in the risky asset as wealth increases. The opposite applies for an
investor with a coefficient of relative risk aversion that increases in wealth.

The above complement our earlier results that for constant absolute risk aversion,
CARA (e.g. negative exponential), ∂A/∂W0 = 0 and for constant relative risk aversion,
∂A/A = ∂W/W , so optimal asset shares remain constant.

1.5 Indifference Curves and Intertemporal Utility
Although it is only the case under somewhat restrictive circumstances, let us assume
that the utility function in Figure 2 for the risk averter can be represented solely in
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terms of the expected return and the variance of the return on the portfolio. The link
between end-of-period wealth W and investment in a portfolio of assets yielding an
expected return ERp is W = (1 + ERp)W0, where W0 is initial wealth. However, we
now do assume that the utility function can be represented as

U = U(ERp, σ
2
p ) U1 > 0, U2 < 0, U11, U22 < 0 (70)

The sign of the first-order partial derivatives (U1, U2) imply that expected return adds
to utility, while more ‘risk’ reduces utility. The second-order partial derivatives indicate
diminishing marginal utility to additional expected ‘returns’ and increasing marginal
disutility with respect to additional risk. The indifference curves for the above utility
function are shown in Figure 4.

At a point like A on indifference curve I1, the individual requires a higher expected
return (A′′′ –A′′) as compensation for a higher level of risk (A–A′′) if he is to maintain
the level of satisfaction (utility) pertaining at A: the indifference curves have a positive
slope in risk–return space. The indifference curves are convex to the ‘risk axis’, indi-
cating that at higher levels of risk, say at C, the individual requires a higher expected
return (C′′′ –C′′ > A′′′ –A′′) for each additional increment to the risk he undertakes,
than he did at A: the individual is ‘risk-averse’. The indifference curves in risk–return
space will be used when analysing portfolio choice in a simple mean-variance model.

Intertemporal Utility

A number of economic models of individual behaviour assume that investors obtain
utility solely from consumption goods. At any point in time, utility depends positively
on consumption and exhibits diminishing marginal utility

U = U(Ct) U ′(Ct ) > 0, U ′′(Ct ) < 0 (71)

The utility function, therefore, has the same slope as the ‘risk averter’ in Figure 2 (with
C replacing W ). The only other issue is how we deal with consumption that accrues
at different points in time. The most general form of such an intertemporal lifetime
utility function is

UN = U(Ct , Ct+1, Ct+2, . . . , Ct+N) (72)

ssp
2

ERp I2

I1

A A′′

A′′′

C′′′

C′′C

(A-A′′) == (C-C′′)

Figure 4 Risk–return: indifference curves
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However, to make the mathematics tractable, some restrictions are usually placed on
the form of U, the most common being additive separability with a constant subjective
rate of discount, 0 < θ < 1:

UN = U(Ct ) + θU(Ct+1) + θ2U(Ct+2) + · · · + θNU(Ct+N) (73)

The lifetime utility function can be truncated at a finite value for N , or if N → ∞,
then the model is said to be an overlapping generations model since an individual’s
consumption stream is bequeathed to future generations.

The discount rate used in (73) depends on the ‘tastes’ of the individual between
present and future consumption. If we define θ = 1/(1 + d), then d is known as the
subjective rate of time preference. It is the rate at which the individual will swap utility
at time t + j for utility at time t + j + 1 and still keep lifetime utility constant. The
additive separability in (73) implies that the marginal utility from extra consumption
in year t is independent of the marginal utility obtained from extra consumption in any
other year (suitably discounted).

For the two-period case, we can draw the indifference curves that follow from
a simple utility function (e.g. U = C

α1
0 C

α2
1 , 0 < α1, α2 < 1) and these are given in

Figure 5. Point A is on a higher indifference curve than point B since at A the individual
has the same level of consumption in period 1, C1 as at B, but at A, he has more
consumption in period zero, C0. At point H, if you reduce C0 by x0 units, then for the
individual to maintain a constant level of lifetime utility he must be compensated by
y0 extra units of consumption in period 1, so he is then indifferent between points H
and E. Diminishing marginal utility arises because at F, if you take away x0 units of
C0, then he requires y1 (> y0) extra units of C1 to compensate him. This is because at
F he starts off with a lower initial level of C0 than at H, so each unit of C0 he gives
up is relatively more valuable and requires more compensation in terms of extra C1.

The intertemporal indifference curves in Figure 5 will be used in discussing invest-
ment decisions under certainty in the next section and again when discussing the
consumption – CAPM model of portfolio choice and equilibrium asset returns under
uncertainty.

C1

C0

I1

I0
HD

E

F

AB

G

y1

x0

x0

y0

Figure 5 Intertemporal consumption: indifference curves
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1.6 Investment Decisions and Optimal Consumption

Under conditions of certainty about future receipts, our investment decision rules indi-
cate that managers should rank physical investment projects according to either their
NPV or IRR. Investment projects should be undertaken until the NPV of the last
project undertaken equals zero or equivalently if IRR = r , the risk-free rate of inter-
est. Under these circumstances, the marginal (last) investment project undertaken just
earns enough net returns (profits) to cover the loan interest and repayment of prin-
cipal. For the economy as a whole, undertaking real investment requires a sacrifice
in terms of lost current consumption output. Labour skills, man-hours and machines
are, at t = 0, devoted to producing new machines or increased labour skills that will
add to output and consumption but only in future periods. The consumption pro-
file (i.e. less consumption goods today and more in the future) that results from
the decisions of producers may not coincide with the consumption profile desired
by individual consumers. For example, a high level of physical investment will dras-
tically reduce resources available for current consumption and this may be viewed
as undesirable by consumers who prefer at the margin, consumption today rather
than tomorrow.

How can financial markets, through facilitating borrowing and lending, ensure that
entrepreneurs produce the optimal level of physical investment (i.e. which yields high
levels of future consumption goods) and also allow individuals to spread their consump-
tion over time according to their preferences? Do the entrepreneurs have to know the
preferences of individual consumers in order to choose the optimum level of physical
investment? How can the consumers acting as shareholders ensure that the managers
of firms undertake the ‘correct’ physical investment decisions, and can we assume that
the financial markets (e.g. stock markets) ensure that funds are channelled to the most
efficient investment projects?

Questions of the interaction between ‘finance’ and real investment decisions lie at
the heart of the market system. The full answer to these questions involves complex
issues. However, we can gain some useful insights if we consider a simple two-period
model of the investment decision in which all outcomes are certain (i.e. riskless) in real
terms (i.e. we assume zero price inflation). We shall see that under these assumptions,
a separation principle applies. If managers ignore the preferences of individuals and
simply invest in projects until the NPV = 0 or IRR = r , that is, maximise the value
of the firm, then this policy will, given a capital market, allow each consumer to
choose his desired consumption profile, namely, that which maximises his individual
welfare. There is therefore a two-stage process or separation of decisions; yet, this still
allows consumers to maximise their welfare by distributing their consumption over time
according to their preferences. In step one, entrepreneurs decide the optimal level of
physical investment, disregarding the preferences of consumers. In step two, consumers
borrow or lend in the capital market to rearrange the time profile of their consumption
to suit their individual preferences. In explaining this separation principle, we first deal
with the production decision and then the consumers’ decision before combining these
two into the complete model.
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Consumption
in period 0

Consumption
in period 1

Note : (A – A′′ = B – B′′).

C1
(1)

C0
(1) W0

I0

A′′ A
First investment

project

Second investment
project

B′′
B

Tenth investment
project

Figure 6 Production possibility curve

All output is either consumed or used for physical investment. The entrepreneur has
an initial endowment W0 at t = 0. He ranks projects in order of decreasing NPV, using
the risk-free interest rate r as the discount factor. By abstaining from consumption of
C

(1)

0 , he obtains resources for his first investment project I0 = W0 − C
(1)

0 . The physical
investment in that project, which has the highest NPV (or IRR), yields consumption
output at t = 1 of C

(1)

1 , where C
(1)

1 > C
(1)

0 (see Figure 6). The IRR of this project (in
terms of consumption goods) is

1 + IRR(1) = C
(1)

1 /C
(1)

0 (74)

As he devotes more of his initial endowment W0 to other investment projects with
lower NPVs, the IRR (C1/C0) falls, which gives rise to the production opportunity
curve with the shape given in Figure 6. The first and the most productive investment
project has an NPV of

NPV (1) = C
(1)

1 /(1 + r) − I0 > 0 (75)

and
IRR(1) = C

(1)

1 /C
(1)

0 > r (76)

Let us now turn to the financing problem. In the capital market, any two consumption
streams C0 and C1 have a present value PV given by

PV = C0 + C1/(1 + r) [77a]

and hence,
C1 = PV (1 + r) − (1 + r)C0 [77b]

For a given value of PV, this gives a straight line in Figure 7 with a slope equal
to −(1 + r). The above equation is referred to as the ‘money market line’ since it
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Consumption
in period 0

Consumption
in period 1

C1
*

C0
*      W0

X
Money market line :

(slope = −(1 + r)

I0
*

Figure 7 Money market line

represents the rate of return on lending and borrowing money. If you lend an amount
C0 today, you will receive C1 = (1 + r) C0 tomorrow.

Our entrepreneur, with an initial endowment of W0, will continue to invest in phys-
ical assets until the IRR on the nth project just equals the risk-free interest rate

IRR(n) = r

which occurs at point (C∗
0 , C∗

1 ). Hence, the investment strategy that maximises the (net
present) value of the firm involves an investment of

I ∗
0 = W0 − C∗

0

Current consumption is C∗
0 and consumption at t = 1 is C∗

1 (Figure 7). At any point
to the right of X, the slope of the investment opportunity curve (= IRR) exceeds the
market interest rate (= r) and at points to the left of X, the opposite applies. However,
the optimal levels of consumption (C∗

0 , C∗
1 ) from the production decision may not

conform to those desired by an individual consumer’s preferences. We now leave the
production decision and turn exclusively to the consumer’s decision.

Suppose the consumer has income accruing in both periods and this income stream
has a present value of PV. The consumption possibilities that fully exhaust this income
(after two periods) are given by (77a). Assume that lifetime utility (satisfaction) of the
consumer depends on C0 and C1

U = U(C0, C1)

and there is diminishing marginal utility in both C0 and C1 (i.e. ∂U/∂C > 0,
∂2U/∂C2 < 0). The indifference curves are shown in Figure 8. To give up one unit of
C0, the consumer must be compensated with additional units of C1 if he is to maintain
his initial level of utility. The consumer wishes to choose C0 and C1 to maximise
lifetime utility, subject to his budget constraint. Given his endowment PV, his optimal
consumption in the two periods is (C∗∗

0 , C∗∗
1 ) – Figure 8. In general, the optimal

production or physical investment plan that yields consumption (C∗
0 , C∗

1 ) will not equal
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Figure 8 Consumer’s maximisation
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Figure 9 Maximisation with capital market

the consumer’s optimal consumption profile (C∗∗
0 , C∗∗

1 ). However, the existence of a
capital market ensures that the consumer’s optimal point can be attained. To see this,
consider Figure 9.

The entrepreneur has produced a consumption profile (C∗
0 , C∗

1 ) that maximises the
value of the firm – Figure 9. We can envisage this consumption profile as being paid
out to the owners of the firm in the form of (dividend) income. The present value of
this ‘cash flow’ is PV∗, where

PV ∗ = C∗
0 + C∗

1/(1 + r) (78)

This is, of course, the ‘income’ given to our individual consumer as owner of the firm.
But, under conditions of certainty, the consumer can ‘swap’ this amount PV∗ for any
combination of consumption that satisfies

PV ∗ = C0 + C1/(1 + r) (79)

Given PV∗ and his indifference curve I2 in Figure 9, he can then borrow or lend in
the capital market at the riskless rate r to achieve that combination (C∗∗

0 , C∗∗
1 ) that

maximises his utility.
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Thus, there is a separation of investment and financing (borrowing and lending)
decisions. Optimal borrowing and lending take place independently of the physical
investment decision. If the entrepreneur and consumer are the same person(s), the
separation principle still applies. The investor (as we now call him) first decides how
much of his own initial endowment W0 to invest in physical assets, and this decision
is independent of his own (subjective) preferences and tastes. This first-stage decision
is an objective calculation based on comparing the IRR of his investment projects with
the risk-free interest rate. His second-stage decision involves how much to borrow or
lend in the capital market to ‘smooth out’ his desired consumption pattern over time.
The latter decision is based on his preferences or tastes, at the margin, for consumption
today versus (more) consumption tomorrow.

Much of the rest of this book is concerned with how financing decisions are taken
when we have a risky environment. The issue of how shareholders ensure that managers
act in the best interest of the shareholders, by maximising the value of the firm, comes
under the heading of corporate control mechanisms (e.g. mergers, takeovers). The
analysis of corporate control is not directly covered in this book. We only consider
whether market prices provide correct signals for resource allocation (i.e. physical
investment), but we do not look closely at issues involving the incentive structure
within the firm based on these market signals: this is the principal–agent problem in
corporate finance.

We can draw a parallel between the above results under certainty with those we
shall be developing under a risky environment.

(i) In a risky environment, a somewhat different separation principle applies. Each
investor, when choosing his portfolio of risky marketable assets (e.g. shares, bonds),
will hold risky assets in the same proportion as all other investors, regardless of
his preferences of risk versus return. Having undertaken this first-stage decision,
each investor then decides how much to borrow or lend in the money market at
the risk-free interest rate – it is at this point that his preferences influence the split
between the risky assets and the risk-free asset. This separation principle is the
basis of the mean-variance model of optimal portfolio choice and of the CAPM of
equilibrium asset returns.

(ii) The optimal amount of borrowing and lending in the money market in the riskless
case occurs where the individual’s subjective marginal rate of substitution of future
for current consumption [i.e. (∂C1/∂C0)u] equals −(1 + r), where r is the ‘price’
or opportunity cost of money. Under uncertainty, an analogous condition applies,
namely, that the individual’s subjective trade-off between expected return and risk
is equal to the market price of risk.

1.7 Summary

We have developed some basic tools for analysing behaviour in financial markets.
There are many nuances on the topics discussed that we have not had time to elaborate
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in detail, and in future chapters, these omissions will be rectified. The main conclusions
to emerge are:

• Market participants generally quote ‘simple’ annual interest rates but these can
always be converted to effective annual (compound) rates or to continuously com-
pounded rates.

• The concepts of DPV and IRR can be used to analyse physical investment projects
and to calculate the fair price of bills, bonds and stocks.

• Theoretical models of asset demands and asset prices often use utility functions as
their objective function. Utility functions and their associated indifference curves
can be used to represent risk aversion, risk lovers and risk-neutral investors.

• Under conditions of certainty, a type of separation principle applies when deciding
on (physical) investment projects. Managers can choose investment projects to max-
imise the value of the firm and disregard investor’s preferences. Then, investors are
able to borrow and lend to allocate consumption between ‘today’ and ‘tomorrow’
in order to maximise their utility.

• One-period models in which utility is assumed to depend only on expected portfolio
return and the variance of return give rise to asset shares that depend on expected
excess returns, the covariance matrix of returns and ‘risk aversion’ of the investor.

• One-period models that depend on the expected utility of end-of-period wealth gen-
erally do not give closed-form solutions. The exceptions are quadratic utility or
negative exponential utility plus multivariate normally distributed returns, where
asset demands are linear in expected excess returns. For many other utility functions,
the optimal solution for asset demands has to be calculated numerically.

Appendix: Mean-Variance Model and Utility
Functions
If an investor maximises expected utility of end-of-period portfolio wealth, then it can
be shown that this is equivalent to maximising a function of expected portfolio returns
and portfolio variance providing

(a) either utility is quadratic, or

(b) portfolio returns are normally distributed (and utility is concave).

If initial wealth is W0 and the stochastic portfolio return is Rp, then end-of-period
wealth and utility are

W = W0(1 + Rp) (A1)

U(W) = U [W0(1 + Rp)] (A2)
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Expanding U(Rp) in a Taylor series around the mean of Rp(= µp) gives

U(Rp) = U(µp) + (Rp − µp)U
′(µp) + (1/2)(Rp − µp)

2U ′′(µp)

+ higher order terms (A3)

Since E(Rp − µp) = 0, and E(Rp − µp)
2 = σ 2

p , taking expectations of (A3):

E[U(Rp)] = U(µp) + 1

2
σ 2

p U ′′(µp) + E(higher − order terms) (A4)

If utility is quadratic, then higher-order terms other than U ′′ are zero. If returns are
normally distributed, then E[(Rp − µp)

n] = 0 for n odd, and E[(Rp − µp)
n] for n

even is a function only of the variance σ 2
p . Hence for cases (a) and (b), E[U(Rp)] is

a function of only the mean µp and the variance σ 2
p . This result is moderately useful;

for example, it can be shown that if utility is defined only in terms of µp and σp and
is concave, then indifference curves in (µp, σp) space are convex, as assumed in the
text (see Figure 4). However, until we specify a specific utility function, we do not
know the functional relationship between E[U(Rp)] and (µp, σp) and hence we cannot
determine whether there is an analytic closed-form solution for asset demands.

Using quadratic utility has the problem that marginal utility is negative for levels of
wealth above the bliss point. Assuming normality for returns may not be an accurate
representation and also prices may become negative. Continuous time models assume
returns that are instantaneously normally distributed, and this provides considerable
tractability (see Cuthbertson and Nitzsche 2001a), which is widely used in derivatives
pricing. Again, the empirical validity of normality even at high frequencies (e.g. tick-
data) is debatable, but the usefulness of results depends on the problem at hand (e.g.
it seems reasonable when pricing stock index options).


