
 Web 2.0, Python, and
Frameworks

 You had me at “Hello.”

— Renée Zellweger in Jerry Maguire

 The authors know you. Or at least they know a few things about you. If you’ve grabbed this book
from your favorite online (or even brick-and-mortar) bookseller, chances are that you’re an accom-
plished Python developer, or you’re on your way to becoming one. You may well have created
web content using your Python skills, or perhaps you’ve written your share of web services
backed by Python code as a Common Gateway Interface (CGI) script. You may have just heard the
term “Web 2.0” or “AJAX,” or you may already be an accomplished user of one or many Web 2.0
sites and are wondering how to plug into the action as a developer. You may be aware of web
frameworks in other languages, such as Ruby on Rails (also referred to simply as Rails) or Google
Widget Toolkit (GWT), and you may even have experimented with one or more them. If you’ve
been unable to embrace any of these other frameworks, it may be because they have one annoying
aspect — they’re not Python. Actually, if you’ve worked with other frameworks, the fact that they
don’t follow the Python philosophy (they’re not Pythonic) may be the least of your negative
impressions.

 The good news is that now you don’t have to abandon the language that you love to get the
(admittedly significant) benefits of a comprehensive framework. The Python-based frameworks
covered in the chapters that follow are every bit as capable and fun to use as any other, and it
might be argued, perhaps even better in some ways. The Rails language, for example, demands a
certain adherence to convention that sometimes gets in the way of a coder’s freedom of expression.
GWT is essentially a Java-based page-element composer that enables you to bypass writing
ECMAScript directly, but lacks the design center for dynamic partial page replacement for which
the Python Turbogears framework is becoming renowned.

Part I: Introduction to Python Frameworks

4

 The Star ting Line
 The goal of this book is to help you discover a new methodology for designing, coding, testing, and
deploying rich applications that reside primarily in the network cloud, rather than primarily on the
desktop. This application style is at the heart of so many modern tools and sites that even if you haven’t
had experience in developing using the model, you have certainly experienced many sites built this way.

 The problem with learning an entirely new way to create applications is, as always, where to start. The
authors, being developers rather like you, have always believed that one well-worked example is worth
hundreds of words of prose. You’ll find those in profusion in this book, but it’s important to have an
understanding of why Web 2.0 is important to you as a developer or entrepreneur and how the frame-
works covered will allow you to leverage your Python skills in different and powerful new ways. Thus,
that’s the starting point for the book, and even though this chapter is short on code, it’s long on ideas, so
it will be worth your time to at least skim it. To understand why web frameworks were even designed in
the first place, you should understand a little about the whole Web 2.0 revolution.

 What’s Web 2.0?
 Skeptics claim that Web 2.0 is little more than a marketer’s buzzword. Mystically inclined types say that,
“To know what it means, you have to know what it means . Like art or smut, you’ll know it when you see
it.” Pragmatists explain that, “Google Maps is Web 2.0. Yahoo! Mail (old style) is not .” The more curmud-
geonly types, such as industry pundit John C. Dvorak, decry the whole meme by saying, “How can you
have a Web 2.0 when we can’t even explain what 1.0 was?” Finally, others in the avant garde claim that
“We’re already on version 3.0!”

 Whatever the characterization, most nondevelopers agree that the phrase is very handy for encapsulat-
ing a whole aggregation of cool, modern stuff that’s going on. As a developer, though, you can begin at a
much different starting line, because you have a far deeper understanding of design mechanisms and
implementations than nontechnical types. Web 2.0 begins with understanding the difference between the
traditional Rich Client Platform (RCP) model and the emerging Rich Internet Application (RIA) model.

 The History of Application Design for Content Creation
(In One Easy Dose)

 As the title of Neal Stephenson’s famous article explains it, “In the Beginning was the Command Line.”
However, the capsule history in this section begins after the advent of windowed graphical user inter-
faces (GUIs), and the emergence of powerful operating systems on expensive compute platforms.

 The Desktop Era — No Web
 You’re certainly familiar with the RCP model, even if you know it by another nomenclature, such as the
desktop application model . Almost every application you’ve written, used, managed, or deployed over the
last three decades on microcomputers adheres to RCP capabilities and limitations. When you think in the
mode of an RCP developer, you take for granted that the operating system, data access and storage, and

Chapter 1: Web 2.0, Python, and Frameworks

5

the user’s experience of the application are tightly bound to the desktop, operating in general ignorance
of the larger networked world. When you think like an RCP end user, you often feel trapped by your
tools in the sense that if you lose the use of them, or if you lose your disk drive, you also lose your data
in a most profound way. For example, it will be hard to read your next great novel written in Enormicorp
PerfectWord if you don’t have Enormicorp PerfectWord.

 One effect of the isolation of both the user and the application is that designers and developers of tradi-
tional (RCP) applications never considered it desirable to enable the easy sharing of content created by a
specific proprietary tool, except through arrangements like OLE or OpenDoc, which open up data shar-
ing on the operating system or on proprietary tools made by the same vendor. Additionally, they never
considered building significant community or social aspects into traditional software.

 As discussed in the “Design Patterns for Web 2.0” sidebar later in the chapter, community aspects such
as user-created content, tagging, and commentary (common in Web 2.0 applications such as YouTube
and Wikipedia) would not have made sense in the era of one user executing one application on one com-
puter. User isolation was a condition of life — an application and the content the end user produced
existed on a solitary plane.

 Sharing and dissemination of data was done by ad hoc means — for example, by attaching it to e-mail.
The intended recipient could share in the data only if they bought and supported the correct version of
the proprietary tool. This was true during the first couple of decades of modern computing. The gap
between the end users’ need to create, publish, and share their creations and the ability of pre-Web–era
software design to deliver even a modicum of capability in that regard was filled by what was called
 desktop publishing or DTP . DTP was King: the big important designs and design ideas were all about put-
ting words, numbers, and static images onto something that looks like a page, and then printing these
pages for sharing. Python was an early response to the needs of system administrators and scientific
programmers.

 And Then the Web (1.0) Happened
 Eventually, people began to wonder why they needed to produce paper at all, and thus when the World
Wide Web (the Web) sprang into existence, DTP morphed almost overnight into Web publishing or WP.
Almost overnight, WP became the new King, efficiently producing HTML to drive applications and
 represent words, numbers, and multiple media types such as still and moving images. When the Web
(1.0) came along, agile languages such as Python began to make inroads into areas very unlike the origi-
nal class of applications written mostly to enable a higher level of scripting. With the emergence of
Twisted Python as a networked-applications engine some years ago, a mimetic light bulb lit. People
began to think in terms of frameworks , and the notion of code that writes code began to circulate. Python,
Perl, and PHP developers in particular began to get a sense of empowerment, while puzzling out the
reason for all the manufactured buzz over expensive tools being developed by the same proprietary ven-
dors who dominated the RCP and DTP era. Wasn’t everything really just an elaboration of a snippet of
code that could write a page in response to a URL invocation of a cgi-bin script, such as the Python
snippet in Listing 1-1 shows?

Part I: Introduction to Python Frameworks

6

 Listing 1-1: Simple Python HTML page generator

 print(“Content-type: text/html”)

page = “””

<html>

 <head>

 <title>Hello World Page!</title>

 </head>

 <body>

 <p>Hello World</p>

 </body>

</html>

“””

print page

 The answer was both yes and no. In the abstract sense, what every website was striving to do was to
generate HTML code (initially) to present material as a substitute for the printed page, and then (later) as
a substitute for earlier form-based styles that mimicked human interaction. However, there was also an
emerging need to create and maintain transactions for a new style of commerce in which the vendor side
of the equation was entirely autonomous and could support a variety of free-form interactions. For that,
designers had to evolve a style of architecture that clearly separated the manipulation of the underlying
model from the management of the user experience, and from the business logic behind the form. This
led to the rediscovery of the model-view-controller (MVC) design center (discussed in more detail in
 Chapter 3) just in time for the emergence of Web 2.0.

 Web 2.0, the Next Generation
 The problem with creating applications and tools based on the first set of technologies underlying the
Web was that the user interaction model was really rather wretched. Creating a word-processing tool,
such as Google Documents, would have been difficult, if not impossible. Consider the capabilities that a
typical Web 2.0 word processor exhibits:

❑ Every keystroke and input is reflected on the screen as soon as it happens.

❑ Document modifications are silently persisted into the model, which is online and secured from
the possibility of loss from the failure of an individual PC.

❑ The tool must support a reasonable number of formatting capabilities and enable the insertion
of structured content such as tables or images.

 In short, such a tool must be largely indistinguishable from the earlier generation’s RCP equivalent.

 The responsiveness that an interactive user needs in such a case could have been partially mimicked in
HTML using HTTP in the Web 1.0 era, but because a write-back to the model could have been accom-
plished only with a synchronous HTTP request, which also would have resulted in a full page refresh,
the experience would have been disorienting for the end user. The result certainly wouldn’t have looked
or performed like a typical RCP. As Figure 1-1 depicts, every outbound call results in a complete
page refresh.

Chapter 1: Web 2.0, Python, and Frameworks

7

 What changed the landscape forever was embedding a capability in the browser that enabled it to make
an asynchronous call to the server for rendering the web page, and the supporting JavaScript capability
to accept the returned data and update a portion of the page (a <DIV/> or element of the page)
without refreshing the entire page (an idea that Microsoft Internet Explorer 5 initially advanced). This
was nothing short of revolutionary and morphed quickly into a realization by developers that the
browser could now host applications that mimicked and in some aspects (scalability, robustness, accessi-
bility, and collaboration) improved on the older RCP applications’ capabilities.

 Thus, the term Rich Internet Application (RIA) was born, ushering in the Web 2.0 era of tools and sites
based on the simple idea that the Internet was becoming a hosting environment, not just for static pages
and forms, but also for applications that once were restricted to the desktop.

 Applications for such tasks as word processing, photo image manipulation, personal information
management — which had been a stronghold for a tiny group of vendors, and were exorbitantly priced
with restrictive usage covenants (the infamous and seldom comprehensible end user license agreement or
 EULA) — were suddenly left in the dust by browser-based versions that were not only free but con-
sumed no private disk space. All because Web 2.0 applications are designed according to a ubiquitous
standard (MVC) and use an asynchronous HTTP request with data returned in XML or Javascript Object
Notation (JSON). The request-and-return path is called an XMLHttpRequest or XHR , and the technique
works in all modern browsers.

1 Enter URL

5 Forward user to a new HTML page

6 Request newURL -- Submit form/Select
Button

10 Display new complete HTML page

TIM
E

2 Make synchronous HTTP request

7 Make synchronous HTTP request

9 Return HTTP response

4 Return HTTP response

3 Retrieve file to
satisfy request

8 Look up URL

WEB 1.0 Process-Example Interaction

User Web Browser Web Server

KEY:
Interacting with page 1
Interacting with page 2
WaitingFigure 1-1

Part I: Introduction to Python Frameworks

8

 Suddenly, word processors, spreadsheets, and calendar management are woven directly into the fabric
of the Internet, are executed entirely within the confines of the web browser, and are no longer the pri-
vate preserve of a specific vendor. What’s more, the Web 2.0 design doesn’t stop at desktop tool replace-
ments, important as that category is. New classes of applications, such as Base Camp, Flickr, YouTube,
and Picasa are useful specifically because of their networked context — they wouldn’t make much sense
as desktop-only applications. In contrast to Figure 1-1 , Figure 1-2 illustrates that asynchronous outbound
calls may result in a portion of the page being refreshed without a complete browser reload.

1 Enter URL

5 Forward user to a new HTML page

6 Interact with page

13 Interact with updated page

12 Display update

TIM
E

2 Make synchronous HTTP request

7 Make asynchronous request with
interactions captured as parameters

10 Invoke callback with results
from asynchronous request

4 Return HTTP response

3 Retrieve file to
 satisfy request

8 Process
 asynchronous
 request

WEB 2.0 Process-Example Interaction

User Web Browser Web Server

9 Continue interacting with page

KEY:
Interacting with page 1
Waiting

11 Update position of page to reflect
results of asynchronous request

Figure 1-2

 This is not to say that there are no problems for designers and developers to solve (yes, we will all still
have jobs come the revolution). Even though RIAs usually have several advantages over applications
that run on the client, they’re not without some limitations. For example, compare an RIA e-mail client
like Google Mail (GMail) to a client application like Mozilla Thunderbird. GMail has the advantage of
centralized virus scanning, whereas Thunderbird relies on operating-system scanners. On the other
hand, when you upload an attachment into an e-mail message, Thunderbird allows you to drag and
drop files from any file window into the message, whereas GMail requires you to type in a full file path
and name, or use a less convenient file chooser dialog box. Overall, though, these represent browser lim-
itations or operating system limitations, rather than defects in the RIA model itself.

 The following table illustrates some of the capabilities you get for free, just by writing to the Web 2.0
specification.

Chapter 1: Web 2.0, Python, and Frameworks

9

Web 2.0 Capability Description

Plasticity and flexible
 recombination

Web 2.0 applications (RIAs) can be remixed into new applications
in ways the original designer and developer may never have con-
sidered. Because they implement MVC, RIAs expose their server-
side invocation syntax to the curious and return their data in a
common format (XML or JSON) that any arbitrary process can
parse (although there are ways to prevent users from invoking
your service, such as requiring private API keys to be passed with
the XHR). Overall, this means that your clever server-side logic can
be leveraged more widely, gaining you fame, perhaps fortune, and
the undying gratitude of your peers.

Invisibility and applications
as services

Applications woven into the Web are no longer software — they
are services that people take for granted. This is a better thing in
the RIA world than it is in the relationship world, because, in the
case of your well-written RIA, it may get you the kind of notice
that changes your career and lifestyle. Just ask the creators of
YouTube what being taken for granted is worth (in their case it was
over $1.6 billion).

Ubiquity of access For almost all Web 2.0 applications, if you have a web browser on a
computer somewhere and a broadband connection (both of which
are attainable in most of the First World), you can get to the content
you have created whether it’s the original manuscript for a book or
your vacation pictures.

Low switching cost, lower total
cost of ownership (TCO)

End users are switching from desktop applications to web-based
applications primarily because of the virtues mentioned previ-
ously. The cost of switching from the use of tools that shackle the
user to services to those that just offer access to their content is
actually pretty low. Further, without having to act as an ad hoc sys-
tem administrator, the cost of using a software capability is lower
for the user, and without integrating with a specific operating sys-
tem, the cost of production is lowered for you, the software devel-
oper. In general, Web 2.0 applications eliminate application
installation, maintenance, update, and configuration management.

Zero footprint and zero
 configuration

Although some may argue that a browser is hardly zero footprint,
the point is that for the cost of installing and maintaining a modern
browser, the end user receives a magic box, from which all manner
of applications can spring forth, none of which leaves a footprint
on the desktop. The developer (you) receives the gift of a unifying
API and development strategy, which is also enabled because of
the next point.

Leveraging industry-wide data
transport API (HTTP)

This means that the applications you write have worldwide reach.

Table continued on following page

Part I: Introduction to Python Frameworks

10

Web 2.0 Capability Description

Leveraging industry-wide
 display standards (HTML,
Flex, and JavaScript)

This means that you can erase phrases such as Windows Foundation
Classes (WFCs), Cocoa, and Abstract Window Toolkit (AWT) from
your memory.

Leveraging a common data
format (XML or JSON)

This means that data sharing among applications is straight-
forward.

Leveraging high-speed
 networking

This makes running Web 2.0 applications generally as seamless as
running desktop applications.

Platform-independent
 development

Writing to a standard that is above the platform level means that
you can develop applications without having to worry about
which operating systems, browsers, and so on they will run on
(with caveats).

 The Role of AJAX in Web 2.0
 The ability to make an asynchronous call to a URL and have the data return handled by code within the
browser is key to creating the RIA experience for the user. Without AJAX (Asynchronous JavaScript and
XML), browser-resident RIAs would not be feasible for the reasons discussed previously. Additionally,
not only can AJAX make asynchronous external method calls (out from the browser), but it can also make
 internal method calls (within the browser). The latter capability is the basis for providing changes in
visual elements within the RIA, including special effects like growing and shrinking areas, tabbed pages,
and drag and drop.

 As good and as useful as AJAX is in this regard, the fact is that AJAX must be implemented in JavaScript,
and that is the source of a good deal of pain for the developer. Although JavaScript has only recently
been taken seriously as a development language, its idiosyncrasies and tendency to be broken in differ-
ent ways in different browsers is a constant source of consternation to developers and end users alike.
Even in a nonbroken world though, it’s great to have a level of abstraction sitting atop JavaScript.
 Fortunately, MochiKit and other libraries are there to help.

 MochiKit is covered specifically in Chapter 11 , but you will find code snippets and explanations of its
use in other chapters in this book.

 Leveraging the Power of DSL s
 Domain-specific languages (DSL s) are limited computer languages designed for a specific class of problem.
However, using a special-purpose language that’s really good at creating solutions in a specific
 problem domain is not a brand-new idea. Developers have been creating special syntaxes in languages
since way back when, especially in the bygone heyday of early work in Lisp (list processing) and artifi-
cial intelligence. In Python and one or two other languages classified as scripting languages, creating a
special syntax on top of the basic language becomes a highly tractable problem.

Chapter 1: Web 2.0, Python, and Frameworks

11

 This is often called metaprogramming , which refers to programming structures that operate on other pro-
gramming structures. Another way to think of the Python frameworks covered in the following chapters
is that they are code that writes code, or even self-modifying code.

 As a Python programmer, you may have come across one or two such structures in Python, even if you
aren’t a master of metaprogramming. The addition of decorators in Python 2.4, which are lines of code
preceded by an @ (at sign), make metaprogramming much less of a mystery and really easy to use. A
 decorator is a function that takes a method as an argument and returns a method (or method-like) object.
The Python interpreter generally ignores decorators, but the signs are meaningful to TurboGears,
which has over a dozen of them and uses them as part of its controller structure. (Django doesn’t use
this approach.)

 When you mention self-modifying code to most developers, you may evoke a shiver and some whis-
pered words of deprecation, but if it’s used correctly and in the right places (as with the frameworks cov-
ered in subsequent chapters), such code can lead to some very clean programming, or at least, from your
standpoint, very clean-looking code. But don’t forget that Python presents broader capabilities to write
this type of code than almost any other mainstream language in use today. Long before TurboGears, you
could dynamically modify any Python object by adding a new attribute to an instance of an object, or
dynamically acquire new methods and add those to an instance.

 In contrast to Ruby on Rails, which is almost another language than Ruby, both Python frameworks cov-
ered in this book require you to make minimal changes in coding style versus writing normal Python
methods. For example, a TurboGears controller method has an expose decorator right before the func-
tion, which designates the template to be used and returns a Python dictionary filled with the values to
be plugged into the template — everything other than that looks just like normal Python code.

 You’ll find a similar method at work in the Kid templating language, which uses a mixture of standard
HTML and some special constructs as a Pythonic control language within the template. Another place
you’ll see special syntactic constructs at work is in MochiKit, which although implemented atop
 JavaScript, has method calls and other constructs that look remarkably (and by design) like Python code.

 In Chapter 12 you’ll see the ultimate pairing of DSLs. That chapter explores the mating of Flash (Adobe’s
DSL for creating compelling user experiences) with TurboGears. By the end of the book, you will become
very familiar and comfortable with the general idea of DSLs as a way to make simple things easy and
hard things possible.

 Leveraging the Power of TurboGears
 By the definition, TurboGears can arguably be called a domain-specific language. What makes its use
compelling is that TurboGears is one of a new generation of Web 2.0 frameworks. In this context, the
term framework means software that enables you to write full-scope software. When people talk about full
scope , they mean that all aspects of a rich Internet application are addressed, from the user experience,
through the controller logic, to the underlying data model.

 So why use a framework at all — why not just write dynamic HTML, server logic, and a database han-
dler in straight Python, or Java, or [insert name of favorite language here]? The answer to that is the same as
it’s always been. For every level of abstraction you can move up in software development, you gain an
 ability to encompass greater complexity.

Part I: Introduction to Python Frameworks

12

 TurboGears accomplishes the few important goals that matter:

❑ It enables separation of concerns, which makes maintenance, revision, and the addition of fea-
tures easier.

❑ It is excellent in the role of a DSL layer that acts as the binding force for well-crafted Pythonic
components at every level:

❑ SQLObject handles the model translation from a relational form (from a SQLite or MySQL
 database) to a Python object form (and back).

❑ The Kid templating engine, which can be used standalone at design time as well as in the
 deployed RIA, is filled in by the TurboGears layer with data from the model. The advantage
to running standalone at design time without the backing model or controller logic having
been fully developed is that it enables application developers and UI designers to work in-
dependently, in parallel, and then converge somewhere along the development path.

❑ Within the browser, JavaScript logic is organized through MochiKit, which has the
avowed aim to “make JavaScript suck less.” Put in more polite language, MochiKit collects
a wide array of loosely related JavaScript functions into a single library, and offers a very
 Pythonic-looking API for method invocation. Chapter 11 covers MochiKit in greater detail.

❑ CherryPy creates the web server layer and the control path for transmitting the business
logic to the Python code — at least for the development phase. It is likely that for deploy-
ment, especially if you use a commercial-grade ISP, you will have to deploy primarily on a
web service engine such as Apache.

 Leveraging the Power of Django
 Django’s design center is rooted in the specific domain of content management systems. As such, it’s
somewhat more focused than TurboGear, which as suggested in the previous section, is much more of a
general tool for producing Web 2.0 applications. Thus, where TurboGears is widely focused, Django
tends to feel more narrowly focused. Django was created to facilitate creating a daily online newspaper
with dynamically generated columns and pages. As you work with both of these frameworks, you will
come to appreciate the differences and, more importantly, why the application spaces of interest to dif-
ferent designers forced specific design decisions.

 Leveraging the Power of Python
 There is probably very little you don’t know about Python unless you’re new both to Web 2.0 develop-
ment and to agile languages. But at the risk of telling you things you may already know, there are a few
important things that ought to be said of Python as an undercarriage for Web 2.0 frameworks. If you pro-
gram in Python, you already have experienced some of the attributes that make it a very suitable base.

 First of all, Python is an agile, high-level, and interpreted language. For Web 2.0 development, this
means that you can write a little, test a little, and deploy a little. This is a perfect quality for iterative
development, and is especially perfect for creating the experimental, fast-changing applications in the
Web 2.0 space. Applications change quickly here during development and testing, because they are
 generally driven by the passion of small teams rather than large companies seeking to implement a
 service-oriented architecture with many moving parts and several months or years to achieve results.

Chapter 1: Web 2.0, Python, and Frameworks

13

 Thus, a language that writes compact, dynamically typed code at a high level of abstraction is a big plus.
Additionally, Web 2.0 frameworks need to be able to create specific syntaxes that will speed RIA devel-
opment without getting in the way. As mentioned in the section “Leveraging the Power of DSLs,” a lan-
guage that enables dynamic self-modification through code that writes code is another important fea-
ture, and Python is among the few modern languages that excel in this regard.

 Additonally, there are the attributes that you may already cherish. Python is often said to be a solid,
 batteries included (in other words, complete) language. Here’s why:

❑ It is solidly supported by a large and passionate community led by a pragmatic, benevolent
dictator.

❑ It is solidly designed to provide functional programming, object-oriented programming (OOP),
and metaprogramming.

❑ It is solidly deployed in countless contexts, from system administration to scientific
programming.

 Finally, Python’s ability to integrate other libraries and components makes it an excellent gap-filling lan-
guage. It is perfect for automating the many tedious parts of Web 2.0 MVC applications. You should
have to write only the parts of your RIA that make it different and compelling, and not all the scaffolding
that every RIA must have. Those you will always prefer to delegate to a capable framework. Python
helps create the frameworks that make that possible.

 Comparing the Frameworks
 No parent ever wants to compare their children by saying that Caitlin is better than Sean (they’re both
better, just in different ways) and in this case the same is true. The Django and TurboGears frameworks
are each the best at certain things.

 Both the Django and TurboGears frameworks implement a strict MVC design center and depend on
AJAX within the browser to invoke a server-side controller. Because they are both implemented in
Python, they both promote an agile development style. To choose the best one for your needs, consider
the differences presented in the following sections.

 The Historical Perspective
 Both the Django and TurboGears frameworks were motivated by observing that the component parts of
specific application implementations were good enough to make them generic. This opened them to the
possibility of reusability in other ongoing projects that were quite different from the original. Some of
you may recall that Python itself had a similar genesis. TurboGears sprang from an RCP RSS newsreader
client. TurboGears tends to be a little more dependent on the momentum of the open source community
than Django, simply because of the number of open source components that constitute its moving parts
(SQLObject, Kid, and CherryPy). Django originated in response to the need to produce a highly scalable
and dynamic online newspaper, one that gets millions of page hits per day.

 As a result of the differing design centers, the Django team tends to focus on content management.
That’s a fancy way of saying that their concern is rooted in the need to create developer methodology

Part I: Introduction to Python Frameworks

14

that enables content-based applications to be constructed quickly. The TurboGears team has focused on
the RIA space as a whole and has created a highly pluggable architecture. What this means in a practical
sense is that even though there are reasonable default choices for supporting componentry, substitutions
may easily be made (such as using SQLite instead of MySQL for model representation, or Cheetah
instead of Kid for templating).

 Controller Invocation
 As suggested by Figure 1-2 , a URL address in the TurboGears framework results in a server-side call to a
method (whose name is a part of the URL) in a file called controller.py . As you will discover when
you start adding methods to the controller, the method becomes instantly available. You don’t have a
recompile step nor do you have to restart a virtual machine (VM) or the web server layer. TurboGears
provides instant developer gratification.

 In Ruby on Rails, there’s a lot of chatter about favoring convention over configuration. Django takes the
opposite approach because it uses a mapping file to map URLs to the controller code. This strategy
decouples the URL path composition from the actual underlying implementation, which in turn enables
Django-hosted applications to maximize code reuse and controller deployment.

 JavaScript
 Much as Prototype is the preferred JavaScript and AJAX library implementation in Rails, TurboGears
uses MochiKit to create some very useful binding capabilities for form and effects handling. Django
doesn’t really have a demonstrated preference for a JavaScript library nor even a loose binding to one in
particular. As you’ll see demonstrated later in the book, where a project using TurboGears and Flex is
shown, there are no real limits to how the user experience or the asynchronous call-and-response system
is handled.

 Licensing
 Licensing is always a critical deployment issue. It’s important to know whether you can deploy your
 creation unencumbered before setting out to build it in the first place. We (the authors of this book) both
contribute to and strongly advocate the use of open source. Here are some guidelines to help you do
the same:

❑ Because TurboGears is a composition layer sitting atop other frameworks, it can’t be considered
independent of its moving parts. Kid, the default templating engine, is licensed under the MIT
License (www.opensource.org/licenses/mit-license.php), which supports full transitiv-
ity with respect to derived works. This means that, basically, you can use it without worry.

❑ MochiKit is dual-licensed under the terms of the MIT License, or under the Academic Free
 License (AFL), which is a very tolerant license with respect to the rights to use, deploy, subli-
cense, and distribute derivative works. SQLObject, the object-relational mapping (ORM) layer, is
protected by the Lesser General Public License (LGPL), which is a bit more restrictive. If you
modify the source of the SQLObject library itself, you’ll have to make those changes available to
all. Of course, that doesn’t mean that your derived works are in jeopardy. You can create and sell
them or give them away without concern.

❑ Django, because it was created from whole cloth, is under a single open source license (the BSD
license). This is very generous with respect to improvements in Django itself and makes no
 demands on derived works.

Chapter 1: Web 2.0, Python, and Frameworks

15

 Design Patterns for Web 2.0
 In the book Rich Internet Applications: AJAX and Beyond (Wiley Publishing, 2007), the au-
thors present seven crucial high-level design patterns for Web 2.0 developers. They are
repeated here in slightly altered form for your consideration. These are important as-
pects that create the design center for most of the applications you’ll write in this new,
highly net-centric paradigm.

 Design Pattern 1: Expose (at Least Some of) the Remote API
 RIA developers should create content in such a way that mediating applications which
other developers or end users might dream up can interact with it, display it, or repur-
pose its content. User-level content repurposing is extremely common in the Web 2.0
era in the form of mashups . Mashups and remixes occur when new applications (origi-
nally unintended) are constructed from data and services originally intended for some
other purpose.

 Design Pattern 2: Use a Common Data Format
 A different (but similar) pattern suggests that RIA developers create data models un-
derlying the service-based applications, so that they or another developer can leverage
them. No matter what format the back-end server uses to store the data model (regard-
less of whether it’s a SQLite relational database, an NFS-mounted, flat-file system, or
an XML data store), the output to the user view should be expressed as something that
any number of readers or parsers can handle.

 Design Pattern 3: The Browser Creates the User Experience
 In most commercially available browsers, application capabilities are limited only by
the stability, extensibility, and support for JavaScript. You, the developer, can deal with
this limitation because, as a trade-off, it’s a lot better than the tall stack of entry limita-
tions and barriers that drove you crazy during the previous software epoch. If you
need visual sophistication beyond the capability of the modern browser, you can use
other browser-pluggable alternatives, such as Adobe Flash (and write code in Python
on the server side and Flex on the browser side).

 Design Pattern 4: Applications Are Always Services
 Although this was already mentioned briefly, it’s a sufficiently important design pat-
tern to bear repetition. RIAs are part of a service-oriented architecture (SOA) in which
applications are services, created from scratch or as artifacts from recombining other
application facets. Subject to limitations (such as the availability of some other service
on which your application may depend), SOA creates the software equivalent of evolu-
tionary adaptation. Remarkably, no protocol stack by a committee of desktop vendors
was required to create this pattern. Unlike the UDDI or WDSL stack, the Web 2.0 SOA
is simple and almost intuitive.

 Design Pattern 5: Enable User Agnosticism
 RIAs won’t force the user to worry about operating systems or browsers. As long as the
browser supports scripting, applications can unobtrusively just do their work. Devel-
opers could choose to take advantage of secret handshakes or other backend imple-
mentations that assure vendor or OS lockdown (and you can probably think of one
browser and one OS vendor that does this), but the downside of making such a devil’s

(continued)

Part I: Introduction to Python Frameworks

16

bargain is that ultimately you, as a developer, will wind up expending more cycles
when, after getting some user traction on a specific platform, you find that your best
interests are served by extending your application to every other platform. It’s better
not to support vendors with their own back-end implementation agenda, and to design
from the start to avoid the slippery slope that leads to the trap of relying on vendor- or
browser-specific APIs. Thus, it’s best if your design steers clear of OS and native library
dependencies. That way, you can safely ignore much of the annoying Byzantine detail
of writing applications, and specifically the parts that tend to make applications most
brittle. Instead, you can concentrate on the logic of what it is that you’re trying to ac-
complish for the user.

 Design Pattern 6: The Network Is the Computer
 Originally a Sun Microsystems marketing slogan from the 1980s, this bromide goes in
and out of vogue. In the 1980s, Java applets exemplified it with the X11/Motif distrib-
uted models; in the 1990s, both models ultimately failed, on infrastructural weak-
nesses. X11 failed because it exacted a huge performance cost on the expensive work-
station CPUs of the era, and because its network model couldn’t extend beyond the
LAN (with the broadband era still a decade or so away). Java applets failed because of
their size (long load time) and sluggish performance (again, broadband was a few
years away). Today, broadband is near ubiquitous in much of the cyber landscape. In
addition, because the current RIA user experience is small and fits comfortably in the
memory footprint of the modern browser, failure seems far less likely. Thus, the oper-
ating system for this new generation of applications is not a single specific OS at all,
but rather the Internet as a whole. Accordingly, you can develop to the separation of
concerns afforded by the MVC paradigm, while ignoring (for the most part) the net-
work in the middle of the application. There are still some real concerns about the
 network in the middle, and given this reality, you do need to code to protect the user
experience.

 Design Pattern 7: Web 2.0 Is a Cultural Phenomenon
 Except for the earliest days of personal computing, when the almost exclusively male
Homebrew Computer Club (which gave birth to the first Apple) defined the culture of
 hackerdom , the PC desktop has never been a cultural phenomenon. In contrast,
Web 2.0 has always been about the culture. Community is everywhere in the culture
of Web 2.0, and end users rally around affinity content. Craigslist, Digg, and Slashdot
exist as aggregation points for user commentary. Narrow-focus podcasts have become
the preferred alternative to broadcast TV and radio for many; and blogging has become
a popular alternative to other publishing mass-distribution formats. Remixing and
mashups are enabled by the fact that data models, normally closed or proprietary, are
exposed by service APIs, but they also wouldn’t exist without end users’ passion and
sweat equity. Some enterprising developers (such as Ning at www.ning.com) have
even managed to monetize this culture, offering a framework for creative hobbyists
who create social applications based on existing APIs. When you create an application,
you should consider the social culture that may arise to embrace your application. You
can likely build in collaborative and social capabilities (such as co-editing and social
tagging) pretty easily. If there’s a downside to having an application exist only “in the
cloud,” the best upside is that a networked application also obeys the power law of
networks: The application’s value increases as a log function for the number of users.
Most RIAs in the wild have many or all of these characteristics.

Chapter 1: Web 2.0, Python, and Frameworks

17

 Consider the elder statesman of content-sharing applications, the blog, and its close rel-
ative, the wiki. Many blogs approach or exceed print journalism in their reader pene-
tration, and wikis are far more flexible than their power-hungry desktop predecessors
(such as Microsoft Office Groove) in supporting multi-user coordination and
collaboration.

 Summary
 In a relatively short span of time, Python developers have seen the Web move from active to interactive
to transactive. In the same span, the role of Python has evolved from page generator, to server-side con-
trol software, to the basis of exciting and capable frameworks that reduce developer burden while
enabling a new class of Rich Internet Applications (RIAs). LAMP (Linux servers running Apache as Web
server, backed by a MySQL Relational database, and mediated by Python, Perl, or PHP) has evolved
into Web 2.0 and now developers can benefit from making the transition by using the tools and
 techniques described in this book. It’s going to be an exciting and fun ride, so ladies and gentlemen,
start your engines.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

