
1 Background Knowledge

1.1 The Subject and its Specificity

The importance of intermolecular forces1 in Nature is very difficult to overestimate.
It is sufficient to say that the existence of liquids and solids is due to intermolecular
interactions. In the absence of intermolecular interactions our world would be a
uniform ideal gas.

A knowledge of the physics of intermolecular interactions is required to solve
a wide class of problems in physics, chemistry and biology. The thermodynamic
properties of gases and liquids and their kinetic characteristics (the coefficients of
heat conductivity, diffusion etc.) are determined by the nature of intermolecular
interactions. Intermolecular forces also determine to a large degree the proper-
ties of crystals, such as the equilibrium geometry, the binding energy, phonon
spectra, etc.

Intermolecular interactions are involved in the formation of complicated chemical
complexes, such as charge-transfer and hydrogen-bond complexes. Study of the
mechanism of elementary chemical reactions is impossible without knowledge of
the exchange processes between the translational and electron-vibration energies,
which depend on the interaction of particles under collisions. Knowledge of the
potential surface, characterizing the mutual trajectories of the reactants, is necessary
to obtain the rates of chemical reactions.

A knowledge of intermolecular interactions is of great importance also in biology.
It is enough to say that intermolecular forces account for the stability of such
important compounds as DNA and RNA and also play an essential role in muscle
contraction. The coagulation theory of colloidal solutions is based on a balance of
the repulsive electrostatic forces and the attractive dispersion forces.

The development of modern technology required a knowledge of the macroscopic
properties of gases under conditions that are almost inaccessible for experimental
measurement (supersonic velocities, high temperatures >1000 K, hyper-high pres-
sures in shock waves). The theoretical prediction of these properties requires a
knowledge of the potential energy curves for a wide range of separations, which
have to be found in independently.

1 Here and in other chapters the term ‘intermolecular forces’ denotes also interatomic forces, which
do not lead to the formation of chemical bond. Except for some special cases, no distinction will be
made between intermolecular and interatomic interactions.
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2 THE SUBJECT AND ITS SPECIFICITY

It should be emphasized that intermolecular forces are not measured directly
in any experiment. It is other characteristics, such as the deviation angle under
scattering, the transport coefficients, etc., which are connected functionally with
the intermolecular forces, that are measured. The main source of experimental
information about intermolecular interactions are:

• scattering experiments in atomic–molecular beams, which, in some cases,
permit the potentials to be obtained directly from the experimental data;

• spectroscopic measurements (vibrational–rotational spectra, predissociation,
broadening of lines by pressure, etc.);

• data on thermophysical properties of gases and liquids (virial coefficients,
viscosity and transport coefficients, etc.);

• data on crystal properties (elastic constants, phonon spectra, sublimation energy,
etc.);

• experiments on the formation of radioactive defects in solids (the focussing
energy, the threshold displacement energy, etc.);

• nuclear magnetic resonance experiments in solids and liquids (the time of spin
and spin-lattice relaxations).

To process the experimental data, different semiempirical model potentials with
parameters obtained by fitting to the experimental data are usually used. The ana-
lytical form of these two-body potentials depends upon the system under study
and the nature of the problem. Consider, as an example, the widely used (12–6)
Lennard-Jones potential:

V LJ (R) = a

R12
− b

R6
(1.1)

This potential (see Section 5.1.2) has two parameters, a and b. At small distances
V LJ (R) > 0, the repulsive forces dominate; at large distances V LJ (R) < 0, the
potential becomes attractive. So, at some point R0, V LJ (R0) = 0. The point R0

corresponds to the distance where the repulsive forces are compensated by the
attractive ones. The potential function (Equation (1.1)) has a minimum, which is
found from the condition dV LJ (R) / dR = 0 (Figure 1.1) where ε denotes the
depth of the potential well. The potential can be expressed via two other inde-
pendent parameters, R0 and ε, having obvious physical and geometrical sense.
These parameters are connected with the parameters a and b by the follow-
ing relations:

R6
0 = a/b and ε = b2/4a
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Figure 1.1 The Lennard-Johns model potential (Equation (1.2))

and Equation (1.1) is transformed to:

V LJ (R) = 4ε

[(
R0

R

)12

−
(

R0

R

)6
]

(1.2)

In general, a model potential can contain n parameters (p1, p2 , . . . , pn). To fit
these parameters to experimental data, it is necessary to know a theoretical equation
that expresses the measured property via a model potential, so that the theoretical
equation for the measured property becomes a function of the parameters. Then
the procedure that fits these parameters (see Section 5.2) is applied to obtain the
best agreement of the calculated values of this function with the measured values.

It should be mentioned that semiempirical potentials cannot describe intermolec-
ular potential adequately for a wide range of separations. A given potential with
parameters calibrated for one property, often describes other properties inade-
quately, since different physical properties may be sensitive to different parts of
the potential curve. Hence, to obtain more adequate potentials, the procedure of
parameter matching must be carried out using as much of the experimental infor-
mation as possible on the physical properties of the system under study. The use
of high-speed computers brought about the possibility of the application of piece-
wise potentials that have different analytic form for different ranges of separations
(Section 5.1.11).

Model potentials with different analytical forms can lead to the same observed
relationship. In this case, experimental agreement with a given analytical depen-
dence of model potential is not a sufficient indication of its correctness but merely
a necessary condition. For example, the magnitude of the second virial coefficient
is not sensitive to the form of the potential curve and its minimum position; it
depends only on the ratio between the width and the depth of the potential well.
In the same way, the viscosity coefficient is not sensitive to the dependence of the
potential on the separation distance.
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When estimating the reliability of the potential obtained, it is necessary to take
into account not only the measurement errors but also the approximate nature
of the formulae, which connect the measured characteristics with the molecular
potential (an error of the theoretical approximation). It is also necessary to bear in
mind that the optimized function is a nonlinear function of parameters. As a result,
different sets of optimized parameters can give the same precision when fitted to
experimental data.

In some cases, it is possible to solve the so-called inverse problem, i.e. to deter-
mine the potential directly from the experimental data without preliminary premises
about its analytical form (as a rule, in a restricted range of distances). Different
approaches to this complex problem are described in Section 5.3.

The discussion above emphasizes the importance of the theoretical determination
of intermolecular potentials. The knowledge of the analytical dependence, which
follows from the theory, permits more reliable model potentials to be constructed.

The basic concepts of the quantum-mechanical theory of intermolecular forces
were formulated about 75 years ago. Nevertheless, it was only the last several
decades that the number of studies on intermolecular interactions increased rapidly.
This development has emerged for two reasons. Firstly, a general development of
quantum-chemical methods of calculating the electronic structure of molecules has
taken place, partly due to the availability of high-speed computers and the use of
more refined mathematical methods. Secondly, more reliable experimental methods
have appeared, which have allowed the theoretical predictions to be verified.

Before presenting the modern concepts about the nature of intermolecular forces,
it is instructive to follow the evolution of these concepts. The discovery of the laws
of intermolecular interactions, as any other discovery, was not a straightforward
process. A great number of fallacies and wrong trends occurred along the way.

1.2 A Brief Historical Survey

Development of concepts about the nature of intermolecular forces is linked with
the development of ideas about the atom. Concepts about the atomic structure of
matter were formulated by the ancient philosophers. According to Democritus (fifth
century BC) and to his semilegendary colleague Leukippos, all bodies consist of
finest indivisible particles or atoms, separated by a vacuum (emptiness). A vacuum
is required for the existence of motion. In the absence of a vacuum, the bodies
would interfere under collisions, and motion would be impossible. Bodies differ
from each other by the form of the atoms, their arrangement and their mutual
orientation.

Introducing the concept of atoms required answering the question: In what man-
ner are atoms linked to form different bodies? Since the interaction was considered
to occur only by their direct contact, the problem was solved at the level of the sim-
plest mechanical models, such as hooks, notches, and other devices, as described,
for example, by Lucretius (first century BC) in his poem De Renum Natura [1].
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In the Middle Ages, the problem of the atomic structure of matter did not attract
any attention. An interest in science was completely lost and the scholastic mental-
ity dominated. One of widely discussed ‘actual’ problems was: How many angels
can be accommodated on the edge of a needle? The interest in the doctrine of
the ancient atomistics arose only from the middle of the seventeenth century. This
process occurred very gradually. For example, Galileo, who worked successfully
in the field of the dynamics of bodies, became very abstract when was discussing
the structure of these bodies. He reduced the particles, which compose the matter,
to mathematical points separated by a vacuum and explained the strength of bod-
ies as the disgust to vacuum, i.e. as the resistance of small emptinesses to their
expansion.

The ideas of Descartes greatly influenced the development of concepts about
the internal structure of matter. These ideas were presented in his treatise ‘Les
Passions de l’Ame’, finished in 1633 but published only in 1664–1667 after his
death. Descartes assumed that matter is equivalent to its extent but that, on the
other hand, an extent does not exist without matter (cf. with the modern concept of
space and matter!). In contrast to the ancient atomistics, Descartes suggested that
matter is, in principle, infinitely divisible. This idea was also accepted by Leibniz,
who assumed that there is no last small body because each body, even very small,
is a whole world with an infinite number of creations.

According to Descartes, matter consists of particles, which differ from each
other in form and size, and that they are also divisible. Descartes suggested that
solids consist of fixed bodies, which are densely packed, and that liquids consist of
particles, which move relative to each other. All motions are represented exclusively
by mechanical displacements. Descartes assumed that ‘hidden’ interactive forces
are absent.

Newton is known as the creator of Newton’s laws in classical mechanics and
Newton’s gravitational law. But he considered also forces existing in material
medium. A principal difference between Newton and his predecessors was in
postulating, in addition to mechanical interaction, the existence of gravitational,
magnetic and electric forces, as well as other attractions effective only at very
small distances [2].

However, the concrete form of the dependence of interatomic forces upon the dis-
tance was not discussed neither by Newton nor by his predecessors. The law of the
interaction between particles was introduced for the first time by the Croatian physi-
cist Boscovich (1711–1787) in a work entitled ‘Theory of Natural Science Reduced
to the Single Law of Forces Existing in Nature’ [3]. According to Boscovich, all
bodies consist of point particles. The oscillating force between any two point par-
ticles increases infinitely as they approach each other and tends to the Newton
gravitational forces

(∼1/R2
)

at large distances (Figure 1.2). The existence of repul-
sive and attractive forces and their alternation is necessary, in Boscovichś opinion,
in order to explain the physical properties of gases as well as the deformation of
plastic bodies. The Boscovich interaction law was the first interatomic potential
used to explain physical properties.
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Figure 1.2 The Boscovich universal potential

At approximately the same time, in 1743, the French physicist Clairault intro-
duced the concept of forces interacting between molecules to explain the rising
of liquids in capillaries [4]. The studies by Clairault in this field were developed
further by Laplace [5] and by Gauss [6]. The intermolecular potential V (R) was
used in their papers in a most general functional form. Gauss studied the problem
of liquids in capillaries using the principle of virtual work, requiring equilibrium of
every mass point under acting forces. He considered three types of forces acting on
molecules in liquid: 1. the force of gravity, 2. the mutual attractive forces between
the molecules and 3. attractive forces between the molecules of the liquid and the
molecules composing the walls of the capillary tube. Gauss showed that for the
appearing integrals to be finite, the potential must behave at R → ∞ as 1/Rn with
n not smaller than six.

The kinetic theory of gases was developed by Clausius [7], Maxwell [8, 9] and
Boltzmann [10] in the second half of the nineteenth century. Clausius [7] accepted
that molecules repel each other at small distances and attract each other at large
distances (at present, this concept is well established). Maxwell presumed that the
intermolecular forces are entirely repulsive at all distances. He used an analytical
form for the interaction potential, V (R) = A/Rn, which corresponds to a repulsion,
and obtained the expressions for the diffusion, heat capacity and elasticity coeffi-
cients. At that time it was known that the elasticity is proportional to the absolute
temperature and does not depend on the gas density. The second property can be
explained for any value of n, it had been derived previously on the assumption that
the molecules are rigid spheres not interacting with each other except on direct
contact. For an explanation of the first property, Maxwell concluded that n = 4.
He assumed that the dependence A/R4 is also valid at very small distances.

Today, it is well known that the repulsive part of potential is not described by
the A/R4 dependence. As Margenau and Kestner [11] remarked, Maxwell made
a logical fallacy: from the fact that some premise led to the correct result, he
concluded that the premise was valid, without testing the corollaries resulting from
other premises. In the case considered, the proportionality of the elasticity to the
temperature can be obtained from an infinite number of different potentials V (R).
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Although Maxwell’s concept for a analytical form of model potential was erro-
neous, it represented a mathematically useful expression that allowed closed for-
mulae for various kinetic characteristics of gases to be obtained and played a
fundamental role in the subsequent development of the kinetic theory.

Boltzmann’s work [10] was stimulated by his doubts on the simplicity of the
interaction law proposed by Maxwell. Boltzmann repeated all the calculations using
different attractive model potentials. He favored the existence of attractive forces
since they provided the condensation of gases. All the models led to results which
were similar to those of Maxwell and consistent with experimental data.

The attractive forces, which act between neutral atoms and molecules at large
distances, were to be later named as the van der Waals forces. This name is not
connected with the concrete studies by van der Waals on the nature of intermolec-
ular forces, but with his well-known state equation [12], which accounts for the
deviations from the ideal gas behavior:(

P + a

V 2

)
(V − b) = RT (1.3)

where a is a constant that accounts for the attraction between molecules of gas.
That is, at constant volume and temperature, the pressure decreases with increasing
a, in agreement with the fact that the attraction between the molecules must reduce
the pressure on the vessel walls. The necessity of introducing a correction due to an
attraction, in order to make the equation of state consistent with the experimental
data, indicates the existence of the attractive forces between molecules.

In subsequent studies, different empirical potentials were used for the explanation
of physical properties of gases and liquids. In a series of papers, Sutherland [13, 14]
examined some analytical forms of the attractive potential between molecules in the
gas phase (in particular, V (R) ∼ −A/R3) with parameters determined by fitting
to experimental data. This kind of phenomenological approach became typical
for subsequent studies in this field. The semiempirical procedure of fitting the
potential parameters using experimental data has appeared to be very useful and
was developed in the twentieth century, beginning with the paper by Lennard-
Jones [15]. The well-known Lennard-Jones potential:

V (R) = λ

Rn
− µ

Rm
(1.4)

has been applied widely in studies on gases and condensed matter.
Towards the end of the nineteenth century and at the beginning of the twentieth

century, in addition to the phenomenological approaches based on the applica-
tion of empirical potentials, attempts were made to elucidate the physical nature
of intermolecular forces. Some authors connected the intermolecular forces with
gravitational ones. For instance, the Newton potential was corrected by a screen-
ing factor:

V (R) = −G
m1m2

R
exp

(
−R

a

)
(1.5)
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However, the small magnitude of the gravitational forces has resulted in a rejection
of their use in the theory of intermolecular forces. Appearing at the same time, the
data about the existence of electrical charges in atoms and molecules led to an
assumption about the electromagnetic nature of intermolecular forces.

Reinganum [16] was the first to consider the interaction of two neutral molecules
as the interaction of two permanent electric dipoles. According to the electrostatic
theory, the interaction energy of two electric dipoles with moments d1 and d2,
respectively, which are located at a distance R from each other, depends on their
mutual orientation and has the following form:

Edd = 1

R5

[
R2 (d1 • d2) − 3(d1 • R)(d2 • R)

]
(1.6)

Introducing the spherical angles θ1, ϕ1, θ2, ϕ2, characterizing the directions of
dipoles d1 and d2, with the z-axis along a line connecting their centers, Equation
(1.6) becomes:

Edd = −d1d2

R3
[2 cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ1 − ϕ2)] (1.7)

The energy Edd becomes positive (corresponds to the repulsive forces), if one
of the dipole moments is perpendicular to the z-axis, and has a minimum corre-
sponding to the attractive forces with the value:

(Edd)min = −2d1d2

R3
(1.8)

for the dipole orientation along the z-axis. Reinganum carried out a statistical
calculation of dipole–dipole interactions, averaging all the orientations. Such an
average, under the condition that all orientations are equally probable, leads to the
zeroth interaction energy:

〈Edd〉 = 0 (1.9)

where the bracket notation denotes an average over orientations. But the probability
of the dipole orientation, corresponding to the energy E, is determined by the
Boltzmann factor exp(−E/kT ). Taking this into account and Edd in the form of
Equation (1.7), one obtains, at the condition Edd � kT :〈

Edd exp

(
−Edd

kT

)〉
= 〈Edd〉 − 1

kT

〈
E2

dd

〉 = − 2

3kT

d2
1d2

2

R6
(1.10)

So, the attraction forces between dipoles, obtained by Reinganum, decrease as
the temperature increases and approach zero at high temperature. These forces were
called orientational forces.

Intermolecular forces exist also at high temperatures. Therefore, the introduction
of the orientational forces does not provide a complete answer to the question of
the nature of intermolecular forces. Moreover, the existence of orientation forces
requires the existence of permanent dipole moments in molecules. In fact, it was
assumed at that time that all atoms and molecules possess dipole moments. This
concept was strengthened by the early Debye studies on the theory of the dielectric
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permittivity [17]. According to that theory, the molecular dipoles align in an electric
field. Debye verified his theory on five liquids, which accidentally occurred to be
polar (alcohols), and arrived at the amusing (but not for his time!) conclusion that
all molecules are polar.

In later studies it was found, however, that the simplest homoatomic molecules,
such as hydrogen (H2), nitrogen (N2) and oxygen (O2) molecules, have no dipole
moments. In order to explain the interaction between non-dipole molecules, it
was Debye [18] who made the next important step towards the understanding the
nature of intermolecular forces. He assumed that the charges in a molecule are not
fixed rigidly, but are able to move under the influence of the field produced by a
permanent moment of the other molecule.

Since dipoles did not appear to be universal, Debye studied the induction of
the dipole electric moment in one molecule by the permanent quadrupole moment
of the other molecule. He evaluated the electrical field DA(R) created by the
quadrupole moment QA of molecule A at a distance R from it, DA = QA/R4.

This field induces a dipole moment dB in molecule B, dB ∼ αBDA, where αB

is the polarizability of molecule B. The interaction energy of the induced dipole
moment dB with the electric field DA is equal to Eqd = −dB • DA = −αBD2

A. Tak-
ing into account that a similar effect on molecule A is produced by the quadrupole
moment of molecule B and carrying out an averaging over all the equally probable
mutual orientations, Debye obtained the following expression for the interaction
energy:

〈
Eqq

〉 = −2

3

(
αA

Q2
B

R8
+ αB

Q2
A

R8

)
(1.11)

where the quantities QA and QB are components of the quadrupole moments of
the molecules A and B, respectively. It is evident that Expression (1.11) does not
depend on the temperature. Therefore, it provides an attractive interaction even at
high temperatures when the effect of the orientational forces is almost zero. The
induction interaction, induced by dipole moments, was studied later by Falken-
hagen [19], who found it to be proportional to 1/R6. The forces of this type were
then called the Debye–Falkenhagen induction forces.

While studying the induction interactions of molecules with quadrupole moments,
Debye did not, however, consider the direct electrostatic interaction of quadrupole
moments of molecules. This was done by Keesom [20] who generalized Rein-
ganum’s calculations by considering, in addition to the dipole–dipole interaction,
the dipole-quadrupole and quadrupole-quadrupole ones. Sometimes the orienta-
tional forces are named the Keesom forces, although it is more correct to call them
the Reinganum–Keesom forces.

Thus, classical physics has been able to explain, at least qualitatively, two
types of interactions: the interactions between molecules with permanent multi-
pole moments and the interactions between permanent and induced moments in
molecules. This was achieved by introducing orientational forces that decrease with
increasing temperature, and induction forces that do not depend on temperature.
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In the case of some polar molecules, e.g. water, these forces make a considerable
contribution to the intermolecular interaction. Although they constitute only a small
part of the interaction for some other molecules, such as hydrogen chloride.

However, classical physics has completely failed to explain the origin of inter-
action among rare gas atoms. The electron shells of these atoms are spherically
symmetric, which means that such atoms possess neither dipole nor other multipole
moments, although the attractive forces in these systems are not negligible. At
that time it was already known that at low temperatures rare gases undergo the
transitions in liquid and solid states. In the framework of classical physics, one
has been also unable to obtain the analytic form of a repulsion law at short
distances.

The systematic and correct theory of intermolecular forces, which describes
their behavior both at short and large distances, could be constructed only after
the development of quantum mechanics between 1925 and 1927 (Bohr, Heisen-
berg, Schrödinger, Born, Dirac, Pauli). In 1927, Heitler and London [21] carried
out the quantum-mechanical calculation of the potential curve for the simple sys-
tem consisting of two hydrogen atoms. The Heitler–London calculation laid the
foundation of the quantum theory of valence. As follows from their results, the
repulsive behavior of the potential curve at short distances is determined by the
antisymmetry of the wave function with respect to the permutations of electrons
that stems from the Pauli exclusion principle. It causes the appearance of the spe-
cific exchange interaction. The repulsive exchange forces decrease exponentially
with the distance.

In the same year, Wang [22] considered the quantum-mechanical attraction aris-
ing between two hydrogen atoms at large distances. He showed that it is propor-
tional to 1/R6. These forces were called the dispersion forces and have a pure
quantum-mechanical origin. The general theory of the dispersion forces was for-
mulated in 1930 by Fritz London [23, 24]. The theory of dispersion forces resolved
the problem of origin of the attraction between rare gas atoms. The leading term
in the dispersion interactions for all systems falls down with distance as 1/R6.
The dispersion forces are called also the London forces, or the van der Waals
forces.

In 1948, while working on the problems of the coagulation theory of colloidal
solutions, the Dutch theoretical physicists Casimir and Polder [25] took into account
the retarding effects of the interaction between colloidal particles at large distances.
They revealed that in this case, instead of the dependence 1/R6, there is a more
rapid decrease of the dispersion forces with the distance, namely, the 1/R7 –law
(the Casimir–Polder interaction). In the same year, Casimir [26] found the ana-
lytical expression for the forces between two parallel metallic plates studying the
zero-point energy of the vacuum electromagnetic field between plates. Finally, Lif-
shitz [27, 28] has created the general theory of the attractive van der Waals forces
between macroscopic bodies with arbitrary permittivity.

At this point it is reasonable to conclude our brief historical survey of the evolu-
tion and main advances in the theory of intermolecular interactions. Their detailed
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account and the contemporary achievements are presented in the following parts
of this book.

1.3 The Concept of Interatomic Potential
and Adiabatic Approximation

A consistent theory of intermolecular forces can only be developed on the basis of
quantum-mechanical principles. Because of the quantum nature of the electronic
and nuclear motions, the solution of the intermolecular interaction problem reduces
to solving the Schrödinger equation for a system of interacting molecules. Such
a problem may be solved only after adopting some approximations. A substan-
tial simplification may be achieved because of the possibility of separating the
electronic and nuclear subsystems and introducing the concept of the adiabatic
potential. This approach, denoted as the adiabatic approximation, is based on a
large difference between the masses of electrons and nuclei (the detailed derivation
is presented in Section A3.1).

Within the adiabatic approach, the electron subsystem is studied with fixed nuclei.
In the Schrödinger equation, the nuclear kinetic energy operator is neglected and
the nuclear coordinates are treated as fixed parameters. The Schrödinger equation
splits into two: one for the electron motion with fixed nuclei and the other for the
nuclear motion with the electron energy as the potential energy.

Below, we represent the basic equations for the system of two atoms A and
B with NA and NB electrons, respectively, and the total number of electrons in
the system N = NA + NB . Let us denote the set of 3N electron coordinates as
r and the distance between nuclei as R. The total wave function in the adiabatic
approximation is written as a simple product:

�mν(r, R) = χmν(R)�m(r, R) (1.12)

where we denote the wave function describing the nuclear motion as χmν(R) and
the wave function of the N -electron system in a quantum state m as �m(r, R); for
each electronic quantum state m there is a corresponding set of nuclear quantum
states ν.

The electronic wave function �m(r, R) has to satisfy the Schrödinger equation
for the electronic motion:

He�m(r, R) = Em(R)�m(r, R) (1.13)

with the Hamiltonian:

He = − �
2

2m

N∑
i=1

∇2
i −

N∑
i=1

(
Zae

2

rai

+ Zbe
2

rbi

)
+

∑
i<j

e2

rij

+ ZaZbe
2

R
(1.14)

where rai and rbi are the distances between electron i and nuclei a and b, having
the charges Za and Zb, respectively, and R is the fixed interatomic distance (see
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Equation (A3.8)). The wave function �m(r, R) describes the electronic motion at
fixed nuclear coordinates or at an infinitely slow change of nuclear coordinates
(adiabatic change). So, the eigenvalues Em of Equation (1.13) depend upon the
value of parameter R. The solution of Equation (1.13) at different values of R

allows to obtain the function Em(R). This function plays the role of the potential
energy in the Schrödinger equation for the nuclear motion, which in the so-called
Born–Oppenheimer approximation [29] is presented as:[

− �
2

2µ
∇2

R + Em(R)

]
χmν(R) = Emνχmν(R) (1.15)

As was noted by Born [30, 31], the adiabatic potential energy Em (R) can be
corrected by adding the diagonal contribution of the electron-nuclear interaction
(vibronic interaction) (see Section A3.1). In this Born adiabatic approximation, the
Schrödinger equation for the nuclear motion is written as:[

− �
2

2µ
∇2

R + Vm (R)

]
χmν (R) = Emχmν (R) (1.16)

Vm (R) = Em (R) − Wmm (R) (1.17)

The adiabatic potential energy Vm (R) is named the interatomic potential. The
second term in Equation (1.17), Wmm (R), is called adiabatic correction. The
methods for calculating it are given in references [32–38]. Because of calculation
difficulties, the adiabatic correction is often neglected and the interatomic poten-
tial is approximated by the energy Em (R) found in solution of the Schrödinger
equation for the electronic motion at different values of the interatomic distance R

(Equation (1.13)).
In the vicinity of the minimum of the potential energy, the nuclear motion can be

separated in the vibration motion of nuclei and the rotation motion of the system
as a whole. The nuclear wave function is factorized as:

χmν(R) = 	mν(Q)
J
MK(ϑ) (1.18)

where ν enumerates the vibrational states, Q is the normal coordinate, J is the
rotational angular moment, M and K are its projections on z-axes of the laboratory
frame and molecular frame, respectively, and ϑ is the set of the Euler angles.
Vibrational energy levels Emν for some electronic quantum state m are depicted in
Figure 1.3.

The knowledge of interatomic potentials is necessary for studying the behavior
of interacting atoms (molecules) at different distances and at different tempera-
tures. But it must be kept in mind that the adiabatic approximation is not valid
for degenerate electronic states, which are often the case for excited electronic
states. It is also a bad approximation when the electronic terms are close to each
other. In these cases the electron-nuclear interaction terms in the coupled equations
(Equation (A3.13)) cannot be neglected. The adiabatic potential loses its physical
meaning as the potential energy for the nuclear motion. The physical and chemi-
cal phenomena associated with the degeneracy and quasi-degeneracy of electronic
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Figure 1.3 Vibrational energy levels in a potential well formed in an electronic
quantum state (m)

states are called the Jahn–Teller effect [39–43]. In Jahn–Teller systems, the adia-
batical approach cannot be applied and the role of the vibronic interactions becomes
crucial. Among such systems a very important role is played by molecular systems
with potential surfaces characterized by so-called conical intersections [44], in
which the nonadiabatic coupling terms are singular at isolated points. In the last
decade, conical intersection effects have attracted great attention in theoretical and
experimental studies as an essential aspect of various electronically nonadiabatic
processes (see reviews by Baer [45] and Yarkony [46], and references therein).

For the nondegenerate ground electronic state, the adiabatic approximation works
surprisingly well. The discussion of the accuracy of the adiabatic approximation
is presented in reviews by Kołos [47] and Rychlewski [48]. For a good check, a
most precisely calculated molecular system has to be chosen. The best choice is
the hydrogen molecule. On one hand, it is the simplest molecular system for which
the numerous precise theoretical and experimental studies have been performed.
On the other hand, it contains the lightest nuclei; so, it can be expected that the
obtained error of the adiabatic approximation will be an upper limit.

In Table 1.1, the most precise theoretical and experimental values of the dissoci-
ation energy and the ionization potential for the hydrogen molecule are presented.
The discrepancy is smaller than the experimental error. It is a great success of com-
putational chemistry based on quantum-mechanical concepts of chemical bonding.
It should be stressed that this excellent agreement between theory and experiment
is a result of more than six decades of research on both sides–theoretical and
experimental. Thus, the calculations for hydrogen are the most trustworthy and can
be used to check the adiabatic approximation.
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Table 1.1 Comparison of theoretical calculations with experimental values for the
hydrogen molecule in (in cm−1)

Theory Experiment Discrepancy

a) Dissociation energy
Kołos–Rychlewski [49] 36 118.049 0.006 ± 0.08

Wolniewicz [50] 36 118.069 0.004 ± 0.008
36 118.11 ± 0.08a

b) Ionization potential
Kołos–Rychlewski [49] 124 417.471 0.017 ± 0.017

Wolniewicz [50] 124 417.491 0.003 ± 0.017
124 417.488 ± 0.017b

aReference [51]
bReference [52]

According to the calculation of the nonadiabatic corrections to the hydro-
gen ground state dissociation energy by Wolniewicz [50, 53], the nonadia-
batic correction to the lowest vibrational level �D0 (ν = 0)nonad = 0.50 cm−1

and the maximum nonadiabatic correction was found for the vibrational level
ν = 9, �D0 (ν = 9)nonad = 5.20 cm−1. The precise value of D0 is equal to
36 118.069 cm−1 [50]. Hence, the relative error of the adiabatic approximation in
the ground state of the hydrogen molecule is �Dnonad

0 /D0 = 10−5 to 10−4. From
this follows that the accuracy of the adiabatic approximation is very high. It is con-

siderably higher than the value of the small parameter
(
me/Mp

) 1
4 = 0.15, on which

the Born–Oppenheimer adiabatic approximation [29] was based. For molecules
with heavier atoms one can expect even larger precision. But it is difficult to check
because of calculation problems.

For two atoms, the interatomic potential is represented by a potential curve
V (R). In the ground electronic state of two-atom systems, the interatomic potential
V0(R) usually has a minimum. The depth of potential well, E0, depends upon a
system under study. In covalent bonded molecules, the well depth is equal to
several electron-volts (eV) in the van der Waals dimers of noble gas atoms, it is
equal to 10−2 to 10−3 eV. The ratio of the well depths in helium and hydrogen
molecules (the two extreme cases) is about 10−4. The helium dimer was observed
experimentally only recently [54]. It is the most weakly bound molecule known
at present. Its dissociation energy (D0 = E0 − (1/2)�ω0) is equal to 1.2 mK 	
10−7 eV, while in hydrogen the dissociation energy D0 = 4.48 eV. Also the great
difference is in the optimal (equilibrium) distances: from 1.4 a0 in the hydrogen
molecule to 5.6 a0 in the helium dimer.

The potentials describing the interaction between two molecules may be, as in the
two-atom case, represented by a potential curve depending only on one variable, if
the interaction is averaged over all molecular orientations in space. This potential,
V (R), where R is the distance between the centers of masses of the molecules,
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is named the potential of intermolecular interaction, or briefly, the intermolecular
potential. When the interacting molecules are fixed in space, the intermolecular
potential, V (R,ϑ), depends on a set of Euler’s angles, ϑ , which determines the
mutual orientation of the molecules. In addition, the interaction depends on the
electronic state of the interacting systems. Therefore, for any pair of molecules
there is a set of intermolecular potentials, Vm(R, ϑ), where m labels the quantum
states of the systems.

For three atoms taking part in a substitution reaction:

A + BC −→ AB + C (1.19)

the adiabatic potential is represented by a potential surface depending on three
interatomic separations:

Vm = Vm(RAB, RBC, RAC) (1.20)

If two of the interatomic separations remain constant, the resulting potential
curve represents a cross section of this surface. Similarly to a two-atom case, in a
three-atom system there is a set of potential surfaces that depends on the quantum
states of the reacting atoms.

In a system with three (or more) atoms, there is the problem of nonadditivity.
It is necessary to study the deviations from the additive approach, in which the
potential of the system can be presented as a sum of pair potentials Vab:

V (ABC . . .) =
∑
a<b

Vab (1.21)

This problem will be discussed in Chapter 4.
As shown in the preceding text, the concept of interatomic potential is based

on the adiabatic approximation. Some authors studying the pairwise atom–atom
potentials consider them as a classical concept. This is an incorrect statement. Even
in the case where the motion of atoms is treated classically, as it is often done in the
molecular dynamic studies, the interatomic potentials applied in these approaches
have a quantum mechanical origin. The analytical form of numerous semiempirical
model potentials (see Chapter 5) is based on the analytical expressions for different
types of intermolecular forces (exchange, dispersion etc.) found by an approximate
solution of the Schrödinger equation in the adiabatic approximation.

It should be noted that the adiabatic approximation may be invalid in high-
energy collisions if the magnitude of energy is so high that the nuclear kinetic
energy operator cannot be neglected. In this case, the electrons will not be able
to adjust adiabatically to the nuclear rearrangement. In the theory of atomic colli-
sions [55, 56] it is shown that the adiabatic approximation is valid only for large
values of the so-called the Massey parameter ζmn:

ζmn = ωmna/v (1.22)

where ωmn is the frequency of electronic transitions between states m and n, v

is the velocity of the atomic motion, and a is the distance at which the adiabatic
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electronic wave function undergoes essential changes. Parameter a is defined as a
characteristic distance such that a shift by a results in an appreciable change of
the matrix element with a semiclassical analogue of the nonadiabatic operator. The
essence of the Massey criterion may be reduced to a requirement for the collision
time, ∼a/v, to be much larger than the transition time, ∼ω−1

mn, between the adia-
batic terms of the interacting system. When the equality (Equation (1.22)) breaks
down, a large probability of nonadiabatic transitions exists, that is, the mixing of
adiabatic terms of the system takes place.

In the early 1960s, the validity of applying the adiabatic approximation in elas-
tic atomic collisions was discussed in connection with the high-energy helium
(He) collision experiments by Armdur and Bertrand [57]. The experimental repul-
sive part of the He–He potential at distances R 	 0.5 Å was 9 eV lower than
published theoretical values. The accurate quantum-mechanical calculation, with
the inclusion of configuration interaction, carried out by Philipson [58], led to a
lowering of the theoretical curve by 2 to 3 eV only. It was suggested that the
adiabatic approximation breaks down in the experiment since the energy of the
helium atoms was of order of 1000 eV. However, inclusion of nonadiabatic cor-
rections resulted in an insignificant lowering of the theoretical curves, due to some
compensating factors [59]. It is instructive that the reason for the discrepancy was
found to be in the experimental measurements. After revising all the details of
the experiment, Armdur [60] obtained a good agreement between the new exper-
imental curve and the curve calculated by Philipson. Thus, the experimental data
in such elastic atomic collisions, at least in the range of energies of a few keV,
are described adequately within the frame of the adiabatic approximation. But it
can be expected that the adiabatic approach will break down for higher collision
energies.

In collision experiments with the helium beam [57], the helium atoms stayed in
the ground electronic state. So, it was the elastic scattering process. The adiabatic
approximation is not adequate for most of inelastic scattering processes (the charge
exchange, predissociation etc.) even at low energy. For a non-negligible probability
of transition from some electronic state to another, the adiabatic potential curves
have to be located at a transition point R sufficiently close to each other. Hence, the
system will correspond to quasi-degenerate case and it is the vibronic interaction
that causes such kind of inelastic transitions. This was realized in 1932 in three
independent studies: Landau [61], Zener [62] and Stueckelberg [63].

Thus, the adiabatic representation, in which the electronic Hamiltonian matrix
is diagonal, cannot be a satisfactory basis for study most inelastic scattering pro-
cesses. At present in these studies, the so-called diabatic representation is used.
It was introduced by Lichten [64] and rigorously formulated by Smith [65]. The
diabatic electronic states are defined by an unitary transformation chosen in a
such manner that the first derivative couplings in coupled equations for the nuclear
motion, Equation (A3.13), become sufficiently small to be neglected. In the diabatic
representation, the electronic Hamiltonian matrix is nondiagonal. Its nondiagonal
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elements are responsible for the transitions from one adiabatic electronic state
to another.

Analyzing the atom–atom collisions, Smith [65] considered the case with a
single internal coordinate. The multidimensional case was analyzed by Baer [66]
and Mead and Truhlar [67]. One of the last derivations of the adiabatic-to-diabatic
transformation can be found in Reference [45]. To study the topological effects in
scattering processes and nonadiabatic phenomena in many-atomic molecules, the
extended versions of the Born–Oppenheimer equations were developed [68–70];
see also Reference [45]. Vibronic dynamics is now a well elaborated and active
field of investigation [46, 71, 72].

1.4 General Classification of Intermolecular
Interactions

The classification of intermolecular interactions depends on the distance between
interacting objects; although it must be kept in mind that all types of intermolec-
ular interactions have the same physical nature: namely, the electromagnetic one.
Various types of intermolecular interactions are presented in Figure 1.4. They are

Interaction in
quasimolecule

a) Coulomb
b) Exchange

1. Direct electrosta-
    tic
2. Exchange
3. Exchange –
    polarisation
4. Charge transfer

1. Electrostatic
    multipole – multipole

2. Polarisation
    a) Induction
    b) Dispersion

3. Relativistic, magnetic

4. Retardation, electro–
    magnetic

(R           )hc
I

V

R

I II III

Figure 1.4 Classification of intermolecular interactions
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classified according to the three ranges of interatomic separation for a typical
interatomic potential. These three ranges are:

I. A range of short distances at which the potential has a repulsive
nature and the electronic exchange, due to the overlap of the molecular
electronic shells, dominates.

II. A range of intermediate distances with the van der Waals minimum,
which is a result of the balance of the repulsive and attractive forces.

III. A range of large distances at which the electronic exchange is neg-
ligible and the intermolecular forces are attractive.

Range I

In this region, the perturbation theory (PT) for calculating the intermolecular inter-
actions cannot be applied. To some extent, the interacting atoms (molecules) lose
their individuality because of a large overlap of their electronic shells. The same
variational methods, which are used for molecular calculations, can be applied to
the calculation of the total energy of interacting system, which can be considered
as a ‘supermolecule’. The interaction energy is found as a difference:

Eint = Etot −
n∑

a=1

Ea (1.23)

where Ea is the energy of isolated subsystems (molecules or atoms) that have to
be calculated at the same approximation as a whole system. In this region we
can separate only two types of interaction energies: the Coulomb energy and the
exchange energy. If we put to zero all integrals containing the exchange or overlap
of electron densities, we obtain ECoul . Then, the exchange energy is defined as the
difference:

Eexch = Eint − ECoul (1.24)

Range II

Both repulsive and attractive forces exist in this region. This causes the minimum of
intermolecular potential energy and provides a stability of the system. The magni-
tude of the interaction energy is much smaller than the self-energy of the interacting
molecules and the PT can be applied; although the electron exchange, appearing
as a consequence of the antisymmetry of the total wave function, is still large. The
standard perturbation Rayleigh–Schrödinger and Brillouin–Wigner theories (see
Section A3.3) are developed for the zero-order wave function taken as a simple
product of the wave functions of interacting atoms (molecules). In the interme-
diate distance region, the antisymmetric zero-order wave function has to be dealt
with. This leads to essential modifications of the standard perturbation schemes.
The approaches developed were named Symmetry Adapted Perturbation Theories
(SAPT): they are discussed in Section 3.2.1 (for details see References [73–75]).
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The exchange energy is separated only in the first order of SAPT. The decom-
position of Eint into a perturbation series can be written as:

Eint = ε
(1)
el + ε

(1)
exch +

∞∑
n=2

ε
(n)
pol.exch (1.25)

ε
(1)
el is the classical electrostatic interaction energy between two (or more) systems

of charges. The only difference to the classical expression is in the charge distribu-
tion: instead of point charges, ε

(1)
el contains distributed electron densities. ε

(1)
exch is

the exchange energy in the first order of PT. Its origin is based on the Pauli princi-
ple demanding the antisymmetrization of many-electron wave functions. Because
of antisymmetrization, electrons have the probability of being located on each
interacting atoms (molecules); so, they are delocalized. This is a specific quantum-
mechanical effect. Thus, the exchange interaction exists only in the framework of
the quantum-mechanical description. In the second and higher orders of SAPT, the
exchange effects cannot be separated from the polarization energy. In various for-
mulations of SAPT, the different expressions for the exchange–polarization energy
ε
(2)
pol.exch are elaborated [73].

Range III

In this region, exchange effects can be neglected. Usually, it is valid for R � 15a0.
The different types of intermolecular interactions are classified in the frame of the
standard Rayleigh–Schrödinger perturbation theory. In the second order of PT,
the polarization energy splits on the induction ε

(2)
ind and dispersion ε

(2)
disp energies.

In higher orders, some mixed term εind.disp , which results from coupling of the
induction and dispersion energies, appears. In the third order of PT, ε

(3)
ind,disp was

analyzed by Jeziorski et al. [74]. Thus, at distances where the exchange effects are
negligible, the PT expansion can be written:

Eint = ε
(1)
el +

∞∑
n=2

[
ε
(n)
ind + ε

(n)
disp

]
+

∞∑
n=3

ε
(n)
ind.disp (1.26)

What is important is that at these distances the multipole expansion of the electro-
static potential is valid. The interaction operator can be expanded in the multipole
series. As a result, ε

(1)
el represents a direct multipole–multipole electrostatic energy.

At sufficiently large distances, only the first term in the multipole expansion is
enough to describe the interaction. For polar molecules, it is the dipole term. In
this approximation, the electrostatic energy ε

(1)
el is given by the classical expression

(Equation (1.6)), but the dipole moments have to be calculated with the molecular
(atomic) electron densities.

The physical sense of the induction energy ε
(2)
ind is the same as in classical

physics (see discussion in Section 1.2). The dispersion energy is a pure quantum-
mechanical phenomenon. It originates in the quantum-mechanical fluctuations of
electronic density. The instant redistribution of electron density leads to the nonzero
mean dipole moment even in the cases when the permanent dipole moment is equal
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to zero (nonpolar molecules, noble gas atoms). This instant dipole moment induces
a dipole and more higher moments in the other molecule. In the second order of
PT, the multipole expansion of the dispersion energy ε

(2)
disp is usually written in the

following form:

ε
(2)
disp = −

∞∑
n=6

Cn

Rn
(1.27)

For atoms, the sum in Equation (1.27) contains only even powers, whereas in the
case of the interaction between molecules, it may also contain odd powers of n

(see Sections 3.1.2 and 3.1.3). The coefficients Cn are named as dispersion coeffi-
cients. For their calculation, quite sophisticated quantum-mechanical methods are
elaborated [73]. In the higher orders of PT, the interpretation of different terms in
Equation (1.26) becomes more complex. The dispersion energy in the third order of
PT, ε

(3)
disp , will be discussed in Chapter 4. This is the well-known Axilrod–Teller–

Mutto dispersion energy [76, 77].
Magnetic interactions exist at all distances, but in ranges I and II they are often

negligible in comparison with larger electrostatic interactions. On the other hand,
magnetic interactions are precisely detected by measurements of the energy level
splitting in a magnetic field in the well-elaborated methodics of electron and nuclear
paramagnetic resonances. In some special cases, the magnetic interactions become
the largest at sufficiently large distances. This is the case for oriented nonpolar
molecules possessing the quadrupole moment as the first nonvanishing multipole
moment and having, in the ground state, the total electronic spin S 
= 0. The first
term in the multipole expansion of different electrostatic intermolecular interactions
for these molecules has the following distance dependence:

∼ 1
R5 in the electrostatic energy ε

(1)
el (the quadrupole–quadrupole interaction).

∼ 1
R6 in the dispersion energy ε

(2)
disp (the dipole–dipole interaction).

∼ 1
R8 in the induction energy ε

(2)
ind (the quadrupole–induced dipole interaction).

The magnetic spin–spin interaction is relativistic one and has a dipole-dipole
distance behavior. It is ∼α2/R3, where α = 1/137 is the fine structure constant.
Although α2 is small, it is evident that the magnetic interactions become predomi-
nant with increasing intermolecular distance. The described situation is realized for
oxygen molecules absorbed on some surface. The oxygen molecule, as all homonu-
clear diatomic molecules, has no dipole moment and its ground state is triplet, that
is, the total electronic spin S = 1 [78].

At distances at which the propagation time of the interaction, R/c, is of the same
order as the average time of the electronic transitions, which is proportional to
�/I1 (where I1 is the first ionization potential), that is, R ∼ �c/I , the retardation
effect should be taken into account. Usually, this effect becomes appreciable at
R � 500 bohrs.
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Consideration of the retardation effect is important in the coagulation theory of
colloid solutions, where interactions between macroscopic bodies should be taken
into account. In such cases, the London term for the dispersion interactions, ∼1/R6,
must be replaced with the Casimir–Polder term, 1/R7 (see Section 2.5).

The classification of the intermolecular interactions presented in the preceding
text is arbitrary to a large extent since it is based on expressions of the perturbation
theory and the following question may arise: has such classification any physical
sense? Nature does not know about our perturbation theory and other approximation
methods, and real potentials do contain contributions from all types of interactions.

Fortunately, the answer to such a question is positive. The representation of the
interaction energy as a sum of various components permits the terms giving the
greatest contribution in a given range to be separated. Each term in the multipole
electrostatic interactions or in the dispersion energy series has a clear physical
sense. The magnitude of the multipole interactions depends upon the values of
multipole moments, the induction and dispersion forces are proportional to the
molecular polarizabilities, and so on. These physical quantities can be obtained
from experiments. So, each term is related to real physical properties of atoms
or molecules. Often it allows the magnitude of intermolecular interactions to be
estimated qualitatively without complex quantitative calculations.

In the next chapter the different types of intermolecular interactions are discussed
in detail.
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71. H. Köppel and W. Domske, in Encyclopedia of Computational Chemistry, P.v.R.

Schleyer (ed), John Wiley & Sons, Ltd, Chichester (1998), pp. 3166–3182.
72. A.J.C. Varandas, in Fundamental World of Quantum Chemistry, E.J. Brändas and E.S.
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74. B. Jeziorski, B. Moszyński and K. Szalewicz, Chem. Rev. 94, 1887 (1994).
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