
1

Preliminaries: Computer
Strategies

1.1 Introduction

Many textbooks exist which describe the principles of the finite element method of analysis
and the wide scope of its applications to the solution of practical engineering problems.
Usually, little attention is devoted to the construction of the computer programs by which
the numerical results are actually produced. It is presumed that readers have access to
pre-written programs (perhaps to rather complicated “packages”) or can write their own.
However, the gulf between understanding in principle what to do, and actually doing it,
can still be large for those without years of experience in this field.

The present book bridges this gulf. Its intention is to help readers assemble their own
computer programs to solve particular engineering problems by using a “building block”
strategy specifically designed for computations via the finite element technique. At the
heart of what will be described is not a “program” or a set of programs but rather a
collection (library) of procedures or subroutines which perform certain functions analo-
gous to the standard functions (SIN, SQRT, ABS, etc.) provided in permanent library form
in all useful scientific computer languages. Because of the matrix structure of finite ele-
ment formulations, most of the building block routines are concerned with manipulation of
matrices.

The building blocks are then assembled in different patterns to make test programs
for solving a variety of problems in engineering and science. The intention is that one of
these test programs then serves as a platform from which new applications programs are
developed by interested users.

The aim of the present book is to teach the reader to write intelligible programs and to
use them. Both serial and parallel computing environments are addressed and the building
block routines (numbering over 70) and all test programs (numbering over 50) have been
verified on a wide range of computers. Efficiency is considered.

Programming the Finite Element Method 4e I. M. Smith and D. V. Griffiths
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84970-3 (PBK); 0-470-84969-X (PPC)

2 PRELIMINARIES: COMPUTER STRATEGIES

The chosen programming language is the latest dialect of FORTRAN, called Fortran
95. Later in this Chapter, a fairly full description of the features of Fortran 95 which
influence the programming of the finite element method will be given. At present, all
that need be said is that Fortran 95 represents a very radical improvement compared with
the previous standard, FORTRAN 77 (which was used in earlier editions of this book),
and that Fortran remains, overwhelmingly, the most popular language for writing large
engineering and scientific programs. For parallel environments MPI has been used, although
the programming strategy has been tested successfully in OpenMP as well.

1.2 Hardware

In principle, any computing machine capable of compiling and running Fortran programs
can execute the finite element analyses described in this book. In practice, hardware will
range from personal computers for more modest analyses and teaching purposes to “super”
computers, usually with parallel processing capabilities, for very large (especially non-
linear 3D) analyses. It is a powerful feature of the programming strategy proposed that the
same software will run on all machine ranges. The special features of vector and parallel
processors are described later (see Sections 1.4 and 1.5).

The user’s choice of hardware is a matter of accessibility and of cost. Thus a job taking
five minutes on one computer may take one hour on another. Which hardware is “better”
clearly depends on individual circumstances. The main advice that can be tendered is against
using hardware that is too weak for the task; that is the user is advised not to operate at
the extremes of the hardware’s capability. If this is done turn round times become too long
to be of value in any design cycle. For example, in “virtual prototyping” implementations,
execution time has currently to be of the order of 0.1 s to enable refresh graphics to be
carried out.

1.3 Memory management

In the programs in this book it will be assumed that sufficient main random access mem-
ory (RAM) is available for the storage of data and the execution of programs. However, the
arrays processed in finite element calculations might be of size, say, 100,000 by 1000. Thus
a computer would need to have a main memory of 108 words to hold this information, and
while some such computers exist, they are still comparatively rare. A more typical memory
size is still of the order of 107 words.

One strategy to get round this problem is for the programmer to write “out-of-memory”
routines which arrange for the processing of chunks of arrays in memory and the transfer
of the appropriate chunks to and from back-up storage.

Alternatively store management is removed from the user’s control and given to the
system hardware and software. The programmer sees only a single level of memory of very
large capacity and information is moved from secondary memory to main memory and out
again by the supervisor or executive program which schedules the flow of work through
the machine. This concept, namely of a very large “virtual” memory, was first introduced
on the ICL ATLAS in 1961, and is now almost universal.

PRELIMINARIES: COMPUTER STRATEGIES 3

Clearly it is necessary for the system to be able to translate the virtual address of
variables into a real address in memory. This translation usually involves a complicated
bit-pattern matching called paging. The virtual store is split into segments or pages of fixed
or variable size referenced by page tables, and the supervisor program tries to “learn” from
the way in which the user accesses data in order to manage the store in a predictive way.
However, memory management can never be totally removed from the user’s control. It
must always be assumed that the programmer is acting in a reasonably logical manner,
accessing array elements in sequence (by rows or columns as organised by the compiler
and the language). If the user accesses a virtual memory of 108 words in a random fashion
the paging requests will ensure that very little execution of the program can take place (see
e.g. Willé, 1995).

In the immediate future, “large” finite element analyses, say involving more than 1 mil-
lion unknowns, are likely to be processed by the vector and parallel processing hardware
described in the next sections. When using such hardware there is usually a considerable
time penalty if the programmer interrupts the flow of the computation to perform out-
of-memory transfers or if automatic paging occurs. Therefore, in Chapter 3 of this book,
special strategies are described whereby large analyses can still be processed “in-memory”.
However, as problem sizes increase, there is always the risk that main memory, or fast sub-
sidiary memory (“cache”) will be exceeded with consequent deterioration of performance
on most machine architectures.

1.4 Vector processors

Early digital computers performed calculations “serially”, that is, if a thousand operations
were to be carried out, the second could not be initiated until the first had been completed,
and so on. When operations are being carried out on arrays of numbers, however, it is
perfectly possible to imagine that computations in which the result of an operation on two
array elements has no effect on an operation on another two array elements, can be carried
out simultaneously. The hardware feature by means of which this is realised in a computer
is called a pipeline, and in general, all modern computers use this feature to a greater or
lesser degree. Computers which consist of specialised hardware for pipelining are called
vector computers. The “pipelines” are of limited length and so for operations to be carried
out simultaneously it must be arranged that the relevant operands are actually in the pipeline
at the right time. Furthermore, the condition that one operation does not depend on another
must be respected. These two requirements (amongst others) mean that some care must be
taken in writing programs so that best use is made of the vector processing capacity of
many machines. It is moreover an interesting side effect that programs well structured for
vector machines will tend to run better on any machine because information tends to be
in the right place at the right time (e.g. in a special cache memory) and modern so-called
scalar computers tend to contain some vector-type hardware. In this book, beginning at
Chapter 5, programs which “vectorise” well will be illustrated.

True vector hardware tends to be expensive and at the time of writing a much more
common way of increasing processing speed is to execute programs in parallel on many
processors. The motivation here is that the individual processors are then “standard” and

4 PRELIMINARIES: COMPUTER STRATEGIES

therefore cheap. However for really intensive computations, it is likely that an amalgamation
of vector and parallel hardware is ideal.

1.5 Parallel processors

In this concept (of which there are many variants) there are several physically distinct
processors (e.g. a few expensive ones or a lot of cheaper ones). Programs and/or data can
reside on different processors which have to communicate with one another.

There are two foreseeable ways in which this communication can be organised (rather
like memory management which was described earlier). Either the programmer takes control
of the communication process, using a programming feature called message passing, or it is
done automatically, without user control. The second strategy is of course appealing and has
led to the development of “High Performance Fortran” or HPF (e.g. see Koelbel et al., 1995)
which has been designed as an extension to Fortran 95. “Directives”, which are treated as
comments by non-HPF compilers, are inserted into the Fortran 95 programs and allow data
to be mapped onto parallel processors together with the specification of the operations on
such data which can be carried out in parallel. The attractive feature of this strategy is that
programs are “portable”, that is they can be easily transferred from computer to computer.
One would also anticipate that manufacturers could produce compilers which made best
use of their specific type of hardware. At the time of writing, the first implementations of
HPF are just being reported.

An alternative to HPF, involving roughly the same level of user intervention, can be used
on specific hardware. Manufacturers provide “directives” which can be inserted by users
in programs and implemented by the compiler to parallelise sections of the code (usually
associated with DO-loops). Smith (2000) shows that this approach can be quite effective
for up to a modest number of parallel processors (say 10). However such programs are not
portable to other machines.

A further alternative is to use OpenMP, a portable set of directives but limited to a
class of parallel machines with so-called “shared memory”. Although the codes in this book
have been rather successfully adapted for parallel processing using OpenMP (Pettipher and
Smith, 1997) the most popular strategy applicable equally to “shared memory” and “dis-
tributed memory” systems is described in Chapter 12. The programs therein have been
run successfully on clusters of PCs communicating via Ethernet and on shared and dis-
tributed memory supercomputers with their much more expensive communication systems.
This strategy of message passing under programmer control is realised by MPI (“message
passing interface”) which is a de facto standard thereby ensuring portability (MPI Web
reference, 2003).

1.6 BLAS libraries

As was mentioned earlier, programs implementing the Finite Element Method make inten-
sive use of matrix or array structures. For example a study of any of the programs in
the succeeding chapters will reveal repeated use of the subroutine MATMUL described in

PRELIMINARIES: COMPUTER STRATEGIES 5

Section 1.9. While one might hope that the writers of compilers would implement calls to
MATMUL efficiently, this turns out in practice not always to be so.

Particularly on supercomputers, an alternative is to use “BLAS” or Basic Linear Alge-
bra Subroutine Libraries (e.g. Dongarra and Walker, 1995). There are three “levels” of
BLAS subroutines involving vector—vector, matrix—vector and matrix—matrix operations
respectively. To improve efficiency in large calculations, it is always worth experimenting
with BLAS routines if available. The calling sequence is rather cumbersome, for example
the Fortran:

utemp=MATMUL(km,pmul)

has to be replaced by:

CALL DGEMV(’n’,ntot,ntot,1.0,km,ntot,pmul,1,0.0,utemp,1)

in a typical example in Chapter 12. However, very significant gains in processing speed
can be achieved; a factor of 3 times speedup is not uncommon.

1.7 MPI libraries

MPI (MPI Web reference, 2003) is itself essentially a library of routines for communication
callable from Fortran. For example,

CALL MPI_BCAST(no_f,fixed_freedoms,MPI_INTEGER,npes-1,MPI_COMM_WORLD,ier)

“broadcasts” the array no_f of size fixed_freedoms to the remaining npes-1 pro-
cessors on a parallel system. In the parallel programs in this book (Chapter 12) these MPI
routines are mainly hidden from the user and contained within routines collected in library
modules such as gather_scatter. In this way, the parallel programs can be seen to be
readily derived from their serial counterparts. The detail of the new MPI library is left to
Chapter 12.

1.8 Applications software

Since all computers have different hardware (instruction formats, vector capability, etc.)
and different store management strategies, programs which would make the most effective
use of these varying facilities would of course differ in structure from machine to machine.
However, for excellent reasons of program portability and programmer training, engineering
computations on all machines are usually programmed in “high level” languages which are
intended to be machine-independent. The high level language is translated into the machine
order code by a program called a compiler. Fortran is by far the most widely used language
for programming engineering and scientific calculations and in this section the principal
features of the latest standard, called Fortran 95, will be described with particular reference
to features of the language which are useful in finite element computations.

Figure 1.1 shows a typical simple program written in Fortran 95 (Smith, 1995). It
concerns an opinion poll survey and serves to illustrate the basic structure of the language
for those used to its predecessor, FORTRAN 77, or to other languages.

6 PRELIMINARIES: COMPUTER STRATEGIES

PROGRAM gallup_poll
! TO CONDUCT A GALLUP POLL SURVEY
 IMPLICIT NONE
 INTEGER::sample,i,count,this_time,last_time,tot_rep,tot_mav,tot_dem, &
 tot_other,rep_to_mav,dem_to_mav,changed_mind
 READ*,sample
 count=0; tot_rep=0; tot_mav=0; tot_dem=0; tot_other=0; rep_to_mav=0
 dem_to_mav=0; changed_mind=0
 OPEN(10,FILE=’gallup.dat’)
 DO I=1,sample
 count=count+1
 READ(10,’(I3,I2)’,ADVANCE=’NO’)this_time,last_time
 votes: SELECT CASE(this_time)
 CASE(1); tot_rep=tot_rep+1
 CASE(3); tot_mav=tot_mav+1
 IF(last_time/=3)THEN
 changed_mind=changed_mind+1
 IF(last_time==1)rep_to_mav=rep_to_mav+1
 IF(last_time==2)dem_to_mav=dem_to_mav+1
 END IF
 CASE(2); tot_dem=tot_dem+1
 CASE DEFAULT; tot_other=tot_other+1
 END SELECT votes
 END DO
 PRINT*,’PERCENT REPUBLICAN IS’, REAL (tot_rep)/REAL (count)*100.0
 PRINT*,’PERCENT MAVERICK IS’, REAL (tot_mav)/REAL(count)*100.0
 PRINT*,’PERCENT DEMOCRAT IS’, REAL (tot_mav)/REAL(count)*100.0
 PRINT*,’PERCENT OTHERS IS’, REAL (tot_other)/REAL(count)*100.0
 PRINT*,’PERCENT CHANGING REP TO MAVIS’, &
 REAL (rep_to_mav)/REAL(changed_mind)*100.0
 PRINT*,’PERCENT CHANGING DEM TO MAV IS’, &
 REAL (dem_to_mav)/REAL(changed_mind)*100.0
STOP
END PROGRAM gallup_poll

Figure 1.1 A typical program written in Fortran 95

It can be seen that programs are written in “free source” form. That is, statements can
be arranged on the page or screen at the user’s discretion. Other features to note are:

• Upper and lower case characters may be mixed at will. In the present book, upper
case is used to signify intrinsic routines and “key words” of Fortran 95.

• Multiple statements can be placed on one line, separated by ;.

• Long lines can be extended by & at the end of the line, and optionally another & at
the start of the continuation line(s).

• Comments placed after ! are ignored.

• Long names (up to 31 characters, including the underscore) allow meaningful iden-
tifiers.

• The IMPLICIT NONE statement forces the declaration of all variable and constant
names. This is of great help in debugging programs.

• Declarations involve the :: double colon convention.

• There are no labelled statements.

PRELIMINARIES: COMPUTER STRATEGIES 7

1.8.1 Arithmetic

Finite element processing is computationally intensive (see e.g. Chapters 6 and 10) and a
reasonably safe numerical precision to aim for is that provided by a 64-bit machine word
length. Fortran 95 contains some useful intrinsic procedures for determining, and changing,
processor precision. For example the statement

iwp = SELECTED_REAL_KIND(15)

would return an integer iwp, which is the KIND of variable on a particular processor which
is necessary to achieve 15 decimal places of precision. If the processor cannot achieve this
order of accuracy, iwp would be returned as negative.

Having established the necessary value of iwp, Fortran 95 declarations of REAL quan-
tities then take the form

REAL(iwp)::a,b,c

and assignments the form

a=1.0_iwp; b=2.0_iwp; c=3.0_iwp

and so on.
In most of the programs in this book, constants are assigned at the time of declaration,

for example,

REAL(iwp)::zero=0.0_iwp,one=1.0_iwp,d4=4.0_iwp,penalty=1.0e20_iwp

so that the rather cumbersome _iwp extension does not appear in the main program assign-
ment statements.

1.8.2 Conditions

There are two basic structures for conditional statements in Fortran 95 which are both
shown in Figure 1.1. The first corresponds to the classical IF ... THEN ... ELSE
structure found in most high level languages. It can take the form:

name_of_clause: IF(logical expression 1)THEN
. first block
. of statements
.
ELSE IF(logical expression 2)THEN
. second block
. of statements
.
ELSE
. third block
. of statements
.

END IF name_of_clause

8 PRELIMINARIES: COMPUTER STRATEGIES

For example,

change_sign: IF(a/=b)THEN
a=-a

ELSE
b=-b

END IF change_sign

The name of the conditional statement, name_of_clause or change_sign in the above
examples, is optional and can be left out.

The second conditional structure involves the SELECT CASE construct. If choices are
to be made in particularly simple circumstances, for example, an INTEGER, LOGICAL or
CHARACTER scalar has a given value then the form:

select_case_name: SELECT CASE(variable or expression)
CASE(selector)
. first block
. of statements
.

CASE(selector)
. second block
. of statements
.

CASE DEFAULT
. default block
. of statements
.

END select_case_name

can be used. This replaces the ugly “computed go to” construct in FORTRAN 77.

1.8.3 Loops

There are two constructs in Fortran 95 for repeating blocks of instructions. In the first, the
block is repeated a fixed number of times, for example

fixed_iterations: DO i=1,n
. block
. of statements
.

END DO fixed_iterations

In the second, the loop is left or continued depending on the result of some condition.
For example

exit_type: DO
. block
. of statements
.
IF(conditional statement)EXIT
. block

PRELIMINARIES: COMPUTER STRATEGIES 9

. of statements

.
END DO exit_type

or

cycle_type: DO
. block
. of statements
.
IF(conditional statement)CYCLE
. block
. of statements
.

END DO cycle_type

The first variant transfers control out of the loop to the first statement after END DO.
The second variant transfers control to the beginning of the loop, skipping the remaining
statements between CYCLE and END DO.

In the above examples, as was the case for conditions, the naming of the loops is
optional. In the programs in this book, loops and conditions of major significance tend to
be named and simpler ones not.

1.9 Array features

1.9.1 Dynamic arrays

Fortran 95 has remedied perhaps the greatest deficiency of earlier FORTRANs for large
scale array computations such as occur in finite element analysis, in that it allows “dynamic”
declaration of arrays. That is, array sizes do not have to be specified at program compilation
time but can be ALLOCATEd after some data has been read into the program, or some
intermediate results computed. A simple illustration is given below:

PROGRAM dynamic
! just to illustrate dynamic array allocation
IMPLICIT NONE
iwp=SELECTED_REAL_KIND(15)

! declare variable space for two-dimensional array a
REAL,ALLOCATABLE(iwp)::a(:,:)
REAL::two=2.0_iwp,d3=3.0_iwp
INTEGER::m,n

! now read in the bounds for a
READ*,m,n

! allocate actual space for a
ALLOCATE(a(m,n))
READ*,a
PRINT*,two*SQRT(a)+d3
DEALLOCATE(a)! a no longer needed

STOP
END PROGRAM dynamic

10 PRELIMINARIES: COMPUTER STRATEGIES

This simple program also illustrates some other very useful features of the standard.
“Whole array” operations are permissible, so that the whole of an array is read in, or the
square root of all its elements computed, by a single statement. The efficiency with which
these features are implemented by practical compilers is variable.

1.9.2 Broadcasting

A feature called broadcasting enables operations on whole arrays by scalars such as two
or d3 in the above example. These scalars are said to be “broadcast” to all the elements
of the array so that what will be printed out are the square roots of all the elements of the
array having been multiplied by 2.0 and added to 3.0.

1.9.3 Constructors

Array elements can be assigned values in the normal way but Fortran 95 also permits the
“construction” of one-dimensional arrays, or vectors, such as the following:

v = (/1.0,2.0,3.0,4.0,5.0/)

which is equivalent to

v(1)=1.0; v(2)=2.0; v(3)=3.0; v(4)=4.0; v(5)=5.0

Array constructors can themselves be arrays, for example

w = (/v, v/)

would have the obvious result for the 10 numbers in w.

1.9.4 Vector subscripts

Integer vectors can be used to define subscripts of arrays, and this is very useful in the
“gather” and “scatter” operations involved in finite element (and other numerical) methods.
Figure 1.2 shows a portion of a finite element mesh of 8-node quadrilaterals with its nodes
numbered “globally” at least up to 106 in the example shown. When “local” calculations
have to be done involving individual elements, for example to determine element strains
or fluxes, a local index vector could hold the node numbers of each element, that is:

82 76 71 72 73 77 84 83 for element 65
93 87 82 83 84 88 95 94 for element 73

and so on. This index or “steering” vector could be called g. When a local vector has to
be gathered from a global one,

local = global(g)

is valid, and for scattering,

global(g) = local

PRELIMINARIES: COMPUTER STRATEGIES 11

56

62

69

70

74

75

76 77

78 81

82

84

85 86
87

89

90

91

92
93

94
95

96 97

 99

100 104

105 106

Element
65

Element
73

102

73
67

57 58 59 60

65

61

66

71

64

63

68

80

79

83

88

98

103101

72

Figure 1.2 Portion of a finite element mesh with node and element numbers

In this example local and g would be 8-long vectors, whereas global could have
a length of thousands or millions.

1.9.5 Array sections

Parts of arrays or “subarrays” can be referenced by giving an integer range for one or
more of their subscripts. If the range is missing for any subscript, the whole extent of
that dimension is implied. Thus if a and b are two-dimensional arrays, a(:,1:3) and
b(11:13,:) refer to all the terms in the first three columns of a, and all the terms in
rows 11 through 13 of b respectively. If array sections “conform”, that is, have the right
number of rows and columns, they can be manipulated just like “whole” arrays.

1.9.6 Whole-array manipulations

It is worth emphasising that the array-computation features in Fortran 95 remove the need
for several subroutines which were essential in FORTRAN 77 and used in earlier editions

12 PRELIMINARIES: COMPUTER STRATEGIES

of this book. For example, if a, b, and c conform and s is a scalar, the following are
valid:

a = b+c ! no need for a matrix add, involving DO loops
a = b-c ! no need for a matrix subtract
a = s*b ! no need for a matrix-scalar multiply by s
a = b/s ! no need for a matrix-scalar divide by s
a = 0.0 ! no need for a matrix null

However, although a = b*c has a meaning for conforming arrays a, b, and c, its
consequence is the computation of the element-by-element products of b and c and is not
to be confused with the matrix multiply described in the next sub-section.

1.9.7 Intrinsic procedures for arrays

To supplement whole-array arithmetic operations, Fortran 95 provides a few intrinsic pro-
cedures (functions) which are very useful in finite element work. These can be grouped
conveniently into those involving array computations, and those involving array inspection.
The array computation functions are

FUNCTION MATMUL(a,b) ! returns matrix product of a and b
FUNCTION DOT_PRODUCT(v1,v2) ! returns dot product of v1 and v2
FUNCTION TRANSPOSE(a) ! returns transpose of a.

All three are heavily used in the programs in this book and replace the user-written
subroutines which had to be provided in previous FORTRAN 77 editions.

The array inspection functions include:

FUNCTION MAXVAL(a) ! returns the element of an array a of
! maximum value (not absolute maximum)

FUNCTION MINVAL(a) ! returns the element of an array a of
! minimum value (not absolute minimum)

FUNCTION MAXLOC(a) ! returns the location of the maximum element
! of array a

FUNCTION MINLOC(a) ! returns the location of the minimum element
! of array a

FUNCTION PRODUCT(a) ! returns the product of all the elements of a
FUNCTION SUM(a) ! returns the sum of all the elements of a
FUNCTION LBOUND(a,1) ! returns the first lower bound of a, etc.
FUNCTION UBOUND(a,1) ! returns the first upper bound of a, etc.

The first six of these procedures allow an optional argument called a masking argument.
For example the statement

asum=SUM(column,MASK=column>=0.0)

will result in asum containing the sum of the positive elements of array column.
Useful procedures whose only argument is a MASK are:

ALL(MASK=column>=0.0) ! true if all elements of column are positive
ANY(MASK=column>=0.0) ! true if any elements of column are positive
COUNT(MASK=column<=0.0)! number of elements of column which are

! negative.

For multidimensional arrays, operations such as SUM can be carried out on a particular
dimension of the array. When a mask is used, the dimension argument must be specified

PRELIMINARIES: COMPUTER STRATEGIES 13

even if the array is one-dimensional. Referring to Figure 1.2, the “half-bandwidth” of a
particular element could be found from the element freedom steering vectors, g, by the
statement

nband = MAXVAL(g,1,g>0) - MINVAL(g,1,g>0)

allowing for the possibility of zero entries in g. Note that the argument MASK= is
optional.

The global “half-bandwidth” of an assembled system of equation coefficients would
then be the maximum value of nband after scanning all the elements in the mesh.

1.9.8 Additional Fortran 95 features

The programs in this book are written in a style of Fortran 95 not too far removed
from that of FORTRAN 77. The examples of FORTRAN 77 and Fortran 95 shown in
Figure 1.3, illustrate gains in conciseness from whole array operations, array intrinsic func-
tions, and dynamic arrays, but no complete revolution in programming style has been
implemented.

Fortran 95 contains features such as derived data types, pointers, operator overloading,
and user-defined operators which programmers used to another style might implement to
bring about a more radical revision of FORTRAN 77. This is a matter of taste. One feature
of Fortran 95 which has been implemented in the programs which follow is the idea of a
“module”.

A module is a program unit separate from the main program unit in the way that
subroutines and functions are. However, in its simplest form, it may contain no executable

Fortran 95

 km=zero
 int_pts_1: DO i=1,nip
 CALL shape_der(der,points,i); jac=MATMUL(der,coord)
 det=determinant(jac); CALL invert(jac)
 deriv=MATMUL(jac,der); CALL beemat(bee,deriv)
 km=km+MATMUL(MATMUL(TRANSPOSE(bee),dee),bee)*det*weights(i)
 END DO int_pts_1

FORTRAN 77

 CALL NULL(KM,IKM,IDOF,IDOF)
 DO 20 I=1,NIP
 CALL FORMLN(DER,IDER,FUN,SAMP,ISAMP,I)
 CALL MATMUL(DER,IDER,COORD,ICOORD,JAC,IJAC,IT,NOD,IT)
 CALL TWOBYTWO (JAC,IJAC,JAC1,IJAC1,DET)
 CALL MATMUL(JAC1,IJAC1,DER,IDER,DERIV,IDERIV,IT,IT,NOD)
 CALL FORMB(BEE,IBEE,DERIV,IDERIV,NOD)
 CALL MATMUL(DEE,IDEE,BEE,IBEE,DBEE,IDBEE,IH,IH,IDOF)
 CALL MATRAN(BT,IBT,BEE,IBEE,IH,IDOF)
 CALL MATMUL(BT,IBT,DBEE,IDBEE,BTDB,IBTDB,IDOF,IH,IDOF)
 QUOT=DET*WEIGHTS(I)
 CALL MSMULT(BTDB,IBTDB,QUOT,IDOF,IDOF)
 20 CALL MATADD(KM,IKM,BTDB,IBTDB,IDOF,IDOF)

Figure 1.3 Comparison of a portion of a finite element program in Fortran 95 with FOR-
TRAN 77

14 PRELIMINARIES: COMPUTER STRATEGIES

statements at all and just be a list or collection of declarations or data which is globally
accessible to the program unit which invokes it by a USE statement. Its main employment
later in the book will be to contain either a collection of subroutines and functions which
constitute a “library” or to contain the “interfaces” between such a library and a program
which uses it.

1.9.9 Subprogram libraries

It was stated in the Introduction to this Chapter that what will be presented in Chapter
4 onwards is not a monolithic program but rather a collection of test programs which all
access a common subroutine library which contains about 70 subroutines and functions. In
the simplest implementation of Fortran 95 the library routines could simply be appended
to the main program after a CONTAINS statement as follows:

PROGRAM test_one
.
.
.
.

CONTAINS
SUBROUTINE one(p1,p2,p3)

.

.

.
END SUBROUTINE one
SUBROUTINE two(p4,p5,p6)

.

.

.
END SUBROUTINE two

.
etc.

END PROGRAM test_one

This would be tedious because a sub-library would really be required for each test
program, containing only the needed subroutines. Secondly, compilation of the library
routines with each test program compilation is wasteful.

What is required, therefore, is for the whole subroutine library to be precompiled and
for the test programs to link only to the parts of the library which are needed.

The designers of Fortran 95 seem to have intended this to be done in the following
way. The subroutines would be placed in a file:

SUBROUTINE one(args1)
.
.
.

END SUBROUTINE one
SUBROUTINE two(args2)

.

.
etc.

SUBROUTINE ninety_nine(args99)
.

PRELIMINARIES: COMPUTER STRATEGIES 15
.
.

END SUBROUTINE ninety_nine

and compiled.
A “module” would constitute the interface between library and calling program. It

would take the form

MODULE main
INTERFACE

SUBROUTINE one(args1)
(Parameter declarations)

END SUBROUTINE one
SUBROUTINE two(args2)

(Parameter declarations)
.
.

etc.
SUBROUTINE ninety_nine(args99)

(Parameter declarations)
END SUBROUTINE ninety_nine

END INTERFACE
END MODULE main

Thus the interface module would contain only the subroutine “headers”, that is the
subroutine’s name, argument list, and declaration of argument types. This is deemed to be
safe because the compiler can check the number and type of arguments in each call (one
of the greatest sources of error in FORTRAN 77).

The libraries would be interfaced by a statement USE main at the beginning of each
test program. For example

PROGRAM test_program1
USE main

.

.

.
END PROGRAM test_program1

However, it is still quite tedious to keep updating two files when making changes to a
library (the library and the interface module). Users with straightforward Fortran 95 libraries
may well prefer to omit the interface stage altogether and just create a module containing
the subroutines themselves. These would then be accessed by USE library_routines
in the example shown below. This still allows the compiler to check the numbers and types
of subroutine arguments when the test programs are compiled. For example

MODULE library_routines
CONTAINS
SUBROUTINE one(args1)

.

.

.
END SUBROUTINE one
SUBROUTINE two(args2)

.

.
etc.

16 PRELIMINARIES: COMPUTER STRATEGIES

SUBROUTINE ninety_nine(args99)
.
.
.

END SUBROUTINE ninety_nine
END MODULE library_routines

and then

PROGRAM test_program_2
USE library_routines

.

.

.
END PROGRAM test_program_2

1.9.10 Structured programming

The finite element programs which will be described are strongly “structured” in the sense
of Dijkstra (1976). The main feature exhibited by our programs will be seen to be a nested
structure and we will use representations called “structure charts” (Lindsey, 1977) rather
than flow charts to describe their actions.

The main features of these charts are:

(i) The block

Do this

Do that

Do the other

This will be used for the outermost level of each structure chart. Within a block, the
indicated actions are to be performed sequentially.

(ii) The choice

QUESTION?

Answer 1

ACTION 1

Answer 2

ACTION 2

Answer 3

ACTION 3

This corresponds to the IF...THEN...ELSE IF...THEN....END IF or
SELECT CASE type of construct.

PRELIMINARIES: COMPUTER STRATEGIES 17

(iii) The loop

Until some
condition is satisfied

ACTION
TO BE

REPEATED

or

FOR i TO n

ACTION
TO BE

REPEATED
n TIMES

This comes in various forms, but we shall usually be concerned with DO-loops, either
for a fixed number of repetitions or “forever” (so called because of the danger of the loop
never being completed).

In particular, the structure chart notation discourages the use of GOTO statements. Using
this notation, a matrix multiplication program would be represented as shown in Figure 1.4.
The nested nature of a typical program can be seen quite clearly.

Initialise variables and
arrays a(l,m), b(m,n) and c(l,n)

FOR i TO l

FOR k TO n

sum = 0.0

FOR j TO m

sum = sum + a(i,j)*b(j,k)

Set c(i,k) = sum

Do something with c

Figure 1.4 Structure chart for matrix multiplication

1.10 Conclusions

Computers on which finite element computations can be done vary widely in their capa-
bilities and architecture. Because of its entrenched position FORTRAN is the language
in which computer programs for engineering applications had best be written in order to
assure maximum readership and portability. Using Fortran 95, a library of subroutines can
be created which is held in compiled form and accessed by programs in just the way that

18 PRELIMINARIES: COMPUTER STRATEGIES

a manufacturer’s permanent library is. For parallel implementations a similar strategy is
adopted using MPI. Further information on parallel implementations is at www.parafem.
org.uk.

Using this philosophy, a library of over 70 subroutines has been assembled, together
with some 50 example programs which access the library. These programs and subroutines
are written in a reasonably “structured” style, and can be downloaded from the Internet at
www.mines.edu/fs_home/vgriffit/4th_ed. Versions are at present available for
all the common machine ranges and Fortran 95 compilers. The downloadable programs
include the MPI library, which consists of only some 12 subroutines, and the 10 example
programs from Chapter 12 which use them.

The structure of the remainder of the book is as follows. Chapter 2 shows how the
differential equations governing the behaviour of solids and fluids are semi-discretised in
space using finite elements.

Chapter 3 describes the subprogram library and the basic techniques by which main
programs are constructed to solve the equations listed in Chapter 2. Two basic solution
strategies are described, one involving element matrix assembly to form global matrices,
which can be used for small to medium-sized problems and the other using “element-by-
element” matrix techniques to avoid assembly and therefore permit the solution of very
large problems.

The remaining Chapters 4 to 12 are concerned with applications, partly in the authors’
field of geomechanics. However, the methods and programs described are equally applicable
in many other fields of engineering and science such as structural mechanics, fluid dynamics,
electromagnetics and so on. Chapter 4 leads off with static analysis of skeletal structures.
Chapter 5 deals with static analysis of linear solids, while Chapter 6 discusses extensions to
deal with material non-linearity. Programs dealing with the common geotechnical process of
construction (element addition during the analysis) and excavation (element removal during
the analysis) are given. Chapter 7 is concerned with steady state problems (e.g. fluid or
heat flow) while transient states with inclusion of transport phenomena (diffusion with
advection) are treated in Chapter 8. In Chapter 9, coupling between solid and fluid phases
is treated, with applications to “consolidation” processes in geomechanics. A second type
of “coupling” which is treated involves the Navier–Stokes equations. Chapter 10 contains
programs for the solution of eigenvalue problems (e.g. steady state vibration), involving
the determination of natural modes by various methods. Integration of the equations of
motion in time is described in Chapter 11. Chapter 12 takes 10 example programs from
earlier chapters and shows how these may be parallelised using the MPI library. Since
only “large” problems benefit from parallelisation, all of these examples employ three-
dimensional geometries.

In every applications chapter, test programs are listed and described, together with
specimen input and output. At the conclusion of most chapters, exercise questions are
included, with solutions.

References
Dijkstra EW 1976 A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J.

Dongarra JJ and Walker DW 1995 Software libraries for linear algebra computations on
high-performance computers. SIAM Rev 37(2), 151–180.

PRELIMINARIES: COMPUTER STRATEGIES 19

Koelbel CH, Loveman DB, Schreiber RS, Steele GL and Zosel ME 1995 The High Performance
Fortran Handbook. MIT Press, Cambridge, Mass.

Lindsey CH 1977 Structure charts: a structured alternative to flow charts. SIGPLAN Notices 12(11),
36–49.

MPI Web Reference 2003 http://www-unix.mcs.anl.gov/mpi/.
Pettipher MA and Smith IM 1997 The development of an MPP implementation of a suite of finite

element codes. High-Performance Computing and Networking: Lecture Notes in Computer Science.
Springer-Verlag, Berlin, pp. 1225:400–409.

Smith IM 1995 Programming in Fortran 90. John Wiley & Sons, Chichester, New York.
Smith IM 2000 A general-purpose system for finite element analyses in parallel. Eng Comput 17(1),

75–91.
Willé DR 1995 Advanced Scientific Fortran. John Wiley & Sons, Chichester, New York.

