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Role of Local Renin Angiotensin

Systems in Cardiac Damage

Michael Bader

Introduction

The renin angiotensin system (RAS) recently celebrated its 100th anni-

versary. In 1898, renin was discovered by Tigerstedt and Bergman in

rabbit kidney (Tigerstedt and Bergman, 1898). Renin turned out to be

the rate limiting enzyme of a proteolytic cascade leading to the formation

of angiotensin (Ang) I and Ang II. In this cascade renin splits the liver-

derived renin substrate, angiotensinogen (AOGEN), in the plasma to

form the decapeptide Ang I (Bader and Ganten, 2000). Ang I is then

metabolized further into the octapeptide Ang II via the endothelium-

bound angiotensin-converting enzyme (ACE). Ang II is one of the most

potent vasopressor substances and releases aldosterone from the adrenal

gland. The effects of the peptide are transmitted by two main G-protein-

coupled receptors, AT1 and AT2, that were originally defined by the

discovery of specific ligands and later confirmed by the cloning of two

different genes (Murphy et al., 1991; Sasaki et al., 1991; Kambayashi et al.,
1993; Mukoyama et al., 1993).
This was the classic view of the RAS. However, with additional

research, it became clear that it is not the whole story. The local gen-

eration of angiotensin peptides in different tissues was detected

mostly even by locally produced precursors and the concept of a

tissue-based RAS emerged (Bader et al., 2001). The most obvious ex-

ample of such a tissue RAS was found in the brain, where AT1 and

AT2 receptors have been located beyond the blood–brain barrier not
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accessible for circulating Ang II. However, Ang II can be generated in

the brain from locally synthesized AOGEN and renin and activate

these receptors playing an important role in vasopressin secretion,

and in the control of the baroreflex and the sympathetic output (Bader

and Ganten, 2002). Things are not so clear in the heart, where parts of

the system are generated locally and others have to be imported from

the circulation. However, the functional relevance of a local RAS in the

heart in particular for pathophysiological processes of cardiac damage

is beyond doubt.

In the heart, Ang I is generated by renin imported from the plasma

(van Kesteren et al., 1997; M€uuller et al., 1998) which interacts with

AOGEN partially also derived from the circulation but also locally pro-

duced (Campbell and Habener, 1986; Dzau et al., 1987; Hellmann et al.,
1988; Lindpaintner et al., 1990; Dostal et al., 1992; Sawa et al., 1992;

Sadoshima et al., 1993). Locally synthesized ACE (Zhou et al., 1994;

Katwa et al., 1995) then converts Ang I to Ang II (Danser et al., 1992;
Neri Serneri et al., 1996; de Lannoy et al., 1998; M€uuller et al., 1998). The
peptide interacts with AT1 and AT2 receptors present on cardiac myo-

cytes and fibroblasts (Rogers et al., 1986; Saito et al., 1987; Urata et al.,
1989; Rogg et al., 1990, 1996; Sechi et al., 1992; Crabos et al., 1994; Lopez
et al., 1994; Matsubara et al., 1994; Regitz-Zagrosek et al., 1995; Booz and

Baker, 1996; Haywood et al., 1997; Ohkubo et al., 1997; Wharton et al.,
1998). Additionally in the human heart, mast cells contain the enzyme

chymase which also metabolizes Ang I to Ang II (Urata et al., 1990, 1994).
Circulating as well as locally generated Ang II induces vasoconstriction

and exerts direct inotropic (Koch-Weser, 1964) and chronotropic actions

on the heart. These effects are enhanced by a facilitation of noradrenaline

release from sympathetic nerve endings. In addition, Ang II in the

heart induces hypertrophy, inflammation and fibrosis by increasing

endothelin, transforming growth factor (TGF)-b, oxidative stress, and

cytokines.

An important development was the generation of transgenic and

knockout technology in order to study the functionality of local RAS

(Stec et al., 1998; Bader et al., 2000). Because polymorphisms in the gene

for ACE were linked to the risk for cardiac diseases (Cambien et al.,
1992; Schunkert, 1997) and ACE inhibitors as well as AT1 receptor an-

tagonists were extremely effective drugs for the treatment of heart fail-

ure (CONSENSUS Trial Study Group, 1987; Pfeffer et al., 1988, 1992;
Sharpe et al., 1988, 1991; SOLVD, 1992; Swedberg et al., 1992; Pitt et al.,
1997, 2000; Yusuf et al., 2000) numerous transgenic models have been

generated to study the role of the RAS in cardiac damage. This chapter

will summarize the pathophysiological functions of the cardiac RAS
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with a particular focus on the findings derived from transgenic animal

models.

AT1 and cardiac hypertrophy

Hypertrophy and fibrosis are the most important pathophysiological

effects induced by Ang II in the heart. The growth-promoting actions

of the peptide were originally discovered in adrenal cells and fibro-

blasts (Schelling et al., 1991) where Ang II elicits DNA synthesis and

proliferation. There is ample evidence that locally produced Ang II is

also involved in the induction of cardiomyocyte growth and cardiac

hypertrophy. ACE inhibitors and AT1 antagonists prevent or decrease

cardiac hypertrophy in humans (Nakashima et al., 1984; Kaplan, 1985)
and reduce or cause regression of left ventricular hypertrophy in ex-

perimental aortic banding (Kromer and Riegger, 1988), even at doses

that do not reduce blood pressure (Linz et al., 1989). Accordingly,

other models of left ventricular hypertrophy like SHR, TGR(mREN2)27

(Mullins et al., 1990), or isoproterenol-infused rats respond readily to

these drugs with a reduction in left ventricular weight accompanied

by a decreased myocardial fibrosis (Sen et al., 1980; Brilla et al.,
1991; Nagano et al., 1991, 1992; Pahor et al., 1991; B€oohm et al., 1996).
In some models, these changes were not correlated with blood pressure

reduction or plasma Ang II levels, but instead with a reduction in

cardiac Ang II concentrations (Nagano et al., 1991, 1992; B€oohm et al.,
1996).

The possible implication of the cardiac RAS has also been studied in

the remodelling of the myocardium after myocardial infarction which

for the most part is a hypertrophic process (Pfeffer, 1995). Some authors

have reported transiently increased AOGEN mRNA in myocardial in-

farction and failure (Drexler et al., 1989). In chronic heart failure in-

duced by ligation of the left coronary artery in rats an enhancement

of ACE mRNA was found, which correlated with the cardiac ACE

activity, but not with ACE activity in other organs (Hirsch et al., 1991).
To elicit cardiac hypertrophy, Ang II interacts with AT1 receptors,

which exerts its effects via several intracellular signalling pathways

mediated by G proteins (Dostal, 2000; Eguchi and Inagami, 2000;

Ruwhof and van der Laarse, 2000). Besides intracellular calcium surges

and protein kinase C activation, small GTP-binding proteins like RAS

and RhoA as well as tyrosine kinase cascades are activated including

several members of the mitogen-activated protein (MAP) kinase family

and the Jak=STAT pathway. Finally, transcription factors like AP1 and
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the STATs are activated which initiate the expression of growth related

genes. Moreover, the phosphorylation of the ribosomal protein S6 and

thereby protein synthesis is increased.

Several cofactors have been implicated in the effects of Ang II on

cardiomyocyte growth. Endothelin has been shown to be released by

stretch and Ang II in the heart and in some models endothelin receptor

antagonists block cardiac hypertrophy induced by Ang II (Ito et al.,
1994; Arai et al., 1995; Yamazaki et al., 1996). The source of endothelin

maybe the cardiac fibroblasts which also generate other growth factors

when activated by Ang II such as TGF-b and fibroblast growth factor-2

(Kim et al., 1995; Gray et al., 1998; Pellieux et al., 2001). For these two

factors a crucial involvement in Ang II-induced cardiac hypertrophy

has been shown using specific knockout mouse models (Pellieux et al.,
2001; Schultz et al., 2002).
Another possible mediator of Ang II-induced cardiac hypertrophy

may be norepinephrine released by Ang II from sympathetic nerve end-

ings in the heart. Norepinephrine was shown to trigger hypertrophy and

in a positive feedback loop also RAS activation via a- and b-adrenergic
receptors (Bogoyevitch et al., 1996; Yamazaki and Yazaki, 2000).

In addition, reactive oxygen species are generated by Ang II via the

AT1 receptor by the activation of NADPH oxidases in the heart. These

free oxygen radicals are important for several signaling pathways in-

cluding the transactivation of the epidermal growth factor (EGF) recep-

tor by the AT1 receptor (Griendling and Ushio-Fukai, 2000). It has been

shown that in cardiac fibroblasts and vascular smooth muscle cells

EGF-receptor transactivation is essential for the hypertrophic actions

mediated by the AT1 receptor (Eguchi and Inagami, 2000; Griendling

and Ushio-Fukai, 2000). The relevance of reactive oxygen species was

demonstrated using mice lacking a subunit of NADPH oxidase (Bendall

et al., 2002). These animals were resistant against Ang II-induced car-

diac hypertrophy.

Another important factor involved in cardiac hypertrophy is me-

chanical stretch of the cardiomyocytes. There is evidence that mechan-

ical stretch induces Ang II generation and that this effect is crucial for

the development of cardiac hypertrophy (Dostal, 2000). Stretch induces

the release of Ang II in the myocardium as well as from cardiomyocytes

in culture (Sadoshima et al., 1993; Leri et al., 1998). Ang II in turn in-

creases the expression of RAS components such as AOGEN, ACE, AT1,

and AT2 in a positive feedback loop (Kijima et al., 1996; Tamura et al.,
1998; Malhotra et al., 1999). AOGEN and AT1 are induced by p53 bind-

ing to the respective promoter regions after activation by the AT1

receptor (Leri et al., 1998). AOGEN is additionally induced by the same
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receptor involving the Jak=STAT pathway of transcription factors,

which was already mentioned above, to induce growth (Mascareno

et al., 1998).
Transgenic animal models have been generated to solve the question

whether mechanical stretch or whether the cardiac RAS alone are able

to induce cardiac hypertrophy independently. Mice lacking AOGEN

(own unpublished results) or AT1 receptors (Hamawaki et al., 1998;
Harada et al., 1998) develop cardiac hypertrophy after volume or pres-

sure overload, respectively. Cardiomyocytes isolated from AOGEN

knockout mice respond to mechanical stretch by activating MAP ki-

nases as do control cells. However, in contrast to control cells this effect

is not blocked by AT1 antagonists (Nyui et al., 1997). These results in-

dicate that there are redundant pathways of growth induction by

stretch in cardiomyocytes circumventing the RAS. However, the de-

fault mechanisms involve Ang II and the AT1 receptor.

Transgenic experiments designed to solve the opposite question,

whether or not Ang II alone is able to induce cardiac hypertrophy

without mechanical stretch gave controversial results. Transgenic rats

overexpressing ACE predominantly in the heart have been produced

(Tian et al., 1996). Despite very high cardiac levels of cardiac ACE ac-

tivity, there were no morphological alterations unless the heart was

pressure overloaded with aortic banding. This treatment resulted in a

significantly higher hypertrophic response in the ACE-transgenic rats

than in control animals. The results support the important role of Ang II

in stretch-induced hypertrophy but deny an autonomous effect. In con-

trast, mice expressing AOGEN exclusively in the heart remained nor-

motensive but nevertheless developed cardiac hypertrophy (Mazzolai

et al., 1998). This finding indicates that the local formation of Ang II

induces cardiac damage independent of blood pressure elevation. The

importance of local angiotensin generation in end organs was con-

firmed in a hybrid mouse model carrying a rat AOGEN transgene on

a knockout background (Kang et al., 2002). These animals developed

hypertension due to the exclusive expression of AOGEN in liver and

brain. However, since local AOGEN synthesis in kidney and heart was

absent, cardiac hypertrophy and renal fibrosis was attenuated in these

mice.

Transgenic animal models have been reported that overexpress AT1-

receptors in the heart by the use of the a-myosin-heavy chain promoter

(Hein et al., 1997; Paradis et al., 2000; Hoffmann et al., 2001). However,

the phenotypes of the transgenic animals generated were dramatically

different. The mouse models exhibited a drastic cardiac hypertrophy

and the animals died after several days (Hein et al., 1997) to weeks
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(Paradis et al., 2000) of age. In sharp contrast, the rats appeared abso-

lutely normal unless the heart was pressure-overloaded by aortic band-

ing (Hoffmann et al., 2001). With this treatment, the AT1 receptor

transgenic rats also exhibited increased hypertrophy compared to con-

trols, similar to the observations in the ACE transgenic rats. The differ-

ence may be related to a species-specific sensitivity of mouse and rat

hearts for Ang II-related effects. However a transgenic mouse model

was generated in which Ang II is produced exclusively in the heart and

is independent of any other RAS component (van Kats et al., 2001). The
investigators used a unique artificially engineered protein (Methot et al.,
1997). The animals show dramatically enhanced Ang II levels in the

heart but no cardiac hypertrophy. Thus, the issue whether or not

Ang II alone can induce cardiac hypertrophy remains controversial.

Mechanical stretch employs the local cardiac RAS for growth promo-

tion, but can also use alternative pathways.

AT1 and cardiac fibrosis

Concomitantly to hypertrophy, most stimuli also induce cardiac fibrosis

namely the proliferation of cardiac fibroblasts and the excessive deposi-

tion of extracellular matrix in the cardiac interstitium (Booz and Baker,

1995). The resulting increase in stiffness causes ventricular dysfunction

and finally heart failure mostly through diastolic dysfunction. Therefore,

fibrosis is of major pathophysiological relevance. Ang II is directly in-

volved in the development of cardiac fibrosis (Booz and Baker, 1995).

Chronic Ang II infusion induces fibrosis and ACE inhibitors as well as

AT1 receptor antagonists can ameliorate fibrosis induced by pressure

overload. Activation of the AT1 receptor in fibroblasts again activates

the MAP kinases and the Jak=STAT pathway which induce expression

of angiotensinogen and fibrosis-related proteins such as collagens as well

as cell proliferation (Booz and Baker, 1995; Murasawa et al., 2000).
A recent experiment employing chimeric mice that carry cardiac cells

without AT1 receptors surrounded by normal tissue has shown that the

activation of fibroblasts by Ang II depends on the interaction of the

peptide with neighbouring cardiomyocytes (Matsusaka et al., 1999).

This observation indicates that cardiomyocytes release a paracrine fac-

tor after Ang II stimulation, possibly TGF-b, which is mitogenic for

fibroblasts (Lee et al., 1995).
Endothelin may also play role in this conversation between cardiac

myocytes and fibroblasts. It is released by cardiomyocytes after Ang II

stimulation and activates collagen synthesis in fibroblasts (Guarda et al.,
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1993; Rossi et al., 1999). This effect is direct but may be enhanced by

stimulation of local TGF-b release (Belloni et al., 1996; Gandhi et al.,
2000). Accordingly, two transgenic rat models with hypertension and

marked end organ damage support the role of endothelin in Ang II-

induced cardiac fibrosis. In transgenic rats, TGR(mREN2)27, carrying

the mouse renin gene, ren-2 (Mullins et al., 1990), it was shown that

cardiac fibrosis can be blunted by blockade with a combined ETA=ETB-

endothelin receptor antagonist (Seccia et al., 2003). Furthermore, in-

hibition of the endothelin-converting enzyme in double transgenic rats

expressing both, the human renin and angiotensinogen genes (Ganten

et al., 1992), also attenuates the upregulated cardiac collagen synthesis

(M€uuller et al., 2002). Another possible mediator of cardiac fibrosis in the

double transgenic rat model is connective tissue growth factor, which

may act via stimulation of TGF-b release (Finckenberg et al., 2003). The
same rat model has also shed light on aldosterone as mediator of Ang

II-induced fibrosis, since when these rats are treated with the miner-

alocorticoid receptor antagonist spironolactone, cardiac fibrosis is atten-

uated (Fiebeler et al., 2001). Aldosterone may facilitate Ang II signaling

by upregulating AT1 receptors (Sun and Weber, 1993; Robert et al.,
1999) or the signaling of mediators of Ang II action such as EGF (Krug

et al., 2002). Finally, reactive oxygen species seem to play a role in Ang

II-induced cardiac fibrosis since mice lacking NADPH oxidase do not

develop fibrosis (Bendall et al., 2002).
However, the issue of a crucial cardiomyocyte-derived mediator of

the profibrotic actions of Ang II on fibroblasts such as endothelins

and=or TGF-b remains controversial since growth-promoting actions

of Ang II on pure cardiac fibroblasts in culture have been repeatedly

demonstrated (Booz and Baker, 1995).

AT2 in cardiac hypertrophy and fibrosis

Surprisingly, a recent study using AT2-knockout mice has shown that

this receptor is essential for cardiac hypertrophy induction by pressure

overload (Senbonmatsu et al., 2000; Ichihara et al., 2001). This effect may

be mediated by a reduced phosphorylation of the ribosomal protein S6.

These results contradict earlier findings employing AT2 antagonists,

which showed antigrowth effects exerted by the AT2 receptor (Booz

and Baker, 1996). Furthermore, another strain of AT2-deficient mice

did not show any difference in hypertrophy development after pres-

sure overload and vascular hypertrophy was even enhanced in these

mice (Brede et al., 2001; Wu et al., 2002). Accordingly, a transgenic
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mouse overexpressing the AT2 receptor in the heart was less suscepti-

ble to AT1-mediated actions compared to controls (Masaki et al., 1998)
and developed less fibrosis after Ang II infusion (Kurisu et al., 2003),
whereas hypertrophy induction was equal (Sugino et al., 2001). Ang II-

induced fibrosis is reduced in these animals by a mechanism involving

the kallikrein kinin system (Kurisu et al., 2003), which has been shown

to have antihypertrophic and antifibrotic actions in the heart by the use

of tissue-kallikrein overexpressing transgenic rats (Silva et al., 2000).
After myocardial infarction, remodelling of the myocardium is part

of the wound healing process implicating fibrosis and cardiomyocyte

hypertrophy. In the AT2 receptor overexpressing mice this remodelling

is facilitated (Yang et al., 2002) and in AT2-deficient animals it is

blunted, development of heart failure is exarcerbated (Adachi et al.,
2003) and the heart may even rupture after infarction (Ichihara et al.,
2002). Thus, the majority of data support an antihypertrophic and anti-

fibrotic action of the AT2 receptor but the issue still needs clarification

(Inagami and Senbonmatsu, 2001).

Conclusion

Locally generated Ang II has numerous effects on the heart with sig-

nificant pathophysiological impact. Cardiac hypertrophy is induced ei-

ther by a direct action on cardiomyocytes in concert with mechanical

stretch or by the release of mediators such as endothelin, TGF-b and

reactive oxygen species from cardiac fibroblasts. This crosstalk between

myocytes and fibroblasts in the heart is also of major importance for the

Ang II-induced cardiac fibrosis which also implicates TGF-b and en-

dothelin as well as aldosterone.

Cell type-specific transgenic and knockout animal models will help

to clarify the pathophysiologically relevant communication between

cardiac myocytes and fibroblasts and the relative importance of the

two angiotensin receptors, AT1 and AT2 in these processes.
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