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1
Volatility Definition and

Estimation

1.1 WHAT IS VOLATILITY?

It is useful to start with an explanation of what volatility is, at least
for the purpose of clarifying the scope of this book. Volatility refers
to the spread of all likely outcomes of an uncertain variable. Typically,
in financial markets, we are often concerned with the spread of asset
returns. Statistically, volatility is often measured as the sample standard
deviation

σ̂ =
√√√√ 1

T − 1

T∑
t=1

(rt − µ)2, (1.1)

where rt is the return on day t , and µ is the average return over the T -day
period.

Sometimes, variance, σ 2, is used also as a volatility measure. Since
variance is simply the square of standard deviation, it makes no differ-
ence whichever measure we use when we compare the volatility of two
assets. However, variance is much less stable and less desirable than
standard deviation as an object for computer estimation and volatility
forecast evaluation. Moreover standard deviation has the same unit of
measure as the mean, i.e. if the mean is in dollar, then standard devi-
ation is also expressed in dollar whereas variance will be expressed in
dollar square. For this reason, standard deviation is more convenient and
intuitive when we think about volatility.

Volatility is related to, but not exactly the same as, risk. Risk is associ-
ated with undesirable outcome, whereas volatility as a measure strictly
for uncertainty could be due to a positive outcome. This important dif-
ference is often overlooked. Take the Sharpe ratio for example. The
Sharpe ratio is used for measuring the performance of an investment by
comparing the mean return in relation to its ‘risk’ proxy by its volatility.
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The Sharpe ratio is defined as

Sharpe ratio =

(
Average
return, µ

)
−

(
Risk-free interest
rate, e.g. T-bill rate

)
Standard deviation of returns, σ

.

The notion is that a larger Sharpe ratio is preferred to a smaller one. An
unusually large positive return, which is a desirable outcome, could lead
to a reduction in the Sharpe ratio because it will have a greater impact
on the standard deviation, σ , in the denominator than the average return,
µ, in the numerator.

More importantly, the reason that volatility is not a good or perfect
measure for risk is because volatility (or standard deviation) is only
a measure for the spread of a distribution and has no information on
its shape. The only exception is the case of a normal distribution or a
lognormal distribution where the mean, µ, and the standard deviation,
σ , are sufficient statistics for the entire distribution, i.e. with µ and σ

alone, one is able to reproduce the empirical distribution.
This book is about volatility only. Although volatility is not the sole

determinant of asset return distribution, it is a key input to many im-
portant finance applications such as investment, portfolio construction,
option pricing, hedging, and risk management. When Clive Granger and
I completed our survey paper on volatility forecasting research, there
were 93 studies on our list plus several hundred non-forecasting papers
written on volatility modelling. At the time of writing this book, the
number of volatility studies is still rising and there are now about 120
volatility forecasting papers on the list. Financial market volatility is a
‘live’ subject and has many facets driven by political events, macroecon-
omy and investors’ behaviour. This book will elaborate some of these
complexities that kept the whole industry of volatility modelling and
forecasting going in the last three decades. A new trend now emerging
is on the trading and hedging of volatility. The Chicago Board of Ex-
change (CBOE) for example has started futures trading on a volatility
index. Options on such futures contracts are likely to follow. Volatility
swap contracts have been traded on the over-the-counter market well
before the CBOE’s developments. Previously volatility was an input to
a model for pricing an asset or option written on the asset. It is now the
principal subject of the model and valuation. One can only predict that
volatility research will intensify for at least the next decade.
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1.2 FINANCIAL MARKET STYLIZED FACTS

To give a brief appreciation of the amount of variation across different
financial assets, Figure 1.1 plots the returns distributions of a normally

(a) Normal N(0,1)
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−4 −3 −2 −1 0 1 2 3 4

5

(b) Daily returns on S&P100
Jan 1965 – Jul 2003
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(c) £ vs. yen daily exchange rate returns
Sep 1971 – Jul 2003

(d) Daily returns on Legal & General share
Jan 1969 – Jul 2003

−10 −5 0 5 10

(e) Daily returns on UK Small Cap Index
Jan 1986 – Jul 2003

−4 −3 −2 −1 0 1 2 3 4

(f) Daily returns on silver
Aug 1971 – Jul 2003

−10 −5 0 5 10

Figure 1.1 Distribution of daily financial market returns. (Note: the dotted line is
the distribution of a normal random variable simulated using the mean and standard
deviation of the financial asset returns)
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distributed random variable, and the respective daily returns on the US
Standard and Poor market index (S&P100),1 the yen–sterling exchange
rate, the share of Legal & General (a major insurance company in the
UK), the UK Index for Small Capitalisation Stocks (i.e. small compa-
nies), and silver traded at the commodity exchange. The normal distri-
bution simulated using the mean and standard deviation of the financial
asset returns is drawn on the same graph to facilitate comparison.

From the small selection of financial asset returns presented in Fig-
ure 1.1, we notice several well-known features. Although the asset re-
turns have different degrees of variation, most of them have long ‘tails’ as
compared with the normally distributed random variable. Typically, the
asset distribution and the normal distribution cross at least three times,
leaving the financial asset returns with a longer left tail and a higher peak
in the middle. The implications are that, for a large part of the time, finan-
cial asset returns fluctuate in a range smaller than a normal distribution.
But there are some occasions where financial asset returns swing in a
much wider scale than that permitted by a normal distribution. This phe-
nomenon is most acute in the case of UK Small Cap and silver. Table 1.1
provides some summary statistics for these financial time series.

The normally distributed variable has a skewness equal to zero and
a kurtosis of 3. The annualized standard deviation is simply

√
252σ ,

assuming that there are 252 trading days in a year. The financial asset
returns are not adjusted for dividend. This omission is not likely to have
any impact on the summary statistics because the amount of dividends
distributed over the year is very small compared to the daily fluctuations
of asset prices. From Table 1.1, the Small Cap Index is the most nega-
tively skewed, meaning that it has a longer left tail (extreme losses) than
right tail (extreme gains). Kurtosis is a measure for tail thickness and
it is astronomical for S&P100, Small Cap Index and silver. However,
these skewness and kurtosis statistics are very sensitive to outliers. The
skewness statistic is much closer to zero, and the amount of kurtosis
dropped by 60% to 80%, when the October 1987 crash and a small
number of outliers are excluded.

Another characteristic of financial market volatility is the time-
varying nature of returns fluctuations, the discovery of which led to
Rob Engle’s Nobel Prize for his achievement in modelling it. Figure 1.2
plots the time series history of returns of the same set of assets presented

1 The data for S&P100 prior to 1986 comes from S&P500. Adjustments were made when the two series were
grafted together.
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in Figure 1.1. The amplitude of the returns fluctuations represents the
amount of variation with respect to a short instance in time. It is clear
from Figures 1.2(b) to (f) that fluctuations of financial asset returns are
‘lumpier’ in contrast to the even variations of the normally distributed
variable in Figure 1.2(a). In the finance literature, this ‘lumpiness’ is
called volatility clustering. With volatility clustering, a turbulent trad-
ing day tends to be followed by another turbulent day, while a tranquil
period tends to be followed by another tranquil period. Rob Engle (1982)
is the first to use the ARCH (autoregressive conditional heteroscedastic-
ity) model to capture this type of volatility persistence; ‘autoregressive’
because high/low volatility tends to persist, ‘conditional’ means time-
varying or with respect to a point in time, and ‘heteroscedasticity’ is a
technical jargon for non-constant volatility.2

There are several salient features about financial market returns and
volatility that are now well documented. These include fat tails and
volatility clustering that we mentioned above. Other characteristics doc-
umented in the literature include:

(i) Asset returns, rt , are not autocorrelated except possibly at lag one
due to nonsynchronous or thin trading. The lack of autocorrelation
pattern in returns corresponds to the notion of weak form market
efficiency in the sense that returns are not predictable.

(ii) The autocorrelation function of |rt | and r2
t decays slowly and

corr (|rt | , |rt−1|) > corr
(
r2

t , r2
t−1

)
. The decay rate of the auto-

correlation function is much slower than the exponential rate of
a stationary AR or ARMA model. The autocorrelations remain
positive for very long lags. This is known as the long memory
effect of volatility which will be discussed in greater detail in
Chapter 5. In the table below, we give a brief taste of the finding:

∑
ρ(|r |) ∑

ρ(r 2)
∑

ρ(ln|r |) ∑
ρ(|T r |)

S&P100 35.687 3.912 27.466 41.930
Yen/£ 4.111 1.108 0.966 5.718
L&G 25.898 14.767 29.907 28.711
Small Cap 25.381 3.712 35.152 38.631
Silver 45.504 8.275 88.706 60.545

2 It is worth noting that the ARCH effect appears in many time series other than financial time series. In fact
Engle’s (1982) seminal work is illustrated with the UK inflation rate.
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(iii) The numbers reported above are the sum of autocorrelations for the
first 1000 lags. The last column, ρ(|T r |), is the autocorrelation of
absolute returns after the most extreme 1% tail observations were
truncated. Let r0.01 and r0.99 be the 98% confidence interval of the
empirical distribution,

T r = Min [r, r0.99] , or Max [r, r0.01] . (1.2)

The effect of such an outlier truncation is discussed in Huber (1981).
The results reported in the table show that suppressing the large
numbers markedly increases the long memory effect.

(iv) Autocorrelation of powers of an absolute return are highest at power
one: corr (|rt | , |rt−1|) > corr

(
rd

t , rd
t−1

)
, d �= 1. Granger and Ding

(1995) call this property the Taylor effect, following Taylor (1986).
We showed above that other means of suppressing large numbers
could make the memory last longer. The absolute returns |rt | and
squared returns r2

t are proxies of daily volatility. By analysing the
more accurate volatility estimator, we note that the strongest auto-
correlation pattern is observed among realized volatility. Figure 1.3
demonstrates this convincingly.

(v) Volatility asymmetry: it has been observed that volatility increases if
the previous day returns are negative. This is known as the leverage
effect (Black, 1976; Christie, 1982) because the fall in stock price
causes leverage and financial risk of the firm to increase. The phe-
nomenon of volatility asymmetry is most marked during large falls.
The leverage effect has not been tested between contemporaneous
returns and volatility possibly due to the fact that it is the previ-
ous day residuals returns (and its sign dummy) that are included
in the conditional volatility specification in many models. With the
availability of realized volatility, we find a similar, albeit slightly
weaker, relationship in volatility and the sign of contemporaneous
returns.

(vi) The returns and volatility of different assets (e.g. different company
shares) and different markets (e.g. stock vs. bond markets in one
or more regions) tend to move together. More recent research finds
correlation among volatility is stronger than that among returns and
both tend to increase during bear markets and financial crises.

The art of volatility modelling is to exploit the time series proper-
ties and stylized facts of financial market volatility. Some financial time
series have their unique characteristics. The Korean stock market, for
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(a) Autocorrelation of daily returns on S&P100
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(b) Autocorrelation of daily squared returns on S&P100
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(c) Autocorrelation of daily absolute returns on S&P100
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(d) Autocorrelation of daily realized volatility of S&P100
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Figure 1.3 Aurocorrelation of daily returns and proxies of daily volatility of S&P100.
(Note: dotted lines represent two standard errors)

example, clearly went through a regime shift with a much higher volatil-
ity level after 1998. Many of the Asian markets have behaved differently
since the Asian crisis in 1997. The difficulty and sophistication of volatil-
ity modelling lie in the controlling of these special and unique features
of each individual financial time series.
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1.3 VOLATILITY ESTIMATION

Consider a time series of returns rt , t = 1, · · · , T , the standard de-
viation, σ , in (1.1) is the unconditional volatility over the T period.
Since volatility does not remain constant through time, the conditional
volatility, σt,τ is a more relevant information for asset pricing and risk
management at time t . Volatility estimation procedure varies a great deal
depending on how much information we have at each sub-interval t , and
the length of τ , the volatility reference period. Many financial time series
are available at the daily interval, while τ could vary from 1 to 10 days
(for risk management), months (for option pricing) and years (for in-
vestment analysis). Recently, intraday transaction data has become more
widely available providing a channel for more accurate volatility esti-
mation and forecast. This is the area where much research effort has
been concentrated in the last two years.

When monthly volatility is required and daily data is available,
volatility can simply be calculated using Equation (1.1). Many macro-
economic series are available only at the monthly interval, so the current
practice is to use absolute monthly value to proxy for macro volatility.
The same applies to financial time series when a daily volatility estimate
is required and only daily data is available. The use of absolute value
to proxy for volatility is the equivalent of forcing T = 1 and µ = 0 in
Equation (1.1). Figlewski (1997) noted that the statistical properties of
the sample mean make it a very inaccurate estimate of the true mean es-
pecially for small samples. Taking deviations around zero instead of the
sample mean as in Equation (1.1) typically increases volatility forecast
accuracy.

The use of daily return to proxy daily volatility will produce a very
noisy volatility estimator. Section 1.3.1 explains this in a greater detail.
Engle (1982) was the first to propose the use of an ARCH (autoregres-
sive conditional heteroscedasticity) model below to produce conditional
volatility for inflation rate rt ;

rt = µ + εt , εt ∼ N
(

0,
√

ht

)
.

εt = zt

√
ht ,

ht = ω + α1ε
2
t−1 + α2ε

2
t−2 + · · · . (1.3)

The ARCH model is estimated by maximizing the likelihood of {εt}.
This approach of estimating conditional volatility is less noisy than the
absolute return approach but it relies on the assumption that (1.3) is the
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true return-generating process, εt is Gaussian and the time series is long
enough for such an estimation.

While Equation (1.1) is an unbiased estimator for σ 2, the square root
of σ̂ 2 is a biased estimator for σ due to Jensen inequality.3 Ding, Granger
and Engle (1993) suggest measuring volatility directly from absolute re-
turns. Davidian and Carroll (1987) show absolute returns volatility spec-
ification is more robust against asymmetry and nonnormality. There is
some empirical evidence that deviations or absolute returns based mod-
els produce better volatility forecasts than models that are based on
squared returns (Taylor, 1986; Ederington and Guan, 2000a; McKenzie,
1999). However, the majority of time series volatility models, especially
the ARCH class models, are squared returns models. There are methods
for estimating volatility that are designed to exploit or reduce the influ-
ence of extremes.4 Again these methods would require the assumption
of a Gaussian variable or a particular distribution function for returns.

1.3.1 Using squared return as a proxy for daily volatility

Volatility is a latent variable. Before high-frequency data became widely
available, many researchers have resorted to using daily squared returns,
calculated from market daily closing prices, to proxy daily volatility.
Lopez (2001) shows that ε2

t is an unbiased but extremely imprecise
estimator of σ 2

t due to its asymmetric distribution. Let

Yt = µ + εt , εt = σt zt , (1.4)

and zt ∼ N (0, 1). Then

E
[
ε2

t

∣∣ �t−1
] = σ 2

t E
[

z2
t

∣∣ �t−1
] = σ 2

t

since z2
t ∼ χ2

(1). However, since the median of a χ2
(1) distribution is 0.455,

ε2
t is less than 1

2σ
2
t more than 50% of the time. In fact

Pr

(
ε2

t ∈
[

1

2
σ 2

t ,
3

2
σ 2

t

])
= Pr

(
z2

t ∈
[

1

2
,

3

2

])
= 0.2588,

which means that ε2
t is 50% greater or smaller than σ 2

t nearly 75% of
the time!

3 If rt ∼ N
(
0, σ 2

t

)
, then E (|rt |) = σt

√
2/π . Hence, σ̂ t = |rt |/

√
2/π if rt has a conditional normal distri-

bution.
4 For example, the maximum likelihood method proposed by Ball and Torous (1984), the high–low method

proposed by Parkinson (1980) and Garman and Klass (1980).
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Under the null hypothesis that returns in (1.4) are generated by a
GARCH(1,1) process, Andersen and Bollerslev (1998) show that the
population R2 for the regression

ε2
t = α + βσ̂ 2

t + υt

is equal to κ−1 where κ is the kurtosis of the standardized residuals and κ

is finite. For conditional Gaussian error, the R2 from a correctly specified
GARCH(1,1) model cannot be greater than 1/3. For thick tail distribu-
tion, the upper bound for R2 is lower than 1/3. Christodoulakis and
Satchell (1998) extend the results to include compound normals and the
Gram–Charlier class of distributions confirming that the mis-estimation
of forecast performance is likely to be worsened by nonnormality known
to be widespread in financial data.

Hence, the use of ε2
t as a volatility proxy will lead to low R2 and under-

mine the inference on forecast accuracy. Blair, Poon and Taylor (2001)
report an increase of R2 by three to four folds for the 1-day-ahead fore-
cast when intraday 5-minutes squared returns instead of daily squared
returns are used to proxy the actual volatility. The R2 of the regression
of |εt | on σ intra

t is 28.5%. Extra caution is needed when interpreting em-
pirical findings in studies that adopt such a noisy volatility estimator.
Figure 1.4 shows the time series of these two volatility estimates over
the 7-year period from January 1993 to December 1999. Although the
overall trends look similar, the two volatility estimates differ in many
details.

1.3.2 Using the high–low measure to proxy volatility

The high–low, also known as the range-based or extreme-value, method
of estimating volatility is very convenient because daily high, low, open-
ing and closing prices are reported by major newspapers, and the cal-
culation is easy to program using a hand-held calculator. The high–low
volatility estimator was studied by Parkinson (1980), Garman and Klass
(1980), Beckers (1993), Rogers and Satchell (1991), Wiggins (1992),
Rogers, Satchell and Yoon (1994) and Alizadeh, Brandt and Diebold
(2002). It is based on the assumption that return is normally distributed
with conditional volatility σt . Let Ht and Lt denote, respectively, the
highest and the lowest prices on day t . Applying the Parkinson (1980)
H -L measure to a price process that follows a geometric Brownian
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(a) Conditional variance proxied by daily squared returns
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(b) Conditional variance derived as the sum of intraday squared returns 
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Figure 1.4 S&P100 daily volatility for the period from January 1993 to December
1999

motion results in the following volatility estimator (Bollen and Inder,
2002):

σ̂ 2
t = (ln Ht − ln Lt )2

4 ln 2
The Garman and Klass (1980) estimator is an extension of Parkinson
(1980) where information about opening, pt−1, and closing, pt , prices
are incorporated as follows:

σ̂ 2
t = 0.5

(
ln

Ht

Lt

)2

− 0.39

(
ln

pt

pt−1

)2

.

We have already shown that financial market returns are not likely to
be normally distributed and have a long tail distribution. As the H -L
volatility estimator is very sensitive to outliers, it will be useful to ap-
ply the trimming procedures in Section 1.4. Provided that there are no
destabilizing large values, the H -L volatility estimator is very efficient
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and, unlike the realized volatility estimator introduced in the next sec-
tion, it is least affected by market microstructure effect.

1.3.3 Realized volatility, quadratic variation and jumps

More recently and with the increased availability of tick data, the term
realized volatility is now used to refer to volatility estimates calculated
using intraday squared returns at short intervals such as 5 or 15 minutes.5

For a series that has zero mean and no jumps, the realized volatility con-
verges to the continuous time volatility. To understand this, we assume
for the ease of exposition that the instantaneous returns are generated by
the continuous time martingale,

dpt = σt dWt , (1.5)

where dWt denotes a standard Wiener process. From (1.5) the con-
ditional variance for the one-period returns, rt+1 ≡ pt+1 − pt , is∫ t+1

t σ 2
s ds which is known as the integrated volatility over the period t

to t + 1. Note that while asset price pt can be observed at time t , the
volatility σt is an unobservable latent variable that scales the stochastic
process dWt continuously through time.

Let m be the sampling frequency such that there are m continuously
compounded returns in one unit of time and

rm,t ≡ pt − pt− 1/m (1.6)

and realized volatility

RVt+1 =
∑

j=1,···,m
r2

m,t+ j/m .

If the discretely sampled returns are serially uncorrelated and the sample
path for σt is continuous, it follows from the theory of quadratic variation
(Karatzas and Shreve, 1988) that

p lim
m→∞

(∫ t+1

t
σ 2

s ds −
∑

j=1,···,m
r2

m,t+ j/m

)
= 0.

Hence time t volatility is theoretically observable from the sample path
of the return process so long as the sampling process is frequent enough.

5 See Fung and Hsieh (1991) and Andersen and Bollerslev (1998). In the foreign exchange markets, quotes
for major exchange rates are available round the clock. In the case of stock markets, close-to-open squared return
is used in the volatility aggregation process during market close.
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When there are jumps in price process, (1.5) becomes

dpt = σt dWt + κt dqt ,

where dqt is a Poisson process with dqt = 1 corresponding to a jump at
time t , and zero otherwise, and κt is the jump size at time t when there
is a jump. In this case, the quadratic variation for the cumulative return
process is then given by∫ t+1

t
σ 2

s ds +
∑

t<s≤t+1

κ2 (s) , (1.7)

which is the sum of the integrated volatility and jumps.
In the absence of jumps, the second term on the right-hand side of (1.7)

disappears, and the quadratic variation is simply equal to the integrated
volatility. In the presence of jumps, the realized volatility continues to
converge to the quadratic variation in (1.7)

p lim
m→∞

(∫ t+1

t
σ 2

s ds +
∑

t<s≤t+1

κ2 (s) −
m∑

j=1

r2
m,t+ j/m

)
= 0. (1.8)

Barndorff-Nielsen and Shephard (2003) studied the property of the stan-
dardized realized bipower variation measure

BV [a,b]
m,t+1 = m[(a+b)/2−1]

m−1∑
j=1

∣∣rm,t+ j/m
∣∣a ∣∣rm,t+ ( j+1)/m

∣∣b
, a, b ≥ 0.

They showed that when jumps are large but rare, the simplest case where
a = b = 1,

µ−2
1 BV [1,1]

m,t+1 = µ−2
1

m−1∑
j=1

∣∣rm,t+ j/m
∣∣ ∣∣rm,t+ ( j+1)/m

∣∣ →
∫ t+1

t
σ 2

s ds

where µ1 = √
2/π . Hence, the realized volatility and the realized

bipower variation can be substituted into (1.8) to estimate the jump
component, κt . Barndorff-Nielsen and Shephard (2003) suggested im-
posing a nonnegative constraint on κt . This is perhaps too restrictive.
For nonnegative volatility, κt + µ−2

1 BVt > 0 will be sufficient.
Characteristics of financial market data suggest that returns measured

at an interval shorter than 5 minutes are plagued by spurious serial
correlation caused by various market microstructure effects including
nonsynchronous trading, discrete price observations, intraday periodic
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volatility patterns and bid–ask bounce.6 Bollen and Inder (2002), Ait-
Sahalia, Mykland and Zhang (2003) and Bandi and Russell (2004) have
given suggestions on how to isolate microstructure noise from realized
volatility estimator.

1.3.4 Scaling and actual volatility

The forecast of multi-period volatility σT,T + j (i.e. for j period) is taken to
be the sum of individual multi-step point forecasts s

j=1hT + j |T . These
multi-step point forecasts are produced by recursive substitution and
using the fact that ε2

T +i |T = hT +i |T for i > 0 and ε2
T +i |T = ε2

T +i for
T + i ≤ 0. Since volatility of financial time series has complex struc-
ture, Diebold, Hickman, Inoue and Schuermann (1998) warn that fore-
cast estimates will differ depending on the current level of volatility,
volatility structure (e.g. the degree of persistence and mean reversion
etc.) and the forecast horizon.

If returns are i id (independent and identically distributed, or strict
white noise), then variance of returns over a long horizon can be derived
as a simple multiple of single-period variance. But, this is clearly not the
case for many financial time series because of the stylized facts listed in
Section 1.2. While a point forecast of σ̂ T −1,T | t−1 becomes very noisy
as T → ∞, a cumulative forecast, σ̂ t,T | t−1, becomes more accurate
because of errors cancellation and volatility mean reversion except when
there is a fundamental change in the volatility level or structure.7

Complication in relation to the choice of forecast horizon is partly
due to volatility mean reversion. In general, volatility forecast accu-
racy improves as data sampling frequency increases relative to forecast
horizon (Andersen, Bollerslev and Lange, 1999). However, for forecast-
ing volatility over a long horizon, Figlewski (1997) finds forecast error
doubled in size when daily data, instead of monthly data, is used to fore-
cast volatility over 24 months. In some cases, where application is of
very long horizon e.g. over 10 years, volatility estimate calculated using

6 The bid–ask bounce for example induces negative autocorrelation in tick data and causes the realized
volatility estimator to be upwardly biased. Theoretical modelling of this issue so far assumes the price process
and the microstructure effect are not correlated, which is open to debate since market microstructure theory
suggests that trading has an impact on the efficient price. I am grateful to Frank de Jong for explaining this to me
at a conference.

7 σ̂ t,T | t−1 denotes a volatility forecast formulated at time t − 1 for volatility over the period from t to T . In
pricing options, the required volatility parameter is the expected volatility over the life of the option. The pricing
model relies on a riskless hedge to be followed through until the option reaches maturity. Therefore the required
volatility input, or the implied volatility derived, is a cumulative volatility forecast over the option maturity and
not a point forecast of volatility at option maturity. The interest in forecasting σ t,T | t−1 goes beyond the riskless
hedge argument, however.
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weekly or monthly data is better because volatility mean reversion is
difficult to adjust using high frequency data. In general, model-based
forecasts lose supremacy when the forecast horizon increases with re-
spect to the data frequency. For forecast horizons that are longer than
6 months, a simple historical method using low-frequency data over a
period at least as long as the forecast horizon works best (Alford and
Boatsman, 1995; and Figlewski, 1997).

As far as sampling frequency is concerned, Drost and Nijman (1993)
prove, theoretically and for a special case (i.e. the GARCH(1,1) process,
which will be introduced in Chapter 4), that volatility structure should be
preserved through intertemporal aggregation. This means that whether
one models volatility at hourly, daily or monthly intervals, the volatility
structure should be the same. But, it is well known that this is not the
case in practice; volatility persistence, which is highly significant in
daily data, weakens as the frequency of data decreases. 8 This further
complicates any attempt to generalize volatility patterns and forecasting
results.

1.4 THE TREATMENT OF LARGE NUMBERS

In this section, I use large numbers to refer generally to extreme values,
outliers and rare jumps, a group of data that have similar characteristics
but do not necessarily belong to the same set. To a statistician, there are
always two ‘extremes’ in each sample, namely the minimum and the
maximum. The H -L method for estimating volatility described in the
previous section, for example, is also called the extreme value method.
We have also noted that these H -L estimators assume conditional dis-
tribution is normal. In extreme value statistics, normal distribution is but
one of the distributions for the tail. There are many other extreme value
distributions that have tails thinner or thicker than the normal distribu-
tion’s. We have known for a long time now that financial asset returns are
not normally distributed. We also know the standardized residuals from
ARCH models still display large kurtosis (see McCurdy and Morgan,
1987; Milhoj, 1987; Hsieh, 1989; Baillie and Bollerslev, 1989). Con-
ditional heteroscedasticity alone could not account for all the tail thick-
ness. This is true even when the Student-t distribution is used to construct

8 See Diebold (1988), Baillie and Bollerslev (1989) and Poon and Taylor (1992) for examples. Note that
Nelson (1992) points out separately that as the sampling frequency becomes shorter, volatility modelled using
discrete time model approaches its diffusion limit and persistence is to be expected provided that the underlying
returns is a diffusion or a near-diffusion process with no jumps.
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the likelihood function (see Bollerslev, 1987; Hsieh, 1989). Hence, in the
literature, the extreme values and the tail observations often refer to those
data that lie outside the (conditional) Gaussian region. Given that jumps
are large and are modelled as a separate component to the Brownian
motion, jumps could potentially be seen as a set similar to those tail
observations provided that they are truly rare.

Outliers are by definition unusually large in scale. They are so large
that some have argued that they are generated from a completely dif-
ferent process or distribution. The frequency of occurrence should be
much smaller for outliers than for jumps or extreme values. Outliers
are so huge and rare that it is very unlikely that any modelling effort
will be able to capture and predict them. They have, however, undue
influence on modelling and estimation (Huber, 1981). Unless extreme
value techniques are used where scale and marginal distribution are of-
ten removed, it is advisable that outliers are removed or trimmed before
modelling volatility. One such outlier in stock market returns is the Oc-
tober 1987 crash that produced a 1-day loss of over 20% in stock markets
worldwide.

The ways that outliers have been tackled in the literature largely de-
pend on their sizes, the frequency of their occurrence and whether these
outliers have an additive or a multiplicative impact. For the rare and
additive outliers, the most common treatment is simply to remove them
from the sample or omit them in the likelihood calculation (Kearns and
Pagan, 1993). Franses and Ghijsels (1999) find forecasting performance
of the GARCH model is substantially improved in four out of five stock
markets studied when the additive outliers are removed. For the rare
multiplicative outliers that produced a residual impact on volatility, a
dummy variable could be included in the conditional volatility equation
after the outlier returns has been dummied out in the mean equation
(Blair, Poon and Taylor, 2001).

rt = µ + ψ1 Dt + εt , εt =
√

ht zt

ht = ω + βht−1 + αε2
t−1 + ψ2 Dt−1

where Dt is 1 when t refers to 19 October 1987 and 0 otherwise. Per-
sonally, I find a simple method such as the trimming rule in (1.2) very
quick to implement and effective.

The removal of outliers does not remove volatility persistence. In fact,
the evidence in the previous section shows that trimming the data using
(1.2) actually increases the ‘long memory’ in volatility making it appear
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to be extremely persistent. Since autocorrelation is defined as

ρ (rt , rt−τ ) = Cov (rt , rt−τ )

V ar (rt )
,

the removal of outliers has a great impact on the denominator, reduces
V ar (rt ) and increases the individual and the cumulative autocorrelation
coefficients.

Once the impact of outliers is removed, there are different views about
how the extremes and jumps should be handled vis-à-vis the rest of the
data. There are two schools of thought, each proposing a seemingly
different model, and both can explain the long memory in volatility. The
first believes structural breaks in volatility cause mean level of volatility
to shift up and down. There is no restriction on the frequency or the size
of the breaks. The second advocates the regime-switching model where
volatility switches between high and low volatility states. The means of
the two states are fixed, but there is no restriction on the timing of the
switch, the duration of each regime and the probability of switching.
Sometimes a three-regime switching is adopted but, as the number of
regimes increases, the estimation and modelling become more complex.
Technically speaking, if there are infinite numbers of regimes then there
is no difference between the two models. The regime-switching model
and the structural break model will be described in Chapter 5.
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