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Derivatives Pricing, Hedging and Risk

Management:
The State of the Art

1.1 INTRODUCTION

The purpose of this chapter is to give a brief review of the basic concepts used in finance
for the purpose of pricing contingent claims. As our book is focusing on the use of copula
functions in financial applications, most of the content of this chapter should be considered
as a prerequisite to the book. Readers who are not familiar with the concepts exposed
here are referred for a detailed treatment to standard textbooks on the subject. Here our
purpose is mainly to describe the basic tools that represent the state of the art of finance,
as well as general problems, and to provide a brief, mainly non-technical, introduction to
copula functions and the reason why they may be so useful in financial applications. It
is particularly important that we address three hot issues in finance. The first is the non-
normality of returns, which makes the standard Black and Scholes option pricing approach
obsolete. The second is the incomplete market issue, which introduces a new dimension
to the asset pricing problem – that of the choice of the right pricing kernel both in asset
pricing and risk management. The third is credit risk, which has seen a huge development
of products and techniques in asset pricing.

This discussion would naturally lead to a first understanding of how copula functions can
be used to tackle some of these issues. Asset pricing and risk evaluation techniques rely
heavily on tools borrowed from probability theory. The prices of derivative products may be
written, at least in the standard complete market setting, as the discounted expected values
of their future pay-offs under a specific probability measure derived from non-arbitrage
arguments. The risk of a position is instead evaluated by studying the negative tail of the
probability distribution of profit and loss. Since copula functions provide a useful way to
represent multivariate probability distributions, it is no surprise that they may be of great
assistance in financial applications. More than this, one can even wonder why it is only
recently that they have been discovered and massively applied in finance. The answer has
to do with the main developments of market dynamics and financial products over the last
decade of the past century.

The main change that has been responsible for the discovery of copula methods in finance
has to do with the standard hypothesis assumed for the stochastic dynamics of the rates of
returns on financial products. Until the 1987 crash, a normal distribution for these returns
was held as a reasonable guess. This concept represented a basic pillar on which most of
modern finance theory has been built. In the field of pricing, this assumption corresponds
to the standard Black and Scholes approach to contingent claim evaluation. In risk manage-
ment, assuming normality leads to the standard parametric approach to risk measurement
that has been diffused by J.P. Morgan under the trading mark of RiskMetrics since 1994,
and is still in use in many financial institutions: due to the assumption of normality, the
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approach only relies on volatilities and correlations among the returns on the assets in the
portfolio. Unfortunately, the assumption of normally distributed returns has been severely
challenged by the data and the reality of the markets. On one hand, even evidence on the
returns of standard financial products such as stocks and bonds can be easily proved to
be at odds with this assumption. On the other hand, financial innovation has spurred the
development of products that are specifically targeted to provide non-normal returns. Plain
vanilla options are only the most trivial example of this trend, and the development of the
structured finance business has made the presence of non-linear products, both plain vanilla
and exotic, a pervasive phenomenon in bank balance sheets. This trend has even more been
fueled by the pervasive growth in the market for credit derivatives and credit-linked prod-
ucts, whose returns are inherently non-Gaussian. Moreover, the task to exploit the benefits
of diversification has caused both equity-linked and credit-linked products to be typically
referred to baskets of stocks or credit exposures. As we will see throughout this book, tack-
ling these issues of non-normality and non-linearity in products and portfolios composed
by many assets would be a hopeless task without the use of copula functions.

1.2 DERIVATIVE PRICING BASICS: THE BINOMIAL MODEL

Here we give a brief description of the basic pillar behind pricing techniques, that is the
use of risk-neutral probability measures to evaluate contingent claims, versus the objective
measure observed from the time series of market data. We will see that the existence of
such risk measures is directly linked to the basic pricing principle used in modern finance to
evaluate financial products. This requirement imposes that prices must ensure that arbitrage
gains, also called “free lunches”, cannot be obtained by trading the securities in the market.
An arbitrage deal is a trading strategy yielding positive returns at no risk. Intuitively, the
idea is that if we can set up two positions or trading strategies giving identical pay-offs at
some future date, they must also have the same value prior to that date, otherwise one could
exploit arbitrage profits by buying the cheaper and selling the more expensive before that
date, and unwinding the deal as soon as they are worth the same. Ruling out arbitrage gains
then imposes a relationship among the prices of the financial assets involved in the trading
strategies. These are called “fair” or “arbitrage-free” prices. It is also worth noting that these
prices are not based on any assumption concerning utility maximizing behavior of the agents
or equilibrium of the capital markets. The only requirement concerning utility is that traders
“prefer more to less”, so that they would be ready to exploit whatever arbitrage opportunity
was available in the market. In this section we show what the no-arbitrage principle implies
for the risk-neutral measure and the objective measure in a discrete setting, before extending
it to a continuous time model.

The main results of modern asset pricing theory, as well as some of its major problems,
can be presented in a very simple form in a binomial model. For the sake of simplicity,
assume that the market is open on two dates, t and T , and that the information structure
of the economy is such that, at the future time T , only two states of the world {H, L} are
possible. A risky asset is traded on the market at the current time t for a price equal to S (t),
while at time T the price is represented by a random variable taking values {S (H) , S (L)}
in the two states of the world. A risk-free asset gives instead a value equal to 1 unit of
currency at time T no matter which state of the world occurs: we assume that the price at
time t of the risk-free asset is equal to B. Our problem is to price another risky asset taking
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values {G (H) , G (L)} at time T . As we said before, the price g (t) must be consistent with
the prices S (t) and B observed on the market.

1.2.1 Replicating portfolios

In order to check for arbitrage opportunities, assume that we construct a position in �g

units of the risky security S (t) and �g units of the risk-free asset in such a way that at
time T

�gS (H) + �g = G (H)

�gS (L) + �g = G (L)

So, the portfolio has the same value of asset G at time T . We say that it is the “replicating
portfolio” of asset G. Obviously we have

�g = G (H) − G (L)

S (H) − S (L)

�g = G (L) S (H) − G (H) S (L)

S (H) − S (L)

1.2.2 No-arbitrage and the risk-neutral probability measure

If we substitute �g and �g in the no-arbitrage equation

g (t) = �gS (t) + B�g

we may rewrite the price, after naive algebraic manipulation, as

g (t) = B [QG (H) + (1 − Q) G (L)]

with

Q ≡ S (t) /B − S (L)

S (H) − S (L)

Notice that we have

0 < Q < 1 ⇔ S (L) <
S (t)

B
< S (H)

It is straightforward to check that if the inequality does not hold there are arbitrage
opportunities: in fact, if, for example, S (t) /B � S (L) one could exploit a free-lunch by
borrowing and buying the asset. So, in the absence of arbitrage opportunities it follows that
0 < Q < 1, and Q is a probability measure. We may then write the no-arbitrage price as

g (t) = BEQ [G (T )]
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In order to rule out arbitrage, then, the above relationship must hold for all the contingent
claims and the financial products in the economy. In fact, even for the risky asset S we
must have

S (t) = BEQ [S (T )]

Notice that the probability measure Q was recovered from the no-arbitrage requirement
only. To understand the nature of this measure, it is sufficient to compute the expected rate
of return of the different assets under this probability. We have that

EQ

[
G (T )

g (t)
− 1

]
= EQ

[
S (T )

S (t)
− 1

]
= 1

B
− 1 ≡ i

where i is the interest rate earned on the risk-free asset for an investment horizon from t

to T . So, under the measure Q all of the risky assets in the economy are expected to yield
the same return as the risk-free asset. For this reason such a measure is called risk-neutral
probability.

Alternatively, the measure can be characterized in a more technical sense in the following
way. Let us assume that we measure each risky asset in the economy using the risk-free
asset as numeraire. Recalling that the value of the riskless asset is B at time t and 1 at time
T , we have

g (t)

B (t)
= EQ

[
G (T )

B (T )

]
= EQ [G (T )]

A process endowed with this property (i.e. z (t) = EQ (z (T ))) is called a martingale. For
this reason, the measure Q is also called an equivalent martingale measure (EMM).1

1.2.3 No-arbitrage and the objective probability measure

For comparison with the results above, it may be useful to address the question of which
constraints are imposed by the no-arbitrage requirements on expected returns under the
objective probability measure. The answer to this question may be found in the well-known
arbitrage pricing theory (APT). Define the rates of return of an investment on assets S and
g over the horizon from t to T as

ig ≡ G (T )

g (t)
− 1 iS ≡ S (T )

S (t)
− 1

and the rate of return on the risk-free asset as i ≡ 1/B − 1.
The rate of returns on the risky assets are assumed to be driven by a linear data-generating

process

ig = ag + bgf iS = aS + bSf

where the risk factor f is taken with zero mean and unit variance with no loss of generality.

1 The term equivalent is a technical requirement referring to the fact that the risk-neutral measure and the objective
measure must agree on the same subset of zero measure events.
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Of course this implies ag = E
(
ig

)
and aS = E (iS). Notice that the expectation is now

taken under the original probability measure associated with the data-generating process
of the returns. We define this measure P . Under the same measure, of course, bg and bS

represent the standard deviations of the returns. Following a standard no-arbitrage argument
we may build a zero volatility portfolio from the two risky assets and equate its return to
that of the risk-free asset. This yields

aS − i

bS

= ag − i

bg

= λ

where λ is a parameter, which may be constant, time-varying or even stochastic, but has
to be the same for all the assets. This relationship, that avoids arbitrage gains, could be
rewritten as

E (iS) = i + λbS E
(
ig

) = i + λbg

In words, the expected rate of return of each and every risky asset under the objective
measure must be equal to the risk-free rate of return plus a risk premium. The risk premium
is the product of the volatility of the risky asset times the market price of risk parameter λ.
Notice that in order to prevent arbitrage gains the key requirement is that the market price
of risk must be the same for all of the risky assets in the economy.

1.2.4 Discounting under different probability measures

The no-arbitrage requirement implies different restrictions under the objective probability
measures. The relationship between the two measures can get involved in more complex
pricing models, depending on the structure imposed on the dynamics of the market price
of risk. To understand what is going on, however, it may be instructive to recover this
relationship in a binomial setting. Assuming that P is the objective measure, one can easily
prove that

Q = P − λ
√

P (1 − P )

and the risk-neutral measure Q is obtained by shifting probability from state H to state L.
To get an intuitive assessment of the relationship between the two measures, one could

say that under risk-neutral valuation the probability is adjusted for risk in such a way as
to guarantee that all of the assets are expected to yield the risk-free rate; on the contrary,
under the objective risk-neutral measure the expected rate of return is adjusted to account
for risk. In both cases, the amount of adjustment is determined by the market price of risk
parameter λ.

To avoid mistakes in the evaluation of uncertain cash flows, it is essential to take into
consideration the kind of probability measure under which one is working. In fact, the
discount factor applied to expected cash flows must be adjusted for risk if the expectation
is computed under the objective measure, while it must be the risk-free discount factor if
the expectation is taken under the risk-neutral probability. Indeed, one can also check that

g (t) = E [G (T )]

1 + i + λbg

= EQ [G (T )]

1 + i
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and using the wrong interest rate to discount the expected cash flow would get the wrong
evaluation.

1.2.5 Multiple states of the world

Consider the case in which three scenarios are possible at time T , say {S (HH) , S (HL),
S (LL)}. The crucial, albeit obvious, thing to notice is that it is not possible to replicate an
asset by a portfolio of only two other assets. To continue with the example above, whatever
amount �g of the asset S we choose, and whatever the position of �g in the risk-free asset,
we are not able to perfectly replicate the pay-off of the contract g in all the three states
of the world: whatever replicating portfolio was used would lead to some hedging error.
Technically, we say that contract g is not attainable and we have an incomplete market
problem. The discussion of this problem has been at the center of the analysis of modern
finance theory for some years, and will be tackled in more detail below. Here we want to
stress in which way the model above can be extended to this multiple scenario setting. There
are basically two ways to do so. The first is to assume that there is a third asset, whose
pay-off is independent of the first two, so that a replicating portfolio can be constructed
using three assets instead of two. For an infinitely large number of scenarios, an infinitely
large set of independent assets is needed to ensure perfect hedging. The second way to go
is to assume that the market for the underlying opens at some intermediate time τ prior to
T and the underlying on that date may take values {S (H) , S (L)}. If this is the case, one
could use the following strategy:

• Evaluate g (τ) under both scenarios {S (H) , S (L)}, yielding {g (H) , g (L)}: this will result
in the computation of the risk-neutral probabilities {Q (H) , Q (L)} and the replicating
portfolios consisting of {�g (H), �g (L)} units of the underlying and {�g (H) , �g (L)}
units of the risk-free asset.

• Evaluate g (t) as a derivative product giving a pay-off {g (H) , g (L)} at time τ , depending
on the state of the world: this will result in a risk-neutral probability Q, and a replicating
portfolio with �g units of the underlying and �g units of the risk-free asset.

The result is that the value of the product will be again set equal to its replicating portfolio

g (t) = �gS (t) + B�g

but at time τ it will be rebalanced, depending on the price observed for the underlying
asset. We will then have

g (H) = �g (H) S (H) + B�g (H)

g (L) = �g (L) S (L) + B�g (L)

and both the position on the underlying asset and the risk-free asset will be changed fol-
lowing the change of the underlying price. We see that even though we have three possible
scenarios, we can replicate the product g by a replicating portfolio of only two assets, thanks
to the possibility of changing it at an intermediate date. We say that we follow a dynamic
replication trading strategy, opposed to the static replication portfolio of the simple example
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above. The replication trading strategy has a peculiar feature: the value of the replicating
portfolio set up at t and re-evaluated using the prices of time τ is, in any circumstances,
equal to that of the new replicating portfolio which will be set up at time τ . We have in
fact that

�gS (H) + �g = g (H) = �g (H) S (H) + B�g (H)

�gS (L) + �g = g (L) = �g (L) S (L) + B�g (L)

This means that once the replicating portfolio is set up at time t , no further expense or
withdrawal will be required to rebalance it, and the sums to be paid to buy more of an
asset will be exactly those made available by the selling of the other. For this reason the
replicating portfolio is called self-financing.

1.3 THE BLACK–SCHOLES MODEL

Let us think of a multiperiod binomial model, with a time difference between one date and
the following equal to h. The gain or loss on an investment on asset S over every period
will be given by

S (t + h) − S (t) = iS (t) S (t)

Now assume that the rates of return are serially uncorrelated and normally distributed as

iS (t) = µ∗ + σ ∗ε (t)

with µ∗ and σ ∗ constant parameters and ε (t) ∼ N (0, 1), i.e. a series of uncorrelated stan-
dard normal variables. Substituting in the dynamics of S we get

S (t + h) − S (t) = µ∗S (t) + σ ∗S (t) ε (t)

Taking the limit for h that tends to zero, we may write the stochastic dynamics of S in
continuous time as

dS (t) = µS (t) dt + σS (t) dz (t)

The stochastic process is called geometric brownian motion, and it is a specific case of a
diffusive process. z (t) is a Wiener process, defined by dz (t) ∼ N (0, dt) and the terms µS (t)

and σS (t) are known as the drift and diffusion of the process. Intuitively, they represent
the expected value and the volatility (standard deviation) of instantaneous changes of S (t).

Technically, a stochastic process in continuous time S (t) , t � T , is defined with respect
to a filtered probability space {�, �t , P }, where �t = σ(S(u), u � t) is the smallest σ -field
containing sets of the form {a � S(u) � b}, 0 � u � t : more intuitively, �t represents the
amount of information available at time t .

The increasing σ -fields {�t } form a so-called filtration F :

�0 ⊂ �1 ⊂ · · · ⊂ �T

Not only is the filtration increasing, but �0 also contains all the events with zero measure;
and these are typically referred to as “the usual assumptions”. The increasing property
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corresponds to the fact that, at least in financial applications, the amount of information is
continuously increasing as time elapses.

A variable observed at time t is said to be measurable with respect to �t if the set of
events, such that the random variable belongs to a Borel set on the line, is contained in
�t , for every Borel set: in other words, �t contains all the amount of information needed
to recover the value of the variable at time t . If a process S (t) is measurable with respect
to �t for all t � 0, it is said to be adapted with respect to �t . At time t , the values of a
variable at any time τ > t can instead be characterized only in terms of the last object, i.e.
the probability measure P , conditional on the information set �t .

In this setting, a diffusive process is defined, assuming that the limit of the first and
second moments of S (t + h) − S (t) exist and are finite, and that finite jumps have zero
probability in the limit. Technically,

lim
h→0

1

h
E [S (t + h) − S (t) | S (t) = S] = µ (S, t)

lim
h→0

1

h
E

[
[S (t + h) − S (t)]2 | S (t) = S

]
= σ 2 (S, t)

and

lim
h→0

1

h
Pr (|S (t + h) − S (t)| > ε | S (t) = S) = 0

Of course the moments in the equations above are tacitly assumed to exist. For further and
detailed discussion of the matter, the reader is referred to standard textbooks on stochastic
processes (see, for example, Karlin & Taylor, 1981).

1.3.1 Ito’s lemma

A paramount result that is used again and again in financial applications is Ito’s lemma.
Say y (t) is a diffusive stochastic process

dy (t) = µy dt + σy dz (t)

and f (y, t) is a function differentiable twice in the first argument and once in the second.
Then f also follows a diffusive process

df (y, t) = µf dt + σf dz (t)

with drift and diffusion terms given by

µf = ∂f

∂t
+ ∂f

∂y
µy + 1

2

∂2f

∂y2
σ 2

y

σf = ∂f

∂y
σy
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Example 1.1 Notice that, given

dS (t) = µS (t) dt + σS (t) dz (t)

we can set f (S, t) = ln S (t) to obtain

d ln S (t) = (µ − 1
2σ 2) dt + σdz (t)

If µ and σ are constant parameters, it is easy to obtain

ln S (τ) | �t ∼ N(ln S (t) + (µ − 1
2σ 2) (τ − t) , σ 2 (τ − t))

where N (m, s) is the normal distribution with mean m and variance s. Then, Pr (S (τ ) | �t )

is described by the lognormal distribution.

It is worth stressing that the geometric brownian motion assumption used in the
Black–Scholes model implies that the log-returns on the asset S are normally distributed,
and this is the same as saying that their volatility is assumed to be constant.

1.3.2 Girsanov theorem

A second technique that is mandatory to know for the application of diffusive processes
to financial problems is the result known as the Girsanov theorem (or Cameron–Martin–
Girsanov theorem). The main idea is that given a Wiener process z (t) defined under the
filtration {�, �t , P } we may construct another process z̃ (t) which is a Wiener process under
another probability space {�, �t , Q}. Of course, the latter process will have a drift under
the original measure P . Under such measure it will be in fact

d̃z (t) = dz (t) + γ dt

for γ deterministic or stochastic and satisfying regularity conditions. In plain words, chang-
ing the probability measure is the same as changing the drift of the process.

The application of this principle to our problem is straightforward. Assume there is an
opportunity to invest in a money market mutual fund yielding a constant instantaneous risk-
free yield equal to r . In other words, let us assume that the dynamics of the investment in
the risk-free asset is

dB (t) = rB (t)

where the constant r is also called the interest rate intensity (r ≡ ln (1 + i)). We saw before
that under the objective measure P the no-arbitrage requirement implies

E

[
dS (t)

S (t)

]
= µ dt = (r + λσ) dt
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where λ is the market price of risk. Substituting in the process followed by S (t) we have

dS (t) = (r + λσ) S (t) dt + σS (t) dz (t)

= S (t) (r dt + σ (dz (t) + λ dt))

= S (t) (r dt + σ d̃z (t))

where d̃z (t) = dz (t) + λ dt is a Wiener process under some new measure Q. Under such
a measure, the dynamics of the underlying is then

dS (t) = rS (t) dt + σS (t) d̃z (t)

meaning that the instantaneous expected rate of the return on asset S (t) is equal to the
instantaneous yield on the risk-free asset

EQ

[
dS (t)

S (t)

]
= r dt

i.e. that Q is the so-called risk-neutral measure. It is easy to check that the same holds
for any derivative written on S (t). Define g (S, t) the price of a derivative contract giving
pay-off G (S (T ) , T ). Indeed, using Ito’s lemma we have

dg (t) = µgg (t) dt + σgg (t) dz (t)

with

µgg = ∂g

∂t
+ ∂g

∂S
(r + λσ) S (t) + 1

2

∂2g

∂S2
σ 2 (t) S2

σgg = ∂g

∂S
σ

Notice that under the original measure we then have

dg (t) =
[

∂g

∂t
+ ∂g

∂S
µS (t) + 1

2

∂2g

∂S2
σ 2 (t) S2

]
dt + ∂g

∂S
σ dz (t)

However, the no-arbitrage requirement implies

µgg = ∂g

∂t
+ ∂g

∂S
(r + λσ) S (t) + 1

2

∂2g

∂S2
σ 2 (t) S2 = rg + λ

∂g

∂S
σ

so it follows that

∂g

∂t
+ ∂g

∂S
rS (t) + 1

2

∂2g

∂S2
σ 2 (t) S2 = rg

This is the fundamental partial differential equation (PDE) of the Black–Scholes model.
Notice that by substituting this result into the risk-neutral dynamics of g under measure Q

we get

dg (t) = rg (t) dt + ∂g

∂S
σ d̃z (t)
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and the product g is expected to yield the instantaneous risk-free rate. We reach the con-
clusion that under the risk-neutral measure Q

EQ

[
dS (t)

S (t)

]
= EQ

[
dg (t)

g (t)

]
= r dt

that is, all the risky assets are assumed to yield the instantaneous risk-free rate.

1.3.3 The martingale property

The price of any contingent claim g can be recovered solving the fundamental PDE. An
alternative way is to exploit the martingale property embedded in the measure Q. Define Z as
the value of a product expressed using the riskless money market account as the numeraire,
i.e. Z (t) ≡ g (t) /B (t). Given the dynamics of the risky asset under the risk-neutral measure
Q we have that

dS (t) = rS (t) dt + σS (t) d̃z (t)

dB (t) = rB (t) dt

and it is easy to check that

dZ (t) = σZ (t) d̃z (t)

The process Z (t) then follows a martingale, so that EQ (Z (T )) = Z (t). This directly
provides us with a pricing formula. In fact we have

Z (t) = g (S, t)

B (t)
= EQ (Z (T )) = EQ

(
G (S, T )

B (T )

)
Considering that B (T ) is a deterministic function, we have

g (S, t) = B (t)

B (T )
EQ (G (S, T )) = exp (−r (T − t)) EQ (G (S, T ))

The price of a contingent claim is obtained by taking the relevant expectation under the
risk-neutral measure and discounting it back to the current time t . Under the assumption of
log-normal distribution of the future price of the underlying asset S, we may recover for
instance the basic Black–Scholes formula for a plain vanilla call option

CALL(S, t; K, T ) = S (t)
 (d1) − exp [−r (T − t)] K
 (d2)

d1 = ln (S (t) /K) + (
r + σ 2/2

)
(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t

where 
 (x) is the standard normal distribution function evaluated at x


 (x) = 1

2π

∫ x

−∞
exp

[
−u2

2

]
du
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The formula for the put option is, instead,

PUT(S, t; K, T ) = −S (t)
 (−d1) + exp [−r (T − t)] K
 (−d2)

Notice that a long position in a call option corresponds to a long position in the underlying
and a debt position, while a long position in a put option corresponds to a short position in
the underlying and an investment in the risk-free asset. As S (t) tends to infinity, the value
of a call tends to that of a long position in a forward and the value of the put tends to zero;
as S (t) tends to zero, the value of the put tends to the value of a short position in a forward
and the price of the call option tends to zero.

The sensitivity of the option price with respect to the underlying is called delta (�) and
is equal to 
 (d1) for the call option and 
 (d1) − 1 for the put. The sensitivity of the
delta with respect to the underlying is called gamma (�), and that of the option price with
respect to time is called theta (
). These derivatives, called the greek letters, can be used
to approximate, in general, the value of any derivative contract by a Taylor expansion as

g (S (t + h) , t + h) 
 g (S (t) , t) + �g (S (t + h) − S (t))

+ 1
2�g (S (t + h) − S (t))2 + 
gh

Notice that the greek letters are linked one to the others by the fundamental PDE ruling
out arbitrage. Indeed, this condition can be rewritten as


g + �grS (t) + 1
2�gσ

2 (t) S2 − rg = 0

1.3.4 Digital options

A way to understand the probabilistic meaning of the Black–Scholes formula is to compute
the price of digital options. Digital options pay a fixed sum or a unit of the underlying if
the underlying asset is above some strike level at the exercise date. Digital options, which
pay a fixed sum, are called cash-or-nothing (CoN) options, while those paying the asset are
called asset-or-nothing (AoN) options. Under the log-normal assumption of the conditional
distribution of the underlying held under the Black–Scholes model, we easily obtain

CoN(S, t; K, T ) = exp [−r (T − t)] 
 (d2)

The asset-or-nothing price can be recovered by arbitrage observing that at time T

CALL(S, T ; K, T ) + K CoN(S, T ; K, T ) = 1{S(T )>K}S (T ) = AoN(S, T ; K, T )

where 1{S(T )>K} is the indicator function assigning 1 to the case S (T ) > K . So, to avoid
arbitrage we must have

AoN(S, t; K, T ) = S (t)
 (d1)

Beyond the formulas deriving from the Black–Scholes model, it is important to stress
that this result – that a call option is the sum of a long position in a digital asset-or-nothing
option and a short position in K cash-or-nothing options – remains true for all the option
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pricing models. In fact, this result directly stems from the no-arbitrage requirement imposed
in the asset pricing model. The same holds for the result (which may be easily verified) that

− exp [r (T − t)]
∂CALL(S, t; K, T )

∂K
= 
 (d2) = Pr (S (T ) > K)

where the probability is computed under measure Q. From the derivative of the call option
with respect to the strike price we can then recover the risk-neutral probability of the
underlying asset.

1.4 INTEREST RATE DERIVATIVES

The valuation of derivatives written on fixed income products or interest rates is more
involved than the standard Black–Scholes model described above, even though all models
are based on the same principles and techniques of arbitrage-free valuation presented above.
The reason for this greater complexity is that the underlying asset of these products is the
curve representing the discounting factors of future cash-flows as a function of maturity T .
The discount factor D(t, T ) of a unit cash-flow due at maturity T , evaluated at current time
t , can be represented as

D (t, T ) = exp [−r (t, T ) (T − t)]

where r (t, T ) is the continuously compounded spot rate or yield to maturity. Alternatively,
the discount factor can be characterized in terms of forward rates, as

D (t, T ) = exp

[
−

∫ T

t

f (t, u) du

]
Term structure pricing models are based on stochastic representations of the spot or forward
yield curve.

1.4.1 Affine factor models

The classical approach to interest rate modeling is based on the assumption that the stochastic
dynamics of the curve can be represented by the dynamics of some risk factors. The yield
curve is then recovered endogenously from their dynamics. The most famous models are
due to Vasicek (1977) and Cox, Ingersoll and Ross (1985). They use a single risk factor,
which is chosen to be the intercept of the yield curve – that is, the instantaneous interest
rate. While this rate was assumed to be constant under the Black–Scholes framework, now
it is assumed to vary stochastically over time, so that the value of a European contingent
claim g, paying G(T ) at time T , is generalized to

g (t) = EQ

[
exp

[
−

∫ T

t

r (u) du

]
G (T ) | �t

]
where the expectation is again taken under the risk-neutral measure Q. Notice that for the
discount factor D (t, T ) we have the pay-off D (T , T ) = 1, so that

D (t, T ) = EQ

[
exp

[
−

∫ T

t

r (u) du

]∣∣∣∣ �t

]
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We observe that even if the pay-off is deterministic, the discount factor is stochastic, and
it is a function of the instantaneous interest rate r(t). Let us assume that the dynamics of
r(t) under the risk-neutral measure is described by the diffusion process

dr (t) = µr dt + σr d̃z (t)

and let us write the dynamics of the discount factor, under the same measure Q, as

dD (t, T ) = r (t) D (t, T ) dt + σT D (t, T ) d̃z (t)

where σT is the volatility of instantaneous percentage changes of the discount factor. Apply-
ing Ito’s lemma we have

r (t) D (t, T ) = ∂D (t, T )

∂t
+ µr

∂D (t, T )

∂r
+ 1

2
σ 2

r

∂2D (t, T )

∂r2

which is a partial differential equation ruling out arbitrage opportunities.
It may be proved that in the particular case in which

µr = α + βr

σ 2
r = γ + ζ r

that is, in the case in which both the drift and the instantaneous variance are linear in the
risk factor, the solution is

D (t, T ) = exp [A (T − t) − M (T − t) r (t)]

These models are called affine factor models, because interest rates are affine functions
of the risk factor.

The general shape of the instantaneous drift used in one-factor affine models is µr =
k (θ − r), so that the interest rate is recalled toward a long run equilibrium level θ : this
feature of the model is called mean reversion. Setting ζ = 0 and γ > 0 then leads to the
Vasicek model, in which the conditional distribution of the instantaneous interest rate is
normal. Alternatively, assuming ζ > 0 and γ = 0 then leads to the famous Cox, Ingersoll
and Ross model: the stochastic process followed by the instantaneous interest rate is a square
root process, and the conditional distribution is non-central chi-square. The case in which
ζ > 0 and γ > 0 is a more general process studied in Pearson and Sun (1994). Finally, the
affine factor model result was proved in full generality with an extension to an arbitrary
number of risk factors by Duffie and Kan (1996).

Looking at the solution for the discount factor D (t, T ), it is clear that the function
M (T − t) is particularly relevant, because it represents its sensitivity to the risk factor r(t).
In fact, using Ito’s lemma we may write the dynamics of D (t, T ) under the risk-neutral
measure as

dD (t, T ) = r (t) D (t, T ) dt + σT M (T − t)D (t, T ) d̃z (t)
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1.4.2 Forward martingale measure

Consider now the problem of pricing a contingent claim whose pay-off is a function of the
interest rate. Remember that, differently from the Black–Scholes framework, the discount
factor to be applied to the contingent claim is now stochastic and, if the underlying is an
interest rate sensitive product, it is not independent from the pay-off. The consequence is
that the discount factor and the expected pay-off under the risk-neutral measure cannot be
factorized. To make a simple example, consider a call option written on a zero coupon bond
maturing at time T , for strike K and exercise time τ . We have:

CALL (D (t, T ) , t; τ, K) = EQ

[
exp

[
−

∫ τ

t

r (u) du

]
max [D (τ, T ) − K, 0]| �t

]
�= EQ

[
exp

[
−

∫ τ

t

r (u) du

]∣∣∣∣ �t

]
EQ [max [D (τ, T ) − K, 0]| �t ]

and the price cannot be expressed as the product of the discount factor D (t, τ ) and the
expected pay-off. Factorization can, however, be achieved through a suitable change of
measure.

Consider the discount factors evaluated at time t for one unit of currency to be received at
time τ and T respectively, with τ < T . Their dynamics under the risk-neutral measure are

dD (t, T ) = r (t)D (t, T ) dt + σT D (t, T ) d̃z (t)

dD (t, τ ) = r (t)D (t, τ ) dt + στD (t, τ ) d̃z (t)

We can define D (t, τ, T ) as the forward price set at time t for an investment starting
at time τ and yielding one unit of currency at time T . A standard no-arbitrage argument
yields

D (t, τ, T ) = D (t, T )

D (t, τ )

The dynamics of the forward price can be recovered by using Ito’s division rule.

Remark 1.1 [Ito’s division rule] Assume two diffusive processes X (t) and Y (t) follow-
ing the dynamics

dX (t) = µXX (t) dt + σXX (t) dz (t)

dY (t) = µY Y (t) dt + σY Y (t) dz (t)

Then, the process F (t) ≡ X (t) /Y (t) follows the dynamics

dF (t) = µF F (t) dt + σF F (t) dz (t)

with
σF = σX − σY

µF = µX − µY − σF σY
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Applying this result to our problem yields immediately

dD (t, τ, T ) = −σF στD (t, τ, T ) dt + σF D (t, τ, T ) d̃z (t)

σF = σT − στ

We may now use the Girsanov theorem to recover a new measure Qτ under which
d̂z = d̃z − στ dt is a Wiener process. We have then

dD (t, τ, T ) = σF D (t, τ, T ) d̂z (t)

and the forward price is a martingale. Under such a measure, the forward price of any future
contract is equal to the expected spot value. We have

D (t, τ, T ) = EQτ
[(D (τ, τ, T )) | �t ] = EQτ

[(D (τ, T )) | �t ]

and the measure Qτ is called the forward martingale measure. This result, which was first
introduced by Geman (1989) and Jamshidian (1989), is very useful to price interest rate
derivatives. In fact, consider a derivative contract g, written on D (t, T ), promising the
pay-off G (D (τ, T ) , τ ) at time τ . As g (t) /D (t, τ ) is a martingale, we have immediately

g (D (t, τ, T ) , t) = P (t, τ )EQτ
[G (D (τ, T ) , τ ) | �t ]

and the factorization of the discount factor and expected pay-off is now correct.
To conclude, the cookbook recipe emerging from the forward martingale approach is that

the forward price must be considered as the underlying asset of the derivative contract,
instead of the spot.

1.4.3 LIBOR market model

While the standard classical interest rate pricing models are based on the dynamics of
instantaneous spot and forward rates, the market practice is to refer to observed interest
rates for investment over discrete time periods. In particular, the reference rate mostly used
for short-term investments and indexed products is the 3-month LIBOR rate. Moreover,
under market conventions, interest rates for investments below the one-year horizon are
computed under simple compounding. So, the LIBOR interest rate for investment from t to
T is defined as

L (t, T ) = 1

T − t

(
1

D (t, T )
− 1

)
The corresponding forward rate is defined as

L (t, τ, T ) = 1

T − τ

(
1

D (t, τ, T )
− 1

)
= 1

T − τ

(
D (t, τ )

D (t, T )
− 1

)
Notice that, under the forward martingale measure QT , we have immediately

L (t, τ, T ) = EQT
[L (τ, τ, T ) | �t ] = EQT

[L (τ, T ) | �t ]
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The price of a floater, i.e. a bond whose coupon stream is indexed to the LIBOR, is then
evaluated as

FLOATER(t, tN ) =
N∑

j=1

δiEQ[D(t, tj )L(tj−1, tj ) | �t ] + P (t, tN )

=
N∑

j=1

δiD(t, tj )EQtj
[L(tj−1, tj ) | �t ] + P (t, tN )

=
N∑

j=1

D(t, tj )δiL(t, tj−1, tj ) + P (t, tN)

where the set {t, t1, t2, . . . , tN } contains the dates at which a coupon is reset and the previous
one is paid and δj = tj − tj−1. Consider now a stream of call options written on the index
rate for each coupon period. This product is called a cap, and the price is obtained, assuming
a strike rate LCAP, from

CAP(t, t1, tN ) =
N∑

j=2

δiEQ[D(t, tj ) max(L(tj−1, tj ) − LCAP), 0 | �t ]

=
N∑

j=2

δiD(t, tj )EQtj
[max(L(tj−1, tj ) − LCAP), 0 | �t ]

and each call option is called caplet. By the same token, a stream of put options are called
floor, and are evaluated as

FLOOR(t, t1, tN ) =
N∑

j=1

δ2D(t, tj )EQtj
[max(LFLOOR − L(tj−1, tj )), 0 | �t ]

where LFLOOR is the strike rate. The names cap and floor derive from the results, which
may be easily verified

L(tj , tj−1) − CAPLET(tj , tj−1) = min(L(tj−1, tj ), LCAP)

L(tj , tj−1) + FLOORLET(tj , tj−1) = max(L(tj−1, tj ), LFLOOR)

Setting a cap and a floor amounts to building a collar, that is a band in which the coupon
is allowed to float according to the interest rate. The price of each caplet and floorlet can
then be computed under the corresponding forward measure. Under the assumption that each
forward rate is log-normally distributed, we may again recover a pricing formula largely
used in the market, known as Black’s formula.

CAPLET(t; tj , tj−1) = D(t, tj )EQtj
[max(L(tj−1, tj ) − LCAP), 0 | �t ]

= D(t, tj ){EQtj
[L(tj−1, tj ) | �t ]N(d1) − LCAPN(d2)}

= D(t, tj )L(t, tj−1, tj )N(d1) − D(t, tj )LCAPN(d2)
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d1 =
ln(L(t, tj−1, tj )/LCAP) + σ 2

j (tj − t)

σj
√

tj − t

d2 = d1 − σj

√
tj − t

where σj is the instantaneous volatility of the logarithm of the forward rate L
(
t, tj−1, tj

)
.

The floorlet price is obtained by using the corresponding put option formula

FLOORLET(t; tj , tj−1) = −D(t, tj )L(t, tj−1, tj )N(−d1) + D(t, tj )LCAPN(−d2)

d1 =
ln(L(t, tj−1, tj )/LFLOOR) + σ 2

j (tj − t)

σj
√

tj − t

d2 = d1 − σj

√
tj − t

1.5 SMILE AND TERM STRUCTURE EFFECTS OF VOLATILITY

The Black–Scholes model, which, as we saw, can be applied to the pricing of contingent
claims on several markets, has been severely challenged by the data. The contradiction
emerges from a look at the market quotes of options and a comparison with the implied
information, that is, with the dynamics of the underlying that would make these prices
consistent. In the Black–Scholes setting, this information is collected in the same parameter,
volatility, which is assumed to be constant both across time and different states of the world.
This parameter, called implied volatility, represents a sufficient statistic for the risk-neutral
probability in the Black–Scholes setting: the instantaneous rate of returns on the assets are
in fact assumed normal and with first moments equal to the risk-free rate. Contrary to this
assumption, implied volatility is typically different both across different strike prices and
different maturities. The first evidence is called the smile effect and the second is called the
volatility term structure.

Non-constant implied volatility can be traced back to market imperfections or it may
actually imply that the stochastic process assumed for the underlying asset is not borne out
by the data, namely that the rate of return on the assets is not normally distributed. The
latter interpretation is indeed supported by a long history of evidence on non-normality of
returns on almost every market. This raises the question of which model to adopt to get a
better fit of the risk-neutral distribution and market data.

1.5.1 Stochastic volatility models

A first approach is to model volatility as a second risk factor affecting the price of the
derivative contract. This implies two aspects, which may make the model involved. The
first is the dependence structure between volatility and the underlying. The second is that
the risk factor represented by volatility must be provided with a market price, something
that makes the model harder to calibrate.

A model that is particularly easy to handle, and reminds us of the Hull and White (1987)
model, could be based on the assumption that volatility risk is not priced in the market,
and volatility is orthogonal to the price of the underlying. The idea is that conditional on a
given volatility parameter taking value s, the stochastic process followed by the underlying
asset follows a geometric brownian motion. The conditional value of the call would then
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yield the standard Black–Scholes solution. As volatility is stochastic and is not known at
the time of evaluation, the option is priced by integrating the Black–Scholes formula times
the volatility density across its whole support. Analytically, the pricing formula for a call
option yields, for example,

CALL (S(t), t, σ (t); K, T ) =
∫ ∞

0
CALLBS (S, t; σ(t) = s, K, T ) qσ (s | �t ) ds

where CALLBS denotes the Black–Scholes formula for call options and qσ (s | �t ) repre-
sents the volatility conditional density.

Extensions of this model account for a dependence structure between volatility and the
underlying asset. A good example could be to model instantaneous variance as a square
root process, to exploit its property to be defined on the non-negative support only and
the possibility, for some parameter configurations, of making zero volatility an inaccessible
barrier. Indeed, this idea is used both in Heston (1993) and in Longstaff and Schwartz
(1992) for interest rate derivatives.

1.5.2 Local volatility models

A different idea is to make the representation of the diffusive process more general by
modeling volatility as a function of the underlying asset and time. We have then, under the
risk-neutral measure

dS (t) = rS (t) dt + σ (S, t) S (t) d̃z (t)

The function σ (S, t) is called the local volatility surface and should then be calibrated in
such a way as to produce the smile and volatility term structure effects actually observed
on the market. A long-dated proposal is represented by the so-called constant elasticity of
variance (CEV) models, in which

dS (t) = rS (t) dt + σS (t)α d̃z (t)

Alternative local volatility specifications were proposed to comply with techniques that are
commonly used by practitioners in the market to fit the smile. An idea is to resort to the so-
called mixture of log-normal or shifted log-normal distributions. Intuitively, this approach
leads to closed form valuations. For example, assuming that the risk-neutral probability
distribution Q is represented by a linear combination of n log-normal distributions Qj

Q (S (T ) | �t ) =
n∑

j=1

λjQj

(
Xj (T ) | �t

)
where Xj are latent random variables drawn from log-normal distributions Qj , correspond-
ing to geometric brownian motions with volatility σj . It may be checked that the price of
a call option in this model can be recovered as

CALL (S(t), t; K, T ) =
n∑

j=1

λj CALLBS
(
Xj, t; K, T

)
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Brigo and Mercurio (2001) provide the corresponding local volatility specification corre-
sponding to this model, obtaining

dS(t) = rS(t) dt +
√√√√∑n

j=1 σ 2
j λjqj (Xj (T ) | �t )∑n

j=1 λjqj (Xj (T ) | �t )
S(t) d̃z(t)

where qj

(
Xj (T ) | �t

)
are the densities corresponding to the distribution functions Qj .

Once the mixture weights λj are recovered from observed plain vanilla option prices,
the corresponding dynamics of the underlying asset under the risk-neutral measure can
be simulated in order to price exotic products.

1.5.3 Implied probability

A different idea is to use non-parametric techniques to extract general information con-
cerning the risk-neutral probability distribution and dynamics implied by observed options
market quotes. The concept was first suggested by Breeden and Litzenberger (1978) and
pushes forward the usual implied volatility idea commonly used in the Black–Scholes
framework. This is the approach that we will use in this book.

The basic concepts stem from the martingale representation of option prices. Take, for
example, a call option

CALL (S, t; K, T ) = exp [−r (T − t)] EQ [max (S (T ) − K, 0)]

By computing the derivative of the pricing function with respect to the strike K we easily
obtain

∂CALL (S, t; K, T )

∂K
= − exp [−r (T − t)] (1 − Q (K | �t ))

where Q(K | �t ) is the conditional distribution function under the risk-neutral measure.
Defining

Q (K | �t ) ≡ 1 − Q (K | �t )

that is, the probability corresponding to the complementary event Pr (S (T ) > K), we may
rewrite

Q(K | �t ) = − exp [r (T − t)]
∂CALL (S, t; K, T )

∂K

So, the risk-neutral probability of exercise of the call option is recovered from the forward
value of the derivative of the call option, apart from a change of sign. The result can be
immediately verified in the Black–Scholes model, where we easily compute Q(K | �t ) =
N (d2 (K)).

Remark 1.2 Notice that by integrating the relationship above from K to infinity, the price
of the call option can also be written as

CALL (S, t; K, T ) = exp [−r (T − t)]
∫ ∞

K

Q(u | �t ) du
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where we remark that the cumulative probability, rather than the density, appears in the
integrand. As we will see, this pricing representation will be used again and again throughout
this book.

Symmetric results hold for put prices which, in the martingale representation, are writ-
ten as

PUT (S, t; K, T ) = exp [−r (T − t)] EQ [max (K − S (T ) , 0)]

Computing the derivative with respect to the strike and reordering terms we have

Q (K | �t ) = exp [r (T − t)]
∂PUT (S, t; K, T )

∂K

that is, the implied risk-neutral distribution. Again, we may check that, under the standard
Black–Scholes setting, we obtain

Q (K | �t ) = N (−d2 (K)) = 1 − N (d2 (K))

Furthermore, integrating from zero to K we have

PUT (S, t; K, T ) = exp [−r (T − t)]
∫ K

0
Q (u | �t ) du

Finally, notice that the density function can be obtained from the second derivatives of the
put and call prices. We have

q (K | �t ) ≡ ∂Q (K | �t )

∂K
= exp [r (T − t)]

∂2PUT (S, t; K, T )

∂K2

q (K | �t ) ≡ −∂Q (K | �t )

∂K
= exp [r (T − t)]

∂2CALL (S, t; K, T )

∂K2

The strength of these results stems from the fact that they directly rely on the no-arbitrage
requirement imposed by the martingale relationship. In this sense, they are far more general
than the assumptions underlying the Black–Scholes setting. Indeed, if the assumptions
behind the Black–Scholes model were borne out by the data, the results above would be of
little use, as all the information sufficient to characterize the risk-neutral distribution would
be represented by the volatility implied by the prices. If the price distribution is not log-
normal, these results are instead extremely useful, enabling one to extract the risk-neutral
probability distribution, rather that its moments, directly from the option prices.

1.6 INCOMPLETE MARKETS

The most recent challenge to the standard derivative pricing model, and to its basic structure,
is represented by the incomplete market problem. A brief look over the strategy used to
recover the fair price of a derivative contract shows that a crucial role is played by the
assumption that the future value of each financial product can be exactly replicated by
some trading strategy. Technically, we say that each product is attainable and the market is
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complete. In other words, every contingent claim is endowed with a perfect hedge. Both in
the binomial and in the continuous time model we see that it is this assumption that leads
to two strong results. The first is a unique risk-neutral measure and, through that, a unique
price for each and every asset in the economy. The second is that this price is obtained with
no reference to any preference structure of the agents in the market, apart from the very
weak (and realistic) requirement that they “prefer more to less”.

Unfortunately, the completeness assumption has been fiercely challenged by the market.
Every trader has always been well aware that no perfect hedge exists, but the structure of
derivatives markets nowadays has made consideration of this piece of truth unavoidable.
Structured finance has brought about a huge proliferation of customized and exotic products.
Hedge funds manufacture and manage derivatives on exotic markets and illiquid products
to earn money from their misalignment: think particularly of long–short and relative value
hedge fund strategies. Credit derivatives markets have been created to trade protection on
loans, bonds, or mortgage portfolios. All of this has been shifting the core of the derivatives
market away from the traditional underlying assets traded on the organized markets, such as
stocks and government bonds, toward contingent claims written on illiquid assets. The effect
has been to make the problem of finding a perfect hedge an impossible task for most of the
derivative pricing applications, and the assumption of complete markets an unacceptable
approximation. The hot topic in derivative pricing is then which hedge to choose, facing
the reality that no hedging strategy can be considered completely safe.

1.6.1 Back to utility theory

The main effect of accounting for market incompleteness has been to bring utility theory
back in derivative pricing techniques. Intuitively, if no perfect hedge exists, every replication
strategy is a lottery, and selecting one amounts to defining a preference ranking among
them, which is the main subject of utility theory. In a sense, the ironic fate of finance is
that the market incompleteness problem is bringing it back from a preference-free paradigm
to a use of utility theory very similar to early portfolio theory applications: this trend is
clearly witnessed by terms such as “minimum variance hedging” (Follmer & Schweitzer,
1991). Of course, we know that the minimum variance principle is based on restrictive
assumptions concerning both the preference structure and the distributional properties of
the hedging error. One extension is to use more general expected utility representations,
such as exponential or power preferences, to select a specific hedging strategy and the
corresponding martingale measure (Frittelli, 2000).

A question that could also be useful to debate, even though it is well beyond the scope
of this book, is whether the axiomatic structure leading to the standard expected utility
framework is flexible enough and appropriate to be applied to the hedging error problem.
More precisely, it is well known that standard expected utility results rest on the so-called
independence axiom, which has been debated and criticized in decision theory for decades,
and which seems particularly relevant to the problem at hand. To explain the problem in
plain words, consider you prefer hedging strategy A to another denoted B (A � B). The
independence axiom reads that you will also prefer αA + (1 − α)C to αB + (1 − α)C

for every α ∈ [0, 1], and for whatever strategy C. This is the crucial point: the preference
structure between two hedging strategies is preserved under a mixture with any other third
strategy, and if this is not true the expected utility results do not carry over. It is not difficult
to argue that this assumption may be too restrictive, if, for example, one considers a hedging
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strategy C counter-monotone to B and orthogonal to A. Indeed, most of the developments
in decision theory were motivated by the need to account for the possibility of hedging
relationships among strategies, that are not allowed for under the standard expected utility
framework. The solutions proposed are typically the restriction of the independence axiom
to a subset of the available strategies. Among them, an interesting choice is to restrict C

to the set of so-called constant acts, which in our application means a strategy yielding
a risk-free return. This was proposed by Gilboa and Schmeidler (1989) and leads to a
decision strategy called Maximin Expected Utility (MMEU). In intuitive terms, this strategy
can be described as one taking into account the worst possible probability scenario for every
possible event. As we are going to see in the following paragraph, this worst probability
scenario corresponds to what in the mathematics of incomplete market pricing are called
super-replication or super-hedging strategies.

1.6.2 Super-hedging strategies

Here we follow Cherubini (1997) and Cherubini and Della Lunga (2001) in order to provide
a general formal representation of the incomplete market problem, i.e. the problem of pricing
a contingent claim on an asset that cannot be exactly replicated. In this setting, a general
contingent claim g(S, t) with pay-off G(S, T ), can be priced computing

g (S, t) = exp [−r (T − t)] EQ

[
G (S, T ) ; Q ∈ ℘ | �t

]
where EQ represents the expectation with respect to a conditional risk-neutral measure Q.
Here and in the following we focus on the financial meaning of the issue and assume that
the technical conditions required to ensure that the problem is well-defined are met (the
readers are referred to Delbaen & Schachermayer, 1994, for details). The set ℘ contains
the risk-neutral measures and describes the information available on the underlying asset.
If it is very precise, and the set ℘ contains a single probability measure, we are in the
standard complete market pricing setting tackled above. In the case in which we do not
have precise information – for example, because of limited liquidity of the underlying – we
have the problem of choosing a single probability measure, or a pricing strategy. Therefore,
in order to price the contingent claim g in this incomplete market setting, we have to define:
(i) the set of probability measures ℘ and (ii) a set of rules describing a strategy to select
the appropriate measure and price. As discussed above, one could resort to expected utility
to give a preference rank for the probabilities in the set, picking out the optimal one. As
an alternative, or prior to that, one could instead rely on some more conservative strategy,
selecting a range of prices: the bounds of this range would yield the highest and lowest price
consistent with the no-arbitrage assumption, and the replicating strategies corresponding to
these bounds are known as super-replicating portfolios. In this case we have

g− (S, t) = exp [−r (T − t)] inf EQ

[
G (S, T ) ; Q ∈ ℘ | �t

]
g+ (S, t) = exp [−r (T − t)] sup EQ

[
G (S, T ) ; Q ∈ ℘ | �t

]
More explicitly, the lower bound is called the buyer price of the derivative contract g, while
the upper bound is denoted the seller price. The idea is that if the price were lower than
the buyer price, one could buy the contingent claim and go short a replicating portfolio
ending up with an arbitrage gain. Conversely, if the price were higher than the maximum,
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one could short the asset and buy a replicating portfolio earning a safe return. Depending
on the definition of the set of probability measures, one is then allowed to recover different
values for long and short positions. Notice that this does not hold for models that address
the incomplete market pricing problem in a standard expected utility setting, in which the
selected measure yields the same value for long and short positions.

Uncertain probability model

The most radical way to address the problem of super-replication is to take the worst possible
probability scenario for every event. To take the simplest case, that of a call digital option
paying one unit of currency at time T if the underlying asset is greater than or equal to K ,
we have

DC− (S, t) = exp [−r (T − t)] inf EQ

[
1S(T )�K ; Q ∈ ℘ | �t

]
= exp [−r (T − t)] inf

[
Q(K) ; Q ∈ ℘ | �t

] ≡ B (t, T )Q
−

DC+ (S, t) = exp [−r (T − t)] sup EQ

[
1S(T )�K ; Q ∈ ℘ | �t

]
= exp [−r (T − t)] sup EQ

[
Q(K) ; Q ∈ ℘ | �t

] ≡ B (t, T ) Q
+

where we recall the definition Q (K) ≡ 1 − Q (K) and where the subscripts ‘+’ and ‘−’
stand for the upper and lower value of Q (K).

Having defined the pricing bounds for the digital option, which represents the pricing ker-
nel of any contingent claim written on asset S, we may proceed to obtain pricing bounds for
call and put options using the integral representations recovered in section 1.5.3. Remember
in fact that the price of a European call option C under the martingale measure Q may be
written in very general terms as

CALL (S, t; K, T ) = exp [−r (T − t)]
∫ ∞

K

Q(u | �t ) du

We know that if the kernel were the log-normal distribution, the equation would yield the
Black–Scholes formula. Here we want instead to use the formula to recover the pricing
bounds for the option. The buyer price is then obtained by solving the problem

CALL− (S, t; K, T ) = exp [−r (T − t)]
∫ ∞

K

Q
−

(u) du

By the same token, the seller price is obtained from

CALL+ (S, t; K, T ) = exp [−r (T − t)]
∫ ∞

K

Q
+

(u) du

and represents the corresponding upper bound for the value of the call option in the most
general setting.

The same could be done for the European put option with the same strike and maturity.
In this case we would have

PUT (S, t; K, T ) = exp [−r (T − t)]
∫ K

0
Q (u | �t ) du



Derivatives Pricing, Hedging and Risk Management 25

for any conditional measure Q ∈ ℘ and the pricing bounds would be

PUT− (S, t; K, T ) = exp [−r (T − t)]
∫ K

0
Q− (u | �t ) du

PUT+ (S, t; K, T ) = exp [−r (T − t)]
∫ K

0
Q+ (u | �t ) du

where Q− (u) and Q+ (u) have the obvious meanings of the lower and upper bound of the
probability distribution for every u. Notice that whatever pricing kernel, Q in the ℘ set
has to be a probability measure, so it follows that Q (u) + Q(u) = 1. This implies that we
must have

Q− (u) + Q
+

(u) = 1

Q+ (u) + Q
−

(u) = 1

In the case of incomplete markets, in which the set ℘ is not a singleton, we have Q− (u) <

Q+ (u), which implies

Q− (u) + Q
−

(u) = Q− (u) + [
1 − Q+ (u)

]
< 1

and the measure Q− is sub-additive. In the same way, it is straightforward to check that

Q+ (u) + Q
+

(u) > 1

and the measure Q+ is super-additive.
So, if we describe the probability set as above, the result is that the buyer and seller prices

are integrals with respect to non-additive measures, technically known as capacities. The
integrals defined above are well defined even for non-additive measures, in which case they
are known in the literature as Choquet integrals. This integral is in fact widely used in the
modern decision theory trying to amend the standard expected utility framework: lotteries
are ranked using capacities instead of probability measures and expected values are defined
in terms of Choquet integrals rather than Lebesgue integrals, as is usual in the standard
expected utility framework.

Example 1.2 [Fuzzy measure model ] A particular parametric form of the approach above
was proposed by Cherubini (1997) and Cherubini and Della Lunga (2001). The idea is
drawn from fuzzy measure theory: the parametric form suggested is called Sugeno fuzzy
measure. Given a probability distribution Q and a parameter λ ∈ �+, define

Q
−

(u) = 1 − Q (u)

1 + λQ (u)
Q

+
(u) = 1 − Q (u)

1 + λ∗Q (u)

with
λ∗ = − λ

1 + λ
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It may be easily checked that the measure Q
−

is sub-additive, and Q
+

is the dual
super-additive measure in the sense described above.

The pricing bounds for call options are then recovered as discussed above based on any
choice of the reference probability distribution Q. If the pricing kernel is chosen to be
log-normal, we obtain

CALL− (S, t; K, T ) = exp [−r (T − t)]
∫ ∞

d2


 (u)

1 + λ
 (−u)
du

CALL+ (S, t; K, T ) = exp [−r (T − t)]
∫ ∞

d2


 (u)

1 + λ∗
 (−u)
du

Notice that in the case λ = λ∗ = 0 the model yields the Black–Scholes formula. For any
value λ > 0, the model yields buyer and seller prices. The discount (premium) applied to
buyer (seller) prices is higher the more the option is out-of-the-money.

Uncertain volatility model

An alternative strategy to address the incomplete market problem would be to define a set
of risk-neutral dynamics of the underlying asset, rather than the set of risk-neutral measures.
A typical example is to assume that the volatility parameter is not known exactly, and is
considered to be included in a given interval. Assume further that the stochastic process
followed by the underlying asset is a geometric brownian motion. Under any risk-neutral
measure Q we have

dS (t) = rS (t) dt + σS (t) d̃z

and we assume that σ ∈ [
σ−, σ+]

. This model is called the uncertain volatility model
(UVM) and is due to Avellaneda, Levy and Paràs (1995) and Avellaneda and Paràs (1996).

Working through the solution as in the standard Black–Scholes framework, assume to
build a dynamic hedged portfolio. Notice that if we knew the exact value of the σ parameter,
the delta hedging strategy could be designed precisely, enabling perfect replication of the
contingent claim. Unfortunately, we are only allowed to know the interval in which the true
volatility value is likely to be located, and we are not aware of any probability distribution
about it. Assume that we take a conservative strategy designing the hedging policy under
the worst possible volatility scenario. Avellaneda, Levy and Paràs (1995) show that this
leads to the pricing formula

∂g

∂t
+ 1

2
σ 2S2 (t)

[
∂2g

∂S2

]+
+ rS

∂g

∂S
− rg = 0

with [
∂2g

∂S2

]+
=

{
σ− (∂2g/∂S2) > 0

σ+ (∂2g/∂S2) < 0

}

Notice that the partial differential equation is a modified non-linear version of the Black–
Scholes no-arbitrage condition. The non-linearity is given by the fact that the multiplicative
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term of the second partial derivative is a function of the sign of the second partial derivative.
This equation was denoted the BSB (Black, Scholes & Barenblatt) fundamental equation.
The solution has to be carried out numerically except in trivial cases in which it may be
proved that the solution is globally convex or concave, when it obviously delivers the same
results as the standard Black–Scholes model. Notice also that in this approach, as in the
previous uncertain probability model, the result yields different values for long and short
positions.

1.7 CREDIT RISK

The recent developments of the market have brought about a large increase of credit risk
exposures and products. On the one hand, this has been due to the massive shift of the
investment practices from standard stocks and bonds products toward the so-called alterna-
tive investments. This shift has been motivated both by the quest for portfolio diversification
and the research of higher returns in a low interest rate period. Moreover, another face of
credit risk has become increasingly relevant along with the progressive shift from the clas-
sical standard intermediation business toward structured finance products, and the need to
resort to over-the-counter (OTC) transactions to hedge the corresponding exposure. Con-
trary to what happens in derivatives transactions operated in futures-style organized markets,
OTC deals involve some credit risk, as the counterparty in the contract may default by the
time it has to honor its obligations. The credit-risk feature involved in derivative con-
tracts is known as counterparty risk, and has been getting all the more relevant in the risk
management debate.

A very general way to represent the pay-off of a defaultable contingent claim – that is,
a contract in which the counterparty may go bankrupt – is

G (S, T ) [1 − 1{DEF}(T )LGD]

where 1{DEF} is the indicator function denoting the default of the counterparty by time T

and LGD is the loss given default figure, also defined as LGD ≡ 1 − RR, that is one minus
the recovery rate. In very general terms, the value of the contract at time t is computed
under the risk-neutral measure as

EQ

[
exp

[
−

∫ T

t

r (u) du

]
G (S, T ) [1 − 1{DEF}LGD]

]
Notice that there are three risk factors involved in this representation: (i) market risk due

to fluctuations of the underlying asset S; (ii) interest rate risk due to changes in the discount
factor; and (iii) credit risk due to the event of default of the counterparty. We will see that
evaluating defaultable contingent claims in this framework crucially involves the evaluation
of the dependence structure among the sources of risk involved. Fortunately, we know that
one of the sources may be made orthogonal by the change in measure corresponding to the
bond numeraire (forward martingale measure). In this case we have

D (t, T ) EQT
[G (S, T ) [1 − 1{DEF}LGD]]

and the credit risk problem is intrinsically bivariate, involving the dependence structure
between the underlying dynamics and default of the counterparty.
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The standard credit risk problem that we are used to think of is only the simplest case in
this general representation. Setting in fact G (S, T ) = 1 we have the standard defaultable
bond pricing problem. In the discussion below, we will first address this topic, before
extending it to the case in which the defaultable security is a derivative contract. Dealing
with the simplest case will enable us to stress that credit risk itself is similar to an exposure in
the derivative market. Curiously enough, it can be seen as a position in an option, following
the so-called structural approach, or as a position with the same features as an interest rate
derivative, according the so-called reduced form approach.

1.7.1 Structural models

Structural models draw the main idea from the pioneering paper by Merton (1974). Assume
that an entrepreneur is funding a project whose value is V (t) with debt issued in the form
of a zero coupon bond with a face value of DD. The debt is reimbursed at time T . If at
that date the value of the asset side of the firm is high enough to cover the value of debt,
the nominal value is repaid and equityholders get the remaining value. If instead the value
of the firm is not sufficient to repay the debt, it is assumed that the debtholders take over
the firm at no cost, and stockholders get zero (a feature called limited liability). The pay-off
value of debt at maturity is then min(DD, V (T )), while the value of equity is what is left
after bondholders have been repaid (we say stockholders are residual claimants).

C (T ) = max(V (T ) − DD, 0)

The value of equity capital is then the value of a call option written on the asset value
of the firm for a strike equal to the face value of the debt. Notice that the value of debt at
the same date can be decomposed alternatively as

DD (T ) = V (T ) − max(V (T ) − DD, 0)

or
DD (T ) = DD − max(DD − V (T ) , 0)

The latter representation is particularly instructive. The value of defaultable debt is the
same as that of default-free debt plus a short position in a put option written on the asset
value of the firm for a strike equal to the face value of debt. Notice that if put–call parity
holds we have

V (T ) = max(V (T ) − DD, 0) + DD − max(DD − V (T ) , 0)

and the value of the firm is equal to the value of equity, the call option, plus the value of
debt, in turn decomposed into default-free debt minus a put option. This result is known
in the corporate finance literature as the Modigliani–Miller theorem. Let us remark that it
is not a simple accounting identity, but rather a separation result: it means that the value
of the asset side of a firm is invariant under different funding policies; to put it another
way, following an increase in the amount of nominal debt its value increases exactly by the
same amount as the decrease in the value of equity. It is well known that this is only true
under very restrictive assumptions, such as the absence of taxes and bankruptcy costs, or
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agency costs. Accounting for all of these effects would imply a break-up of the relationship
above, and the choice of the amount of debt would have a feedback effect on the output of
the firm.

Apart from such possible complications, it is clear that option theory could be applied to
recover both the value of debt and equity, and to decompose debt into the default-free part
and the credit risk premium.

Assume that the asset side of the firm V (t) follows a geometric brownian motion, so
that under the risk-neutral measure we have

dV (t) = rV (t) dt + σV V (t) d̃z (t)

Then, the standard Black–Scholes formula can be applied to yield the value of equity C

C (t) = V (t) 
 (d1) − exp (−r (T − t))DD
 (d2)

d1 = ln(V (t) /DD) + (r + σ 2
V /2) (T − t)

σV

√
T − t

d2 = d1 − σV

√
T − t

and the value of debt DD is recovered as

DD(t) = V (t) − [V (t)
(d1) − exp(−r(T − t))DD
(d2)]

= 
(−d1)V (t) + exp(−r(T − t))DD
(d2)

Notice that, by adding and subtracting exp (−r (T − t)) DD we can rewrite the value as

DD (t) = exp (−r (T − t)) DD − [−V (t) 
 (−d1) + exp (−r (T − t)) DD
 (−d2)
]

and we recognize the short position in the put option representing credit risk.
The result could be rewritten by defining the underlying asset of the option in percentage

terms, rather than in money amounts. For this reason, we introduce

d = exp (−r (T − t))DD

V (t)

which is called by Merton quasi-debt-to-firm-value ratio or quasi-leverage. The quasi term
is motivated by the fact that the debt is discounted using the risk-free rate rather than the
defaultable discount factor. We have

DD (t) = exp (−r (T − t)) DD

{
1 −

[
− 1

d

 (−d1) + 
 (−d2)

]}

d1 = ln (1/d) + σ 2
V /2 (T − t)

σV

√
T − t

d2 = d1 − σV

√
T − t
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Remembering that the probability of exercise of a put option is equal to 
 (−d2), a
modern way to rewrite the formula above would be

DD (t) = exp (−r (T − t))DD

{
1 − 
 (−d2)

[
1 − 1

d


 (−d1)


 (−d2)

]}
= exp (−r (T − t))DD {1 − Dp ∗ LGD}

where Dp stands for default probability and LGD is the loss given default figure in this
model.

Dp = 
 (−d2)

LGD = 1 − 1

d


 (−d1)


 (−d2)

Notice that both the default probability and the loss given default are dependent on the
quasi leverage d.

Finally, in order to account for different maturities, credit risk can be represented in terms
of credit spreads as

r∗ (t, T ) − r = −
ln

{
1 − 
 (−d2)

[
1 − 1

d


 (−d1)


 (−d2)

]}
T − t

= − ln {1 − Dp ∗ LGD}
T − t

where r∗ (t, T ) is the yield to maturity of the defaultable bond.
While the original model is based on very restrictive assumptions, some extensions have

been proposed to make it more realistic. In particular, the extension to defaultable coupon
bond debt was handled in Geske (1977), while the possibility of default events prior to
maturity as well as the effects of debt seniority structures was tackled in Black and Cox
(1976). Finally, the effects of bankruptcy costs, strategic debt servicing behavior and absolute
priority violations were taken into account in Anderson and Sundaresan (1996) and Madan
and Unal (2000).

Structural models represent a particularly elegant approach to defaultable bond evaluation
and convey the main idea that credit risk basically amounts to a short position in an option.
Unfortunately, the hypothesis that both the recovery rate and default probability depend
on the same state variable, i.e. the value of the firm, may represent a serious drawback to
the flexibility of the model, overlooking other events that may trigger default. As a result,
the credit spreads that are generated by this model consistently with reasonable values of
asset volatility turn out to be much smaller than those actually observed on the market.
Furthermore, the fact that the value of the asset is modeled as a diffusive process observed
in continuous time gives a typical hump-shaped credit spread curve (in the usual case with
d < 1) with zero intercept: technically speaking this is due to the fact that default is a
predictable event with respect to the information set available at any time t . Three different
ways have been suggested to solve this problem: the first is to include a jump in the process
followed by the value of assets (Zhou, 1996); the second is to assume that the value of
the underlying is not observable in continuous time (Duffie & Lando, 2001); the third is
to assume that the default barrier is not observed at any time t (the CreditGrades approach
followed by Finger et al., 2002).
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1.7.2 Reduced form models

A more radical approach to yield a flexible parametric representation for the credit spreads
observed in the market is to model default probability and loss given default separately. By
contrast with structural models, this approach is called the reduced form.

Assuming the recovery rate to be exogenously given, the most straightforward idea is
to model the default event as a Poisson process. We know that the probability distribution
of this process is indexed by a parameter called intensity (or hazard rate): for this reason,
these models are also called intensity based. If γ is the intensity of the Poisson process
representing default, the probability that this event will not occur by time T is described by
the function

Pr (τ > T ) = exp
[−γ (T − t)

]
where we assume τ > t , that is, the firm is not in default as of time t . Assume that under
the risk-neutral measure Q we have

EQ[1 − 1DEF] ≡ Pr (τ > T ) = exp
[−γ (T − t)

]
and that the default event is independent of interest rate fluctuations. Furthermore, let us
assume that the recovery rate RR is equal to zero, so that the whole principal is lost in case
of default. Under these assumptions, the price of a defaultable zero-coupon bond maturing
at time T is simply

DD (t, T ; RR = 0) = D (t, T ) EQ [1 − 1DEF]

= D (t, T ) exp
[−γ (T − t)

]
and the credit spread is obtained as

r∗ (t, T ; RR = 0) − r (t, T ) ≡
(

− ln DD (t, T ; RR = 0)

T − t

)
−

(
− ln D (t, T )

T − t

)
= γ

In this special case the credit spread curve is flat and equal to the intensity figure of the
default process.

In the more general case of a positive recovery rate RR ≡ 1 − LGD, assumed to be
non-stochastic, we have instead

DD (t, T ; RR) = D (t, T ) EQ [1 − 1DEFLGD]

= D (t, T ) EQ [(1 − 1DEF) + RR1DEF]

= D (t, T )
{
RR + (1 − RR)EQ [(1 − 1DEF)]

}
= D (t, T ) RR + (1 − RR) D (t, T ) EQ [(1 − 1DEF)]

= D (t, T ) RR + (1 − RR) DD (t, T ; RR = 0)

So, the value of the defaultable bond is recovered as a portfolio of an investment in
the default-free bond, and one in a defaultable bond with the same default probability and
recovery rate zero.
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In terms of credit spreads we have

r∗(t, T ; RR) − r(t, T ) = − ln{RR + (1 − RR) exp[−γ (T − t)]}
T − t

Notice that in this case the term structure of the credit spreads is not flat, even though
the intensity is still assumed constant.

A natural extension of the model is to assume the intensity to be stochastic. In this case,
the default event is said to follow what is called a Cox process. The survival probability of
the obligor beyond time T is determined as

EQ [1 − 1DEF] ≡ Pr (τ > T ) = EQ

[
exp

[
−

∫ T

t

γ (u) du

]]
It is easy to see that, from a mathematical point of view, the framework is much the

same as that of interest rate models. These techniques can then be directly applied to the
evaluation of credit spreads.

Affine intensity

As an example, assume that the instantaneous intensity γ (t) follows a diffusive process
dynamics under the risk neutral measure Q

dγ (t) = k (γ − γ (t)) dt + σγ α dw̃

For α = 0,1 we know that the model is affine and we know that the solution to

EQ [1 − 1DEF] = EQ

[
exp

[
−

∫ T

t

γ (u) du

]]
is

EQ

[
exp

[
−

∫ T

t

γ (u) du

]]
= exp

[
A (T − t) + M (T − t) γ (t)

]
The value of a defaultable discount bond is then

DD(t, T ; RR) = D(t, T )RR + (1 − RR)DD(t, T ; RR = 0)

= D(t, T ){RR + (1 − RR) exp[A(T − t) + M(T − t)γ (t)]}

Notice that using the framework of the forward martingale measure we can easily extend
the analysis to the case of correlation between interest rate and credit risk. In fact, we leave
the reader to check that the dynamics of the default intensity under such measure, which
we denoted QT , is

dγ (t) = [
k (γ − γ (t)) − σT σγ α

]
dt + σγ αdw∗



Derivatives Pricing, Hedging and Risk Management 33

where we recall that σT is the instantaneous volatility of the default free zero-coupon bond
with maturity T . Using the dynamics above one can compute or simulate the price from

DD (t, T ; RR) = D (t, T ) RR + (1 − RR) D (t, T ) EQT

[
exp

[
−

∫ T

t

γ (u) du

]]
A final comment is in order concerning the recovery rate. Extensions of the model refer

to a stochastic recovery rate. Of course, the extension is immediate as long as one is willing
to assume that the recovery rate is independent of the default intensity and interest rate. In
this case the expected value is simply substituted for the deterministic value assumed in the
analysis above. Obviously, as the support of the recovery rate is in the unit interval, one
has to choose a suitable probability distribution, which typically is the Beta. Accounting for
recovery risk, however, has not been investigated in depth.

Finally, consider that the choice of the amount with respect to which the recovery rate
is computed may be relevant for the analysis. There are three possible choices. The first is
to measure recovery rate with respect to the nominal value of the principal, as supposed in
Jarrow and Turnbull (1995) and Hull and White (1995). The second choice is to compute
it with respect to the market value of debt right before default, as in Duffie and Singleton
(1998). The last one, which is much more common in practice, is to compute it with respect
to principal plus accrued interest. Notice that with the last choice, we get the unfortunate
result that the value of a coupon bond cannot be decomposed into a stream of defaultable
zero-coupon bonds, and the analysis may turn out to be much more involved.

1.7.3 Implied default probabilities

A look at the models above shows that credit risk is evaluated drawing information from
different markets, in particular the equity market, for structural models, and the corporate
bond market, for reduced form models. Nowadays more information is implied in other
markets, such as the credit derivatives markets. A question is how to extract and combine
information from all of these markets to determine the implied risk-neutral default proba-
bility concerning a particular obligor. Here we give a brief account of the different choices
available.

Stock markets

A first choice, implicit in structural models, is to draw information from the equity market.
Taking the standard Merton model we have that

C (t) = V (t) 
 (d1) − exp (−r (T − t)) DD
 (d2)

where C (t) is the value of equity. As we know, this is a standard application of the
Black–Scholes formula, and we are interested in recovering the probability of exercise

 (d2). Let us remark that this probability is referred to the event that the option representing
equity ends up in the money, so that the company does not default. Default probability is then
1 − 
 (d2) = 
 (−d2). The main difference with respect to the Black–Scholes framework
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is that in this case not only the volatility of the underlying asset σV , but also its current
value V (t), cannot be observed on the market. What we observe instead is the value of
equity C (t). Some other piece of information is needed to close the model. A possible
solution is to resort to some estimate of the volatility of equity, σC , which can be obtained
from the historical time series of prices or from the options traded on the stock. From Ito’s
lemma, we know that volatility of equity must satisfy

σC = σV 
 (d1)
V (t)

C (t)

This equation, along with the Black–Scholes formula above, constitutes a non-linear system
of two equations in two unknowns that can be solved to yield the values of V (t) and σC

implied by market prices. The default probability is then recovered, under the risk-neutral
measure, as


(−d2) = 


(
− ln

(
V (T ) /DD

) + (
r − σ 2

V /2
)
(T − t)

σV

√
T − t

)

The default probability under the objective measure can be recovered by simply substi-
tuting the actual drift µV of the asset value of the firm. The latter can be estimated either
from historical data or by resorting to the no-arbitrage relationship µV = r + λσV , where
λ is the market price of risk.

The solution described above is used in the very well known application of structural
models employed by KMV, a firm specialized in supplying default probability estimates
about many companies across the world, and recently purchased by Moody’s. We know
that a serious flaw of the Merton approach is that it underestimates the default probability.
The key KMV idea is to apply the argument of the default probability function, which they
denote distance to default

− ln
(
V (T ) /DD

) + (
µV − σ 2

V /2
)
(T − t)

σV

√
T − t

to fit the empirical distribution of actual historical defaults.

Example 1.3 Based on Standard and Poor’s statistics for the year 2001, the leverage
figures of AA and BBB industrial companies were equal to 26.4% and 41%. Using these
figures, an interest rate equal to 4% and a volatility of the asset side equal to 25% for
both firms, we compute a risk-neutral default probability over five years equal to 0.69%
and 4.71% respectively. Assuming a market price of risk equal to 6%, the corresponding
objective probabilities are 0.29% and 2.42% for the AA and the BBB firm.

Corporate bond markets

Reduced form models suggest that the information about default is in the observed prices
of corporate bonds. Given the zero-coupon-bond yield curve of debt issues from a single
obligor, and given a recovery rate figure RR we know that

DD (t, T ; RR) = D (t, T ) RR + (1 − RR) DD (t, T ; RR = 0)
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Furthermore, we know that the value of the zero-coupon with recovery rate zero implied in
this price is

DD (t, T ; RR = 0) = D (t, T ) Pr (τ > T )

where again we assume that interest rate risk and default risk are orthogonal. The implied
survival probability is then obtained from defaultable and non-defaultable bond prices as

Pr (τ > T ) = DD (t, T ; RR) /D (t, T ) − RR

1 − RR

Alternatively, a common practice in the market is to refer to asset swap spreads as
representative of the credit spread of a specific issue. To get the main idea behind this
practice, consider a defaultable coupon bond issued at par with coupon equal to r∗. We
know that if the bond issued were default-free, it could be swapped at the swap rate SR. We
remind the reader that the swap rate is defined as the coupon that equals the value of the
fixed leg to that of the floating one in a plain vanilla swap. So, the defaultable cash flow r∗
can be swapped against a stream of floating payments plus a spread equal to the difference
between the coupon and the swap rate. The advantage of using the asset swap spread is
that it conveys information on the riskiness of the individual bond, rather than a whole
set of bonds issued by the same entity, while the main flaw is that it may represent other
sources of risk, beyond that of default, linked to specific features of the issue, particularly its
liquidity. Furthermore, by its very nature it is not well suited to represent the term structure
of default risk and credit spreads. Typically, then, the asset swap spread is used to represent
a flat credit spread and default intensity curve.

Credit default swap markets

The process of financial innovation that has characterized the recent development credit
market has offered new tools to extract market information on the default risk of the main
obligors. Credit derivative products, which are used to transfer credit risk among financial
institutions, represent a natural source of information concerning the default risk. In particu-
lar, credit default swaps represent a very liquid market to extract such information. A credit
default swap is a contract in which one counterparty buys protection from the other against
default of a specific obligor, commonly denoted name. The buyer of protection promises
periodic payments of a fixed coupon until the end of the contract or default of the name.
The seller of protection agrees to refund the loss on the assets of a name if default occurs,
either by buying its obligations at par (physical settlement) or by cash refund of the loss on
them (cash settlement). As in a standard swap, its value at origin is zero.

Assuming, for the sake of simplicity, that no payment is made in case of default for the
coupon period in which the credit event occurs, the credit default swap coupon for maturity
tN is defined from

LGD
N−1∑
i=1

D (t, ti)
(
Q(ti) − Q (ti+1)

) = cN

N−1∑
i=1

D (t, ti) Q (ti+1)

where cN are the credit default swap spreads observed on the market, Q(ti) is the survival
probability of the obligor beyond time ti and the loss given default figure is supposed to be
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non-stochastic. Notice that the term structure of survival probabilities can be recovered by
means of a bootstrap algorithm. The credit default swap rates are sorted from short to long
maturities. Then, for maturity t1 we have

Q (t1) = LGD

c1 + LGD

and for any other maturity tN , N � 2, one can compute

Q(tN) = cN−1 − cN

D (t, tN ) (cN + LGD)

N−1∑
i=1

D (t, ti) Q (ti) + Q(tN−1)
LGD

cN + LGD

Alternatively, one can assume that the coupon of the period in which the underlying credit
defaults is paid at the end of the period. In this case, the credit default swap is defined as

LGD
N−1∑
i=1

D (t, ti)
(
Q(ti) − Q (ti+1)

) = cN

N−1∑
i=1

D (t, ti) Q (ti)

The bootstrap procedure now yields

Q (t1) = 1 − c1

LGD

and

Q (tN) = cN−1 − cN

D (t, tN ) LGD

N−1∑
i=1

D (t, ti) Q (ti−1) + Q(tN−1)
(

1 − cN

LGD

)

1.7.4 Counterparty risk

Credit risk is not only a feature of standard corporate or defaultable bonds. It is also an
element that should be taken into account in the evaluation of any contractual exposure to
a counterparty. Derivative contracts may generate such credit risk exposures, particularly
in transactions on the OTC market, that, as we have noticed above, represent the main
development of the derivative industry.

The pay-off of a defaultable, or as termed in the literature, vulnerable derivative, is
defined as

G (S, T ) [1 − 1DEF (T ) LGD]

Of course the dependence structure between the pay-off and the default event may be
particularly relevant, and will be the object of some of the applications presented in this
book. However, even assuming independence of the two risk factors, some important effects
of counterparty risk on the evaluation of derivative contracts can be noticed.

The first, obvious, point is that accounting for counterparty risk leads to a discount in the
value of the derivative, with respect to its default-free value. Even under independence, the
value of the derivative contract is obtained under the risk-neutral valuation measure as

D (t, T ) EQ [G (S, T )] − D (t, T ) EQ [G (S, T )] EQ [1DEF (T ) LGD]
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that is, the value of the default-free derivative minus the product of such value times the
default probability and the loss given default figure.

Both the approaches described above to represent credit risk can be exploited to evaluate
the discount to be applied to a derivative contract in order to account for counterparty risk.
So, under a structural model one could have

D (t, T ) EQ [G (S, T )]

[
1 − 
 (−d2)

[
1 − 1

d


 (−d1)


 (−d2)

]]
while an intensity based model would yield

D (t, T ) EQ [G (S, T )]
[
1 − (1 − exp (−γ (T − t))) LGD

]
The second point to realize is that even though market and credit risk are orthogonal,

they must be handled jointly in practice. If one overlooks counterparty risk in evaluating a
vulnerable derivative, one obtains the wrong price and the wrong hedging policy, ending
up with an undesired market risk.

The third point to notice is that counterparty risk generally turns linear derivatives into
non-linear ones. To make the point clear, consider the simplest example of a linear vulnerable
derivative, i.e. forward contract. Assume that counterparty A is long in the contract, and
counterparty B is short. The delivery price is the forward price F : we remind the reader that
the forward price is the delivery value that equals to zero the value of a forward contract at
the origin. Assume now that the two counterparties have default probabilities QA (T ) and
QB (T ) and zero recovery rates, and that the time of default is independent of the underlying
asset of the forward contract. Notice that the default risk of counterparty A is relevant only
if the contract ends up in the money for counterparty B, that is, if S (T ) < F , while default
of counterparty B is relevant only if the long counterparty ends up with a gain, that is, if
S (T ) > F . The value of the forward contract is then

EQ

[
(S (T ) − F) 1{S(T )>F }

]
QB (T ) + EQ

[
(S (T ) − F) 1{S(T )<F }

]
QA (T )

where we remind that QA (T ) and QB (T ) are the survival probabilities beyond time T .
Notice that linearity of the product is broken unless QA (T ) = QB (T ). Even in the latter
case, the delta of the contract would not be equal to 1, but would rather be equal to the
survival probability of the two counterparties.

1.8 COPULA METHODS IN FINANCE: A PRIMER

Up to this point, we have seen that the three main frontier problems in derivative pricing
are the departure from normality, emerging from the smile effect, market incompleteness,
corresponding to hedging error, and credit risk, linked to the bivariate relationship in OTC
transactions. Copula functions may be of great help to address these problems. As we will
see, the main advantage of copula functions is that they enable us to tackle the problem
of specification of marginal univariate distributions separately from the specification of
market comovement and dependence. Technically, we will see in Chapter 3 that the term
“dependence” is not rigorously correct, because, strictly speaking, dependence is a concept
limited to positive comovement of a set of variables. However, we will stick to the term
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“dependence” throughout most of this book because it is largely diffused both among prac-
titioners in the financial markets and academics in statistics and finance. We will instead
insist again and again on the distinction between the concept of dependence, defined in this
broad sense, and the concept of linear correlation, which is used by quantitative analysts
in most of the financial institutions in the world. In fact, we will show that the concept of
dependence embedded in copula functions is much more general than the standard linear
correlation concept, and it is able to capture non-linear relationships among the markets.

1.8.1 Joint probabilities, marginal probabilities and copula functions

To give an intuitive grasp of the use of copula functions in finance, consider a very simple
product, a bivariate digital option. This option pays one unit of currency if two stocks or
indexes are above or below a pair of strike price levels. Options like these are very often
used in structured finance, particularly index-linked products: examples are digital bivariate
notes and, more recently, Altiplano notes.

As an example, assume a product written on the Nikkei 225 and S&P 500 indexes which
pays, at some exercise date T , one unit if both are lower than some given levels KNKY and
KSP. According to the basic pricing principles reviewed in this chapter, the price of this
digital put option in a complete market setting is

DP = exp [−r (T − t)] Q (KNKY, KSP)

where Q (KNKY, KSP) is the joint risk-neutral probability that both the Japanese and US
market indexes are below the corresponding strike prices.

How can we recover a price consistent with market quotes? The first requirement that
may come to mind is to ensure that the price is consistent with the market prices for plain
vanilla options on each of the two indexes. Say, for example, we can recover, using some
of the models or techniques described in this chapter, the risk-neutral probability QNKY that
the Nikkei index at time T will be below the level KNKY. We can do the same with the
S&P 500 index, recovering probability QSP. In financial terms, we are asking what is the
forward price of univariate digital options with strikes KNKY and KSP; in statistical terms,
what we are estimating from market data are the marginal risk-neutral distributions of the
Nikkei and the S&P indexes.

In order to compare the price of our bivariate product with that of the univariate ones, it
would be great if we could write the price as

DP = exp [−r (T − t)] Q (KNKY, KSP) = exp [−r (T − t)] C (QNKY, QSP)

with C (x, y) a bivariate function.
Without getting involved in heavy mathematics, we can also discover the general require-

ments that the function C (x, y) must satisfy in order to be able to represent a joint
probability distribution. Beyond the basic requirement that the output of the function must be
in the unit interval, as it must represent a probability, three requirements immediately come
to mind. The first: if one of the two events has zero probability, the joint probability that both
events occur must also be zero. So, if one of the arguments of C (x, y) is equal to 0 the func-
tion must return 0. On the contrary, if one event will occur for sure, the joint probability that
both the events will take place corresponds to the probability that the second event will be
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observed. This leads to the second technical requirement that if one of the arguments C (x, y)

is equal to 1 the function must yield the other argument. Finally, it is intuitive to require that
if the probabilities of both the events increase, the joint probability should also increase,
and for sure it cannot be expected to decrease. Technically, this implies a third requirement
for the function C (x, y), that must be increasing in the two arguments (2-increasing is
approximately the correct term: you will learn more on this in Chapter 2). We have just
described the three requirements that enable us to define C (x, y) as a copula function.

If we go back to our pricing problem, that’s where copula functions come in: they enable
us to express a joint probability distribution as a function of the marginal ones. So, the
bivariate product is priced consistently with information stemming from the univariate ones.
Beyond the intuitive discussion provided here, this opportunity rests on a fundamental find-
ing, known as Sklar’s theorem. This result states that any joint probability distribution can
be written in terms of a copula function taking the marginal distributions as arguments and
that, conversely, any copula function taking univariate probability distributions as arguments
yields a joint distribution.

1.8.2 Copula functions duality

Consider now a bivariate digital call option. Differently from the digital put option, it pays
one unit of currency if both the Nikkei 225 and the S&P 500 indexes are above the strike
levels KNKY and KSP. The relevant probability in this case is

DC = exp [−r (T − t)] Q(KNKY, KSP)

Analogously to the approach above, the copula function method enables us to recover a
copula function C(v, z) such that

DC = exp [−r (T − t)] Q(KNKY, KSP)

= exp [−r (T − t)] C[Q (KNKY) , Q (KSP)]

The new copula function C(v, z) is known as survival copula. Readers will learn from
the mathematical treatment in Chapter 2 that the survival copula is related to the copula
function by the relationship

C[Q(KNKY) , Q (KSP)] = 1 − Q (KNKY) − Q (KSP) + C[Q (KNKY) , Q (KSP)]

Readers can also check, as will be discussed in detail in Chapter 8, that the relationship
above corresponds to a requirement to rule out arbitrage opportunities.

1.8.3 Examples of copula functions

Let us start with the simplest example of a copula function. This obviously corresponds
to the simplest hypothesis corresponding to the comovements of the Japanese and the US
markets. Assume, to keep things simple, that the two markets are independent. In this case
we know from basic statistics that the joint probability corresponds to the product of the
marginal probabilities, and we have

DP = exp [−r (T − t)] Q (KNKY, KSP) = exp [−r (T − t)] QNKYQSP
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So, C (x, y) = xy, also known as the product copula, is the first function we are able to
build and use to price our bivariate option.

The next question is what would happen if the two markets were perfectly positively or
negatively correlated. The answer to this question requires us to draw from more advanced
statistics, referring to the so-called Fréchet bounds. The joint probability is constrained
within the bounds

max (QNKY + QSP − 1, 0) � Q (KNKY, KSP) � min (QNKY, QSP)

Moreover, the upper bound corresponds to the case of perfect positive dependence between
the two markets and the lower bound represents perfect negative dependence. We can
therefore check the impact of perfect positive dependence on the value of the bivariate
product by computing

DP = exp [−r (T − t)] Q (KNKY, KSP) = exp [−r (T − t)] min (QNKY, QSP)

So, C (x, y) = min (x, y) is another copula function, known as the maximum copula. The
minimum copula will instead correspond to the case of perfect negative dependence and to
the Fréchet lower bound C (x, y) = max (x + y − 1, 0) yielding

DP = exp [−r (T − t)] Q (KNKY, KSP)

= exp [−r (T − t)] max (QNKY + QSP − 1, 0)

We have then recovered copula functions corresponding to the extreme cases of indepen-
dence and perfect dependence. Moving one step forward, we could try to build a copula
function accounting for imperfect dependence between the two markets. The first idea would
be to try a linear combination of the three cases above, obtaining

C (QNKY, QSP) = β max (QNKY + QSP − 1, 0) + (1 − α − β)QNKYQSP

+ α min (QNKY, QSP)

with 0 � α, β � 1 and α + β = 1. Copula functions obtained in this way define the so-called
Fréchet family of copula functions.

Other ways of obtaining copula functions are more involved and less intuitive. For
example, consider taking a function ϕ (.) satisfying some technical conditions that will
be discussed in more detail throughout the book. If we define

C (QNKY, QSP) = ϕ[−1] [ϕ (QNKY) + ϕ (QSP)]

we obtain copula functions. Copulas constructed in this way are called Archimedean copulas
and are largely used in actuarial science.

As a final idea, one could try to generalize and make more flexible the standard setting
under which most of the results in finance were obtained under the Black–Scholes theory.
This corresponds to normal distribution of the returns, which in this case is extended to mul-
tivariate normality. From this perspective, a particularly useful result is that the joint standard
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normal distribution computed in the inverse of the arguments satisfies the requirements of
a copula function. We may then price our bivariate claim using

DP = exp[−r(T − t)]
[
−1(QNKY), 
−1(QSP); ρ]

where 
 (x, y; ρ) is the standard bivariate normal distribution with correlation parameter
ρ. This example is particularly useful to highlight the main advantage from the use of
copula functions. Notice in fact that in this way we may preserve the dependence structure
typical of a multivariate normal distribution by modifying only the marginal distributions,
which may be allowed to display skewness and fat-tails behavior consistently with the data
observed from the market.

1.8.4 Copula functions and market comovements

As we have already seen from the examples, copula functions provide a way to represent the
dependence structure between markets and risk factors, while preserving the specification of
the marginal distribution of each and every one of them. Representing market comovements
in a world in which the marginal distribution of returns is not normal raises problems that
may be new for many scholars and practitioners in finance.

The main result is that linear correlation, which represents the standard tool used in the
dealing rooms and risk management units to measure the comovement of markets may turn
out to be a flawed instrument in the presence of a non-normal return. Linear correlation
between the rate of returns rNKY and rSP in our two markets may be written as

corr (rNKY, rSP) = cov (rNKY, rSP)

σNKYσSP

= 1

σNKYσSP

∫ ∞

−∞

∫ ∞

−∞
[Q (x, y) − QNKYQSP] dx dy

where σNKY and σSP represent volatilities. Notice that the correlation depends on the
marginal distributions of the returns. The maximum value it can achieve can be computed
by substituting the upper Fréchet bound in the formula

corrmax (rNKY, rSP)

= 1

σNKYσSP

∫ ∞

−∞

∫ ∞

−∞
[min (QNKY, QSP) − QNKYQSP] dx dy

and the value corresponding to perfect negative correlation is obtained by substituting the
lower bound

corrmin (rNKY, rSP)

= 1

σNKYσSP

∫ ∞

−∞

∫ ∞

−∞
[max (QNKY + QSP − 1, 0) − QNKYQSP] dx dy

Of course everyone would expect these formulas to yield corrmax = 1 and corrmin = −1.
The news is that this is not true in general. Of course, that is what we are used to expect in
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a world of normal returns. The result would also hold in the more general case of elliptic
distributions, but not for other arbitrary choices. Looking at the problem from a different
viewpoint, correlation is an effective way to represent comovements between variables if
they are linked by linear relationships, but it may be severely flawed in the presence of non-
linear links. Readers may check this in the simple case of a variable z normally distributed
and z2 which is obviously perfectly correlated with the first one, but has a chi-squared
distribution.

So, using linear correlation to measure the comovements of markets in the presence of
non-linear relationships may be misleading because it may not cover the whole range from
−1 to +1 even though two markets are moved by the same factor, and so are perfectly
dependent.

The alternative offered by statistics to this shortcoming is the use of non-parametric
dependence measures, such as Spearman’s ρS and Kendall’s τ . The non-parametric feature
of these measures means that they do not depend on the marginal probability distributions.
It does not come as a surprise, then, that these measures are directly linked to the copula
function. In particular, it may be proved that the following relationships hold

ρS = 12
∫ 1

0

∫ 1

0
C (u, v) dudv − 3

τ = 4
∫ 1

0

∫ 1

0
C (u, v) dC (u, v) − 1

Notice that the specific shape of the marginal probability distributions does not enter these
relationships. Furthermore, it may be proved that substituting the maximum and minimum
copulas in these equations gives values of 1 and −1 respectively. Differently from the linear
correlation measure, then, if the two variables (markets in our case) are perfectly dependent
we expect to observe figures equal to 1 for Spearman’s ρS and Kendall’s τ , while a score
−1 corresponds to perfect negative dependence.

The relationship between non-parametric dependence measures and copula functions can
also be applied to recover a first calibration technique of the copula function itself. In
some cases the relationship between these non-parametric statistics and the parameters of
the copula function may also be particularly easy. One of the easiest, that we report as
an example, is the relationship between the copula functions of the Fréchet family and
Spearman’s ρS. We have in fact

ρS = α − β

where the parameters α, β are reported in the definition of the Fréchet family given above.

1.8.5 Tail dependence

The departure from normality in a multivariate system and the need to represent the comove-
ment of markets as closely as possible raises a second dimension of the problem. We know
that non-normality at the univariate level is associated with skewness and leptokurtosis
phenomena, and what is known as the fat-tail problem. In a multivariate setting, the fat-
tail problem can be referred both to the marginal univariate distributions or to the joint
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probability of large market movements. This concept is called tail dependence. Intuitively,
we may conceive markets in which the marginal distributions are endowed with fat tails,
but extreme market movements are orthogonal, or cases in which the returns on each market
are normally distributed, but large market movements are likely to occur together. The use
of copula functions enables us to model these two features, fat tails and tail dependence,
separately.

To represent tail dependence we consider the likelihood that one event with probability
lower than v occurs in the first variable, given that an event with probability lower than
v occurs in the second one. Concretely, we ask which is the probability to observe, for
example, a crash with probability lower than v = 1% in the Nikkei 225 index, given that a
crash with probability lower than 1% has occurred in the S&P 500 index. We have

λ (v) ≡ Pr(QNKY � v | QSP � v)

= Pr(QNKY � v, QSP � v)

Pr(QSP � v)

= C (v, v)

v

If we compute this dependence measure far in the lower tail, that is, for very small values
of v, we obtain the so-called tail index, in particular the lower tail index

λL ≡ lim
v→0+

C (v, v)

v

It may be easily verified that the tail index is zero for the product copula and 1 for the
maximum copula. Along the same lines, one can also recover the tail dependence for the
upper tail index. Analogously, using the duality among copulas described above, we have

λU = lim
v→1− λv ≡ lim

v→1−
Pr(QNKY > v, QSP > v)

Pr(QSP > v)

= lim
v→1−

1 − 2v + C (v, v)

1 − v

and this represents the probability that price booms may occur at the same time in the US
and Japanese markets.

1.8.6 Equity-linked products

Here we give a brief preview of applications to equity-linked products, beyond the simple
multivariate digital options seen above. Consider a simple case of a rainbow option, such
as, for example, a call option on the minimum between two assets. These derivatives are
largely used in structured finance. An example is a class of products, known as Everest
notes, whose coupon at the given time T is determined by computing, for example,

coupon (T ) = max

[
min

(
SNKY (T )

SNKY (0)
,
SSP (T )

SSP (0)

)
− 1, 0

]
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where SNKY and SSP are the values of the Nikkei 225 and the S&P 500 indexes and time
0 is the initial date of the contract. At any time 0 < t < T , the value of the coupon will
be computed as a call option with strike on the minimum between two assets whose initial
value was 1. The strike price is set equal to 1. We will see in Chapter 8 that the price
of options like these can be computed using copula functions. Here we just convey the
intuition by working the argument backward. Assume that you have a price function for the
rainbow option above

CALL [sNKY (t) , sSP (t) ; K, T ]

= exp [−r (T − t)] EQ [max (min (sNKY (T ) , sSP (T )) − K, 0) | �t ]

where we have simplified the notation defining sNKY (t) and sSP (t), the values of the indexes
rescaled with respect to their levels at time 0. Of course in our case we also have K = 1.
Applying what we know about implied risk-neutral probability we have

Pr (min (sNKY (T ) , sSP (T )) > 1 | �t ) = Pr (sNKY (T ) > 1, sSP (T ) > 1 | �t )

= Q(1, 1 | �t )

= − exp [r (T − t)]
∂CALL

∂K

Using copula functions we obtain

Q(1, 1 | �t ) = C
(
QNKY (1) , QSP (1) | �t

) = − exp [r (T − t)]
∂CALL

∂K

By integrating from the strike K = 1 to infinity we have

CALL (sNKY (t) , sSP (t) ; K, T ) =
∫ ∞

1
C

(
QNKY (η) , QSP (η) | �t

)
dη

and the call option is written in terms of copula functions. Much more about applications
and cases like these and techniques by which closed form solutions may also be recovered
is reported in Chapter 8.

1.8.7 Credit-linked products

The vast majority of copula function applications have been devoted to credit risk and
products whose pay-off depends on the performance of a basket of obligations from several
obligors (names). In order to illustrate the main choices involved, we describe the application
to a standard problem, that is the pricing of a first-to-default swap. This product is a credit
derivative, just like the credit default swap described above, with the difference that the
counterparty offering protection pays a sum, for example a fixed amount, at the first event
of default out of a basket of credit exposures.

To see how the pricing problem of a first-to-default derivative leads to the use of copula
functions consider a product that pays one unit of currency if at least one out of two
credit exposures defaults by time T . It is clear that the risk-neutral probability of paying
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the protection is equal to that of the complement to the event that a credit exposure goes
bankrupt – that is, the case that both names will survive beyond time T . Formally,

FTD = exp [−r (T − t)] [1 − Pr (τ1 > T, τ2 > T | �t )]

where FTD denotes first-to-default, τi , i = 1, 2 denote the default times of the two names.
It is then immediate to write the price in terms of copula functions

FTD = exp [−r (T − t)]
[
1 − C

(
Q1 (T ) , Q2 (T ) | �t

)]
Using the duality relationship between a copula function and its survival copula we obtain

FTD = exp [−r (T − t)] [Q1 (T ) + Q2 (T ) − C (Q1 (T ) , Q2 (T ) | �t )]

and the value of the product is negatively affected by the dependence between the defaults
of the two names. This diversification effect may be appraised computing the case of perfect
positive dependence

FTDmax = exp [−r (T − t)] [Q1 (T ) + Q2 (T ) − min (Q1 (T ) , Q2 (T ) | �t )]

= exp [−r (T − t)] [max (Q1 (T ) , Q2 (T ) | �t )]

and that corresponding to independence

FTD⊥ = exp [−r (T − t)] [Q1 (T ) + Q2 (T ) − Q1 (T )Q2 (T ) | �t ]

= exp [−r (T − t)]
[
Q1 (T ) + Q1 (T )Q2 (T ) , | �t

]
So, as the value of the copula function increases with dependence, the value of the

first-to-default product decreases.
Of course one could consider reconducting the analysis to the multivariate normal dis-

tribution, by using structural models to specify the marginal distributions and the Gaussian
copula to represent dependence

C (Q1 (T ) , Q2 (T ) | �t ) = 
[
−1 (Q1 (T )) , 
−1 (Q2 (T )) ; ρ]

where 
−1 (Qi (T )), i = 1, 2 denote the inverse of marginal default probabilities consistent
with both the leverage figures of the names and volatilities of their assets, while ρ is the
correlation between the assets. In this approach, which is used for example in CreditMetrics,
the correlation figure is recovered either from equity correlation or by resorting to the
analysis of industrial sector comovements.

Example 1.4 Consider a first-to-default option written on a basket of two names, rated AA
and BBB. Under the contract, the counterparty selling protection will pay 1 million euros
if one of the names defaults over a 5-year period. We saw in a previous example that the
leverage figures of AA and BBB industrial companies were equal to 26.4% and 41%. Under
the risk-neutral probability measure, assuming the risk-free rate flat at 4% and a volatility
of the asset side equal to 25% for both the firms, we obtained 0.69% and 4.71% default
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probabilities respectively. The maximum value of the first-to-default can be immediately
computed as

FTDmax = 1 000 000 exp [−0.04(5)] [0.0471] = 38 562

If one assumes independence between the two credit risks, we obtain instead

FTD⊥ = 1 000 000 exp [−0.04(5)] [0.0069 + 0.9931(0.0471)] = 43 945

Finally, assuming a Gaussian copula with an asset correlation equal to 20%, the value
“in fashion” in the market at the time we are writing, we obtain a joint default probability
of 0.088636%. The price of the first-to-default swap is then

FTD = 1 000 000 exp [−0.04(5)] [0.0471 + 0.0069 − 0.00088636] = 43 486

Besides this case, it is easy to see why copula functions may be particularly useful in
this case. If, for example, we choose to model the distribution of the time to default as
in reduced form models, rather than the structure of the firm as in structural models, it is
clear that the assumption of normality can no longer be preserved. In this case the marginal
distributions are obviously non-Gaussian since they are referred to default times and are
naturally defined on a non-negative support. Nevertheless, we may conceive applications
that may involve features from both structural and reduced form models. For example, the
joint default probability may be specified by using a reduced form model for the marginals
and the structural model for the dependence structure. We may write

C(Q1(T ), Q2(T ) | �t ) = 
[
−1(1 − exp(−γ1(T − t))), 
−1(1 − exp(−γ2(T − t))); ρ]

where γi , i = 1, 2 denote the default intensities of the two names and now, differently
from the fully structural model quoted above, ρ is correlation between the default times.
Notice that in this way we may mix information stemming from different sources, such as
equity market for the specification of the dependence structure, and corporate bond or credit
default bond markets for the marginal distributions. We now give a simple example of this
flexibility, but, again, this has to be taken only as an appetizer to invite readers to get into
the details of the matter, which will be covered in the rest of the book.

Example 1.5 Consider a 5-year first-to-default option written on a basket of two names,
namely Deutsche Telecom and Dresdner Bank. The nominal value is 1 million euros. The
information we have is that the default probability of DT, bootstrapped from a credit default
swap, is 12.32%. As for Dresdner, we know that the asset swap spread for a 5-year bond
is 75 bp. This allows us to compute a default probability of [1 − exp(−0.0075(5))] =
3.6806%. We assume that the correlation between the default times is 50% and that the
copula is Gaussian. So, we first compute 
−1 (12.32%) = −1.15926. Analogously, we have
for Dresdner 
−1 (3.6806%) = −1.788967169. The joint default probability is computed
from

C (Q1 (T ) , Q2 (T ) | �t ) = 
(
−1 (3.6806%) , 
−1 (12.32%) ; 50%)

= 
 (−1.788967169, −1.15926; 50%) = 1.729%
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The price of the first-to-default is then

FTD = 1 000 000 exp [−0.04(5)] [0.03606 + 0.1232 − 0.01729] = 116 240

Notice that the value obtained is very close to the case of perfect default dependence,
which would obviously cost 123 200, and the basket of names of the first-to-default in this
example is definitely undiversified.




