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Introduction

Sanjay Rana

1.1 EVERY THING HAS A SURFACE

A surface is the most fundamental shape of matter to us. Surfaces surround us in
various forms, ranging from the undulating ground we stand on to this flat page in
the book, so much so that the recognition of surfaces and their structure is crucial
to our daily life. In addition, a number of non-physical spatial phenomena such as
temperature and population density are also modelled as surfaces to aid visualisation
and analyses. Despite the wide variety, conceptually the description of even the most
complex surface forms is rather simple. Basic surface descriptors such as circle, box,
flat, convex, and others can be combined together to derive any arbitrary shape, thus
enabling the computer graphics animators in Hollywood to reconstruct dinosaurs.

It is fascinating to appreciate how different disciplines describe surfaces. It is also
worthwhile to highlight the issues in surface representation as it reveals the level of
abstraction when the increasingly massive surface datasets are stored in computers.
Mathematicians have modelled surfaces primarily with an aim to decompose the sur-
face into the basic descriptors or elements even if it meant oversimplification (e.g.
by using the primary surface elements mentioned above), leading to potential loss
of the structure. Such descriptions are generic (i.e. universal to all types of sur-
faces), formal, and robust, such as that required in computer-aided designing. The
aim of the mathematical description is to produce a constrained global model of
the surface. The other large group of surface researchers from the field of physical
geography use more compound descriptors (e.g. valleys, mounds, scarps, drainage
network) with more emphasis on the preservation of the structural information of
the surface. Although the compound descriptors are more natural, their relevance
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is subjective to each individual; hence it is often difficult to derive an objective
definition of surface features1. These researchers are more interested in the process
that resulted in the surface; hence the descriptors are also symbolic of the factors in
the process.

A relevant example of such fundamental dichotomy is the description of a terrain
by these two disciplines. In order to achieve a simple and tractable model of terrain, a
typical algebraic definition of terrain will be as follows:

A terrain is a smooth, doubly continuous function of the form z = f( x, y), where
z is the height associated with each point ( x, y).

Further,

The local maxima or peak of the terrain is a point with a zero slope and a
convex curvature.

Other terrain features are defined similarly using morphometric measures. Most phys-
ical geographers will, however, find these definitions very restrictive because (i) they
assume away the absence of some common terrain features such as lakes and overhangs
crucial to certain applications, for example, runoff modelling; and (ii) natural terrain
features cannot be localised to a point because a peak with zero local slope will really
be the exception rather than the rule in nature. In physical geography, the description
of the terrain surface and terrain features is more indicative than precise. Therefore, as
long as the shape of the terrain around an area could be classified into terrain feature
type, it is the responsibility of the geographer to locate the position of the peak on ter-
rain based on his/her expertise. Figure 1.1 shows the difference between an algebraic
topology (as a triangulated irregular network (TIN)) and physical geography (drainage
network) description of a terrain surface.

It therefore follows that a combination of these two ways of describing a surface
should provide a complete and robust approach for describing surfaces. In other words,
a data structure that could explicitly describe both the structure (e.g. hills and valleys)
and the form (e.g. xyz coordinates) of a surface will be an ideal digital representation of
the surface. A more general form of this requirement was stated by Wolf (1993). Wolf
regarded an efficient surface data structure to be one that contains both the geometrical
information (e.g. coordinates, line equations) and the topological information on the
geometrical data (e.g. neighbourhood relationships, adjacency relationships) of the sur-
face. But as you read the book, it will be clear that the construction of a topologically
consistent surface data structure is a non-trivial task because real surfaces seldom obey
the constraints required by topological rules. At this stage, I would like to propose a
difference between the terms surface data structure and surface data model. I think
the term surface data structure should merely imply a format for storing the geometric
and topological information (e.g. point heights and adjacency relationships) in a single
construction. On the other hand, surface data model should be an extended version of

1 Wolf (1993, p24) highlights the importance for exact definitions quoting Werner (1988) and Frank et al.
(1986).
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Mathematician’s model
• Piecewise model of terrain

surface as triangular patches.

• Representation simply
requires the storage of points
and their topological
relationships. 

Physical geographer’s model
• Drainage network model of

terrain surface as a network
of ridges and channels.

• Representation requires non-
trivial derivation of consistent
drainage network. 

Terrain surface

Figure 1.1 Representation of the terrain surface into two different models depending upon the desired
application

the surface data structure in which additional metadata information characterising the
surface (e.g. valleys, ridges, i.e. characteristic properties of surface) is also incorpo-
rated to produce a representation of the surface. In simple terms, a surface data model
is a value-added product of the surface data structure and it explicitly represents the
characteristics of the surface. Thus, all surface data models can be regarded as surface
data structures but the opposite is not necessarily true.

1.2 TOPOLOGICAL DATA STRUCTURES FOR SURFACES

It is fairly straightforward to produce data structures that store the geometrical infor-
mation about a surface. We simply need to collect certain points on the surface either
on a regular lattice/grid or irregular locations. In fact, for many surface applications,
only geometrical information is required for analyses. However, storing topological
information has the following significant advantages:

• If we assume certain homogeneity in surface shape (e.g. smooth and continuous),
using a topological data structure will reduce the number of points required to
construct a surface. For example, by storing only certain morphologically important
points (MIPs) (e.g. corners, inflexions) and their topological relationships, we could
reconstruct the surface by means of interpolating between MIPs. Thus, the amount
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of computer disk space required to store the surface will be reduced significantly.
Helman and Hesselink (1991) reported 90% reduction in size on storing volumetric
surface datasets in topological data structures.

• Topological relationships are a much more efficient way of accessing a spatial
database, for example, sophisticated spatial queries such as clustering would be
easily implemented on the basis of adjacency relationships.

• Topological data structures could provide a unified representation of the global struc-
ture of the surface. Thus, these data structures can be used for applications that
require a uniform and controlled response from the entire surface such as morphing
in computer graphics and erosion modelling in hydrology.

• Topological data structures will be useful for the visualisation of the structure of sur-
faces, particularly multi-dimensional surfaces. For example, Helman and Hesselink
(1991) and Bajaj and Schikore (1996) reported that rendering of volumes surface
datasets as skeleton-like topological data structures is more fast and comprehensible
compared to traditional volume rendering.

• Bajaj and Schikore (1996) propose that topological data structures will be a simple
mechanism for correlating and co-registering surfaces due to the embedded infor-
mation on the structure of surfaces.

While the above benefits of topological data structures are applicable to all types
of surfaces, it is uncertain which MIPs and topological relationships should constitute
a universal surface topological data structure. Clearly, each surface should be charac-
terised by MIPs suitable for a particular application. Many types of MIPs have been
proposed by researchers in different disciplines and have been referred to by differ-
ent names, for example, landform elements (Speight, 1976), critical points and lines
(Pfaltz, 1976), surface-specific features (Fowler and Little, 1979), symbolic surface fea-
tures (Palmer, 1984), surface patches (Feuchtwanger and Poiker, 1987) and specific
geomorphological elements (Tang, 1992). The common aim of these classifications
has been to provide a sufficient resemblance to the surface relevant to a particular
application.

This book is primarily on the topological surface data structure called surface network
(Pfaltz, 1976), which has been used in many disciplines because of its simple and
universally applicable design. The book also discusses two other closely related data
structures called the Reeb graph (Reeb, 1946) and the contour tree (Morse, 1968). I
suppose some readers might be surprised to see the rather old lineage of the surface
network. Surprisingly, however, these data structures have received little mention even
in otherwise well-referenced texts (e.g. Koenderink and Van Doorn, 1998, Wilson and
Gallant, 2000) despite a substantial, although I admit, irregular flow of research papers.
This was indeed the main motivation behind this book. During the initial days when I
was doing my Ph.D. on surface networks, I assumed that there was not much literature
on surface networks, but, gradually, I started finding many works from all across the
globe and from different disciplines, which was very encouraging. Hence, I decided
to propose the book with the aim of putting together some key works on surface
networks and the related data structures, so that future researchers could start from a
single source.

Since each chapter in this book has a good introduction to the individual data struc-
tures, I will not define them here in detail. In this chapter, I will present instead the
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interesting history related to the development of these data structures followed by an
overview of the chapters. In simple and general terms, the Reeb graph, contour tree,
and surface network are graph-based surface data structures whose vertices are the
local peaks, local pits, and local passes. The edges of the graph are the channels,
connecting pits to passes, and ridges, connecting passes to peaks. Peaks, passes, and
pits are together called the critical points of a surface, and ridges and channels are
together called the critical lines of a surface. In my opinion, all the above surface
data structures also qualify as surface data models because their construction is very
much based on surface elements. Theoretically, any n-dimensional, smooth and doubly
continuous surface can be represented as a surface network (Pfaltz, 1976); however,
the most common implementations are limited to two- and three-dimensional surfaces.

The primary origin of these data structures lies in the realisation of the critical points
and critical lines of the surface. Critical points can be defined as characteristic local
surface features that are common to all surfaces and contain sufficient information to
construct the whole surface, thus taking away the need to store each point on the sur-
face. Critical points have a local zero slope, that is, dz/dx = dz/dy = 0, and three such
critical points of the surface are local maxima (∂2z/∂x2 > 0, ∂2z/∂y2 > 0 (also called
peaks, summits), local minima (∂2z/∂x2 < 0, ∂2z/∂y2 < 0) (also called pits, immits),
and passes (∂2z/∂x2 > 0, ∂2z/∂y2 < 0 or vice versa) (also called knots, saddles, bars).
These critical points have been referred to in physical geography as the fundamental
topographic features. In physical geography, the derivation of these features has tradi-
tionally been based on the overall shape of contours (i.e. using a regional context) on
a topographic map rather than local morphometric properties. For example, a peak is
identified as the centre of a closed highest contour bounded by lower contours. At any
point on the surface, a line following the steepest gradient is called a slope line (also
called topographic curves and gradient paths). Critical lines are a special pair of slope
lines that originate and terminate at critical points. There are two types of critical lines,
namely ridge line and channel line. A ridge line originates from a peak and terminates
at a pass, and a channel line starts from a pass and terminates at a pit.

The concept of critical points of a surface and critical lines was proposed as early as
the mid-nineteenth century by the mathematicians (De Saint-Venant, 1852 reported by
Koenderink and van Doorn, 1998; Reech, 1858 reported by Mark, 1977). In physical
geography, Cayley (1859), on the basis of contour patterns, first proposed the subdi-
vision of the topographic surface into a framework of peaks, pits, saddles, ridge lines,
and channels. Maxwell (1870)2 extended Cayley’s model and proposed the following
relation between the peaks, pits, and passes:

peaks + pits − passes = 2 (1.1)

This relation was later proved by Morse (1925) using differential topology and is
also known as the mountaineer’s equation or the Euler–Poincaré formula (Griffiths,
1981 reported by Takahashi et al., 1995). Maxwell also described the partition of the

2 The anxiety with which Maxwell presented his paper is quite amusing. His note to the editor of the journal
reads “An exact knowledge of the first elements of physical geography, however, is so important, and loose
notions on the subject are so prevalent, that I have no hesitation in sending you what you, I hope, will have
no scruple in rejecting if you think it superfluous after what has been done by Professor Cayley”.
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topographic surface into hills (areas of terrain where all slope lines end at the same
summit) and dales (areas of terrain where all slope lines end at the same immit) on
the basis of the fundamental topographic features.

The earliest graph–theoretic representation of the topological relationships between
the critical points of a terrain is the Reeb graph (Reeb, 1946; reported by Takahashi
et al., 1995). Reeb graph basically represents the splitting and merging of equi-height
contours (i.e. a cross section) of a surface as a graph. The vertices of the graph are
the peaks, pits, and passes because the contours close at the pits and the peaks, and
split at the passes. Consequently, the edges of the Reeb graph turn out to be the ridges
and channels.

In a significant related development in mathematics, Morse (1925) derived the rela-
tionship between the numbers of critical points of sufficiently smooth functions (called
Morse functions under certain constraints), which is known as the Critical Point Theory
or Morse Theory. The generic nature and wide applicability of Morse Theory led to an
expansion in the interest in the critical points of surfaces amongst various disciplines.

Warntz (1966) revived the interest of geographers and social science researchers in
critical points and lines when he applied the Maxwell’s “hills and dales” concept for
socio-economic surfaces, referred to as the Warntz network (the term apparently coined
by Mark, 1977).

A data structure identical to Reeb graph is the contour tree (Morse, 1968), also called
the surface tree, by Wolf (1993). The contour tree represents the adjacency relations
of contour loops. The treelike hierarchical structure develops because of the fact that
each contour loop can enclose many other contour loops but it can itself be enclosed
by only one contour loop. As is evident, the contour tree is the same as the Reeb
graph except that it is separated by two decades. Kweon and Kanade (1994) proposed
another similar idea called the topographic change tree. As in the case of the Reeb
graph, the vertices of such a contour tree are the peaks, pits, and passes.

Pfaltz (1976) proposed a graph–theoretic representation of the Warntz network called
surface network (Mark, 1977 used the term Pfaltz’s graph). While the topology of the
Pfaltz’s graph was based on the Warntz network, Pfaltz added the constraint that the
surface will have to be a Morse function. Since Pfaltz was in the computer science
field, his work attracted the attention of researchers in three-dimensional surfaces such
as in medical imaging, crystallography (e.g. Johnson et al., 1999, Shinagawa et al.,
1991), and computer vision (e.g. Koenderink and Doorn, 1979). He also proposed a
homomorphic contraction of the surface network graph to reduce the number of redun-
dant and insignificant vertices. Along similar lines, Mark (1977) proposed a pruning of
the contour tree to remove the nodes (representing contour loops) that do not form the
critical points, i.e. the vertices of the contour tree, and called the resultant structure the
surface tree. This essentially reduces the contour tree to the purely topological state
of a Pfaltz’s graph. It is easy to realise that the Reeb graph, Pfaltz’s graph, and sur-
face tree are fundamentally similar and are actually inter-convertible (Takahashi et al.,
1995).

Wolf (1984) extended Pfaltz’s graph by introducing more topological constraints
in order that it be a consistent representation of the surface. He proposed assigning
weights to the critical points and lines to indicate their importance in the surface and
thus he proposed the name weighted surface network (WSN) for the Pfaltz’s graph. He
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demonstrated new weights-based criteria and methods for the contraction of the surface
networks. Later, Wolf suggested that in order to visualise the WSN for cartographic
purposes and to make it useful for spatial analyses, the vertices could be assigned
metric coordinates (Wolf, 1990). The resultant representation is termed metric surface
network (MSN).

Recent works have mostly focused on the automated extraction of surface networks
from raster (Wood and Rana, 2000, Schneider, 2003) and TIN (Takahashi et al., 1995),
which will be discussed in detail in the following chapters.

1.3 OBJECTIVES OF THE BOOK

As mentioned earlier, while there is an extensive literature on other topological surface
data structures (e.g. TIN and quadtrees by Samet, 1990a, b, van Kreveld et al., 1997),
the topics of surface network, contour tree, and Reeb graph, proposed more than three
decades ago, have only had irregular and scattered reports of the research on them. This
gap is the main motivation of this book. Despite the unique inter-disciplinary scope of
these data structures, there is generally a lack of awareness about their complete potential
amongst modern researchers. The book is also timely because publications demonstrating
all the promised potential of these data structures for practical applications such as
visualisation of large datasets (e.g. Takahashi et al., 1995, Bajaj and Schikore, 1996),
fast contour extraction (e.g. van Kreveld et al., 1997), generalisation and compression
of surfaces (e.g. Rana, 2000a,b, Kraus and Ertl, 2001), and spatial optimisation (e.g.
Rana, 2003a, Kim et al., 2003) have finally started coming out.

The objective of this book is to bring together some key earlier and modern researches
on these data structures to rejuvenate these topics and fuel ideas for future research.
Some of the important features of this book are as follows:

• Popular morphometric feature extraction algorithms, useful in drainage analysis,
computer vision, and information organisation, are described with practical examples
with links to the directions for future research.

• A comprehensive and condensed treatment of these data structures, unpublished
elsewhere, has been made available to the reader.

• This is a multidisciplinary area of research and this volume provides accessible
content to practitioners in a range of fields.

1.4 OVERVIEW OF THE BOOK

The book is divided into two main parts. The first part deals with concepts, automated
extraction, and issues related to the Reeb graph, contour tree, and surface network. The
second part of the book presents a number of applications of these topological surface
data structures.

The primary audience for this book are postgraduates and professionals. As can
be clearly seen from the diverse background of the authors, this book will appeal to
members of a number of disciplines such as Geographic Information Science, Com-
puter Science, and other sciences involved in the morphometric analysis of surfaces.
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Owing to the very practical nature of this book and its deliverables, I am tempted to
believe that the commercial organisations, particularly those involved in research and
development of solutions, would be keen to explore the ideas presented in this book. I
feel that many of the ideas are still in their early phase of development with promising
outputs, which could also provide topics for postgraduate and higher-level research.

All chapters contain a basic to intermediate discussion on the data structures; hence
each chapter is quite self-contained and could be read independently. The following
brief descriptions should give a general idea about each chapter so that the reader can
decide to follow the book at his/her own pace and order.

1.4.1 Part I – Concepts and implementation

Part I starts with a chapter by Gert Wolf (Chapter 2), who extended the work of Pfaltz
(1976). Wolf describes the construction of the surface network graph and how weights
could be assigned with edges and nodes to indicate their importance for both the macro-
and the micro-structure of the underlying surface in great and lucid detail. The graphs
thus obtained – termed weighted surface networks (WSNs) – represent a powerful tool
for characterising and generalising topographic surfaces. The technique of generalising
surface networks using two graph–theoretic contractions is explained. The chapter
then proposes an improvement of the purely topological WSNs, by attaching (xy)-
coordinates to the nodes resulting in an MSN. Finally, the generalisation process of a
real landscape taken from the Latschur region in Austria is shown.

Shigeo Takahashi (Chapter 3) describes algorithms for extracting surface network
and Reeb graphs. The fully automated algorithms extract these data structures from
an input TIN by simply generating a linear interpolation over the elevation sam-
ples instead of computationally expensive higher-order interpolations. Furthermore, the
extracted features are correct in the sense that they maintain topological integrity (e.g.
the Euler–Poincaré formula for critical points) inherited from the properties of smooth
surfaces. The present algorithms are robust enough to handle troublesome datasets such
as noisy or stepwise discrete samples, and such robustness is demonstrated with sev-
eral experiments on real terrain datasets. The resultant configuration of critical points
allows us to tackle other geographical information systems (GIS) related issues, which
is also discussed in this chapter.

Bernhard Schneider and Jo Wood (Chapter 4) describe two methods for the identi-
fication of MSNs from raster terrain data. This chapter includes a discussion of some
of the computational issues that have previously prevented automated construction of
MSNs, and presents two new automated methods that may be applied to raster terrain
data. The chapter first describes a simple and robust bilinear polynomial approximation
method followed by an advanced bi-quadratic polynomial method.

Marc Kreveld and others (Chapter 5) describe an efficient method to construct the
contour tree and to obtain seed sets that are provably small in size. The contour
algorithm can be used for regular and irregular meshes.

Silvia Biasotti and others (Chapter 6) introduce and describe the concept of extended
Reeb graph (ERG). First of all, a useful overview of the definition of critical points
and Morse complexes for smooth manifolds is given. It is followed by a description
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of some existing methods that extend these concepts to piecewise linear 2-manifolds,
focusing, in particular, on topological structures as surface networks and quasi-Morse
complexes, available for analysis and simplification of triangular meshes. To avoid
the dependency of such structures on the locality of the critical point definition, they
propose to consider critical areas and influence zones instead of usual ones, and give
their formal definition. They base the ERG representation on this characterization and
compare it with the surface network structure. Finally, they describe the ERG structure
and its construction process, also introducing several examples from a real terrain from
New Zealand.

1.4.2 Part II – Applications

This is perhaps the more interesting part of the book and has taken the most effort to
put together.

The analysis of urban population distributions has been one of the central sub-
jects of human geography since Clark’s pioneering study in the 1950s (Clark 1951,
1958). Following Clark, most initial studies dealt with population distributions in
terms of a population density with respect to the distance from the centre of a city
(i.e. one-dimensional distributions). These studies were extended to two-dimensional
distributions by use of the trend surface analysis. This analysis, however, has dif-
ficulty in interpreting the estimated coefficients. To overcome this difficulty, Okabe
and Masuda (1984) proposed a method for analysing population surfaces in terms
of surface networks. In the first chapter of this part, Atsuyuki Okabe and Atsushi
Masuyama (Chapter 7) propose a new method for measuring topological similarity
between activity surfaces in terms of modified counter trees. This method has an advan-
tage in measuring not only local similarity but also global similarity. They develop
an algorithm for implementing the proposed method and apply the method to urban
population surfaces in Japan and show topological similarity among Japanese urban
population surfaces.

In Chapter 8, Valerio Pascucci discusses a technique that reduces the user respon-
sibility to infer implicit information present in the data, by computing topological
features like maxima, minima, or saddle points and determining their relationships. He
first introduces the formal framework, based on Morse theory and homology groups,
necessary to analyse the critical points of a scalar field and to classify the shape of
its level sets. He discusses a set of algorithms that map this mathematical formalism
into an efficient pre-processing of the data. The chapter concludes with a discussion on
user interfaces that present intuitively the computed information and a demonstration
of examples from real scientific datasets such as subatomic particle collision.

Martin Kraus and Thomas Ertl (Chapter 9) show how to apply the concepts of scalar
topology to the volume visualisation of structured meshes. This chapter discusses
the role of topology-guided downsampling in direct and indirect volume visualisa-
tion. While most algorithms related to scalar topology work on unstructured meshes,
topology-guided downsampling is a recently published downsampling algorithm for
structured meshes, for example, Cartesian grids. The main goal of this technique is to
preserve as many critical points as possible, that is, to preserve as much as possible
of the topological structure of the original scalar field in the downsampled scalar field.
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After presenting this downsampling algorithm, they discuss its application in indi-
rect volume visualisation with isosurfaces and in direct volume rendering. Particular
emphasis is made on the interplay with recent developments in direct volume ren-
dering, namely the use of programmable per-pixel shading for pre-integrated volume
rendering. They also show how to employ topology-guided downsampling in the gen-
eration of hierarchical volume data that can be rendered with the help of programmable
per-pixel shading.

Jason Dykes and I (Chapter 10) present a surface networks–based features modelling
approach for the visualisation of dynamic maps. This chapter extends the proposals
of Valerio Pascucci (Chapter 8). Despite their aesthetic appeal and condensed nature,
dynamic maps are often criticised for the lack of an effective information delivery
and interactivity. We argue that the reasons for these observations could be due to
their information-laden quality, lack of spatial and temporal continuity in the original
map data, and a limited scope for a real-time interactivity. We demonstrate, with
the examples of a temporal and an attribute series of a terrain and a socio-economic
surface, respectively, how the re-expression of the maps as the surface network, spatial
generalisation, morphing, graphic lag, and the brushing technique can augment the
visualisation of dynamic maps.

Traditional surface texture parameters take a statistical approach to characterisation
using only the height and location information of the individual measured points. Many
applications, that is, lubrication, paintability of a surface, anodized extruded aluminium,
and so on, require the characterization of features such as peaks, pits, saddle points,
ridge lines, course lines, and so on, and the relationships between these features. That is
a pattern recognition approach. In Chapter 11, Paul Scott proposes a topological char-
acterisation of surface texture. This is based on the topological relationships between
critical points and critical lines on the metrological surface and incorporated into a
WSN. He then removes the predominant insignificant critical points, caused by mea-
surement noise, and Gert Wolf’s graph contractions (see Chapter 2), and then assesses
the relationships between the significant surface features.

In Chapter 12, Jeremy Morley and I propose the advantages of using the fundamental
topographic features forming the surface network of a terrain, namely the peaks, pits,
passes, ridges, and channels, as the observers or the targets in visibility computation. We
demonstrate that considerable time can be saved without any significant information
loss by using the fundamental topographic features as observers and targets in the
terrain. The optimisation is achieved because of a reduced number of observer–target
pair comparisons, which we call the Reduced Observers Strategy and Reduced Targets
Strategy. The method has been demonstrated for a gridded digital elevation model.
Owing to this selected sampling of observers in the terrain, there is an underestimation
of the viewshed of each point. Two simple methods for assessing this uncertainty have
been proposed.

In the conclusion of the book, I raise a number of unresolved issues related to the
data structure model, their automated generation, and generalisation.


