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Basic Equations of the PLLs

1.1 INTRODUCTION

Phase lock loops (PLLs) belong to a larger set of regulation systems. As an indepen-
dent research and design field it started in the 1950s [1] and gained major practical
application in cochannel TV. On this occasion, we find one of the first fundamental
papers [2].

Some 15 years later, we encounter a surveying book by Gardner [3], still mentioned
and used. Since a dozen books were published on the topic of PLL problems proper
[4] and in connection with frequency synthesis, we would find chapters on PLLs in all
of the relevant books. Here we shall only mention some of them [5–8]. But the impor-
tance of the topic is testified by the publication of new books on PLLs (e.g., [9–12])
and a wealth of journal articles, the important ones of which will be cited at the rel-
evant places. A major advantage of modern PLLs is the possibility of a widespread
use of off-the-shelf IC chips. Their application results in low-volume, low-weight,
and often power-saving devices. At the same time we also appreciate short switching
times and very high-frequency resolution. We shall find PLLs in communications
equipment, particularly, in mobile applications in low-gigahertz ranges, in comput-
ers, and so on, where we appreciate short switching times and very high-frequency
resolution. However, there are shortcomings too: the limited range for high frequen-
cies (today commercial dividers hardly exceed the 5 GHz bound and only laboratory
devices work in higher ranges).

In the following paragraphs we summarize the basic properties of PLLs with some
design-leading ideas and repeat all the major features and use terminology intro-
duced years ago by mechanical engineers [13] and also used by Gardner [3] and
many others.

1.2 BASIC EQUATIONS OF THE PLLs

The task of the PLLs is to maintain coherence between the input (reference) signal
frequency, fi, and the respective output frequency, fo, via phase comparison. Another
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feature of PLLs is the filtering property, particularly with respect to the noise where
its behavior recalls a very narrow low-pass arrangement that is not to be realized by
other means. The theory was explained in many textbooks as we have mentioned in
the previous section.

Each PLL system is composed of four basic parts:

1. the reference generator (RG)

2. the phase detector (PD)

3. the low-pass filter FL(f ) (in higher-order systems)

4. the voltage-controlled oscillator (VCO)

and works as a feedback system shown in Fig. 1.1.
Without any loss of generality, we may assume that input and output signals are

harmonic voltages with additional phase modulation

vi(t) = Vi sin[ωit + φi(t)] ≡ Vi sin �i(t) (1.1)

where φi(t) and φo(t) are slowly varying quantities.

vo(t) = Vo cos[ωot + φo(t)] ≡ Vo cos �o(t) (1.2)

Later we shall prove that realization of the phase lock requires that input and output
voltages must be in quadrature, that is, mutually shifted by π /2.

Phase detector (PD) is a nonlinear element of a different design and construction
(we shall deal with PDs later in Chapter 8, Section 8.4). For the present discussion,
we assume that the PD is a simple multiplier. In this case the corresponding output
voltage will be

vd(t) = Kmvi(t) vo(t) (1.3)

where Km is the transfer constant with the dimension [1/V]. After introduction of
eqs. (1.1) and (1.2) in the above relation, we get

vd(t) = KmViVo sin �i(t) cos �o(t)

= 1
2KmViVo[sin[(ωi − ωo)t + φi(t) − φo(t)] (1.4)

+ sin[(ωi + ωo)t + φi(t) + φo(t)]]

vd(t) v2(t) vo(t)

vo(t)

vi(t)
OutputRG FL VCOPD

Figure 1.1 Basic feedback network of PLL.
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In the simplest case we shall assume that the low-pass filter removes the upper
sideband with the frequency ωi + ωo but leaves the lower sideband ωi − ωo without
change. Evidently the VCO tuning voltage will be

v2(t) = Kd sin[(ωi − ωo)t + φi(t) − φo(t)]

≡ Kd sin �e(t) (1.5)

where we have introduced the so-called PD gain Kd = KmViVo of dimension [V/rad].
Note that the phase difference between the input and the output voltages is

�e(t) = �i(t) − �o(t) (1.6)

Voltage v2(t) will change the free running frequency ωc of the VCO to

�̇o(t) = ωc + Kov2(t) (1.7)

where the proportionality constant Ko is designated as the oscillator gain with the
dimension [2π Hz/V]. After integration of the above equation and introduction into
relation (1.6), we get for the phase difference �e(t)

�e(t) = �i(t) − ωct −
∫

Kov2(t) dt (1.8)

which can be rearranged as follows:

�e(t) = ωit − ωct −
∫

KoKd sin �e(t) dt (1.9)

and differentiation reveals

d�e(t)

dt
= �ω − K sin �e(t) (1.10)

where we have introduced ωi − ωo = �ω and KdKo = K . Note that K is indicated
as the gain of the PLL with the dimension [2πHz].

The conclusion that follows from the foregoing discussion is that the phase lock
arrangement is described with a nonlinear eq. (1.10), the solution of which for arbi-
trary values �ω and K is not known. With certainty we can state that for �ω/K � 1
an aperiodic solution does not exist. This conclusion testifies the phase plane arrange-
ment (Fig. 1.2). Without an aperiodic solution, the feedback system in Fig. 1.1 cannot
reach the phase stability, that is, the output frequency of the VCO, ωo, will never
be equal to the reference frequency ωi. However, the DC component in the steering
voltage v2(t) reduces the original difference between frequencies

|ωi − ωc| > |ωi − ωo| (1.11)
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Figure 1.2 Plot of relation (1.10) in the phase plane for different ratios �ω/K .

1.3 SOLUTION OF THE BASIC PLL EQUATION
IN THE TIME DOMAIN

To arrive at the solution we have to introduce some simplifications. Nevertheless, we
gain more insight into the problem.

1.3.1 Solution in the Closed Form

In the case where �ω/K � 1, the differential eq. (1.10) has a solution after applica-
tion and separation of variables.

d�e(t)

�ω − K sin �e(t)
= dt (1.12)

With the assistance of tables [14, p. 804], we get a rather complicated closed-form
solution

t − t0 = − 2√
(�ω)2 − K2

arctan

[√
�ω + K

�ω − K
tan

(
π

4
− �e

2

)]
(1.13)

where t0 is a not-yet-defined integration constant. As long as K > �ω, the rhs will
be imaginary and with the assistance

tan(−jx) = −j · tanh(x) (1.14)
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we arrive at

t − t0 = − 2√
K2 − (�ω)2

arctanh

[√
K + �ω

K − �ω
tan

(
π

4
− �e

2

)]

= 1√
K2 − (�ω)2

ln
1 + √

(K + �ω)/(K − �ω) tan(π/4 − �e/2)

1 − √
(K + �ω)/(K − �ω) tan(π/4 − �e/2)

(1.15)

and after computing tan(π/4 − �e/2) the sought solution is

�e = 2 arctan

[√
K − �ω

K + �ω
· 1 − exp[−√

K2 − (�ω)2(t − t0)]

1 + exp[−√
K2 − (�ω)2(t − t0)]

+ π

2

]
(1.16)

For the steady state, that is, for t → ∞, the lhs of eq. (1.10) equals zero, with
the result

�e∞ = arcsin
�ω

K
(1.17)

1.3.2 Linearized Solution

From the preceding analysis we conclude that the solution of the respective differ-
ential equation, in the closed form, is very complicated even for a very simple PLL
arrangement. Consequently, we may suppose that for more sophisticated PLL systems
it would be practically impossible. However, the situation need not be so gloomy after
the introduction of simplifications that are not far from reality. In the first step we
find that the time-dependent phase difference �e(t) at the output of the PD in the
closed PLL is small and prone to the simplification

sin �e(t) ≈ �e(t) (1.18)

This assumption is supported with the reality that a lot of PDs are linear or nearly lin-
ear in the working range (see discussions in Chapter 8). In such a case, the introduction
of (1.18) into (1.10) results in the following simplification:

d�e(t)

dt
= �ω − K�e(t) (1.19)

Solution of this differential equation is easy,

�e(t) = e−Kt

(
�e0 − �ω

K

)
+ �ω

K
(1.20)

where �e0 is the integration constant, that is, the phase at the start for t = 0. Further
investigation reveals that the phase difference in the steady state compensates the
frequency difference (cf. (1.17)).

�e∞ = �ω

K
(1.21)
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1.4 SOLUTION OF BASIC PLL EQUATIONS
IN THE FREQUENCY DOMAIN

By assuming the phase difference �e(t), in the locked state, to be always smaller
than π/2, the result is the equality between input and output frequencies

ωi = ωo (1.22)

In other words the PLL system is permanently in the phase equilibrium. The situation
being such, we can rearrange relation (1.7) to

ωo + φ̇o(t) = ωc + Kov2o + KdKo sin[φi(t) − φo(t)] (1.23)

where the term Kov2o shifts the VCO frequency ωo to be equal to the input frequency
ωi (of (1.22)). Evidently, in the steady state we get the following relation between
the VCO free running frequency and the locked frequency

ωo = ωc + Kov2o (1.24)

Combination with (1.23) reveals

φ̇o(t) = K sin[φi(t) − φo(t)] (1.25)

where K = KdKo.
In the steady state the difference φe

φe(t) = φi(t) − φo(t) (1.26)

is generally small. Consequently, we may apply the following linearization

φ̇o(t) = K[φi(t) − φo(t)] (1.27)

and employ advantages of the Laplace transform (with a tacit assumption of the zero
initial conditions)

s�o(s) = K[�i(s) − �o(s)] (1.28)

After rearrangement we arrive at the basic PLL transfer function

�o(s)

�i(s)
= H(s) = K

s + K
(1.29)

or at
�i(s) − �o(s)

�i(s)
= �e(s)

�i(s)
= 1 − H(s) = s

s + K
(1.30)

between input and PD output error.
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1.5 ORDER AND TYPE OF PLLs

The PLL system described with relations (1.29) and (1.30) is indicated as PLL of the
first order since the polynomial in the denominator is of the first order in s (K being
a constant).

However, generally PLLs are much more complicated. To get better insight into the
PLL properties, we shall simplify, without any loss of generality, the block diagram to
that shown in Fig. 1.3 and introduce the Laplace transfer functions of the individual
building circuits, suitable for investigation of the small signal properties.

Investigation of the above figure reveals that the input phase ϕi(t) is compared
with the output phase ϕo(t) in the phase detector (ring modulator, sampling circuit,
etc.). At its output we get a voltage, vd(t), proportional to the phase difference of the
respective input signals where

vd(t) = [ϕi(t) − ϕo(t)]Kd (1.31)

the proportionality factor, Kd[V/rad], is called the phase detector gain.
Next, vd(t) passes the loop filter, F(s) (a low-pass filter attenuating “carriers” with

frequencies ωi = ωo, and ideally all undesired sidebands). Note that the useful signal
v2(t) is a slowly varying “DC” component, the output voltage of which is given by
the following convolution:

v2(t) = vd(t) ⊗ hf(t) (1.32)

where hf(t) is the time response of the loop filter. After applying v2(t) on the fre-
quency control element of the VCO, we get the output phase

ϕo(t) =
∫

ωo(t) dt = ωct +
∫

Kov2(t) dt (1.33)

with ωc being the VCO free-running frequency. The proportionality factor, Ko

[2π Hz/V], is designated as the oscillator gain. Since, in most cases, Kd and Ko

are voltage-dependent, the general mathematical model of a PLL is a nonlinear
differential equation. Its linearization, justified in small signal cases (“steady state”
working modes), provides a good insight into the problem. After reverting to the

Phase detector
(PD)

Loop filter
(F)

Voltage-controlled
oscillator
(VCO)

Input

wi ; ji(t) wo ; jo(t)

vd(t) v2(t) Output
vd(s) ≈ Kdfe(s) v2(s) = F(s)vd(s)

fo(s)

v2(s)fo(s) = Ko
s

Figure 1.3 Simplified block diagram of the PLL with individual transfer functions.
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Actuating
signal

Input signal
Output
signal

Feedback
signal

F(s)
Ko Kd

s

FM(s)

Figure 1.4 Simplified block diagram of the PLL with a transfer function in the feedback path.

whole feedback system (Fig. 1.4), we can write for the relation between the input
and the output phases in the Laplace transform notation

[�i(s) − �o(s)FM(s)]
KdKoF(s)

s
= �o(s) (1.34)

The ratio, �o(s)/�i(s), the PLL transfer function, is given by

H(s) =
KF (s)FM(s)

s

1 + KF (s)FM(s)

s

= G(s)

1 + G(s)
(1.35)

where we have introduced the forward loop gain K = KdKo and the open loop gain
G(s)

G(s) = KF (s)FM(s)

s
(1.36)

1.5.1 Order of PLLs

In the simplest case there are no filters in the forward or the feedback paths. The PLL
transfer function simplifies to

H(s) = K

s + K
(1.37)

This PLL is designated as the first-order loop since the largest power of s in the
polynomial of the denominator is of the order one. Generally, the transfer functions
of the loop filters F(s) are given by a ratio of two polynomials in s. The consequence
is that the denominator in H(s) is of a higher order in s and we speak about PLLs of
the second order, third order, and so on, in accordance with the order of the respective
polynomial in the denominator of (1.35).
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1.5.2 Type of PLLs

In instances in which the steady state errors are of major interest, the number of
poles in the transfer function G(s), that is, the number of integrators in the loop, is
of importance. In principle, every PLL has one integrator connected with the VCO
(cf. eq. (1.33)). For the phase error at the output of the PD we find

�e(s) = �i(s) − FM(s)�o(s) (1.38)

where

�o(s) = �e(s)
KF(s)

s
(1.39)

After elimination of �o(s) from the above relations, we get for the phase error �e(s)

�e(s) = �i(s)
1

1 + G(s)
(1.40)

Introducing the gain, G(s), which is a ratio of two polynomials

G(s) = A(s)

snB(s)
(1.41)

we get for the phase error

�e(s) = �i(s)
snB(s)

A(s) + snB(s)
(1.42)

and eventually with the assistance of the Laplace limit theorem, we get for the final
value of the phase error ϕe(t)

lim
t→∞[φe(t)] = lim

s→0

[
�i(s)

sn+1B(s)

A(s) + snB(s)

]
(1.43)

Note that every PLL contains at least one integrator, that is, VCO; consequently,
n ≥ 1 (cf. relation (1.34)).

1.5.3 Steady State Errors

Investigations of the steady state errors in PLLs of different orders and types will
proceed after introduction of the Laplace transforms of the respective input phase
steps, input frequency steps, and input steady frequency changes into (1.43).

�ωi = �φi

s
;

�ωi

s
= �φi

s2
;

�ω̇

s
= �ωi

s2
= �φi

s3
(1.44)
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1.5.3.1 Phase steps

After introducing the Laplace transform of phase steps, �φ/s, into (1.43), we find
out that the final value is zero in all PLLs.

1.5.3.2 Frequency steps

For the frequency steps, �ω/s, we get

lim
t→∞ φe2(t) = �ωi

[
B(0)

A(0)

]
n=1

= �ωi

KF (0)FM(0)
= �ωi

Kv

(1.45)

Evidently in all PLLs of the second order, a frequency step results in a steady state
phase error inversely proportional to the so-called velocity error constant Kv, in
agreement with the terminology used in the feedback control systems (cf. [13]).

In PLLs of type 2, with two integrators in the loop, the DC gain F (0) is very large,
so Kv and consequently the steady state error is negligible.

1.5.3.3 Frequency ramps

However, the steady frequency change, �ω/s2, results in the so-called acceleration
or dynamic tracking error K a

lim
t→∞ φe3(t) = �ω̇i

[
B(0)

A(0)

]
n=2

= �ω̇i

Ka

(1.46)

PLLs of type 3 can eliminate even the steady state error ϕe3(t) for t → ∞ to
zero. However, PLLs of this type are encountered exceptionally, for example, in time
services [15], in space and satellite devices [3], and so on.

Note that the frequency locked loop may be considered as 0 type PLL.

1.6 BLOCK DIAGRAM ALGEBRA

Actual PLLs are often much more complicated than block diagrams in Figs. 1.3 or
1.4. For arriving at transfer functions, H(s) and 1−H(s), we can apply the rules of
block diagram algebra [13].

Two or more blocks in series can be combined into one after multiplication of
their Laplace transform symbols (see Fig. 1.5a). A typical example is the addition of
independent sections to the fundamental low-pass filter.

In the case where two blocks are in parallel, the final combination is provided with
a mere addition (see Fig. 1.5b).

Investigation of the relation (1.35) reveals that the feedback block can be put
outside of the basic loop [5]

H ′(s) = 1

N
H(s) (1.47)
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F1(s)

F1(s)

F2(s) F1(s) · F2(s)≡

≡

≡

(a)

(b)

(c)

(d)

(e)

F2(s)

F1(s) + F2(s)

+−

÷ N

KF(s)
s +−

KF(s)
sN

÷ N

≡

+−

× M

KF(s)
s +−

KF(s)M
s

× M

≡

+−
fi

fi Mfi

fo fi fo

fo

fo − Mfi

fo − Mfi

+−
KF(s)

sN
M + N

+
−÷ N

N

× M

s
KF(s)

++

Figure 1.5 Simplification of the block diagrams of PLLs: (a) series connection; (b) parallel
connection; (c) and (d) feedback arrangement; (e) more complicated system. (Reproduced from
Fig. 1.20 in C.J. Savant Jr., Basic Feedback Control System Design. New York, Toronto, London:
McGraw-Hill, 1958 by permission of McGraw Hill, 2002).
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or
H ′(s) = MH (s) (1.48)

In this way we arrive at the effective transfer functions, H ′(s) and 1 − H ′(s), which
contain information about the PLL filtering properties, which will be discussed later.
We appreciate this approach in instances in which a simple frequency divider or fre-
quency multiplier is in the feedback path of the PLL. The rearrangement is reproduced
in Figs. 1.5(c) and 1.5(d).

Finally, we shall consider the system containing a mixer in the feedback path.
Relation between output and input phases is

�o(s) =
[
�i(s) − �o(s) − M�i(s)

N

]
KF (s)

s
(1.49)

and rearrangement leads to the simplification in accordance with Fig. 1.5(e).
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