
CHAPTER

1
INTRODUCTION

It is the mark of an instructed mind to rest satisfied with that degree of precision which the
nature of the subject admits, and not to seek exactness where only an approximation of the
truth is possible.

Aristotle, 384–322 BC

Ancient Greek philosopher

Precision is not truth.
Henri E. B. Matisse, 1869–1954

Impressionist painter

All traditional logic habitually assumes that precise symbols are being employed. It is therefore
not applicable to this terrestrial life but only to an imagined celestial existence.

Bertrand Russell, 1923
British philosopher and Nobel Laureate

We must exploit our tolerance for imprecision.

Lotfi Zadeh
Professor, Systems Engineering, UC Berkeley, 1973

The quotes above, all of them legendary, have a common thread. That thread represents
the relationship between precision and uncertainty. The more uncertainty in a problem, the
less precise we can be in our understanding of that problem. It is ironic that the oldest
quote, above, is due to the philosopher who is credited with the establishment of Western
logic – a binary logic that only admits the opposites of true and false, a logic which does
not admit degrees of truth in between these two extremes. In other words, Aristotelian logic
does not admit imprecision in truth. However, Aristotle’s quote is so appropriate today; it
is a quote that admits uncertainty. It is an admonishment that we should heed; we should
balance the precision we seek with the uncertainty that exists. Most engineering texts do
not address the uncertainty in the information, models, and solutions that are conveyed
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2 INTRODUCTION

within the problems addressed therein. This text is dedicated to the characterization and
quantification of uncertainty within engineering problems such that an appropriate level of
precision can be expressed. When we ask ourselves why we should engage in this pursuit,
one reason should be obvious: achieving high levels of precision costs significantly in time
or money or both. Are we solving problems that require precision? The more complex a
system is, the more imprecise or inexact is the information that we have to characterize
that system. It seems, then, that precision and information and complexity are inextricably
related in the problems we pose for eventual solution. However, for most of the problems
that we face, the quote above due to Professor Zadeh suggests that we can do a better job
in accepting some level of imprecision.

It seems intuitive that we should balance the degree of precision in a problem with
the associated uncertainty in that problem. Hence, this book recognizes that uncertainty of
various forms permeates all scientific endeavors and it exists as an integral feature of all
abstractions, models, and solutions. It is the intent of this book to introduce methods to
handle one of these forms of uncertainty in our technical problems, the form we have come
to call fuzziness.

THE CASE FOR IMPRECISION

Our understanding of most physical processes is based largely on imprecise human
reasoning. This imprecision (when compared to the precise quantities required by computers)
is nonetheless a form of information that can be quite useful to humans. The ability to
embed such reasoning in hitherto intractable and complex problems is the criterion by which
the efficacy of fuzzy logic is judged. Undoubtedly this ability cannot solve problems that
require precision – problems such as shooting precision laser beams over tens of kilometers
in space; milling machine components to accuracies of parts per billion; or focusing a
microscopic electron beam on a specimen the size of a nanometer. The impact of fuzzy
logic in these areas might be years away, if ever. But not many human problems require
such precision – problems such as parking a car, backing up a trailer, navigating a car
among others on a freeway, washing clothes, controlling traffic at intersections, judging
beauty contestants, and a preliminary understanding of a complex system.

Requiring precision in engineering models and products translates to requiring high
cost and long lead times in production and development. For other than simple systems,
expense is proportional to precision: more precision entails higher cost. When considering
the use of fuzzy logic for a given problem, an engineer or scientist should ponder the
need for exploiting the tolerance for imprecision. Not only does high precision dictate
high costs but also it entails low tractability in a problem. Articles in the popular media
illustrate the need to exploit imprecision. Take the ‘‘traveling salesrep’’ problem, for
example. In this classic optimization problem a sales representative wants to minimize
total distance traveled by considering various itineraries and schedules between a series of
cities on a particular trip. For a small number of cities, the problem is a trivial exercise in
enumerating all the possibilities and choosing the shortest route. As the number of cities
continues to grow, the problem quickly approaches a combinatorial explosion impossible
to solve through an exhaustive search, even with a computer. For example, for 100 cities
there are 100 × 99 × 98 × 97 × · · · × 2 × 1, or about 10200, possible routes to consider!
No computers exist today that can solve this problem through a brute-force enumeration
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of all the possible routes. There are real, practical problems analogous to the traveling
salesrep problem. For example, such problems arise in the fabrication of circuit boards,
where precise lasers drill hundreds of thousands of holes in the board. Deciding in which
order to drill the holes (where the board moves under a stationary laser) so as to minimize
drilling time is a traveling salesrep problem [Kolata, 1991].

Thus, algorithms have been developed to solve the traveling salesrep problem in
an optimal sense; that is, the exact answer is not guaranteed but an optimum answer is
achievable – the optimality is measured as a percent accuracy, with 0% representing the
exact answer and accuracies larger than zero representing answers of lesser accuracy.
Suppose we consider a signal routing problem analogous to the traveling salesrep problem
where we want to find the optimum path (i.e., minimum travel time) between 100,000
nodes in a network to an accuracy within 1% of the exact solution; this requires significant
CPU time on a supercomputer. If we take the same problem and increase the precision
requirement a modest amount to an accuracy of 0.75%, the computing time approaches a
few months! Now suppose we can live with an accuracy of 3.5% (quite a bit more accurate
than most problems we deal with), and we want to consider an order-of-magnitude more
nodes in the network, say 1,000,000; the computing time for this problem is on the order
of several minutes [Kolata, 1991]. This remarkable reduction in cost (translating time to
dollars) is due solely to the acceptance of a lesser degree of precision in the optimum
solution. Can humans live with a little less precision? The answer to this question depends
on the situation, but for the vast majority of problems we deal with every day the answer is
a resounding yes.

AN HISTORICAL PERSPECTIVE

From an historical point of view the issue of uncertainty has not always been embraced
within the scientific community [Klir and Yuan, 1995]. In the traditional view of science,
uncertainty represents an undesirable state, a state that must be avoided at all costs. This
was the state of science until the late nineteenth century when physicists realized that
Newtonian mechanics did not address problems at the molecular level. Newer methods,
associated with statistical mechanics, were developed which recognized that statistical
averages could replace the specific manifestations of microscopic entities. These statistical
quantities, which summarized the activity of large numbers of microscopic entities, could
then be connected in a model with appropriate macroscopic variables [Klir and Yuan,
1995]. Now, the role of Newtonian mechanics and its underlying calculus which considered
no uncertainty was replaced with statistical mechanics which could be described by a
probability theory – a theory which could capture a form of uncertainty, the type generally
referred to as random uncertainty. After the development of statistical mechanics there
has been a gradual trend in science during the past century to consider the influence of
uncertainty on problems, and to do so in an attempt to make our models more robust, in
the sense that we achieve credible solutions and at the same time quantify the amount of
uncertainty.

Of course, the leading theory in quantifying uncertainty in scientific models from
the late nineteenth century until the late twentieth century had been probability theory.
However, the gradual evolution of the expression of uncertainty using probability theory
was challenged, first in 1937 by Max Black, with his studies in vagueness, then with the
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introduction of fuzzy sets by Lotfi Zadeh in 1965. Zadeh’s work [1965] had a profound
influence on the thinking about uncertainty because it challenged not only probability theory
as the sole representation for uncertainty, but the very foundations upon which probability
theory was based: classical binary (two-valued) logic [Klir and Yuan, 1995].

Probability theory dominated the mathematics of uncertainty for over five centuries.
Probability concepts date back to the 1500s, to the time of Cardano when gamblers
recognized the rules of probability in games of chance. The concepts were still very much
in the limelight in 1685, when the Bishop of Wells wrote a paper that discussed a problem
in determining the truth of statements made by two witnesses who were both known to be
unreliable to the extent that they only tell the truth with probabilities p1 and p2, respectively.
The Bishop’s answer to this was based on his assumption that the two witnesses were
independent sources of information [Lindley, 1987].

Probability theory was initially developed in the eighteenth century in such landmark
treatises as Jacob Bernoulli’s Ars Conjectandi (1713) and Abraham DeMoiver’s Doctrine of
Chances (1718, 2nd edition 1738). Later in that century a small number of articles appeared
in the periodical literature that would have a profound effect on the field. Most notable
of these were Thomas Bayes’s ‘‘An essay towards solving a problem in the doctrine of
chances’’ (1763) and Pierre Simon Laplace’s formulation of the axioms relating to games
of chance, ‘‘Memoire sur la probabilite des causes par les evenemens’’ (1774). Laplace,
only 25 years old at the time he began his work in 1772, wrote the first substantial article
in mathematical statistics prior to the nineteenth century. Despite the fact that Laplace,
at the same time, was heavily engaged in mathematical astronomy, his memoir was an
explosion of ideas that provided the roots for modern decision theory, Bayesian inference
with nuisance parameters (historians claim that Laplace did not know of Bayes’s earlier
work), and the asymptotic approximations of posterior distributions [Stigler, 1986].

By the time of Newton, physicists and mathematicians were formulating different
theories of probability. The most popular ones remaining today are the relative frequency
theory and the subjectivist or personalistic theory. The later development was initiated
by Thomas Bayes (1763), who articulated his very powerful theorem for the assessment
of subjective probabilities. The theorem specified that a human’s degree of belief could
be subjected to an objective, coherent, and measurable mathematical framework within
subjective probability theory. In the early days of the twentieth century Rescher developed
a formal framework for a conditional probability theory.

The twentieth century saw the first developments of alternatives to probability theory
and to classical Aristotelian logic as paradigms to address more kinds of uncertainty than
just the random kind. Jan Lukasiewicz developed a multivalued, discrete logic (circa 1930).
In the 1960’s Arthur Dempster developed a theory of evidence which, for the first time,
included an assessment of ignorance, or the absence of information. In 1965 Lotfi Zadeh
introduced his seminal idea in a continuous-valued logic that he called fuzzy set theory.
In the 1970s Glenn Shafer extended Dempster’s work to produce a complete theory of
evidence dealing with information from more than one source, and Lotfi Zadeh illustrated
a possibility theory resulting from special cases of fuzzy sets. Later in the 1980s other
investigators showed a strong relationship between evidence theory, probability theory,
and possibility theory with the use of what was called fuzzy measures [Klir and Wierman,
1996], and what is now being termed monotone measures.

Uncertainty can be thought of in an epistemological sense as being the inverse
of information. Information about a particular engineering or scientific problem may be
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incomplete, imprecise, fragmentary, unreliable, vague, contradictory, or deficient in some
other way [Klir and Yuan, 1995]. When we acquire more and more information about a
problem, we become less and less uncertain about its formulation and solution. Problems
that are characterized by very little information are said to be ill-posed, complex, or
not sufficiently known. These problems are imbued with a high degree of uncertainty.
Uncertainty can be manifested in many forms: it can be fuzzy (not sharp, unclear,
imprecise, approximate), it can be vague (not specific, amorphous), it can be ambiguous
(too many choices, contradictory), it can be of the form of ignorance (dissonant, not
knowing something), or it can be a form due to natural variability (conflicting, random,
chaotic, unpredictable). Many other linguistic labels have been applied to these various
forms, but for now these shall suffice. Zadeh [2002] posed some simple examples of these
forms in terms of a person’s statements about when they shall return to a current place
in time. The statement ‘‘I shall return soon’’ is vague, whereas the statement ‘‘I shall
return in a few minutes’’ is fuzzy; the former is not known to be associated with any unit
of time (seconds, hours, days), and the latter is associated with an uncertainty that is at
least known to be on the order of minutes. The phrase, ‘‘I shall return within 2 minutes
of 6pm’’ involves an uncertainty which has a quantifiable imprecision; probability theory
could address this form.

Vagueness can be used to describe certain kinds of uncertainty associated with
linguistic information or intuitive information. Examples of vague information are that the
data quality is ‘‘good,’’ or that the transparency of an optical element is ‘‘acceptable.’’
Moreover, in terms of semantics, even the terms vague and fuzzy cannot be generally
considered synonyms, as explained by Zadeh [1995]: ‘‘usually a vague proposition is fuzzy,
but the converse is not generally true.’’

Discussions about vagueness started with a famous work by the philosopher Max
Black. Black [1937] defined a vague proposition as a proposition where the possible states
(of the proposition) are not clearly defined with regard to inclusion. For example, consider
the proposition that a person is young. Since the term ‘‘young’’ has different interpretations
to different individuals, we cannot decisively determine the age(s) at which an individual
is young versus the age(s) at which an individual is not considered to be young. Thus,
the proposition is vaguely defined. Classical (binary) logic does not hold under these
circumstances, therefore we must establish a different method of interpretation.

Max Black, in writing his 1937 essay ‘‘Vagueness: An exercise in logical analysis’’
first cites remarks made by the ancient philosopher Plato about uncertainty in geometry,
then embellishes on the writings of Bertrand Russell (1923) who emphasized that ‘‘all
traditional logic habitually assumes that precise symbols are being employed.’’ With these
great thoughts as a prelude to his own arguments, he proceeded to produce his own,
now-famous quote:

It is a paradox, whose importance familiarity fails to diminish, that the most highly developed
and useful scientific theories are ostensibly expressed in terms of objects never encountered
in experience. The line traced by a draftsman, no matter how accurate, is seen beneath the
microscope as a kind of corrugated trench, far removed from the ideal line of pure geometry.
And the ‘‘point-planet’’ of astronomy, the ‘‘perfect gas’’ of thermodynamics, or the ‘‘pure-
species’’ of genetics are equally remote from exact realization. Indeed the unintelligibility at
the atomic or subatomic level of the notion of a rigidly demarcated boundary shows that such
objects not merely are not but could not be encountered. While the mathematician constructs
a theory in terms of ‘‘perfect’’ objects, the experimental scientist observes objects of which
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the properties demanded by theory are and can, in the very nature of measurement, be only
approximately true.

More recently, in support of Black’s work, Quine [1981] states:

Diminish a table, conceptually, molecule by molecule: when is a table not a table? No
stipulations will avail us here, however arbitrary. If the term ‘table’ is to be reconciled with
bivalence, we must posit an exact demarcation, exact to the last molecule, even though we
cannot specify it. We must hold that there are physical objects, coincident except for one
molecule, such that one is a table and the other is not.

Bruno de Finetti [1974], publishing in his landmark book Theory of Probability, gets
his readers’ attention quickly by proclaiming, ‘‘Probability does not exist; it is a subjective
description of a person’s uncertainty. We should be normative about uncertainty and not
descriptive.’’ He further emphasizes that the frequentist view of probability (objectivist
view) ‘‘requires individual trials to be equally probable and stochastically independent.’’
In discussing the difference between possibility and probability he states, ‘‘The logic of
certainty furnishes us with the range of possibility (and the possible has no gradations);
probability is an additional notion that one applies within the range of possibility, thus
giving rise to graduations (‘more or less’ probable) that are meaningless in the logic of
uncertainty.’’ In his book, de Finetti gives us warnings: ‘‘The calculus of probability can
say absolutely nothing about reality,’’ and in referring to the dangers implicit in attempts to
confuse certainty with high probability, he states

We have to stress this point because these attempts assume many forms and are always
dangerous. In one sentence: to make a mistake of this kind leaves one inevitably faced with all
sorts of fallacious arguments and contradictions whenever an attempt is made to state, on the
basis of probabilistic considerations, that something must occur, or that its occurrence confirms
or disproves some probabilistic assumptions.

In a discussion about the use of such vague terms as ‘‘very probable’’ or ‘‘practically
certain,’’ or ‘‘almost impossible,’’ de Finetti states:

The field of probability and statistics is then transformed into a Tower of Babel, in which
only the most naive amateur claims to understand what he says and hears, and this because,
in a language devoid of convention, the fundamental distinctions between what is certain and
what is not, and between what is impossible and what is not, are abolished. Certainty and
impossibility then become confused with high or low degrees of a subjective probability, which
is itself denied precisely by this falsification of the language. On the contrary, the preservation
of a clear, terse distinction between certainty and uncertainty, impossibility and possibility, is
the unique and essential precondition for making meaningful statements (which could be either
right or wrong), whereas the alternative transforms every sentence into a nonsense.

THE UTILITY OF FUZZY SYSTEMS

Several sources have shown and proven that fuzzy systems are universal approximators
[Kosko, 1994; Ying et al., 1999]. These proofs stem from the isomorphism between two
algebras: an abstract algebra (one dealing with groups, fields, and rings) and a linear algebra
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(one dealing with vector spaces, state vectors, and transition matrices) and the structure
of a fuzzy system, which is comprised of an implication between actions and conclusions
(antecedents and consequents). The reason for this isomorphism is that both entities (algebra
and fuzzy systems) involve a mapping between elements of two or more domains. Just as
an algebraic function maps an input variable to an output variable, a fuzzy system maps
an input group to an output group; in the latter these groups can be linguistic propositions
or other forms of fuzzy information. The foundation on which fuzzy systems theory rests
is a fundamental theorem from real analysis in algebra known as the Stone–Weierstrass
theorem, first developed in the late nineteenth century by Weierstrass [1885], then simplified
by Stone [1937].

In the coming years it will be the consequence of this isomorphism that will make
fuzzy systems more and more popular as solution schemes, and it will make fuzzy systems
theory a routine offering in the classroom as opposed to its previous status as a ‘‘new, but
curious technology.’’ Fuzzy systems, or whatever label scientists eventually come to call it
in the future, will be a standard course in any science or engineering curriculum. It contains
all of what algebra has to offer, plus more, because it can handle all kinds of information
not just numerical quantities. More on this similarity between abstract or linear algebras
and fuzzy systems is discussed in Chapter 9 on rule-reduction methods.

While fuzzy systems are shown to be universal approximators to algebraic functions,
it is not this attribute that actually makes them valuable to us in understanding new or
evolving problems. Rather, the primary benefit of fuzzy systems theory is to approximate
system behavior where analytic functions or numerical relations do not exist. Hence, fuzzy
systems have high potential to understand the very systems that are devoid of analytic
formulations: complex systems. Complex systems can be new systems that have not been
tested, they can be systems involved with the human condition such as biological or medical
systems, or they can be social, economic, or political systems, where the vast arrays of
inputs and outputs could not all possibly be captured analytically or controlled in any
conventional sense. Moreover, the relationship between the causes and effects of these
systems is generally not understood, but often can be observed.

Alternatively, fuzzy systems theory can have utility in assessing some of our more
conventional, less complex systems. For example, for some problems exact solutions are not
always necessary. An approximate, but fast, solution can be useful in making preliminary
design decisions, or as an initial estimate in a more accurate numerical technique to save
computational costs, or in the myriad of situations where the inputs to a problem are vague,
ambiguous, or not known at all. For example, suppose we need a controller to bring an
aircraft out of a vertical dive. Conventional controllers cannot handle this scenario as they
are restricted to linear ranges of variables; a dive situation is highly nonlinear. In this case,
we could use a fuzzy controller, which is adept at handling nonlinear situations albeit in
an imprecise fashion, to bring the plane out of the dive into a more linear range, then hand
off the control of the aircraft to a conventional, linear, highly accurate controller. Examples
of other situations where exact solutions are not warranted abound in our daily lives. For
example, in the following quote from a popular science fiction movie,

C-3PO: Sir, the possibility of successfully navigating an asteroid field is approximately
3,720 to 1!

Han Solo: Never tell me the odds!
Characters in the movie Star Wars: The Empire Strikes Back (Episode V), 1980
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we have an illustration of where the input information (the odds of navigating through
an asteroid field) is useless, so how does one make a decision in the presence of this
information?

Hence, fuzzy systems are very useful in two general contexts: (1) in situations
involving highly complex systems whose behaviors are not well understood, and (2) in
situations where an approximate, but fast, solution is warranted.

As pointed out by Ben-Haim [2001], there is a distinction between models of systems
and models of uncertainty. A fuzzy system can be thought of as an aggregation of both
because it attempts to understand a system for which no model exists, and it does so
with information that can be uncertain in a sense of being vague, or fuzzy, or imprecise,
or altogether lacking. Systems whose behaviors are both understood and controllable are
of the kind which exhibit a certain robustness to spurious changes. In this sense, robust
systems are ones whose output (such as a decision system) does not change significantly
under the influence of changes in the inputs, because the system has been designed to
operate within some window of uncertain conditions. It is maintained that fuzzy systems
too are robust. They are robust because the uncertainties contained in both the inputs and
outputs of the system are used in formulating the system structure itself, unlike conventional
systems analysis which first poses a model, based on a collective set of assumptions needed
to formulate a mathematical form, then uncertainties in each of the parameters of that
mathematical abstraction are considered.

The positing of a mathematical form for our system can be our first mistake, and
any subsequent uncertainty analysis of this mathematical abstraction could be misleading.
We call this the Optimist’s dilemma: find out how a chicken clucks, by first ‘‘assuming
a spherical chicken.’’ Once the sphericity of the chicken has been assumed, there are all
kinds of elegant solutions that can be found; we can predict any number of sophisticated
clucking sounds with our model. Unfortunately when we monitor a real chicken it does not
cluck the way we predict. The point being made here is that there are few physical and no
mathematical abstractions that can be made to solve some of our complex problems, so we
need new tools to deal with complexity; fuzzy systems and their associated developments
can be one of these newer tools.

LIMITATIONS OF FUZZY SYSTEMS

However, this is not to suggest that we can now stop looking for additional tools.
Realistically, even fuzzy systems, as they are posed now, can be described as shallow
models in the sense that they are primarily used in deductive reasoning. This is the kind
of reasoning where we infer the specific from the general. For example, in the game of
tic-tac-toe there are only a few moves for the entire game; we can deduce our next move
from the previous move, and our knowledge of the game. It is this kind of reasoning that
we also called shallow reasoning, since our knowledge, as expressed linguistically, is of a
shallow and meager kind. In contrast to this is the kind of reasoning that is inductive, where
we infer the general from the particular; this method of inference is called deep, because
our knowledge is of a deep and substantial kind – a game of chess would be closer to an
inductive kind of model.

We should understand the distinction between using mathematical models to account
for observed data, and using mathematical models to describe the underlying process by
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which the observed data are generated or produced by nature [Arciszewski et al., 2003].
Models of systems where the behavior can be observed, and whose predictions can only
account for these observed data, are said to be shallow, as they do not account for the
underlying realities. Deep models, those of the inductive kind, are alleged to capture
the physical process by which nature has produced the results we have observed. In his
Republic (360 BC), Plato suggests the idea that things that are perceived are only imperfect
copies of the true reality that can only be comprehended by pure thought. Plato was fond
of mathematics, and he saw in its very precise structure of logic idealized abstraction and
separation from the material world. He thought of these things being so important, that
above the doorway to his Academy was placed the inscription ‘‘Let no one ignorant of
mathematics enter here.’’ In Plato’s doctrine of forms, he argued that the phenomenal
world was a mere shadowy image of the eternal, immutable real world, and that matter was
docile and disorderly, governed by a Mind that was the source of coherence, harmony, and
orderliness. He argued that if man was occupied with the things of the senses, then he could
never gain true knowledge. In his work the Phaedo he declares that as mere mortals we
cannot expect to attain absolute truth about the universe, but instead must be content with
developing a descriptive picture – a model [Barrow, 2000].

Centuries later, Galileo was advised by his inquisitors that he must not say that his
mathematical models were describing the realities of nature, but rather that they simply
were adequate models of the observations he made with his telescope [Drake, 1957]; hence,
that they were solely deductive. In this regard, models that only attempt to replicate some
phenomenological behavior are considered shallow models, or models of the deductive
kind, and they lack the knowledge needed for true understanding of a physical process. The
system that emerges under inductive reasoning will have connections with both evolution
and complexity. How do humans reason in situations that are complicated or ill-defined?
Modern psychology tells us that as humans we are only moderately good at deductive
logic, and we make only moderate use of it. But we are superb at seeing or recognizing
or matching patterns – behaviors that confer obvious evolutionary benefits. In problems of
complication then, we look for patterns; and we simplify the problem by using these to
construct temporary internal models or hypotheses or schemata to work with [Bower and
Hilgard, 1981]. We carry out localized deductions based on our current hypotheses and
we act on these deductions. Then, as feedback from the environment comes in, we may
strengthen or weaken our beliefs in our current hypotheses, discarding some when they
cease to perform, and replacing them as needed with new ones. In other words, where we
cannot fully reason or lack full definition of the problem, we use simple models to fill the
gaps in our understanding; such behavior is inductive.

Some sophisticated models may, in fact, be a complex weave of deductive and
inductive steps. But, even our so-called ‘‘deep models’’ may not be deep enough. An
illustration of this comes from a recent popular decision problem, articulated as the El Farol
problem by W. Brian Arthur [1994]. This problem involves a decision-making scenario in
which inductive reasoning is assumed and modeled, and its implications are examined. El
Farol is a bar in Santa Fe, New Mexico, where on one night of the week in particular there
is popular Irish music offered. Suppose N bar patrons decide independently each week
whether to go to El Farol on this certain night. For simplicity, we set N = 100. Space in the
bar is limited, and the evening is enjoyable if things are not too crowded – specifically, if
fewer than 60% of the possible 100 are present. There is no way to tell the number coming
for sure in advance, therefore a bar patron goes – deems it worth going – if he expects fewer
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than 60 to show up, or stays home if he expects more than 60 to go; there is no need that
utilities differ much above and below 60. Choices are unaffected by previous visits; there
is no collusion or prior communication among the bar patrons; and the only information
available is the numbers who came in past weeks. Of interest is the dynamics of the number
of bar patrons attending from week to week.

There are two interesting features of this problem. First, if there were an obvious model
that all bar patrons could use to forecast attendance and on which to base their decisions,
then a deductive solution would be possible. But no such model exists in this case. Given
the numbers attending in the recent past, a large number of expectational models might be
reasonable and defensible. Thus, not knowing which model other patrons might choose, a
reference patron cannot choose his in a well-defined way. There is no deductively rational
solution – no ‘‘correct’’ expectational model. From the patrons’ viewpoint, the problem
is ill-defined and they are propelled into a realm of induction. Second, any commonality
of expectations gets disintegrated: if everyone believes few will go, then all will go. But
this would invalidate that belief. Similarly, if all believe most will go, nobody will go,
invalidating that belief. Expectations will be forced to differ, but not in a methodical,
predictive way.

Scientists have long been uneasy with the assumption of perfect, deductive rationality
in decision contexts that are complicated and potentially ill-defined. The level at which
humans can apply perfect rationality is surprisingly modest. Yet it has not been clear how
to deal with imperfect or bounded rationality. From the inductive example given above
(El Farol problem), it would be easy to suggest that as humans in these contexts we use
inductive reasoning: we induce a variety of working hypotheses, act upon the most credible,
and replace hypotheses with new ones if they cease to work. Such reasoning can be modeled
in a variety of ways. Usually this leads to a rich psychological world in which peoples’ ideas
or mental models compete for survival against other peoples’ ideas or mental models – a
world that is both evolutionary and complex. And, while this seems the best course of
action for modeling complex questions and problems, this text stops short of that longer
term goal with only a presentation of simple deductive models, of the rule-based kind, that
are introduced and illustrated in Chapters 5–8.

THE ALLUSION: STATISTICS AND RANDOM PROCESSES

The uninitiated often claim that fuzzy set theory is just another form of probability theory
in disguise. This statement, of course, is simply not true (Appendix A formally rejects
this claim with an axiomatic discussion of both probability theory and fuzzy logic). Basic
statistical analysis is founded on probability theory or stationary random processes, whereas
most experimental results contain both random (typically noise) and nonrandom processes.
One class of random processes, stationary random processes, exhibits the following three
characteristics: (1) The sample space on which the processes are defined cannot change from
one experiment to another; that is, the outcome space cannot change. (2) The frequency
of occurrence, or probability, of an event within that sample space is constant and cannot
change from trial to trial or experiment to experiment. (3) The outcomes must be repeatable
from experiment to experiment. The outcome of one trial does not influence the outcome
of a previous or future trial. There are more general classes of random processes than the
class mentioned here. However, fuzzy sets are not governed by these characteristics.
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Stationary random processes are those that arise out of chance, where the chances
represent frequencies of occurrence that can be measured. Problems like picking colored
balls out of an urn, coin and dice tossing, and many card games are good examples of
stationary random processes. How many of the decisions that humans must make every
day could be categorized as random? How about the uncertainty in the weather – is this
random? How about your uncertainty in choosing clothes for the next day, or which car to
buy, or your preference in colors – are these random uncertainties? How about your ability
to park a car; is this a random process? How about the risk in whether a substance consumed
by an individual now will cause cancer in that individual 15 years from now; is this a form
of random uncertainty? Although it is possible to model all of these forms of uncertainty
with various classes of random processes, the solutions may not be reliable. Treatment of
these forms of uncertainty using fuzzy set theory should also be done with caution. One
needs to study the character of the uncertainty, then choose an appropriate approach to
develop a model of the process. Features of a problem that vary in time and space should
be considered. For example, when the weather report suggests that there is a 60% chance
of rain tomorrow, does this mean that there has been rain on tomorrow’s date for 60 of the
last 100 years? Does it mean that somewhere in your community 60% of the land area will
receive rain? Does it mean that 60% of the time it will be raining and 40% of the time it will
not be raining? Humans often deal with these forms of uncertainty linguistically, such as,
‘‘It will likely rain tomorrow.’’ And with this crude assessment of the possibility of rain,
humans can still make appropriately accurate decisions about the weather.

Random errors will generally average out over time, or space. Nonrandom errors,
such as some unknown form of bias (often called a systematic error) in an experiment,
will not generally average out and will likely grow larger with time. The systematic errors
generally arise from causes about which we are ignorant, for which we lack information, or
that we cannot control. Distinguishing between random and nonrandom errors is a difficult
problem in many situations, and to quantify this distinction often results in the illusion
that the analyst knows the extent and character of each type of error. In all likelihood
nonrandom errors can increase without bounds. Moreover, variability of the random kind
cannot be reduced with additional information, although it can be quantified. By contrast,
nonrandom uncertainty, which too can be quantified with various theories, can be reduced
with the acquisition of additional information.

It is historically interesting that the word statistics is derived from the now obsolete
term statist, which means an expert in statesmanship. Statistics were the numerical facts
that statists used to describe the operations of states. To many people, statistics, and other
recent methods to represent uncertainty like evidence theory and fuzzy set theory, are still
the facts by which politicians, newspapers, insurance sellers, and other broker occupations
approach us as potential customers for their services or products! The air of sophistication
that these methods provide to an issue should not be the basis for making a decision; it
should be made only after a good balance has been achieved between the information
content in a problem and the proper representation tool to assess it.

Popular lore suggests that the various uncertainty theories allow engineers to fool
themselves in a highly sophisticated way when looking at relatively incoherent heaps of
data (computational or experimental), as if this form of deception is any more palatable
than just plain ignorance. All too often, scientists and engineers are led to use these
theories as a crutch to explain vagaries in their models or in their data. For example, in
probability applications the assumption of independent random variables is often assumed
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to provide a simpler method to prescribe joint probability distribution functions. An
analogous assumption, called noninteractive sets, is used in fuzzy applications to develop
joint membership functions from individual membership functions for sets from different
universes of discourse. Should one ignore apparently aberrant information, or consider all
information in the model whether or not it conforms to the engineers’ preconceptions?
Additional experiments to increase understanding cost money, and yet, they might increase
the uncertainty by revealing conflicting information. It could best be said that statistics
alone, or fuzzy sets alone, or evidence theory alone, are individually insufficient to explain
many of the imponderables that people face every day. Collectively they could be very
powerful. A poem by J. V. Cunningham [1971] titled ‘‘Meditation on Statistical Method’’
provides a good lesson in caution for any technologist pondering the thought that ignoring
uncertainty (again, using statistics because of the era of the poem) in a problem will
somehow make its solution seem more certain.

Plato despair!
We prove by norms
How numbers bear
Empiric forms,

How random wrongs
Will average right
If time be long
And error slight;

But in our hearts
Hyperbole
Curves and departs
To infinity.

Error is boundless.
Nor hope nor doubt,
Though both be groundless,
Will average out.

UNCERTAINTY AND INFORMATION

Only a small portion of the knowledge (information) for a typical problem might be
regarded as certain, or deterministic. Unfortunately, the vast majority of the material
taught in engineering classes is based on the presumption that the knowledge involved
is deterministic. Most processes are neatly and surreptitiously reduced to closed-form
algorithms – equations and formulas. When students graduate, it seems that their biggest
fear upon entering the real world is ‘‘forgetting the correct formula.’’ These formulas
typically describe a deterministic process, one where there is no uncertainty in the physics
of the process (i.e., the right formula) and there is no uncertainty in the parameters of
the process (i.e., the coefficients are known with impunity). It is only after we leave the
university, it seems, that we realize we were duped in academe, and that the information
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we have for a particular problem virtually always contains uncertainty. For how many of
our problems can we say that the information content is known absolutely, i.e., with no
ignorance, no vagueness, no imprecision, no element of chance? Uncertain information can
take on many different forms. There is uncertainty that arises because of complexity; for
example, the complexity in the reliability network of a nuclear reactor. There is uncertainty
that arises from ignorance, from various classes of randomness, from the inability to perform
adequate measurements, from lack of knowledge, or from vagueness, like the fuzziness
inherent in our natural language.

The nature of uncertainty in a problem is a very important point that engineers
should ponder prior to their selection of an appropriate method to express the uncertainty.
Fuzzy sets provide a mathematical way to represent vagueness and fuzziness in humanistic
systems. For example, suppose you are teaching your child to bake cookies and you want
to give instructions about when to take the cookies out of the oven. You could say to take
them out when the temperature inside the cookie dough reaches 375◦F, or you could advise
your child to take them out when the tops of the cookies turn light brown. Which instruction
would you give? Most likely, you would use the second of the two instructions. The first
instruction is too precise to implement practically; in this case precision is not useful. The
vague term light brown is useful in this context and can be acted upon even by a child.
We all use vague terms, imprecise information, and other fuzzy data just as easily as we
deal with situations governed by chance, where probability techniques are warranted and
very useful. Hence, our sophisticated computational methods should be able to represent
and manipulate a variety of uncertainties. Other representations of uncertainties due to
ambiguity, nonspecificity, beliefs, and ignorance are introduced in Chapter 15.

FUZZY SETS AND MEMBERSHIP

The foregoing sections discuss the various elements of uncertainty. Making decisions about
processes that contain nonrandom uncertainty, such as the uncertainty in natural language,
has been shown to be less than perfect. The idea proposed by Lotfi Zadeh suggested that
set membership is the key to decision making when faced with uncertainty. In fact, Zadeh
made the following statement in his seminal paper of 1965:

The notion of a fuzzy set provides a convenient point of departure for the construction of a
conceptual framework which parallels in many respects the framework used in the case of
ordinary sets, but is more general than the latter and, potentially, may prove to have a much
wider scope of applicability, particularly in the fields of pattern classification and information
processing. Essentially, such a framework provides a natural way of dealing with problems in
which the source of imprecision is the absence of sharply defined criteria of class membership
rather than the presence of random variables.

As an example, we can easily assess whether someone is over 6 feet tall. In a binary
sense, the person either is or is not, based on the accuracy, or imprecision, of our measuring
device. For example, if ‘‘tall’’ is a set defined as heights equal to or greater than 6 feet, a
computer would not recognize an individual of height 5′11.999′′ as being a member of the
set ‘‘tall.’’ But how do we assess the uncertainty in the following question: Is the person
nearly 6 feet tall? The uncertainty in this case is due to the vagueness or ambiguity of the
adjective nearly. A 5′11′′ person could clearly be a member of the set of ‘‘nearly 6 feet tall’’
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people. In the first situation, the uncertainty of whether a person, whose height is unknown,
is 6 feet or not is binary; the person either is or is not, and we can produce a probability
assessment of that prospect based on height data from many people. But the uncertainty of
whether a person is nearly 6 feet is nonrandom. The degree to which the person approaches
a height of 6 feet is fuzzy. In reality, ‘‘tallness’’ is a matter of degree and is relative. Among
peoples of the Tutsi tribe in Rwanda and Burundi a height for a male of 6 feet is considered
short. So, 6 feet can be tall in one context and short in another. In the real (fuzzy) world,
the set of tall people can overlap with the set of not-tall people, an impossibility when one
follows the precepts of classical binary logic (this is discussed in Chapter 5).

This notion of set membership, then, is central to the representation of objects within
a universe by sets defined on the universe. Classical sets contain objects that satisfy precise
properties of membership; fuzzy sets contain objects that satisfy imprecise properties of
membership, i.e., membership of an object in a fuzzy set can be approximate. For example,
the set of heights from 5 to 7 feet is precise (crisp); the set of heights in the region around
6 feet is imprecise, or fuzzy. To elaborate, suppose we have an exhaustive collection of
individual elements (singletons) x, which make up a universe of information (discourse),
X. Further, various combinations of these individual elements make up sets, say A, on the
universe. For crisp sets an element x in the universe X is either a member of some crisp
set A or not. This binary issue of membership can be represented mathematically with the
indicator function,

χA(x) =
{

1, x ∈ A
0, x �∈ A

(1.1)

where the symbol χA(x) gives the indication of an unambiguous membership of element x

in set A, and the symbols ∈ and �∈ denote contained in and not contained in, respectively.
For our example of the universe of heights of people, suppose set A is the crisp set of
all people with 5.0 ≤ x ≤ 7.0 feet, shown in Fig. 1.1a. A particular individual, x1, has a
height of 6.0 feet. The membership of this individual in crisp set A is equal to 1, or full
membership, given symbolically as χA(x1) = 1. Another individual, say, x2, has a height
of 4.99 feet. The membership of this individual in set A is equal to 0, or no membership,
hence χA(x2) = 0, also seen in Fig. 1.1a. In these cases the membership in a set is binary,
either an element is a member of a set or it is not.

Zadeh extended the notion of binary membership to accommodate various ‘‘degrees
of membership’’ on the real continuous interval [0, 1], where the endpoints of 0 and 1

1 1

5 6 7

5 6 7

5 6 7

χAχ χHµ

A

0 0

(a) (b)
x x

FIGURE 1.1
Height membership functions for (a) a crisp set A and (b) a fuzzy set H.
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conform to no membership and full membership, respectively, just as the indicator function
does for crisp sets, but where the infinite number of values in between the endpoints can
represent various degrees of membership for an element x in some set on the universe.
The sets on the universe X that can accommodate ‘‘degrees of membership’’ were termed
by Zadeh as ‘‘fuzzy sets.’’ Continuing further on the example on heights, consider a set
H consisting of heights near 6 feet. Since the property near 6 feet is fuzzy, there is not a
unique membership function for H. Rather, the analyst must decide what the membership
function, denoted µH, should look like. Plausible properties of this function might be (1)
normality (µH(6) = 1), (2) monotonicity (the closer H is to 6, the closer µH is to 1), and (3)
symmetry (numbers equidistant from 6 should have the same value of µH) [Bezdek, 1993].
Such a membership function is illustrated in Fig. 1.1b. A key difference between crisp and
fuzzy sets is their membership function; a crisp set has a unique membership function,
whereas a fuzzy set can have an infinite number of membership functions to represent it.
For fuzzy sets, the uniqueness is sacrificed, but flexibility is gained because the membership
function can be adjusted to maximize the utility for a particular application.

James Bezdek provided one of the most lucid comparisons between crisp and fuzzy
sets [Bezdek, 1993]. It bears repeating here. Crisp sets of real objects are equivalent to,
and isomorphically described by, a unique membership function, such as χA in Fig. 1.1a.
But there is no set-theoretic equivalent of ‘‘real objects’’ corresponding to χA. Fuzzy sets
are always functions, which map a universe of objects, say X, onto the unit interval [0,
1]; that is, the fuzzy set H is the function µH that carries X into [0, 1]. Hence, every
function that maps X onto [0, 1] is a fuzzy set. Although this statement is true in a formal
mathematical sense, many functions that qualify on the basis of this definition cannot be
suitable fuzzy sets. But they become fuzzy sets when, and only when, they match some
intuitively plausible semantic description of imprecise properties of the objects in X.

The membership function embodies the mathematical representation of membership
in a set, and the notation used throughout this text for a fuzzy set is a set symbol with a tilde
underscore, say A∼ , where the functional mapping is given by

µA∼
(x) ∈ [0, 1] (1.2)

and the symbol µA∼
(x) is the degree of membership of element x in fuzzy set A∼ . Therefore,

µA∼
(x) is a value on the unit interval that measures the degree to which element x belongs

to fuzzy set A∼ ; equivalently, µA∼
(x) = degree to which x ∈ A∼ .

CHANCE VERSUS FUZZINESS

Suppose you are a basketball recruiter and are looking for a ‘‘very tall’’ player for the center
position on a men’s team. One of your information sources tells you that a hot prospect in
Oregon has a 95% chance of being over 7 feet tall. Another of your sources tells you that
a good player in Louisiana has a high membership in the set of ‘‘very tall’’ people. The
problem with the information from the first source is that it is a probabilistic quantity. There
is a 5% chance that the Oregon player is not over 7 feet tall and could, conceivably, be
someone of extremely short stature. The second source of information would, in this case,
contain a different kind of uncertainty for the recruiter; it is a fuzziness due to the linguistic
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qualifier ‘‘very tall’’ because if the player turned out to be less than 7 feet tall there is still
a high likelihood that he would be quite tall.

Another example involves a personal choice. Suppose you are seated at a table on
which rest two glasses of liquid. The liquid in the first glass is described to you as having
a 95% chance of being healthful and good. The liquid in the second glass is described
as having a 0.95 membership in the class of ‘‘healthful and good’’ liquids. Which glass
would you select, keeping in mind that the first glass has a 5% chance of being filled with
nonhealthful liquids, including poisons [Bezdek, 1993]?

What philosophical distinction can be made regarding these two forms of information?
Suppose we are allowed to measure the basketball players’ heights and test the liquids in
the glasses. The prior probability of 0.95 in each case becomes a posterior probability of 1.0
or 0; that is, either the player is or is not over 7 feet tall and the liquid is either benign or not.
However, the membership value of 0.95, which measures the extent to which the player’s
height is over 7 feet, or the drinkability of the liquid is ‘‘healthful and good,’’ remains 0.95
after measuring or testing. These two examples illustrate very clearly the difference in the
information content between chance and fuzziness.

This brings us to the clearest distinction between fuzziness and chance. Fuzziness
describes the lack of distinction of an event, whereas chance describes the uncertainty in
the occurrence of the event. The event will occur or not occur; but is the description of the
event clear enough to measure its occurrence or nonoccurrence? Consider the following
geometric questions, which serve to illustrate our ability to address fuzziness (lack of
distinctiveness) with certain mathematical relations. The geometric shape in Fig. 1.2a can
resemble a disk, a cylinder, or a rod, depending on the aspect ratio of d/h. For d/h � 1
the shape of the object approaches a long rod; in fact, as d/h → 0 the shape approaches a
line. For d/h 	 1 the object approaches the shape of a flat disk; as d/h → ∞ the object
approaches a circular area. For other values of this aspect ratio, e.g., for d/h ≈ 1, the shape
is typical of what we would call a ‘‘right circular cylinder.’’ See Fig. 1.2b.

The geometric shape in Fig. 1.3a is an ellipse, with parameters a and b. Under
what conditions of these two parameters will a general elliptic shape become a circle?
Mathematically, we know that a circle results when a/b = 1, and hence this is a specific,
crisp geometric shape. We know that when a/b � 1 or a/b 	 1 we clearly have an
elliptic shape; and as a/b → ∞, a line segment results. Using this knowledge, we can

h0

D

C

R
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d

h
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FIGURE 1.2
Relationship between (a) mathematical terms and (b) fuzzy linguistic terms.
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FIGURE 1.3
Figure 1.3 The (a) geometric shape and (b) membership function for an approximate circle.

develop a description of the membership function to describe the geometric set we call
an ‘‘approximate circle.’’ Without a theoretical development, the following expression
describing a Gaussian curve (for this membership function all points on the real line have
nonzero membership; this can be an advantage or disadvantage depending on the nature
of the problem) offers a good approximation for the membership function of the fuzzy set
‘‘approximate circle,’’ denoted C∼:

µC∼

(a

b

)
= exp

[
−3

(a

b
− 1

)2
]

(1.3)

Figure 1.3b is a plot of the membership function given in Eq. (1.3). As the elliptic ratio
a/b approaches a value of unity, the membership value approaches unity; for a/b = 1 we
have an unambiguous circle. As a/b → ∞ or a/b → 0, we get a line segment; hence, the
membership of the shape in the fuzzy set C∼ approaches zero, because a line segment is not
very similar in shape to a circle. In Fig. 1.3b we see that as we get farther from a/b = 1 our
membership in the set ‘‘ approximate circle’’ gets smaller and smaller. All values of a/b

that have a membership value of unity are called the prototypes; in this case a/b = 1 is the
only prototype for the set ‘‘approximate circle,’’ because at this value it is exactly a circle.

Suppose we were to place in a bag a large number of generally elliptical two-
dimensional shapes and ask the question: What is the probability of randomly selecting
an ‘‘approximate circle’’ from the bag? We could not answer this question without first
assessing the two different kinds of uncertainty. First, we would have to address the issue
of fuzziness in the meaning of the term ‘‘approximate circle’’ by selecting a value of
membership, above which we would be willing to call the shape an approximate circle;
for example, any shape with a membership value above 0.9 in the fuzzy set ‘‘approximate
circle’’ would be considered a circle. Second, we would have to know the proportion of the
shapes in the bag that have membership values above 0.9. The first issue is one of assessing
fuzziness and the second relates to the frequencies required to address questions of chance.

SETS AS POINTS IN HYPERCUBES

There is an interesting geometric analog for illustrating the idea of set membership [Kosko,
1992]. Heretofore we have described a fuzzy set A∼ defined on a universe X. For a universe
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with only one element, the membership function is defined on the unit interval [0,1]; for
a two-element universe, the membership function is defined on the unit square; and for a
three-element universe, the membership function is defined on the unit cube. All of these
situations are shown in Fig. 1.4. For a universe of n elements we define the membership on
the unit hypercube, In = [0, 1]n.

The endpoints on the unit interval in Fig. 1.4a, and the vertices of the unit square and
the unit cube in Figs. 1.4b and 1.4c, respectively, represent the possible crisp subsets, or
collections, of the elements of the universe in each figure. This collection of possible crisp
(nonfuzzy) subsets of elements in a universe constitutes the power set of the universe. For
example, in Fig. 1.4c the universe comprises three elements, X = {x1, x2, x3}. The point
(0, 0, 1) represents the crisp subset in 3-space, where x1 and x2 have no membership and

1
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= (0) X = {x1} = (1)

(a)

X = {x1, x2} = (1, 1){x2} = (0, 1)

(b)
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FIGURE 1.4
‘‘Sets as points’’ [Kosko, 1992]: (a) one-element universe, (b) two-element universe, (c) three-element
universe.
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element x3 has full membership, i.e., the subset {x3}; the point (1, 1, 0) is the crisp subset
where x1 and x2 have full membership and element x3 has no membership, i.e., the subset
{x1, x2}; and so on for the other six vertices in Fig. 1.4c. In general, there are 2n subsets in
the power set of a universe with n elements; geometrically, this universe is represented by
a hypercube in n-space, where the 2n vertices represent the collection of sets constituting
the power set. Two points in the diagrams bear special note, as illustrated in Fig. 1.4c. In
this figure the point (1, 1, 1), where all elements in the universe have full membership, is
called the whole set, X, and the point (0, 0, 0), where all elements in the universe have no
membership, is called the null set, ∅.

The centroids of each of the diagrams in Fig. 1.4 represent single points where the
membership value for each element in the universe equals 1

2 . For example, the point ( 1
2 , 1

2 )

in Fig. 1.4b is in the midpoint of the square. This midpoint in each of the three figures is a
special point – it is the set of maximum ‘‘fuzziness.’’ A membership value of 1

2 indicates
that the element belongs to the fuzzy set as much as it does not – that is, it holds equal
membership in both the fuzzy set and its complement. In a geometric sense, this point is the
location in the space that is farthest from any of the vertices and yet equidistant from all of
them. In fact, all points interior to the vertices of the spaces represented in Fig. 1.4 represent
fuzzy sets, where the membership value of each variable is a number between 0 and 1. For
example, in Fig. 1.4b, the point ( 1

4 , 3
4 ) represents a fuzzy set where variable x1 has a 0.25

degree of membership in the set and variable x2 has a 0.75 degree of membership in the set.
It is obvious by inspection of the diagrams in Fig. 1.4 that, although the number of subsets
in the power set is enumerated by the 2n vertices, the number of fuzzy sets on the universe
is infinite, as represented by the infinite number of points on the interior of each space.

Finally, the vertices of the cube in Fig. 1.4c are the identical coordinates found in the
value set, V{P(X)}, developed in Example 2.4 of the next chapter.

SUMMARY

This chapter has discussed models with essentially two different kinds of information: fuzzy
membership functions, which represent similarities of objects to nondistinct properties, and
probabilities, which provide knowledge about relative frequencies. The value of either of
these kinds of information in making decisions is a matter of preference; popular, but
controversial, contrary views have been offered [Ross et al., 2002]. Fuzzy models are not
replacements for probability models. As seen in Fig. 1.1, every crisp set is fuzzy, but
the converse does not hold. The idea that crisp sets are special forms of fuzzy sets was
illustrated graphically in the section on sets as points, where crisp sets are represented by
the vertices of a unit hypercube. All other points within the unit hypercube, or along its
edges, are graphically analogous to a fuzzy set. Fuzzy models are not that different from
more familiar models. Sometimes they work better, and sometimes they do not. After all,
the efficacy of a model in solving a problem should be the only criterion used to judge that
model. Lately, a growing body of evidence suggests that fuzzy approaches to real problems
are an effective alternative to previous, traditional methods.

REFERENCES

Arciszewski, T, Sauer, T., and Schum, D. (2003). ‘‘Conceptual designing: Chaos-based approach,’’
J. Intell. Fuzzy Syst., vol. 13, pp. 45–60.



20 INTRODUCTION

Arthur, W. B. (1994). ‘‘Inductive reasoning and bounded rationality,’’ Am. Econ. Rev., vol. 84,
pp. 406–411.

Barrow, J. (2000). The Universe That Discovered Itself, Oxford University Press, Oxford, UK.
Ben-Haim, Y. (2001). Information Gap Decision Theory: Decisions Under Severe Uncertainty, Series

on Decision and Risk, Academic Press, London.
Bezdek, J. (1993). ‘‘Editorial: Fuzzy models – What are they, and why?’’ IEEE Trans. Fuzzy Syst.,

vol. 1, pp. 1–5.
Black, M. (1937). ‘‘Vagueness: An exercise in logical analysis,’’ Int. J. Gen. Syst., vol. 17,

pp. 107–128.
Bower, G. and Hilgard, E. (1981). Theories of Learning, Prentice Hall, Englewood Cliffs, NJ.
Cunningham, J. (1971). The collected poems and epigrams of J. V. Cunningham, Swallow Press,

Chicago.
de Finetti, B. (1974). Theory of Probability, John Wiley & Sons, New York.
Drake, S. (1957). Discoveries and Opinions of Galileo, Anchor Books, New York, pp. 162–169.
Klir, G. and Wierman, M. (1996). Uncertainty-Based Information, Physica-Verlag, Heidelberg.
Klir, G. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall,

Upper Saddle River, NJ.
Kolata, G. (1991). ‘‘Math problem, long baffling, slowly yields,’’ New York Times, March 12, p. C1.
Kosko, B. (1992). Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cliffs, NJ.
Kosko, B. (1994). ‘‘Fuzzy systems as universal approximators,’’ IEEE Trans. Comput., vol. 43,

no. 11.
Lindley, D. (1987). ‘‘Comment: A tale of two wells,’’ Stat. Sci., vol. 2, pp. 38–40.
Quine, W. (1981). Theories and Things, Harvard University Press, Cambridge, MA.
Ross, T., Booker, J., and Parkinson, W. J. (2002). Fuzzy Logic and Probability Applications: Bridging

the Gap, Society for Industrial and Applied Mathematics, Philadelphia, PA.
Stigler, S. (1986). ‘‘Laplace’s 1774 memoir on inverse probability,’’ Stat. Sci., vol. 1, pp. 359–378.
Stone, M. H. (1937). ‘‘Applications of the theory of Boolean rings to general topology,’’ Trans. Am.

Math. Soc., vol. 41, pp. 375–481, esp. pp. 453–481.
Weierstrass, K. (1885). ‘‘Mathematische Werke, Band 3, Abhandlungen III,’’ pp. 1–37, esp. p. 5,

Sitzungsber. koniglichen preuss. Akad. Wiss., July 9 and July 30.
Ying, H., Ding, Y., Li, S., and Shao, S. (1999). ‘‘Fuzzy systems as universal approximators,’’ IEEE

Trans. Syst., Man, Cybern – Part A: Syst. Hum., vol. 29, no. 5.
Zadeh, L. (1965). ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, pp. 338–353.
Zadeh, L. (1973). ‘‘Outline of a new approach to the analysis of complex systems and decision

processes,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 28–44.
Zadeh, L. (1995). ‘‘Discussion: Probability theory and fuzzy logic are complementary rather than

competitive,’’ Technometrics, vol. 37, pp. 271–276.
Zadeh, L. (2002). Forward to Fuzzy Logic and Probability Applications: Bridging the Gap, Society

for Industrial and Applied Mathematics, Philadelphia, PA.

PROBLEMS

1.1. Develop a reasonable membership function for the following fuzzy sets based on height
measured in centimeters:
(a) ‘‘Tall’’
(b) ‘‘Short’’
(c) ‘‘Not short’’

1.2. Develop a membership function for laminar and turbulent flow for a typical flat plate with a
sharp leading edge in a typical air stream. Transition usually takes place between Reynolds
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numbers (Re) of 2 × 105 and 3 × 106. An Re of 5 × 105 is usually considered the point of
turbulent flow for this situation.

1.3. Develop a reasonable membership function for a square, based on the geometric properties of
a rectangle. For this problem use L as the length of the longer side and l as the length of the
smaller side.

1.4. For the cylindrical shapes shown in Fig. 1.2, develop a membership function for each of the
following shapes using the ratio d/h, and discuss the reason for any overlapping among the
three membership functions:
(a) Rod
(b) Cylinder
(c) Disk

1.5. The question of whether a glass of water is half-full or half-empty is an age-old philosophical
issue. Such descriptions of the volume of liquid in a glass depend on the state of mind of
the person asked the question. Develop membership functions for the fuzzy sets ‘‘half-full,’’
‘‘full,’’ ‘‘empty,’’ and ‘‘half-empty’’ using percent volume as the element of information.
Assume the maximum volume of water in the glass is V0. Discuss whether the terms ‘‘half-full’’
and ‘‘half-empty’’ should have identical membership functions. Does your answer solve this
ageless riddle?

1.6. Landfills are a primary source of methane, a greenhouse gas. Landfill caps, called biocaps,
are designed to minimize methane emission by maximizing methane oxidation; these caps are
classified as ‘‘best’’ if they are capable of oxidizing 80% of the methane that originates in
the landfill’s interior. Complete oxidation was found to be difficult to establish. Develop a
reasonable membership function of the percent methane oxidation to show the performance of
the biocap and emissions of methane.

1.7. Industry A discharges wastewater into a nearby river. Wastewater contains high biological
oxygen demand (BOD) and other inorganic contaminants. The discharge rate of rivers and
wastewater is constant through the year. From research, it has been found that BOD values not
exceeding 250 mg/L do not cause any harmful effect to aquatic ecosystems. However, BOD
values higher than 250 mg/L have significant impact. Draw both a crisp and fuzzy membership
function to show the effects of the BOD value on aquatic ecosystems.

1.8. A fuzzy set for a major storm event in Calgary, Alberta, could be described as a rainstorm in a
subdivision that raised the level of the storm-water pond to within 70% of its design capacity.
The membership function for a major storm set could be described as having full membership
when 70% of the pond volume has been reached but varying from zero membership to full
membership at 40% capacity and 70% capacity, respectively. Draw a typical membership
function as it is described.

1.9. In Alberta a waste is orally toxic if it has an oral toxicity (LD50) of less than 5000 mg/kg.
Develop and draw a crisp and a fuzzy membership function for the oral toxicity.

1.10. Using the ratios of internal angles or sides of a hexagon, draw the membership diagrams for
‘‘regular’’ and ‘‘irregular’’ hexagons.

1.11. Develop algorithms for the following membership function shapes:
(a) Triangular
(b) Gamma function
(c) Quadratic S-function
(d) Trapezoid
(e) Gaussian
(f ) Exponential-wire function

1.12. In soil mechanics soils are classified based on the size of their particles as clay, silt, or sand
(clays having the smallest particles and sands having the largest particles). Though silts have
larger particles than clays, it is often difficult to distinguish between these two soil types; silts
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and sands present the same problem. Develop membership functions for these three soil types,
in terms of their grain size, S.

1.13. A sour natural gas stream is contacted with a lean amine solution in an absorber; this allows the
amine to remove the sour component in the natural gas producing a rich amine solution and a
‘‘sales gas’’ which is the natural gas with a much lower sour gas concentration than the feed gas
as shown in Fig. P1.13. Concentrations above C2, which is the pipeline specification for sour
gas concentration, are considered to have full membership in the set of ‘‘high concentrations.’’
A concentration below C1, which is the lower limit of sour gas concentration that can be
detected by analysis instrumentation, is considered to have full membership in the set of
‘‘low concentrations.’’ Sketch a membership function for the absorber ‘‘sales gas’’ sour gas
concentration as a function of concentration, C; show the points C1 and C2.

Lean amine

A
b
s
o
r
b
e
r

Sour gas Rich amine

‘‘Sales gas’’

FIGURE P1.13

1.14. A circular column loaded axially is assumed to be eccentric when the load is acting at 5% of
the axis, depending on the diameter of the column, d as shown in Fig. P1.14. We have the
following conditions: e/d = 0.05 eccentric; e/d < 0.05 not-very-eccentric; e/d > 0.05, very
eccentric. Develop a membership function for ‘‘eccentricity’’ on the scale of e/d ratios.

e

d

FIGURE P1.14
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1.15. A rectangular sheet of perimeter 2L + 2h is to be rolled into a cylinder with height, h. Classify
the cylinder as a function of the rectangular sheet as being a rod, cylinder, or disk by developing
membership functions for these shapes.

1.16. Enumerate the nonfuzzy subsets of the power set for a universe with n = 4 elements, i.e.,
X = {x1,x2,x3,x4}, and indicate their coordinates as the vertices on a 4-cube.

1.17. Probability distributions can be shown to exist on certain planes that intersect the regions
shown in Fig. 1.4. Draw the points, lines, and planes on which probability distributions exist
for the one-, two-, and three-parameter cases shown in Fig. 1.4.


