gi% c0l.fm Page 1 Monday, November 28, 2005 4:09 PM

CHAPTER

The Pattern Approach

It is not necessarily complicated. It is not necessarily simple.

Christopher Alexander, in ‘The Timeless Way of Building’

In this chapter we introduce the concepts of patterns and two approaches to orga-
nizing and connecting them: pattern systems and pattern languages. In addition, we
outline the major application areas and purpose of patterns, as well as their history
in the software community. Last, but not least, we discuss how patterns are mined,
documented, and prepared for publication and presentation.




gi% c01.fm Page 2 Monday, November 28, 2005 4:09 PM

2 Chapter 1 The Pattern Approach

1.1 Patterns at a Glance

Developer enthusiasm for patterns has been almost unquenchable since the release
of the seminal work by the Gang-of-Four' [GoF95] just a decade ago. Software
developers from around the world leapt on the ‘new idea,” with the hope that pat-
terns would help them untangle tricky problems into a well-knit solution—something
with elegance, directness, and versatility. Patterns found their way into many soft-
ware development projects. A movement had begun. It was, and still is, thriving.

A major reason for the success of patterns is that they constitute a ‘grass roots’ ini-
tiative to build on, and draw from, the collective experience of skilled designers. It is
not often that a new development project tackles genuinely new problems that de-
mand truly novel solutions. Developers may sometimes arrive at similar solutions in-
dependently or often recall a similar problem they solved successfully in a different
situation, reusing its essence and adapting its details to resolve the new problem. Ex-
pert developers can draw on a large body of such solution schemes for both common
and uncommon design problems. This practical experience guides them when build-
ing new applications.

Distilling commonalities from the pairing of application-specific design problems
and their solutions leads comfortably to the concept of patterns: they capture these so-
lutions and their relationship to the problem, framing them in a more readily-accessible
form. From a very general birds-eye perspective, a pattern can be characterized as:

A solution to a problem that arises within a specific context.

Though this characterization captures every pattern’s main structural property well,
it does not tell the whole story. The context-problem-solution trichotomy is neces-
sary for a specific concept to qualify as a pattern, but it is not sufficient. In particular,
it does not specify how to distinguish a true pattern from an ‘ordinary’ solution to a
problem. In fact, it requires much more for a software concept to be a true pattern:

B A pattern describes both a process and a thing: the ‘thing’ is created by the
‘process’ [Ale79]. For most software patterns—thus also for security patterns—
‘thing’ means a particular high-level design outline or code detail, including
both static structure and intended behavior. In other words, a pattern is both a
spatial configuration of elements that resolve a particular problem—or in
which a particular problem does not arise—and a set of associated instructions
to create this configuration of elements most effectively.

'The authors of this book, Erich Gamma, Ralph Johnson, Richard Helm, and John Vlissides, are named
after the ‘Gang-of-Four’ in Chinese politics.

4~ 5|0



gi% c01.fm Page 3 Monday, November 28, 2005 4:09 PM

1.1 Patterns at a Glance 3

B A true pattern presents a high-quality, proven solution that resolves the
given problem optimally. Patterns do not represent neat ideas that might
work, but concepts that have been applied successfully in the past over and
over again. Consequently, new ideas must first prove their worth in the line
of active duty, often many times, before they can truly be called patterns.
Because they capture practice and experience, patterns can help novices to
act with greater confidence and insight on modest-sized projects, as well as
supporting experts in the development of large-scale and complex software
systems.

m Patterns support the understanding of problems and their solutions. Presenting
a problem and a solution for it is not enough for a pattern, as this leaves several
important questions unanswered. Why is the problem a hard problem? What
are the requirements, constraints, and desired properties of its solution? Why
is the solution as it is and not something else? A good pattern does not withhold
this information. The forces associated with its problem description provide
the answer for the first two questions, and the discussion, or consequences, of
its solution the latter.

m Patterns are generic—as independent of or dependent on a particular
implementation technology as they need to be. A pattern does not describe a
particular solution, a specific arrangement of components or classes dependent
on a particular programming paradigm or language, but a set of interacting
roles that define an entire solution space. Christopher Alexander puts it this
way [AIS+77]: “Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it twice the same.’

B A pattern tells a story and initiates a dialog. As every pattern presents timeless
and proven experience, it tells a success story. To be precise for software
patterns, a ‘successful software engineering story,” to borrow an observation
from Erich Gamma. But a pattern is not only a story, it also initiates a dialog
with its readers about how to resolve a particular problem well—by
addressing the forces that can influence the problem’s solution, by describing
different feasible solutions, and finally by discussing the trade-offs of each
solution option. A pattern thus invites its readers to reflect on the problem
being presented: to think first and then to decide and act explicitly and
consciously.

m Patterns celebrate human intelligence. Patterns are not automatic derivations
from problem ingredients to fully-baked solutions. Patterns often tackle
problems in more lateral ways that can be indirect, unusual, and even counter-
intuitive. In contrast to the implied handle-turning nature of many rigid
development methods, patterns are founded in human ingenuity and
experience.




gi% c01.fm Page 4 Monday, November 28, 2005 4:09 PM

4 Chapter 1 The Pattern Approach

A true pattern exposes all of the above properties—if it is lacking any of them, it
is probably just a solution to a problem, and most likely a specific design and imple-
mentation decision for a specific system, but not a pattern. Adapting the existing def-
inition from the first volume of the Pattern-Oriented Software Architecture series
[POSA1], this leads to the following characterization of the notion of patterns:

A pattern for software architecture describes a particular recurring design problem
that arises in specific design contexts, and presents a well-proven generic solution for
it. The solution consists of a set of interacting roles that can be arranged to form
multiple concrete design structures, as well as a process for creating any particular
structure.

This general definition serves well for the purpose of this book, although we narrow
it to security patterns but also extend it to include enterprise and requirements pat-
terns as well as architecture.

1.2 No Pattern is an Island

Though each pattern focuses on providing a self-contained solution for resolving one
specific problem, patterns are not independent of one another. In fact, there are many
relationships between patterns [POSA1]. The most important relationship is refine-
ment: the solution proposed by a particular pattern can often be implemented with
help of other patterns, which resolve sub-problems of the original problem. To put
it in another way, ‘each pattern depends on the smaller patterns it contains and on
the larger patterns in which it is contained’ [Ale79]. Other important relationships
among patterns are variation and combination [POSA1].

It is the relationships between the patterns, together with their genericity, that al-
lows them to be combined and integrated with one another to form large software
architectures and designs that are coherent and consistent in their whole as well as
in their details. Conversely, without these relationships, patterns would only be able
to resolve isolated problems, with no, or at best limited, effect on a larger design or
even an entire software architecture [POSA4].

1.3 Patterns Everywhere

Software patterns can exist at any scale and for many problem areas. In their early
days—the mid 1990s—the focus was on object-oriented design patterns of general
applicability. The Gang-of-Four book [GoF95] presents the most widely-known pat-
terns of this kind. The scope of these patterns, however, had only a small impact on

4~ 5|0



gi% c0l.fm Page 5 Monday, November 28, 2005 4:09 PM

1.4 Humans are the Target 5

entire software or system architectures, because they covered how to structure spe-
cific components, or how to organize their relationships and interactions. This gap
was first filled by the POSA team [POSA1] who were the first to present patterns at
the level of coarse-grained software architecture. Other authors completed the pattern
space to the ‘bottom,’ the level of programming. For example, James O. Coplien—
commonly known as ‘Cope’—published patterns that deal with C++-specific issues
like memory management and string handling [Cop92], and Kent Beck wrote his fa-
mous patterns book Smalltalk Best Practices [Bec97]. Yet all these patterns, although
covering different scopes, were general in nature: general architecture, general de-
sign, and general programming.

The first patterns that had a more specific focus were Martin Fowler’s analysis pat-
terns [Fow97]. Not only did Martin introduce another level of scope to patterns—
patterns that describe the fundamental structure of, and workflow within, an appli-
cation domain—his patterns focused on two specific areas: health care and corporate
finance.

Since then patterns have spread into many other specific areas, ranging from con-
current and networked systems and programming [Lea99] [POSA2], server compo-
nents [VSWO02], human—computer interaction [Bor01], memory constraint systems
[NWO01], resource management [POSA3], and others [Ris00]. Recently, security was
identified as another area of hot interest for patterns, and this book is intended to
serve this need.

1.4 Humans are the Target

A valid question to ask is “What is the target audience for patterns.” There are many
answers to this question, depending on who you ask, but all leading pattern experts
share a common view: patterns are for, and about, humans. This statement is also
consistent with Christopher Alexander’s—the architect, in the sense of buildings, not
software, who invented patterns—understanding of patterns [Ale79].

The correctness of this position becomes obvious when reflecting on the previ-
ous sections of this chapter. All the properties of patterns that we have discussed
so far are aimed at presenting problems and their solutions in a way that humans
can understand: when such problems arise, what the problems are, what to con-
sider when resolving them, how they can be resolved, how their solutions are im-
plemented, and why these solutions are as they are. Much effort is also expended
in presenting patterns in an appealing, dialog-initiating, and story-telling—in other
words, human-readable—form.

Humans are also the only audience for patterns. We discovered that it is next to
impossible to formalize patterns, a necessary precondition to making patterns ma-
chine-readable and automatable. Thus the audience for patterns does not include
computers or any other type of machine, nor the many software development tools
that run on such computers or machines.

4~ 5|0



gi% c01.fm Page 6 Monday, November 28, 2005 4:09 PM

6 Chapter 1 The Pattern Approach

This distinguishes patterns from other design or modeling techniques, for exam-
ple, the Unified Modeling Language [BR]J98]. Artifacts that are created with such
techniques are not only intended to be human-usable and human-readable: they can
also be input to tools that then execute formal consistency and correctness checks on
them, simulate them, and even generate code fragments from them. At first glance
such techniques might seem superior to patterns. However, in real-world practice
they are only useful for documenting, implementing, and tuning an already-designed
system. They do not support us in the creative act of designing a new system and un-
derstanding its challenges—but patterns do!

1.5 Patterns Resolve Problems and Shape
Environments

Now that we know that software patterns intend to support humans in understand-
ing and building software systems, we can ask what concrete purpose they serve in
that context.

The most obvious—and of course correct—answer is: software patterns help hu-
mans to understand and resolve problems. Why else do they contain human-readable
descriptions of problems and their solutions? The problem areas that software pat-
terns address are the organizational, analysis, architecture, design, and programming
aspects of software development.

However, software patterns do not just specify arbitrary solutions to software devel-
opment problems. As we discussed in earlier sections of this chapter, a pattern repre-
sents proven and practiced experience—timeless solutions to recurring problems that
can be implemented in many different ways—presented so that people can understand,
and talk about, the problems, the solutions, and their influencing forces and trade-offs.

When analyzing the way in which software patterns resolve the problems they ad-
dress, we see that they do this by shaping environments: patterns introduce spatial
configurations of elements that exhibit specific behavior. From a system development
perspective we can also say: when applied, a pattern transforms a given structure in
which a particular problem is present into another structure in which this problem
is resolved.

Some pattern experts take this observation as an argument to invert the perspec-
tive, to better emphasize the focus on humans that patterns have: patterns shape en-
vironments in which particular problems do not occur, and in which humans thus
feel comfortable.

Which perspective best serves you, or the particular application under develop-
ment or refactoring, is a matter of your own preference. If you reflect on them long
enough, however, you will discover that they are mutually supportive. With patterns,
developers are more confident of avoiding problems or resolving them well, while
customers and users are more confident that problems are avoided or resolved well.
Thus both camps feel more comfortable that they are getting the ‘right’ thing.

4~ 5|0



gi% c01.fm Page 7 Monday, November 28, 2005 4:09 PM

1.6 Towards Pattern Languages 7

1.6 Towards Pattern Languages

Experience in developing software with patterns reveals that the explicit relation-
ships that can exist between patterns, as outlined in Section 1.2, No Paitern is an Is-
land, are not enough to use patterns successfully. The reason for this is the existence
of additional implicit relationships between patterns. When developing a real-world
system, not only one design and implementation problem must be resolved, but
many different and orthogonal ones. If we resolve one problem by applying a pattern
and implementing it in a specific way, this creates a concrete design. This design then
defines a framework for resolving subsequent problems—which, unfortunately, nar-
rows their potential solution space. Consequently, it can happen that it is impossible
to resolve the subsequent problems most optimally—or not even good enough—due
to the constraints set by the existing design.

The patterns community tried to address this fact by structuring and organizing
the pattern space. The goal of all such activities was to achieve a better overview of
the patterns that exist for resolving a particular problem, and to elaborate how pat-
terns can be combined into meaningful larger structures. Pattern catalogs [GoF95]
and pattern systems [POSA1], therefore, present more than one pattern for resolving
important design problems, for example object creation or location-independent
inter-process communication. Pattern systems also discuss how to best combine their
constituent patterns to form concrete software architectures and designs. The follow-
ing is the original definition for pattern systems [POSA1]:

A pattern system for software architecture is a collection of patterns for software
architecture, together with guidelines for their implementation, combination and
practical use in software development.

Without delving into details, it is obvious from this definition that a pattern system can
give a great deal more support for using patterns in practical software development
than individual patterns can ever do. Yet pattern systems still do not address all the
needs of a professional and holistic software development using patterns. In particular:

B What are the important design and implementation problems that arise during
the development of a specific type of software system?

m How do all these problems relate to one another and in what order are they
resolved most optimally?

B What (alternative) patterns can help to resolve each problem most effectively
in the presence of the other problems?

B What are the criteria for deciding which of the alternative patterns for resolving
a particular problem is most suitable in a given situation?

4~ 5|0



.

gi% c01.fm Page 8 Monday, November 28, 2005 4:09 PM

8 Chapter 1 The Pattern Approach

B How is the selected pattern instantiated most effectively within the existing
(partial) software architecture?

Recognizing this leads almost directly to the concept of pattern languages [POSA4].
In a nutshell:

A pattern language is a network of tightly-interwoven patterns that defines a process
for resolving a set of related, interdependent software development problems
systematically.

For example, there are pattern languages that support

m Constructing entire applications, for example distributed systems [POSA4], or
business information systems [Fow97]

B Developing major application parts such as components [VSWO02]

B Addressing problem areas of common interest, such as security or human
computer interaction [Bor01]

B Programming in a good style, for example, the Smalltalk best practice patterns
[Bec97]

Basically, a pattern language exposes the same properties as an individual pattern,
but at a higher, system-oriented level. It defines both a process and a thing, produces
designs of high quality, allows the creation—or generation—of many alternative de-
signs, supports the understanding of the challenges associated with a specific prob-
lem domain or the development of a specific application type, and tackles problems
in an intelligent, often unusual and lateral way.

The following excerpt from [POSA4] summarizes the concrete look-and-feel of a
high-quality pattern language.

One or more patterns define the ‘entry point’ of the pattern language and address the
most fundamental problems that must be resolved when building its ‘thing’. The entry
point patterns also define the starting point for the language’s process: every software
development that uses the language begins there. The creation process for the chosen
entry point pattern then describes what concrete activities must be performed to re-
solve the specific problem that this pattern addresses. This process not only specifies
how to implement the proposed problem resolution, however. It also suggests other
patterns from the language that could be used to address sub-problems of the original
problem, as well as the order in which to apply these other patterns. If several alter-
native patterns are referenced for resolving a particular sub-problem, the trade-offs of
each alternative are described and hints are given for how to select the ‘right’ alter-
native for a specific application.

ﬁ%

® ¢



.

gi% c01.fm Page 9 Monday, November 28, 2005 4:09 PM

1.7 Documenting Patterns

9

Following any of the pattern suggestions made by the entry point pattern’s creation
process, the process defined by the pattern language leads to another pattern and its
associated creation process—which is then applied to resolve the problem that the
other pattern addresses. This process can reference yet more patterns, to resolve sub-
problems of the sub-problem of the initial problem. Using either a breadth-irst or a
depth-irst approach, or even a mixture of both approaches, this iterative process of
following a pattern reference and applying the referenced pattern’s creation process
continues until there are no more pattern references to follow. The particular path tak-
en through the pattern language then defines a sequence—or ‘sentence’ —of patterns
that guides the design and implementation of the ‘thing’ that is this language’s subject.

A pattern language is the highest organizational form for patterns currently known.
It also the most successful organizational form with respect to the original goal of
software patterns: to support the construction of real-world, productive software
most professionally. For this reason, the patterns in this book are organized whenever
possible into a pattern language, instead of just cataloguing them separately.

1.7 Documenting Patterns

Patterns, whether they are stand-alone or integrated into a pattern system or pattern
language, must be presented in an appropriate form if we are to understand and dis-
cuss them. A good description helps us grasp the essence of a pattern immediately—
what is the problem the pattern addresses, and what is the proposed solution? A
good description also provides us with all the details necessary to implement a pat-
tern, and to consider the consequences of its application.

Many pattern forms are known and used [POSA4], but for this book we decided
to follow the format developed for the Pattern-Oriented Software Architecture series
[POSA1], as it best fits our goals and audience:

Name

The name and a short summary of the pattern.

Also Known As

Other names for the pattern, if any are known.

Example

A real-world example demonstrating the existence of the problem and the need for
the pattern. Throughout the description we refer to examples to illustrate solutions
and implementation aspects, where this is necessary or useful.

ﬁ%

—

® ¢



A

gi% c01.fm Page 10 Monday, November 28, 2005 4:09 PM

10

Chapter 1 The Pattern Approach

Context

The situations in which the pattern may apply.

Problem

The problem the pattern addresses, including a discussion of its associated forces.

Solution

The fundamental solution principle underlying the pattern.

Structure

A detailed specification of the structural aspects of the pattern, using appropriate
notations.

Dynamics

Typical scenarios describing the run-time behavior of the pattern.

Implementation

Guidelines for implementing the pattern. These are only a suggestion, not an immu-
table rule. You should adapt the implementation to meet your needs, by adding dif-
ferent, extra, or more detailed steps, or by re-ordering the steps. Whenever applicable
we give UML fragments to illustrate a possible implementation, often describing de-
tails of the example problem.

Example Resolved

Discussion of any important aspects for resolving the example that are not yet cov-
ered in the Solution, Structure, Dynamics, and Implementation sections.

Variants

A brief description of variants or specializations of a pattern.

Known Uses

Examples of the use of the pattern, taken from existing systems.

ﬁ%

—®

® ¢



.

gi% c0l.fm Page 11 Monday, November 28, 2005 4:09 PM

1.8 A Brief Note on The History of Patterns

11

Consequences

The benefits the pattern provides, and any potential liabilities.

See Also

References to patterns that solve similar problems, and to patterns that help us refine
the pattern we are describing.

It is important to note that not all fields of this pattern form are mandatory. For
example, not all patterns have alternative names or variants. Alternatively, for some
patterns it is hard, or unnecessary, to provide detailed descriptions of its structure,
behavior, and implementation, because all information can be integrated well into
the core solution description. Likewise, if an example is embedded within every sec-
tion of the form, there may not be a need for separate example sections.

Weriting patterns is hard. Achieving a crisp pattern description takes several review
and revision cycles. Many experts from all over the world have helped us with this
activity, and we owe them our special thanks. Thus, we give credit to all who helped
to shape a particular pattern in the introduction to each chapter.

1.8 A Brief Note on The History of Patterns

The architect Christopher Alexander laid the foundations on which many of today’s
pattern approaches are built. He, and members of the Center for Environmental
Structure in Berkeley, California, spent more than twenty years developing an ap-
proach to architecture that used patterns. This ‘entirely new attitude in architecture
and planning’ is published in a series of books [ANA+87] [AIS+77] [Ale79] [ASA+75].
Alexander describes over two hundred and fifty patterns that span a wide range of
scale and abstraction, from structuring towns and regions down to paving paths and
decorating individual rooms. He also defined the fundamental Context-Problem-
Solution structure for describing patterns, the ‘Alexander form.” Recently, some
software pattern writers have started to distance themselves a little from Alexander,
since they feel that his views on patterns do not translate directly into software pat-
terns. They acknowledge the importance of Alexander’s work, but would like to go
their own way. Despite this discussion, however, Alexander’s work is well worth
reading by everybody who is interested in patterns.

The pioneers of patterns in software development are Ward Cunningham Kent Beck.
They read Alexander’s books and were inspired to adapt his ideas for software devel-
opment. Ward and Kent’s first five patterns deal with the design of user interfaces—
their patterns WINDOW PER TASK, FEW PANES, STANDARD PANES, NOUNS AND VERBS,
and SHORT MENUS mark the birth of patterns in software engineering.

ﬁ%

—

® ¢



A

gi% c01.fm Page 12 Monday, November 28, 2005 4:09 PM

12

Chapter 1 The Pattern Approach

Four software design experts—known as the ‘Gang-of-Four’ in the pattern com-
munity—paved the way for the wide acceptance of patterns in software engineering.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides are the authors
of the seminal work Design Patterns — Elements of Reusable Object-Oriented Soft-
ware [GoF95]. Many other software experts followed the path paved by the Gang-
of-Four, as we briefly summarized in Section 1.3, Patterns Everywhere, producing
an almost endless list of publications on patterns. At the current end of this path is
this book. Its goal is to fill a still-blank spot on the world map of patterns: security.

1.9 The Pattern Community and its Culture

Software engineers all over the world are currently documenting their experience us-
ing patterns. This community is very active, interactive and supportive, with the goal
of sharing and integrating knowledge, and spreading the word about successful soft-
ware development practice.

The major forum of the pattern community is the PLoP (Pattern Languages of Pro-
gramming) conference series, which is held in the US (the original PLoP and Chili-
PLoP), Germany (EuroPLoP), Scandinavia (Viking PLoP), Brazil (Sugar Loaf PLoP),
Japan (Mensore PLoP), and Australia (Koala PLoP). Its proceedings are published as
a series of books [PLoPD1] [PLoPD2] [PLoPD3] [PLoPD4].

The culture celebrated by the pattern community—and consequently the culture
of its PLoP conferences—differs significantly from other, more traditional cultures
for presenting and discussing scientific work. It exhibits the following characteristics:

m A focus on practicability. The community looks for pattern descriptions of
proven solutions to problems, rather than on presenting the latest scientific
results.

B An aggressive disregard of originality. Pattern authors do not need to be the
original developers of the solutions they describe.

m Non-anonymous review. Patterns are ‘shepherded’ rather than reviewed. The
‘shepherd’ contacts the authors of pattern papers and discusses the patterns
with them. The goal is to improve the pattern such that it can be accepted for
review at a PLoP conference and suffer as little rejection as possible.

m Writer’s workshops instead of presentations. At PLoP conferences, patterns are
discussed in writer’s workshops made up of conference attendees, rather than
being presented by their authors in open forum.

m Careful editing. Authors get the chance to include the feedback from the
writer’s workshops, and all patterns are copy-edited before they appear in the
final conference proceedings or other book publications.

—®

® ¢



gi% c0l.fm Page 13 Monday, November 28, 2005 4:09 PM

1.9 The Pattern Community and its Culture 13

Most patterns presented in this book were discussed at the PLoP and EuroPLoP
conferences, and thus went through its quality assurance process. In fact, the idea for
this book was born at a security pattern workshop at EuroPLoP 2002. This guaran-
tees that the book covers the collective experience of world-leading security experts,
rather than the ideas and experiences of a sole and possibly novice individual.

To discuss patterns and pattern-related issues, the pattern community also offers
several mailing lists and a World Wide Web page. The URL of the pattern home

page is:
http://www.hillside.net/patterns/

This page provides useful information about forthcoming pattern events and avail-
able books on patterns, and offers references to other Web pages about patterns.
There are also several Internet mailing lists on patterns. You can find their details and
information on how to subscribe to them on the patterns home page shown above.

The unofficial steering committee of the pattern community is Hillside Incorporat-
ed, also known as the ‘Hillside Group,” and its European arm Hillside Europe e.V.
The Hillside Group is a non-profit organization made up of leading software experts:
its main goal is to propagate the use of patterns in software development, to lead the
pattern community, and to give support to newcomers in this new discipline of soft-
ware engineering. The ‘spiritual father’ of the Hillside Group is Kent Beck. The Hill-
side Group also organizes and sponsors the PLoP conference series.

By joining the pattern community you can take advantage of all this experience,
captured in many well-documented patterns that are ready for practical use. You will
also be able to share your own experience in software development with other experts
by writing your own patterns. We thus invite you to join the pattern community if you
are not already part of it. Visit the pattern home page, subscribe to the pattern mailing
lists, look at the various pattern books, attend the PLoP conferences, capture your
own experience as patterns and share them with experts from all over the world. You
will certainly be rewarded by many positive ‘Aha!’ effects, just as we were when we
first discovered patterns.




c01.fm Page 14 Monday, November 28, 2005 4:09 PM

ZHIN

Al
9

NWZ
ZI>

1



