
1

Executive Overview of this Book

1.1 WHAT IS THIS BOOK?
The goal of this book is to model financial instruments, such as options, bonds and interest-
rate products by partial differential equations, finite differences and C++. It is intended
for IT and quantitative finance professionals who know this material and wish to deepen
their knowledge and for those readers who use techniques such as Monte Carlo, Fourier
transform methods, stochastic differential equations and lattice methods (for example, the
binomial method) for instrument pricing.

We integrate a number of well-known areas to create a traceable and maintainable path
from when a financial engineer proposes a new model to when he or she codes the resulting
equations in C++. When viewed as a black box, the core process in this book is to produce
C++ classes and code for financial engineering applications. Furthermore, we give lots of
examples of code that developers can use without much hassle. The accompanying CD
contains all the source code in this book. We provide guidelines, algorithms and reusable
code to help the reader to achieve these ends. The main activities that realise the core
process are:

• Activity 1: Map the financial model to a partial differential equation (PDE)
• Activity 2: Approximate the PDE by the finite difference method (FDM)
• Activity 3: Implement the FDM using C++ and design patterns.

In this book we shall concentrate on Activities 2 and 3. Since this is a book on the
application of C++ to financial engineering we concentrate on mapping the numerical
algorithms from Activity 2 to robust and flexible C++ code and classes. However, we
shall provide sufficient motivation and background information to help the reader to
understand the complete ‘instrument life cycle’. This life cycle describes the processes,
activities, decisions and alternatives that describe how to program models for financial
instruments in C++.

The topics in this book relate to finance, partial differential equations, numerical
schemes and C++ code, and for this reason we use the term Computational Finance
to sum up these related activities (see Seydel, 2003, where the same phrase is used). The
foundations for partial differential equations and finite difference schemes for financial
engineering applications are discussed in Duffy (2004b).

1.2 WHAT’S SPECIAL ABOUT THIS BOOK?
This book is part of a larger, ongoing project. It is the outcome of one part of this
project and concentrates on showing how to program finite difference schemes in C++.
Our approach is novel in a number of respects.

1. We use modern object-oriented and generic design patterns in C++ to solve a range
of partial, stochastic and ordinary differential equations in financial engineering. Tra-
ditionally, engineers have used packages such as Matlab, Maple, the C language or



2 Financial Instrument Pricing Using C++

other specialised libraries. Each alternative solution has its own benefits of course, but
using C++ means that your code is portable, flexible and future-proof (C++ will still
be used 20 years from now). Using C++ means that you are not tied into one vendor
or operating system.

2. We give a thorough introduction to finite difference methods, how to apply them to
Black–Scholes type equations and how to map them to C++ code. We avoid glib
recipe-type schemes that work well for toy problems but do not always scale to real-
life problems. In particular, we show how to program the famous Crank–Nicolson
scheme and discuss when it breaks down, especially in applications with small volatil-
ity, discontinuous payoff functions or non-linearities. We propose new schemes that
overcome these problems and produce uniformly good approximations to the delta
of an option. The book discusses finite difference schemes for both one-factor and
two-factor problems.

3. Successful software always needs to be adapted and extended, and to this end we
design our classes and applications so that they can easily be modified. Our book is
novel in the sense that we apply the powerful and proven design patterns (see Gamma
et al., 1995; Buschmann et al., 1996) to help us to produce applications that can be
extended or adapted to different organisational, hardware and software contexts.

4. Last, but not least, it is vital that our software artefacts are well documented. We
document these artefacts at the design level and, in particular, we use the de-facto
Unified Modeling Language (UML) to visually display the structural, functional and
behavioural relationships between the classes and objects in our applications.

In short, this book describes in a step-by-step manner how to create ‘good’ software
for financial engineering applications; it also integrates established techniques from fluid
mechanics, numerical analysis and software design to produce a coherent and seamless
approach to the design and implementation of financial models in C++.

1.3 WHO IS THIS BOOK FOR?
This book is meant for IT and quantitative finance professionals (risk managers, prod-
uct development and derivatives research groups) who work in financial institutions and
software companies and are involved in designing and implementing pricing models in
C++. This book deals with fundamental issues such as C++ design and implementation,
design patterns, finite difference methods and advanced software environments. Thus, it
is of value to financial engineers (‘Quants’), software developers and financial modellers.

We feel that the book is useful for universities and other educational institutes that
deliver financial courses. This is not a book on instrument theory as such, and we assume
that the reader has knowledge of option theory as presented in books by Hull (2000)
and Wilmott (1998), for example. We also assume that the reader has had some exposure
to differential equations, differential and integral calculus and matrix algebra. Finally, the
reader should have a working knowledge of C++.

As we have already mentioned in this chapter, the book is suited not only to those
readers from a partial differential equation (PDE) background but also to those who
use techniques such as Monte Carlo, Fourier transform methods, stochastic differential
equations (SDEs) and the binomial method for instrument pricing. We do our best to show
that finite differences compare well with, and even outperform, these former methods,
especially for complex and non-linear one-factor and two-factor Black–Scholes models.



Executive Overview of this Book 3

Finally, the real option theory is emerging and many of the techniques in this book can
be used in decision support systems in the oil, gas and energy industries. Thus, the book
is also of interest to engineers, scientists and financial engineers in these fields.

1.4 SOFTWARE REQUIREMENTS

We have written this book from a number of viewpoints that have to do with what we call
software quality. In general, we adopt the ISO 9126 quality characteristics (see Kitchenham
and Pfleeger, 1996) as our working model. ISO 9126 describes how good a software product
is. It consists of six top-level characteristics:

• Functionality: The ability of the software to satisfy stated or implied customer needs.
• Reliability: Does the software maintain its level of performance for a stated period

of time?
• Usability: Is the software easy to understand, learn or integrate with other applications?
• Efficiency: Describes the response times in the application and the corresponding re-

sources that are needed.
• Maintainability: How easy is it to modify, adapt and test the application? How stable

is the application under change?
• Portability: The ease with which the application can be adapted to work in some new

software or hardware environment.

Any one (or all) of the above requirements may be important for your new or existing
software project. In general, the more requirements your applications must satisfy the
more time it will take to satisfy them. In this book we classify applications into three
broad categories, depending on the level of flexibility that they must have:

• Low flexibility: These are either throwaway prototypes or simple programs in order to
test a piece of code or check the validity of some new model

• Medium flexibility: The code and classes in this category can be customised (by chang-
ing its source code if necessary) and used in your own applications

• High flexibility: The code in this category can be used in your applications without
any changes.

It is important to know at the outset how flexible our solutions must be; on the one hand,
we do not want to ‘over-engineer’ our application, but nor do we want to produce code
that is difficult to maintain, understand or falls apart when we modify it. This book will
provide you with guidelines to help you to produce good designs for financial engineering
applications.

We layer the software in this book by examining it at four different levels:

• Foundation classes and building blocks: Reusable components for vectors, lists, matri-
ces and other containers. We make ample use of the Standard Template Library (STL).

• Mechanisms: Tightly coupled groups of generic functions that are related to a specific
piece of functionality. An example is a set of functions for Date manipulations (cash
flows, interest rate curves).

• Half-products: Ready-to-use libraries that you can use as part of your own applications.
We can place these half-products in assemblies and DLLs.



4 Financial Instrument Pricing Using C++

• Applications: Dedicated applications for the user (not the developer). These applica-
tions are usually executables.

There are many advantages associated with taking this layered approach to software
development, as we shall see in this book.

1.5 THE STRUCTURE OF THIS BOOK

This book is partitioned into six major parts, each of which deals with a major topic and
consists of a number of chapters. These chapters deal with techniques that help to achieve
the goals of each part.

Part I This part is an introduction to C++ template classes. We define what templates
are, how to create them and how to use them in financial engineering applications. We
give an overview of the Standard Template Library (STL). This is a C++ library consisting
of template classes for a wide range of data containers, algorithms and functionality for
navigating in these containers. We develop a number of template classes based on STL
that we can use in financial engineering applications.

Part II In this part we create classes and code that will be used when approximat-
ing partial differential equations by finite difference methods. First, we create template
classes for arrays, vectors and matrices as well as the corresponding mathematical oper-
ations on them. Furthermore, we introduce several classes that solve linear systems of
equations. These classes implement direct and iterative matrix solvers in numerical linear
algebra. Second, we create a number of other foundation classes that we need in numerical
differentiation and integration. Finally, some useful classes for statistics are introduced.

Part III This part represents the start of the book as far as the mathematical core is
concerned. We motivate the finite difference method by applying it to a simple first-order
ordinary differential equation in Chapter 11. This chapter discusses the most important
ideas and schemes that will serve us well in later chapters. Continuing from Chapter 11,
we introduce stochastic differential equations and the finite difference schemes needed in
order to approximate them. We also propose several schemes to approximate two-point
boundary value problems. Special attention is paid to the Crank–Nicolson scheme and
why it fails to approximate the solution of the convection-diffusion equation in certain
circumstances. It is in this part of the book that we introduce the class of exponentially
fitted schemes and explain how they resolve the spurious oscillation problems associated
with Crank–Nicolson.

Part IV In this part we introduce the one-factor and two-factor Black–Scholes equa-
tions and devise appropriate finite difference schemes for them. Before we reach this level
of Nirvana, we begin with the one-dimensional heat equation and discuss explicit and
implicit finite difference schemes to approximate its solution. The schemes are extensions
of the time-independent schemes that we introduced in Part III. Slightly increasing the
level of difficulty, we discuss the Crank–Nicolson and fully implicit schemes for the
one-dimensional convection-diffusion equation (and its specialisation, the Black–Scholes
equation). We analyse the schemes in some detail, discussing why they work, when they



Executive Overview of this Book 5

do not work and how to produce fitted schemes that approximate the solution and the
delta of the Black–Scholes equation.

Proceeding to two-factor problems, we propose Alternating Direction Implicit (ADI)
and splitting methods and compare their relative merits.

Part V In this part we give an introduction to design patterns. Design is about alter-
natives and we have many choices when designing a system as the choices are determined
by the software requirements. We begin with an introduction to some general design prin-
ciples. In particular, we focus on templates and inheritance and why they are competitors.
We also introduce the important notion of delegation whose understanding is fundamental
to design patterns.

The main objective in Part V is to show how the famous design patterns of GOF
(see Gamma et al., 1995) are applied to financial engineering applications. We pay special
attention to choosing appropriate examples and to a discussion of the advantages of design
patterns in this particular context. Three chapters are devoted to the Creational, Structural
and Behavioural patterns.

Part VI This part contains a number of chapters that are of particular interest to
financial engineers and IT personnel who write financial engineering applications. First,
we give an introduction to the Extensible Markup Language (XML), a W3C standard
for interoperable data representation. We also describe how it is used in option pricing
applications in this book. XML will become more important in the financial world in
the coming years as evidenced by the work seen with FpML and FIX. We also discuss
classes and code that allow C++ code to communicate with Excel. Finally, we introduce
a number of design patterns that are very useful for the current work.

1.6 PEDAGOGICAL APPROACH

In general, our approach is incremental in the sense that we begin with simple examples
to illustrate the theory and progress to larger problems and examples. This approach
applies to the theory of finite differences for partial differential equations as well as the
C++ code and design patterns. For example, our main objective is to model one-factor
and two-factor Black–Scholes equations using finite differences. The main ‘flow’ in this
case is:

• Finite differences for scalar, linear first-order ordinary differential equations (ODEs).
• Finite differences for stochastic differential equations (SDEs).
• Two-point boundary value problems (special case: stationary convection-diffusion).
• Explicit and implicit finite difference schemes for the heat equation.
• Crank–Nicolson and fitting schemes for the one-factor Black–Scholes equation.
• Approximating the Greeks.
• Alternating Direction Implicit (ADI) and splitting schemes for two-factor Black–Scholes

equations.

In a similar vein, we build up C++ expertise as follows:

• The C++ template class.
• The Standard Template Library (STL) and its applications to financial engineering.



6 Financial Instrument Pricing Using C++

• The Property pattern and the modelling of financial instruments.
• C++ classes for ODEs and SDEs.
• C++ foundation classes: vectors, matrices and statistics.
• C++ classes for the heat equation.
• Modelling Black–Scholes with C++.
• C++ for ADI and splitting methods.

In short, we adopt the following rule-of-thumb:

1. Get it working.
2. Then get it right.
3. Then get it optimised.

One step at a time!

1.7 WHAT THIS BOOK IS NOT

First, this is not an introductory book on C++. We assume that the reader has a working
knowledge of this language. Second, this book assumes that the reader knows what an
option is, what Black–Scholes is, and so on. Finally, this is not a book on the theory of
partial differential equations and their approximation using finite differences, but is rather
a book that motivates finite difference schemes and applies them to financial engineering
applications using C++.

1.8 SOURCE CODE ON THE CD

You can use the source code on the accompanying CD free of charge in your applications
provided you acknowledge the author:

 Datasim Education BV 2004

Each source file has this copyright statement. Any questions or suggestions should be
sent to Daniel Duffy at info@datasim.nl.


