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4.6.4 Lévy’s theorem 88

5 Girsanov and Martingale Representation 91
5.1 Equivalent probability measures and the Radon—Nikodým derivative 91

5.1.1 Basic results and properties 91
5.1.2 Equivalent and locally equivalent measures on a filtered space 95
5.1.3 Novikov’s condition 97

5.2 Girsanov’s theorem 99
5.2.1 Girsanov’s theorem for continuous semimartingales 99
5.2.2 Girsanov’s theorem for Brownian motion 101

5.3 Martingale representation theorem 105
5.3.1 The space I2(M) and its orthogonal complement 106
5.3.2 Martingale measures and the martingale representation

theorem 110
5.3.3 Extensions and the Brownian case 111

6 Stochastic Differential Equations 115
6.1 Introduction 115
6.2 Formal definition of an SDE 116
6.3 An aside on the canonical set-up 117
6.4 Weak and strong solutions 119

6.4.1 Weak solutions 119



Contents ix

6.4.2 Strong solutions 121
6.4.3 Tying together strong and weak 124

6.5 Establishing existence and uniqueness: Itô theory 125
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Preface to revised edition

Since this book first appeared in 2000, it has been adopted by a number of
universities as a standard text for a graduate course in finance. As a result we
have produced this revised edition. The only differences in content between
this text and its predecessor are the inclusion of an additional chapter of
exercises with solutions, and the corrections of a number of errors.

Many of the exercise are variants of ones given to students of the M.Sc.
in Mathematical Finance at the University of Warwick, so they have been
tried and tested. Many provide drill in routine calculations in the interest-rate
setting.

Since the book first appeared there has been further development in the
modelling of interest rate derivatives. The modelling and approximation of
market models has progressed further, as has that of Markov-functional
models that are now used, in their multi-factor form, in a number of banks. A
notable exclusion from this revised edition is any coverage of these advances.
Those interested in this area can find some of this in Rebonato (2002) and
Bennett and Kennedy (2004).

A few extra acknowledgements are due in this revised edition: to Noel
Vaillant and Jørgen Aase Nielsen for pointing out a number of errors, and
to Stuart Price for typing the exercise chapter and solutions.





Preface

The growth in the financial derivatives market over the last thirty years has
been quite extraordinary. From virtually nothing in 1973, when Black, Merton
and Scholes did their seminal work in the area, the total outstanding notional
value of derivatives contracts today has grown to several trillion dollars. This
phenomenal growth can be attributed to two factors.
The first, and most important, is the natural need that the products fulfil.

Any organization or individual with sizeable assets is exposed to moves in the
world markets. Manufacturers are susceptible to moves in commodity prices;
multinationals are exposed to moves in exchange rates; pension funds are
exposed to high inflation rates and low interest rates. Financial derivatives
are products which allow all these entities to reduce their exposure to market
moves which are beyond their control.
The second factor is the parallel development of the financial mathematics

needed for banks to be able to price and hedge the products demanded by
their customers. The breakthrough idea of Black, Merton and Scholes, that
of pricing by arbitrage and replication arguments, was the start. But it is
only because of work in the field of pure probability in the previous twenty
years that the theory was able to advance so rapidly. Stochastic calculus and
martingale theory were the perfect mathematical tools for the development of
financial derivatives, and models based on Brownian motion turned out to be
highly tractable and usable in practice.
Where this leaves us today is with a massive industry that is highly

dependent on mathematics and mathematicians. These mathematicians need
to be familiar with the underlying theory of mathematical finance and
they need to know how to apply that theory in practice. The need for a
text that addressed both these needs was the original motivation for this
book. It is aimed at both the mathematical practitioner and the academic
mathematician with an interest in the real-world problems associated with
financial derivatives. That is to say, we have written the book that we would
both like to have read when we first started to work in the area.
This book is divided into two distinct parts which, apart from the need to
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cross-reference for notation, can be read independently. Part I is devoted to the
theory of mathematical finance. It is not exhaustive, notable omissions being a
treatment of asset price processes which can exhibit jumps, equilibrium theory
and the theory of optimal control (which underpins the pricing of American
options). What we have included is the basic theory for continuous asset price
processes with a particular emphasis on the martingale approach to arbitrage
pricing.

The primary development of the finance theory is carried out in Chapters
1 and 7. The reader who is not already familiar with the subject but who has
a solid grounding in stochastic calculus could learn most of the theory from
these two chapters alone. The fundamental ideas are laid out in Chapter 1, in
the simple setting of a single-period economy with only finitely many states.
The full (and more technical) continuous time theory, is developed in Chapter
7. The treatment here is slightly non-standard in the emphasis it places on
numeraires (which have recently become extremely important as a modelling
tool) and the (consequential) development of the L1 theory rather than the
more common L2 version. We also choose to work with the filtration generated
by the assets in the economy rather than the more usual Brownian filtration.
This approach is certainly more natural but, surprisingly, did not appear in
the literature until the work of Babbs and Selby (1998).

An understanding of the continuous theory of Chapter 7 requires a
knowledge of stochastic calculus, and we present the necessary background
material in Chapters 2–6. We have gathered together in one place the results
from this area which are relevant to financial mathematics. We have tried to
give a full and yet readable account, and hope that these chapters will stand
alone as an accessible introduction to this technical area. Our presentation
has been very much influenced by the work of David Williams, who was a
driving force in Cambridge when we were students. We also found the books
of Chung and Williams (1990), Durrett (1996), Karatzas and Shreve (1991),
Protter (1990), Revuz and Yor (1991) and Rogers and Williams (1987) to be
very illuminating, and the informed reader will recognize their influence.

The reader who has read and absorbed the first seven chapters of the book
will be well placed to read the financial literature. The last part of theory we
present, in Chapter 8, is more specialized, to the field of interest rate models.
The exposition here is partly novel but borrows heavily from the papers by
Baxter (1997) and Jin and Glasserman (1997). We describe several different
ways present in the literature for specifying an interest rate model and show
how they relate to one another from a mathematical perspective. This includes
a discussion of the celebrated work of Heath, Jarrow and Morton (1992) (and
the less celebrated independent work of Babbs (1990)) which, for the first
time, defined interest rate models directly in terms of forward rates.

Part II is very much about the practical side of building models for pricing
derivatives. It, too, is far from exhaustive, covering only topics which directly
reflect our experiences through our involvement in product development
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within the London interest rate derivative market. What we have tried to
do in this part of the book, through the particular problems and products
that we discuss, is to alert the reader to the issues involved in derivative
pricing in practice and to give him a framework within which to make his own
judgements and a platform from which to develop further models.

Chapter 9 sets the scene for the remainder of the book by identifying some
basic issues a practitioner should be aware of when choosing and applying
models. Chapters 10 and 11 then introduce the reader to the basic instruments
and terminology and to the pricing of standard vanilla instruments using
swaption measure. This pricing approach comes from fairly recent papers in
the area which focus on the use of various assets as numeraires when defining
models and doing calculations. This is actually an old idea dating back at least
to Harrison and Pliska (1981) and which, starting with the work of Geman
et al. (1995), has come to the fore over the past decade. Chapter 12 is on
futures contracts. The treatment here draws largely on the work of Duffie
and Stanton (1992), though we have attempted a cleaner presentation of this
standard topic than those we have encountered elsewhere.

The remainder of Part II tackles pricing problems of increasing levels of
complexity, beginning with single-currency European products and finishing
with various Bermudan callable products. Chapters 13–16 are devoted to
European derivatives. Chapters 13 and 15 present a new approach to this
much-studied problem. These products are theoretically straightforward but
the challenge for the practitioner is to ensure the model he employs in practice
is well calibrated to market-implied distributions and is easy to implement.
Chapter 14 discusses convexity corrections and the pricing of ‘convexity-
related’ products using the ideas of earlier chapters. These are important
products which have previously been studied by, amongst others, Coleman
(1995) and Doust (1995). We provide explicit formulae for some commonly
met products and then, in Chapter 16, generalize these to multi-currency
products.

The last three chapters focus on the pricing of path-dependent and Amer-
ican derivatives. Short-rate models have traditionally been those favoured
for this task because of their ease of implementation and because they are
relatively easy to understand. There is a vast literature on these models,
and Chapter 17 provides merely a brief introduction. The Vasicek-Hull-White
model is singled out for more detailed discussion and an algorithm for its
implementation is given which is based on a semi-analytic approach (taken
from Gandhi and Hunt (1997)).

More recently attention has turned to the so-called market models,
pioneered by Brace et al. (1997) and Miltersen et al. (1997), and extended
by Jamshidian (1997). These models provided a breakthrough in tackling the
issue of model calibration and, in the few years since they first appeared, a vast
literature has developed around them. They, or variants of and approximations
to them, are now starting to replace previous (short-rate) models within most
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major investment banks. Chapter 18 provides a basic description of both the
LIBOR- and swap-based market models. We have not attempted to survey
the literature in this extremely important area and for this we refer the reader
instead to the article of Rutkowski (1999).

The book concludes, in Chapter 19, with a description of some of our own
recent work (jointly with Antoon Pelsser), work which builds on Hunt and
Kennedy (1998). We describe a class of models which can fit the observed
prices of liquid instruments in a similar fashion to market models but which
have the advantage that they can be efficiently implemented. These models,
which we call Markov-functional models, are especially useful for the pricing
of products with multi-callable exercise features, such as Bermudan swaptions
or Bermudan callable constant maturity swaps. The exposition here is similar
to the original working paper which was first circulated in late 1997 and
appeared on the Social Sciences Research Network in January 1998. A précis
of the main ideas appeared in RISK Magazine in March 1998. The final paper,
Hunt, Kennedy and Pelsser (2000), is to appear soon. Similar ideas have more
recently been presented by Balland and Hughston (2000).

We hope you enjoy reading the finished book. If you learn from this book
even one-tenth of what we learnt from writing it, then we will have succeeded
in our objectives.

Phil Hunt
Joanne Kennedy

31 December 1999
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Single-Period Option Pricing

1.1 OPTION PRICING IN A NUTSHELL

To introduce the main ideas of option pricing we first develop this theory in
the case when asset prices can take on only a finite number of values and when
there is only one time-step. The continuous time theory which we introduce
in Chapter 7 is little more than a generalization of the basic ideas introduced
here.
The two key concepts in option pricing are replication and arbitrage. Option

pricing theory centres around the idea of replication. To price any derivative
we must find a portfolio of assets in the economy, or more generally a trading
strategy, which is guaranteed to pay out in all circumstances an amount
identical to the payout of the derivative product. If we can do this we have
exactly replicated the derivative.
This idea will be developed in more detail later. It is often obscured in

practice when calculations are performed ‘to a formula’ rather than from first
principles. It is important, however, to ensure that the derivative being priced
can be reproduced by trading in other assets in the economy.
An arbitrage is a trading strategy which generates profits from nothing

with no risk involved. Any economy we postulate must not allow arbitrage
opportunities to exist. This seems natural enough but it is essential for our
purposes, and Section 1.3.2 is devoted to establishing necessary and sufficient
conditions for this to hold.
Given the absence of arbitrage in the economy it follows immediately that

the value of a derivative is the value of a portfolio that replicates it. To
see this, suppose to the contrary that the derivative costs more than the
replicating portfolio (the converse can be treated similarly). Then we can sell
the derivative, use the proceeds to buy the replicating portfolio and still be
left with some free cash to do with as we wish. Then all we need do is use
the income from the portfolio to meet our obligations under the derivative
contract. This is an arbitrage opportunity — and we know they do not exist.
All that follows in this book is built on these simple ideas!
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1.2 THE SIMPLEST SETTING

Throughout this section we consider the following simple situation. There

are two assets, A(1) and A(2), with prices at time zero A
(1)
0 and A

(2)
0 . At time

1 the economy is in one of two possible states which we denote by ω1 and

ω2. We denote by A
(i)
1 (ωj) the price of asset i at time 1 if the economy is

in state ωj . Figure 1.1 shows figuratively the possibilities. We shall denote a

portfolio of assets by φ = (φ(1),φ(2)) where φ(i), the holding of asset i, could
be negative.

A0

A1(   1)ω
1ω

2ω
A2(   2)ω

t = 1t = 0

Figure 1.1 Possible states of the economy

We wish to price a derivative (of A(1) and A(2)) which pays at time 1 the
amount X1(ωj) if the economy is in state ωj . We will do this by constructing
a replicating portfolio. Once again, this is the only way that a derivative can
be valued, although, as we shall see later, explicit knowledge of the replicating
portfolio is not always necessary.
The first step is to check that the economy we have constructed is arbitrage-

free, meaning we cannot find a way to generate money from nothing. More
precisely, we must show that there is no portfolio φ = (φ(1),φ(2)) with one of
the following (equivalent) conditions holding:

(i) φ(1)A
(1)
0 + φ(2)A

(2)
0 < 0, φ(1)A

(1)
1 (ωj) + φ(2)A

(2)
1 (ωj) ≥ 0, j = 1, 2,

(ii) φ(1)A
(1)
0 + φ(2)A

(2)
0 ≤ 0, φ(1)A

(1)
1 (ωj) + φ(2)A

(2)
1 (ωj) ≥ 0, j = 1, 2,

where the second inequality is strict for some j.

Suppose there exist φ(1) and φ(2) such that

φ(1)A
(1)
1 (ωj) + φ(2)A

(2)
1 (ωj) = X1(ωj), j = 1, 2. (1.1)

We say that φ is a replicating portfolio for X . If we hold this portfolio at time
zero, at time 1 the value of the portfolio will be exactly the value of X , no
matter which of the two states the economy is in. It therefore follows that a
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fair price for the derivative X (of A(1) and A(2)) is precisely the cost of this
portfolio, namely

X0 = φ(1)A
(1)
0 + φ(2)A

(2)
0 .

Subtleties

The above approach is exactly the one we use in the more general situations
later. There are, however, three potential problems:

(i) Equation (1.1) may have no solution.
(ii) Equation (1.1) may have (infinitely) many solutions yielding the same

values for X0.
(iii) Equation (1.1) may have (infinitely) many solutions yielding different

values of X0.

Each of these has its own consequences for the problem of derivative valuation.

(i) If (1.1) has no solution, we say the economy is incomplete, meaning that
it is possible to introduce further assets into the economy which are not
redundant and cannot be replicated. Any such asset is not a derivative
of existing assets and cannot be priced by these methods.

(ii) If (1.1) has many solutions all yielding the same value X0 then there
exists a portfolio ψ W= 0 such that

ψ ·A0 = 0, ψ · A1(ωj) = 0, j = 1, 2.

This is not a problem and means our original assets are not all
independent — one of these is a derivative of the others, so any further
derivative can be replicated in many ways.

(iii) If (1.1) has many solutions yielding different values for X0 we have a
problem. There exist portfolios φ and ψ such that

(φ− ψ) ·A0 < 0
(φ− ψ) ·A1(ωj) =

D
X1(ωj)−X1(ωj)

i
= 0, j = 1, 2.

This is an arbitrage, a portfolio with strictly negative value at time zero
and zero value at time 1.

In this final case our initial economy was poorly defined. Such situations can
occur in practice but are not sustainable. From a derivative pricing viewpoint
such situations must be excluded from our model. In the presence of arbitrage
there is no unique fair price for a derivative, and in the absence of arbitrage
the derivative value is given by the initial value of any replicating portfolio.

1.3 GENERAL ONE-PERIOD ECONOMY

We now develop in more detail all the concepts and ideas raised in the previous
section. We restrict attention once again to a single-period economy for clarity,
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but introduce many assets and many states so that the essential structure and
techniques used in the continuous time setting can emerge and be discussed.
We now consider an economy E comprising n assets with m possible states

at time 1. Let Ω be the set of all possible states. We denote, as before, the

individual states by ωj, j = 1, 2, . . . ,m, and the asset prices by A
(i)
0 and

A
(i)
1 (ωj). We begin with some definitions.

Definition 1.1 The economy E admits arbitrage if there exists a portfolio
φ such that one of the following conditions (which are actually equivalent in
this discrete setting) holds:

(i) φ ·A0 < 0 and φ · A1(ωj) ≥ 0 for all j,
(ii) φ ·A0 ≤ 0 and φ · A1(ωj) ≥ 0 for all j, with strict inequality for some j.
If there is no such φ then the economy is said to be arbitrage-free.

Definition 1.2 A derivative X is said to be attainable if there exists some
φ such that

X1(ωj) = φ · A1(ωj) for all j.

We have seen that an arbitrage-free economy is essential for derivative
pricing theory. We will later derive conditions to check whether a given
economy is indeed arbitrage-free. Here we will quickly move on to show, in the
absence of arbitrage, how products can be priced. First we need one further
definition.

Definition 1.3 A pricing kernel Z is any strictly positive vector with the
property that

A0 =
3
j

ZjA1(ωj). (1.2)

The reason for this name is the role Z plays in derivative pricing as
summarized by Theorem 1.4. It also plays an important role in determining
whether or not an economy admits arbitrage, as described in Theorem 1.7.

1.3.1 Pricing

One way to price a derivative in an arbitrage-free economy is to construct a
replicating portfolio and calculate its value. This is summarized in the first
part of the following theorem. The second part of the theorem enables us to
price a derivative without explicitly constructing a replicating portfolio, as
long as we know one exists.

Theorem 1.4 Suppose that the economy E is arbitrage-free and let X be
an attainable contingent claim, i.e. a derivative which can be replicated with
other assets. Then the fair value of X is given by

X0 = φ ·A0 (1.3)
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where φ solves
X1(ωj) = φ · A1(ωj) for all j.

Furthermore, if Z is some pricing kernel for the economy then X0 can also be
represented as

X0 =
3
j

ZjX1(ωj).

Proof: The first part of the result follows by the arbitrage arguments used
previously. Moving on to the second statement, substituting the defining
equation (1.2) for Z into (1.3) yields

X0 = φ ·A0 =
3
j

Zj
D
φ ·A1(ωj)

i
=
3
j

ZjX1(ωj).

Remark 1.5: Theorem 1.4 shows how the pricing of a derivative can be
reduced to calculating a pricing kernel Z. This is of limited value as it stands
since we still need to show that the economy is arbitrage-free and that the
derivative in question is attainable. This latter step can be done by either
explicitly constructing the replicating portfolio or proving beforehand that
all derivatives (or at least all within some suitable class) are attainable. If all
derivatives are attainable then the economy is said to be complete. As we shall
shortly see, both the problems of establishing no arbitrage and completeness
for an economy are in themselves intimately related to the pricing kernel Z.

Remark 1.6: Theorem 1.4 is essentially a geometric result. It merely states
that if X0 and X1(ωj) are the projections of A0 and A1(ωj) in some direction
φ, and if A0 is an affine combination of the vectors A1(ωj), then X0 is the
same affine combination of the vectors X1(ωj). Figure 1.2 illustrates this for
the case n = 2, a two-asset economy.

1.3.2 Conditions for no arbitrage: existence of Z

The following result gives necessary and sufficient conditions for an economy
to be arbitrage-free. The result is essentially a geometric one. However, its
real importance as a tool for calculation becomes clear in the continuous time
setting of Chapter 7 where we work in the language of the probabilist. We
will see the result rephrased probabilistically later in this chapter.

Theorem 1.7 The economy E is arbitrage-free if and only if there exists a
pricing kernel, i.e. a strictly positive Z such that

A0 =
3
j

ZjA1(ωj).
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A0

X0

A1(   2)ω

φ

X1(   2)ω

X1(   1)ω

A1(   1)ω

Figure 1.2 Geometry of option pricing

Proof: Suppose such a Z exists. Then for any portfolio φ,

φ ·A0 = φ ·
p3

j

ZjA1(ωj)
Q
=
3
j

Zj
D
φ · A1(ωj)

i
. (1.4)

If φ is an arbitrage portfolio then the left-hand side of (1.4) is non-positive,
and the right-hand side is non-negative. Hence (1.4) is identically zero. This
contradicts φ being an arbitrage portfolio and so E is arbitrage-free.
Conversely, suppose no such Z exists. We will in this case construct an

arbitrage portfolio. Let C be the convex cone constructed from A1(·),

C =
\
a : a =

3
j

ZjA1(ωj), Z ( 0
�
.

The set C is a non-empty convex set not containing A0. Here Z ( 0 means
that all components of Z are greater than zero. Hence, by the separating
hyperplane theorem there exists a hyperplane H = {x : φ · x = β} that
separates A0 and C,

φ ·A0 ≤ β ≤ φ · a for all a ∈ C.
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The vector φ represents an arbitrage portfolio, as we now demonstrate.
First, observe that if a ∈ C̄ (the closure of C) then µa ∈ C̄, µ ≥ 0, and

β ≤ µ(φ · a).

Taking µ = 0 yields β ≤ 0, φ · A0 ≤ 0. Letting µ ↑ ∞ shows that φ · a ≥ 0
for all a ∈ C̄, in particular φ ·A1(ωj) ≥ 0 for all j. So we have that

φ · A0 ≤ 0 ≤ φ · A1(ωj) for all j, (1.5)

and it only remains to show that (1.5) is not always identically zero. But in
this case φ ·A0 = φ · C = 0 which violates the separating property for H .
Remark 1.8: Theorem 1.7 states that A0 must be in the interior of the convex
cone created by the vectors A1(ωj) for there to be no arbitrage. If this is not
the case an arbitrage portfolio exists, as in Figure 1.3.

⊥

⊥

⊥

A1(   1)ω

A1(   2)ω

A0

A
 1(   2)ω

A
 1(   1)ω

Arbitrage region

A0

Figure 1.3 An arbitrage portfolio

1.3.3 Completeness: uniqueness of Z

If we are in a complete market all contingent claims can be replicated. As we
have seen in Theorem 1.4, this enables us to price derivatives without having
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to explicitly calculate the replicating portfolio. This can be useful, particularly
for the continuous time models introduced later. In our finite economy it is
clear what conditions are required for completeness. There must be at least
as many assets as states of the economy, i.e. m ≤ n, and these must span an
appropriate space.

Theorem 1.9 The economy E is complete if and only if there exists a
(generalized) left inverse A−1 for the matrix A where

Aij = A
(i)
1 (ωj).

Equivalently, E is complete if and only if there exists no non-zero solution to
the equation Ax = 0.

Proof: For the economy to be complete, given any contingent claim X , we
must be able to solve

X1(ωj) = φ · A1(ωj) for all j,

which can be written as

X1 = A
Tφ. (1.6)

The existence of a solution to (1.6) for all X1 is exactly the statement that
AT has a right inverse (some matrix B such that ATB : Rm → Rm is the
identity matrix) and the replicating portfolio is then given by

φ = (AT )−1X1.

This is equivalent to the statement that A has full rank m and there being no
non-zero solution to Ax = 0.

Remark 1.10: If there are more assets than states of the economy the hedge
portfolio will not in general be uniquely specified. In this case one or more of
the underlying assets is already completely specified by the others and could
be regarded as a derivative of the others. When the number of assets matches
the number of states of the economy A−1 is the usual matrix inverse and the
hedge is unique.

Remark 1.11: Theorem 1.9 demonstrates clearly that completeness is a
statement about the rank of the matrix A. Noting this, we see that there
exist economies that admit arbitrage yet are complete. Consider A having
rank m < n. Since dim(Im(A)⊥) = n −m we can choose A0 ∈ Im(A)⊥, in
which case there does not exist Z ∈ Rm such that AZ = A0. By Theorem 1.7
the economy admits arbitrage, yet having rank m it is complete by Theorem
1.9.
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In practice we will always require an economy to be arbitrage-free. Under
this assumption we can state the condition for completeness in terms of the
pricing kernel Z.

Theorem 1.12 Suppose the economy E is arbitrage-free. Then it is complete
if and only if there exists a unique pricing kernel Z.

Proof: By Theorem 1.7, there exists some vector Z satisfying

A0 =
3
j

ZjA1(ωj). (1.7)

By Theorem 1.9, it suffices to show that Z being unique is equivalent to there
being no solution to Ax = 0. If Ẑ also solves (1.7) then x = Ẑ − Z solves

Ax = 0. Conversely, if Z solves (1.7) and Ax = 0 then Ẑ = Z + εx solves
(1.7) for all ε > 0. Since Zj > 0 for all j we can choose ε sufficiently small

that Ẑj > 0 for all j, yielding a second pricing kernel.
The combination of Theorems 1.7 and 1.12 gives the well-known result that

an economy is complete and arbitrage-free if and only if there exists a unique
pricing kernel Z. This strong notion of completeness is not the primary one
that we shall consider in the continuous time context of Chapter 7, where we
shall say that an economy E is complete if it is FA

T -complete.

Definition 1.13 Let FA
1 be the smallest σ-algebra with respect to which

the map A1 : Ω→ Rm is measurable. We say the economy E is FA
1 -complete

if every FA1 -measurable contingent claim is attainable.

The reason why FA
1 completeness is more natural to consider is as follows.

Suppose there are two states in the economy, ωi and ωj, for which A1(ωi) =
A1(ωj). Then it is impossible, by observing only the prices A, to distinguish
which state of the economy we are in, and in practice all we are interested
in is derivative payoffs that can be determined by observing the process A.
There is an analogue of Theorem 1.12 which covers this case.

Theorem 1.14 Suppose the economy E is arbitrage-free. Then it is F A
1 -

complete if and only if all pricing kernels agree on FA
1 , i.e. if Z

(1) and Z(2)

are two pricing kernels, then for every F ∈ FA
1 ,

E
J
Z(1)1F

o
= E
J
Z(2)1F

o
.

Proof: For a discrete economy, the statement that X1 is FA1 -measurable is
precisely the statement that X1(ωi) = X1(ωj) whenever A1(ωi) = A1(ωj). If
this is the case we can identify any states ωi and ωj for which A1(ωi) = A1(ωj).
The question of FA1 -completeness becomes one of proving that this reduced
economy is complete in the full sense. It is clearly arbitrage-free, a property
it inherits from the original economy.
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Suppose Z is a pricing kernel for the original economy. Then, as is easily
verified,

Ẑ := E[Z|FA1 ] (1.8)

is a pricing kernel for the reduced economy. If the reduced economy is
(arbitrage-free and) complete it has a unique pricing kernel Ẑ by Theorem
1.12. Thus all pricing kernels for the original economy agree on F A

1 by (1.8).
Conversely, if all pricing kernels agree on F A

1 then the reduced economy has
a unique pricing kernel, by (1.8), thus is complete by Theorem 1.12.

1.3.4 Probabilistic formulation

We have seen that pricing derivatives is about replication and the results we
have met so far are essentially geometric in nature. However, it is standard
in the modern finance literature to work in a probabilistic framework. This
approach has two main motivations. The first is that probability gives a
natural and convenient language for stating the results and ideas required,
and it is also the most natural way to formulate models that will be a good
reflection of reality. The second is that many of the sophisticated techniques
needed to develop the theory of derivative pricing in continuous time are well
developed in a probabilistic setting.
With this in mind we now reformulate our earlier results in a probabilistic

context. In what follows let P be a probability measure on Ω such that
P({ωj}) > 0 for all j. We begin with a preliminary restatement of Theorem
1.7.

Theorem 1.15 The economy E is arbitrage-free if and only if there exists a
strictly positive random variable Z such that

A0 = E[ZA1]. (1.9)

Extending Definition 1.3, we call Z a pricing kernel for the economy E .
Suppose, further, that P(A(i)1 ( 0) = 1, A

(i)
0 > 0 for some i. Then the

economy E is arbitrage-free if and only if there exists a strictly positive random
variable κ with E[κ] = 1 such that

E

^
κ
A1

A
(i)
1

�
=
A0

A
(i)
0

. (1.10)

Proof: The first result follows immediately from Theorem 1.7 by setting
Z(ωj) = Zj/P({ωj}). To prove the second part of the theorem we show that
(1.9) and (1.10) are equivalent. This follows since, given either of Z or κ, we
can define the other via

Z(ωj) = κ(ωj)
A
(i)
0

A
(i)
1 (ωj)

.
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Remark 1.16: Note that the random variable Z is simply a weighted version of
the pricing kernel in Theorem 1.7, the weights being given by the probability
measure P. Although the measure P assigns probabilities to ‘outcomes’ ω j,
these probabilities are arbitrary and the role played by P here is to summarize
which states may occur through the assignment of positive mass.

Remark 1.17: The random variable κ is also a reweighted version of the
pricing kernel of Theorem 1.7 (and indeed of the one here). In addition to
being positive, κ has expectation one, and so κj := κ(ωj)/P({ωj}) defines a
probability measure. We see the importance of this shortly.

Remark 1.18: Equation (1.10) can be interpreted geometrically, as shown in
Figure 1.4 for the two-asset case. No arbitrage is equivalent to A0 ∈ C where

C =
\
a : a =

3
j

ZjA1(ωj), Z ( 0
�
.

Rescaling A0 and each A1(ωj) does not change the convex cone C and whether
or not A0 is in C, it only changes the weights required to generate A0 from
the A1(ωj). Rescaling so that A0 and the A1(ωj) all have the same (unit)
component in the direction i ensures that the weights κj satisfy

�
j κj = 1.

A1(   1)ω

A1(   2)ω

A0

A1(   1) /ω A1  (   1)ω(2)(2)A0 /A0A1(   2) /ω A1  (   2)ω(2)

Figure 1.4 Rescaling asset prices
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We have one final step to take to cast the results in the standard
probabilistic format. This format replaces the problem of finding Z or κ by one
of finding a probability measure with respect to which the process A, suitably
rebased, is a martingale. Theorem 1.20 below is the precise statement of what
we mean by this (equation (1.11)). We meet martingales again in Chapter 3.

Definition 1.19 Two probability measures P and Q on the finite sample
space Ω are said to be equivalent, written P ∼ Q, if

P(F ) = 0 ⇔ Q(F ) = 0,

for all F ⊆ Ω. If P ∼ Q we can define the Radon—Nikodým derivative of P
with respect to Q, dPdQ , by

dP
dQ
(S) =

P(S)
Q(S)

.

Theorem 1.20 Suppose P(A(i)1 ( 0) = 1, A
(i)
0 > 0 for some i. Then the

economy E is arbitrage-free if and only if there exists a probability measure
Qi equivalent to P such that

EQi [A1/A
(i)
1 ] = A0/A

(i)
0 . (1.11)

The measure Qi is said to be an equivalent martingale measure for A(i).

Proof: By Theorem 1.15 we must show that (1.11) is equivalent to the
existence of a strictly positive random variable κ with E[κ] = 1 such that

E

^
κ
A1

A
(i)
1

�
=
A0

A
(i)
0

.

Suppose E is arbitrage-free and such a κ exists. Define Qi ∼ P by Qi({ωj}) =
κ(ωj)P({ωj}). Then

EQi [A1/A
(i)
1 ] = E[κA1/A

(i)
1 ]

= A0/A
(i)
0

as required.
Conversely, if (1.11) holds define κ(ωj) = Qi({ωj})/P({ωj}). It follows

easily that κ has unit expectation. Furthermore,

E

^
κ
A1

A
(i)
1

�
= E

^
dQi
dP

A1

A
(i)
1

�
= EQi [A1/A

(i)
1 ]

= A0/A
(i)
0 ,

and there is no arbitrage by Theorem 1.15.
We are now able to restate our other results on completeness and pricing

in this same probabilistic framework. In our new framework the condition for
completeness can be stated as follows.
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Theorem 1.21 Suppose that no arbitrage exists and that P(A(i)1 ( 0) =

1, A
(i)
0 > 0 for some i. Then the economy E is complete if and only if there

exists a unique equivalent martingale measure for the ‘unit’ A(i).

Proof: Observe that in the proof of Theorem 1.20 we established a one-to-one
correspondence between pricing kernels and equivalent martingale measures.
The result now follows from Theorem 1.12 which establishes the equivalence
of completeness to the existence of a unique pricing kernel.
Our final result, concerning the pricing of a derivative, is left as an exercise

for the reader.

Theorem 1.22 Suppose E is arbitrage-free, P(A(i)1 ( 0) = 1, A
(i)
0 > 0 for

some i, and that X is an attainable contingent claim. Then the fair value of
X is given by

X0 = A
(i)
0 EQi [X1/A

(i)
1 ],

where Qi is an equivalent martingale measure for the unit A(i).

1.3.5 Units and numeraires

Throughout Section 1.3.4 we assumed that the price of one of the assets, asset
i, was positive with probability one. This allowed us to use this asset price as
a unit; the operation of dividing all other asset prices by the price of asset i
can be viewed as merely recasting the economy in terms of this new unit.
There is no reason why, throughout Section 1.3.4, we need to restrict the

unit to be one of the assets. All the results hold if the unit A(i) is replaced
by some other unit U which is strictly positive with probability one and for
which

U0 = EP(ZU1) (1.12)

where Z is some pricing kernel for the economy. Note, in particular, that we
can always take U0 = 1, Q({ωj}) = 1/n and U1(ωj) = 1/(nZjP({ωj})).
Observe that (1.12) automatically holds (assuming a pricing kernel exists)

when U is a derivative and thus is of the form U = φ · A. In this case we
say that U is a numeraire and then we usually denote it by the symbol N in
preference to U . In general there are more units than numeraires.
The ideas of numeraires, martingales and change of measure are central to

the further development of derivative pricing theory.

1.4 A TWO-PERIOD EXAMPLE

We now briefly consider an example of a two-period economy. Inclusion of
the extra time-step allows us to develop new ideas whilst still in a relatively
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simple framework. In particular, to price a derivative in this richer setting we
shall need to define what is meant by a trading strategy which is self-financing.
For our two-period example we build on the simple set-up of Section 1.2.

Suppose that at the new time, time 2, the economy can be in one of four
states which we denote by ωIj , j = 1, . . . , 4, with the restriction that states

ωI1 and ω
I
2 can be reached only from ω1 and states ω

I
3 and ω

I
4 can be reached

only from ω2. Figure 1.5 summarizes the possibilities.

A0

A1(   1)ω

1ω

2ω

A1(   2)ω

t = 1t = 0

1ω'

2ω'

3ω'

4ω'

A2(   1)ω̃

A2(   2)ω̃

A2(   3)ω̃

A2(   4)ω̃

t = 2

Figure 1.5 Possible states of a two-period economy

Let Ω now denote the set of all possible paths. That is, Ω = {ω̃k, k =
1, . . . , 4} where ω̃k = (ω1,ωIk) for k = 1, 2 and ω̃k = (ω2,ωIk) for k = 3, 4. The
asset prices follow one of four paths with A

(i)
t (ω̃k) denoting the price of asset

i at time t = 1, 2.
Consider the problem of pricing a derivative X which at time 2 pays an

amountX2(ω̃k). In order to price the derivativeX we must be able to replicate
over all paths. We cannot do this by holding a static portfolio. Instead, the
portfolio we hold at time zero will in general need to be changed at time 1
according to which state ωj the economy is in at this time. Thus, replicating
X in a two-period economy amounts to specifying a process φ which is non-
anticipative, i.e. a process which does not depend on knowledge of a future
state at any time. Such a process is referred to as a trading strategy. To find
the fair value of X we must be able to find a trading strategy which is self-
financing; that is, a strategy for which, apart from the initial capital at time
zero, no additional influx of funds is required in order to replicate X . Such a
trading strategy will be called admissible.
We calculate a suitable φ in two stages, working backwards in time. Suppose

we know the economy is in state ω1 at time 1. Then we know from the one-
period example of Section 1.2 that we should hold a portfolio φ1(ω1) of assets
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satisfying
φ1(ω1) ·A2(ωIj) = X2(ω̃j), j = 1, 2.

Similarly, if the economy is in state ω2 at time 1 we should hold a portfolio
φ1(ω2) satisfying

φ1(ω2) ·A2(ωIj) = X2(ω̃j), j = 3, 4.

Conditional on knowing the economy is in state ωj at time 1, the fair value
of the derivative X at time 1 is then X1(ωj) = φ1(ωj) · A1(ωj), the value of
the replicating portfolio.
Once we have calculated φ1 the problem of finding the fair value of X at

time zero has been reduced to the one-period case, i.e. that of finding the fair
value of an option paying X1(ωj) at time 1. If we can find φ0 such that

φ0 ·A1(ωj) = X1(ωj), j = 1, 2,

then the fair price of X at time zero is

X0 = φ0 ·A0.

Note that for the φ satisfying the above we have

φ0 · A1(ωj) = φ1(ωj) ·A1(ωj) , j = 1, 2,

as must be the case for the strategy to be self-financing; the portfolio is merely
rebalanced at time 1.
Though of mathematical interest, the multi-period case is not important in

practice and when we again take up the story of derivative pricing in Chapter
7 we will work entirely in the continuous time setting. For a full treatment of
the multi-period problem the reader is referred to Duffie (1996).





2

Brownian Motion

2.1 INTRODUCTION

Our objective in this book is to develop a theory of derivative pricing in
continuous time, and before we can do this we must first have developed
models for the underlying assets in the economy. In reality, asset prices are
piecewise constant and undergo discrete jumps but it is convenient and a
reasonable approximation to assume that asset prices follow a continuous
process. This approach is often adopted in mathematical modelling and
justified, at least in part, by results such as those in Section 2.3.1. Having
made the decision to use continuous processes for asset prices, we must now
provide a way to generate such processes. This we will do in Chapter 6 when
we study stochastic differential equations. In this chapter we study the most
fundamental and most important of all continuous stochastic processes, the
process from which we can build all the other continuous time processes that
we will consider, Brownian motion.
The physical process of Brownian motion was first observed in 1828 by the

botanist Robert Brown for pollen particles suspended in a liquid. It was in
1900 that the mathematical process of Brownian motion was introduced by
Bachelier as a model for the movement of stock prices, but this was not really
taken up. It was only in 1905, when Einstein produced his work in the area,
that the study of Brownian motion started in earnest, and not until 1923 that
the existence of Brownian motion was actually established by Wiener. It was
with the work of Samuelson in 1969 that Brownian motion reappeared and
became firmly established as a modelling tool for finance.
In this chapter we introduce Brownian motion and derive a few of its more

immediate and important properties. In so doing we hope to give the reader
some insight into and intuition for how it behaves.
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2.2 DEFINITION AND EXISTENCE

We begin with the definition.

Definition 2.1 Brownian motion is a real-valued stochastic process with the
following properties:

(BM.i) Given any t0 < t1 < . . . < tn the random variables {(Wti − Wti−1),
i = 1, 2, . . . , n} are independent.

(BM.ii) For any 0 ≤ s ≤ t, Wt − Ws ∼ N(0, t − s).
(BM.iii) Wt is continuous in t almost surely (a.s.).
(BM.iv) W0 = 0 a.s.

Property (BM.iv) is sometimes omitted to allow arbitrary initial distribu-
tions, although it is usually included. We include it for definiteness and note
that extending to the more general case is a trivial matter.

Implicit in the above definition is the fact that a process W exists with
the stated properties and that it is unique. Uniqueness is a straightforward
matter – any two processes satisfying (BM.i)–(BM.iv) have the same finite-
dimensional distributions, and the finite-dimensional distributions determine
the law of a process. In fact, Brownian motion can be characterized by a
slightly weaker condition than (BM.ii):

(BM.ii′) For any t ≥ 0, h ≥ 0, the distribution of Wt+h − Wt is independent
of t, E[Wt] = 0 and var[Wt] = t.

It should not be too surprising that (BM.ii′) in place of (BM.ii) gives an
equivalent definition. Given any 0 ≤ s ≤ t, the interval [s, t] can be subdivided
into n equal intervals of length (t − s)/n and

Wt − Ws =
n∑

i=1

Ws+(t−s)i/n − Ws+(t−s)(i−1)/n,

i.e. as a sum of n independent, identically distributed random variables. A
little care needs to be exercised, but it effectively follows from the central limit
theorem and the continuity of W that Wt − Ws must be Gaussian. Breiman
(1992) provides all the details. The moment conditions in (BM.ii′) now force
the process to be a standard Brownian motion (without them the conditions
define the more general process µt + σWt).

The existence of Brownian motion is more difficult to prove. There are many
excellent references which deal with this question, including those by Breiman
(1992) and Durrett (1984). We will merely state this result. To do so, we must
explicitly define a probability space (Ω,F , P) and a process W on this space
which is Brownian motion. Let Ω = C ≡ C(R+, R) be the set of continuous
functions from [0,∞) to R. Endow C with the metric of uniform convergence,



Basic properties 21

i.e. for x, y ∈ C

ρ(x, y) =
∞∑

n=1

(
1
2

)n ρn(x, y)
1 + ρn(x, y)

where
ρn(x, y) = sup

0≤t≤n
|x(t) − y(t)|.

Now define F = C ≡ B(C), the Borel σ-algebra on C induced by the metric ρ.

Theorem 2.2 For each ω ∈ C, t ≥ 0, define Wt(ω) = ωt. There exists a
unique probability measure W (Wiener measure) on (C, C) such that the
stochastic process {Wt, t ≥ 0} is Brownian motion (i.e. satisfies conditions
(BM.i)–(BM.iv)).

Remark 2.3: The set-up described above, in which the sample space Ω is the
set of sample paths, is the canonical set-up. There are others, but the canonical
set-up is the most direct and intuitive to consider. Note, in particular, that
for this set-up every sample path is continuous.

In the above we have defined Brownian motion without reference to a
filtration. Adding a filtration is a straightforward matter: it will often be taken
to be {FW

t }◦ := σ(Ws, s ≤ t), but it could also be more general. Brownian
motion relative to a filtered probability space is defined as follows.

Definition 2.4 The process W is Brownian motion with respect to the
filtration {Ft} if:
(i) it is adapted to {Ft};
(ii) for all 0 ≤ s ≤ t, Wt − Ws is independent of Fs;
(iii) it is a Brownian motion as defined in Definition 2.1.

2.3 BASIC PROPERTIES OF BROWNIAN MOTION

2.3.1 Limit of a random walk

If you have not encountered Brownian motion before it is important to develop
an intuition for its behaviour. A good place to start is to compare it with
a simple symmetric random walk on the integers, Sn. The following result
roughly states that if we speed up a random walk and look at it from a
distance (see Figure 2.1) it appears very much like Brownian motion.

Theorem 2.5 Let {Xi, i ≥ 1} be independent and identically distributed
random variables with P(Xi = 1) = P(Xi = −1) = 1

2 . Define the simple
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Figure 2.1. Brownian motion and a random walk
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symmetric random walk {Sn, n ≥ 1} as Sn =
∑n

i=1 Xi, and the rescaled
random walk Zn(t) := 1√

n
S�nt� where �x� is the integer part of x. As n → ∞,

Zn ⇒ W.

In the above, W is a Brownian motion and the convergence ⇒ denotes weak
convergence. In this setting this is equivalent to convergence of finite-dimen-
sional distributions, meaning, here, that for any t1, t2, . . . , tk and any z ∈ R

k,

P(Zn(ti) ≤ zi, i = 1, . . . , k) → P(Wti ≤ zi, i = 1, . . . , k)

as n → ∞.

Proof: This follows immediately from the (multivariate) central limit theo-
rem for the simple symmetric random walk. �

2.3.2 Deterministic transformations of Brownian motion

There is an extensive theory which studies what happens to a Brownian
motion under various (random) transformations. One question people ask is
what is the law of the process X defined by

Xt = Wτ (t),

where the random clock τ is specified by

τ (t) = inf{s ≥ 0 : Ys > t},

for some process Y. In the case when Y, and consequently τ , is non-random the
study is straightforward because the Gaussian structure of Brownian motion
is retained. In particular, there are a well-known set of transformations of
Brownian motion which produce another Brownian motion, and these results
prove especially useful when studying properties of the Brownian sample
path.

Theorem 2.6 Suppose W is Brownian motion. Then the following trans-
formations also produce Brownian motions:

(i) W̃t := cWt/c2 for any c ∈ R\{0}; (scaling)
(ii) W̃t := tW1/t for t > 0, W̃0 := 0; (time inversion)
(iii) W̃t := {Wt+s − Ws : t ≥ 0} for any s ∈ R

+. (time homogeneity)

Proof: We must prove that (BM.i)–(BM.iv) hold. The proof in each case
follows similar lines so we will only establish the time inversion result which
is slightly more involved than the others.
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Given any fixed t0 < t1 < . . . < tn it follows from the Gaussian

structure of W that (�Wt0 , . . . ,�Wtn) also has a Gaussian distribution. A
Gaussian distribution is completely determined by its mean and covariance

and thus (BM.i) and (BM.ii) now follow if we can show that E[�Wt] = 0 and

E[�Ws
�Wt] = s ∧ t for all s, t. But this follows easily:

E[�Wt] = E[tW1/t] = tE[W1/t] = 0,

E[�Ws
�Wt] = E[stW1/sW1/t] = st

D
(1/t) ∧ (1/s)i = s ∧ t .

Condition (BM.iv), that �W0 = 0, is part of the definition and, for any t > 0,

the continuity of �W at t follows from the continuity of W . It therefore only

remains to prove that �W is continuous at zero or, equivalently, that for all

n > 0 there exists some m > 0 such that sup0<t≤1/m |�Wt| < 1/n. The

continuity of �W for t > 0 implies that

sup
0<t≤1/m

|�Wt| = sup
q∈Q∩(0,1/m]

|�Wq| ,

and so

P
p
lim
t→0
�Wt = 0

Q
= P
p<
n

�
m

\
sup

q∈Q∩(0,1/m]
|�Wq| < 1/n

�Q
= P
p<
n

�
m

<
q∈Q∩(0,1/m]

\|�Wq| < 1/n
�Q
. (2.1)

There are a countable number of events in the last expression of equation

(2.1) and each of these involves the process �W at a single strictly positive

time. The distributions of W and �W agree for t > 0 and therefore this last

probability is unaltered if the process �W is replaced by the original Brownian
motion W . But W is a.s. continuous at zero and so the probability in (2.1) is

one and �W is also a.s. continuous at zero.

2.3.3 Some basic sample path properties

The transformations just introduced have many useful applications. Two of
them are given below.

Theorem 2.7 If W is a Brownian motion then, as t→∞,
Wt

t
→ 0 a.s.

Proof: Writing �Wt for the time inversion of W as defined in Theorem 2.6,

P(limt→∞ Wt

t = 0) = P(lims→0�Ws = 0) and this last probability is one since�W is a Brownian motion, continuous at zero.
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Theorem 2.8 Given a Brownian motion W,

P

(
sup
t≥0

Wt = +∞, inf
t≥0

Wt = −∞
)

= 1.

Proof: Consider first supt≥0 Wt. For any a > 0, the scaling property implies
that

P

(
sup
t≥0

Wt > a

)
= P

(
sup
t≥0

cWt/c2 > a

)

= P

(
sup
s≥0

Ws > a/c

)
.

Hence the probability is independent of a and thus almost every sample path
has a supremum of either 0 or ∞. In particular, for almost every sample
path, supt≥0 Wt = 0 if and only if W1 ≤ 0 and supt≥1(Wt − W1) = 0. But then,
defining W̃t = W1+t − W1,

p := P

(
sup
t≥0

Wt = 0
)

= P

(
W1 ≤ 0, sup

t≥1
(Wt − W1) = 0

)

= P(W1 ≤ 0)P
(

sup
t≥0

W̃t = 0
)

=
1
2
p.

We conclude that p = 0. A symmetric argument shows that P(inf t≥0 Wt =
−∞) = 1 and this completes the proof. �

This result shows that the Brownian path will keep oscillating between pos-
itive and negative values over extended time intervals. The path also oscillates
wildly over small time intervals. In particular, it is nowhere differentiable.

Theorem 2.9 Brownian motion is nowhere differentiable with probability
one.

Proof: It suffices to prove the result on [0, 1]. Suppose W.(ω) is differentiable
at some t ∈ [0, 1] with derivative bounded in absolute value by some constant
N/2. Then there exists some n > 0 such that

h ≤ 4/n ⇒ |Wt+h(ω) − Wt(ω)| ≤ Nh. (2.2)

Denote the event that (2.2) holds for some t ∈ [0, 1] by An,N. The event that
Brownian motion is differentiable for some t ∈ [0, 1] is a subset of the event⋃

N

⋃
n An,N and the result is proven if we can show that P(An,N) = 0 for all

n, N .
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Fix n and N. Let ∆n(k) = W(k+1)/n − Wk/n and define kn
t = inf{k : k/n ≥

t}. If (2.2) holds at t then it follows from the triangle inequality that
|∆n(kn

t + j)| ≤ 7N/n, for j = 0, 1, 2. Therefore

An,N ⊆
n⋃

k=0

2⋂
j=0

{|∆n(k + j)| ≤ 7N/n},

P(An,N) ≤ P

( n⋃
k=0

2⋂
j=0

{|∆n(k + j)| ≤ 7N/n}
)

≤ (n + 1)P
( 2⋂

j=0

{|∆n(j)| ≤ 7N/n}
)

= (n + 1)P
(
{|∆n(0)| ≤ 7N/n}

)3

≤ (n + 1)
(

14N√
2πn

)3

→ 0 as n → ∞,

the last equality following from the independence of the Brownian increments.
If we now note that An,N is increasing in n we can conclude that P(An,N) = 0
for all N, n and we are done. �

The lack of differentiability of Brownian motion illustrates how irregular
the Brownian path can be and implies immediately that the Brownian path
is not of finite variation. This means it is not possible to use the Brownian
path as an integrator in the classical sense. The following result is central to
stochastic integration. A proof is provided in Chapter 3, Corollary 3.81.

Theorem 2.10 For a Brownian motion W, define the doubly infinite
sequence of (stopping) times Tn

k via

Tn
0 ≡ 0, T n

k+1 = inf{t > Tn
k : |Wt − WT n

k
| > 2−n},

and let
[W ]t(ω) := lim

n→∞

∑
k≥1

[Wt∧T n
k
(ω) − Wt∧T n

k−1
(ω)]2.

The process [W] is called the quadratic variation of W, and [W ]t = t a.s.

2.4 STRONG MARKOV PROPERTY

Markov processes and strong Markov processes are of fundamental
importance to mathematical modelling. Roughly speaking, a Markov process
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is one for which ‘the future is independent of the past, given the present’; for
any fixed t ≥ 0, X is Markovian if the law of {Xs −Xt : s ≥ t} given Xt is
independent of the law of {Xs : s ≤ t}. This property obviously simplifies the
study of Markov processes and often allows problems to be solved (perhaps
numerically) which are not tractable for more general processes. We shall,
in Chapter 6, give a definition of a (strong) Markov process which makes
the above more precise. That Brownian motion is Markovian follows from its
definition.

Theorem 2.11 Given any t ≥ 0, {Ws − Wt : s ≥ t} is independent of
{Ws : s ≤ t} (and indeed Ft if the Brownian motion is defined on a filtered
probability space).

Proof: This is immediate from (BM.i).
The strong Markov property is a more stringent requirement of a stochastic

process and is correspondingly more powerful and useful. To understand
this idea we must here introduce the concept of a stopping time. We will
reintroduce this in Chapter 3 when we discuss stopping times in more detail.

Definition 2.12 The random variable T , taking values in [0,∞], is an {F t}
stopping time if

{T ≤ t} = {ω : T (ω) ≤ t} ∈ Ft ,
for all t ≤ ∞.

Definition 2.13 For any {Ft} stopping time T , the pre-T σ-algebra FT is
defined via

FT = {F : for every t ≤∞, F ∩ {T ≤ t} ∈ Ft} .
Definition 2.12 makes precise the intuitive notion that a stopping time is

one for which we know that it has occurred at the moment it occurs. Definition
2.13 formalizes the idea that the σ-algebra FT contains all the information
that is available up to and including the time T .
A strong Markov process, defined precisely in Chapter 6, is a process which

possesses the Markov property, as described at the beginning of this section,
but with the constant time t generalized to be an arbitrary stopping time
T . Theorem 2.15 below shows that Brownian motion is also a strong Markov
process. First we establish a weaker preliminary result.

Proposition 2.14 Let W be a Brownian motion on the filtered probability
space (Ω, {Ft},F ,P) and suppose that T is an a.s. finite stopping time taking
on one of a countable number of possible values. Then�Wt :=Wt+T −WT

is a Brownian motion and {�Wt : t ≥ 0} is independent of FT (in particular,
it is independent of {Ws : s ≤ T}).



28 Brownian motion

Proof: Fix t1, . . . , tn ≥ 0, F1, . . . , Fn ∈ B(R), F ∈ FT and let {τj, j ≥ 1} denote
the values that T can take. We have that

P(W̃ti ∈ Fi, i = 1, . . . , n; F ) =
∞∑

j=1

P(W̃ti ∈ Fi, i = 1, . . . , n; F ; T = τj)

=
∞∑
j=1

P(Wti+τj
−Wτj

∈Fi, i=1, . . . , n)P(F ; T =τj)

= P(Wti ∈ Fi, i = 1, . . . , n)P(F ),

the last equality following from the Brownian shifting property and by
performing the summation. This proves the result. �

Theorem 2.15 Let W be a Brownian motion on the filtered probability space
(Ω, {Ft},F , P) and suppose that T is an a.s. finite stopping time. Then

W̃t := Wt+T − WT

is a Brownian motion and {W̃t : t ≥ 0} is independent of FT (in particular, it
is independent of {Ws : s ≤ T}).

Proof: As in the proof of Proposition 2.14, and adopting the notation
introduced there, it suffices to prove that

P(W̃ti ∈ Fi, i = 1, . . . , n; F ) = P(Wti ∈ Fi, i = 1, . . . , n)P(F ).

Define the stopping times Tk via

Tk =
q

2k
if

q − 1
2k

≤ T <
q

2k
.

Each Tk can only take countably many values so, noting that Tk ≥ T and thus
F ∈ FTk

, Proposition 2.14 applies to give

P(W̃ k
ti ∈ Fi, i = 1, . . . , n; F ) = P(Wk

ti ∈ Fi, i = 1, . . . , n)P(F ), 2.3

where W̃ k
t = Wt+Tk

− WTk
. As k → ∞, Tk(ω) → T (ω) and thus, by the almost

sure continuity of Brownian motion, W̃ k
t → Wt for all t, a.s. The result now

follows from (2.3) by dominated convergence. �

2.4.1 Reflection principle

An immediate and powerful consequence of Theorem 2.15 is as follows.
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Theorem 2.16 If W is a Brownian motion on the space (Ω, {Ft},F ,P) and
T = inf{t > 0 :Wt ≥ a}, for some a, then the process

�Wt :=

F
Wt, t < T

2a−Wt, t ≥ T

is also Brownian motion.

Time

W

W
~

Figure 2.2 Reflected Brownian path

Proof: It is easy to see that T is a stopping time (look ahead to Theorem
3.40 if you want more details here), thus W ∗t :=Wt+T −WT is, by the strong
Markov property, a Brownian motion independent of FT , as is −W ∗t (by the
scaling property). Hence the following have the same distribution:

(i) Wt1{t<T} +
D
a+W ∗t−T

i
1{t≥T}

(ii) Wt1{t<T} +
D
a−W ∗t−T

i
1{t≥T}.

The first of these is just the original Brownian motion, the second is �W , so
the result follows.

A ‘typical’ sample path for Brownian motion W and the reflected Brownian

motion �W is shown in Figure 2.2.

Example 2.17 The reflection principle can be used to derive the joint
distribution of Brownian motion and its supremum, a result which is used for

the analytic valuation of barrier options. LetW be a Brownian motion and �W
be the Brownian motion reflected about some a > 0. DefiningMt = sups≤tWs
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(and M̃ similarly), it is clear that, for x ≤ a,

{ω : Wt(ω) ≤ x, Mt(ω) ≥ a} = {ω : W̃t(ω) ≥ 2a − x, M̃t(ω) ≥ a},

and thus, denoting by Φ the normal distribution function,

P(Wt ≤ x, Mt ≥ a) = P(W̃t ≥ 2a − x, M̃t ≥ a)

= P(W̃t ≥ 2a − x)

= 1 − Φ
(

2a − x√
t

)
,

the second equality holding since 2a − x ≥ a. For x > a,

P(Wt ≥ x, Mt ≥ a) = P(Wt ≥ x)

= 1 − Φ
(

x√
t

)
.

From these we can find the density with respect to x :

P(Wt ∈ dx, Mt ≥ a) =




exp(−(2a − x)2/2t)√
2πt

, x ≤ a

exp(−x2/2t)√
2πt

, x > a.

The density with respect to a follows similarly.
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Martingales

Martingales are amongst the most important tools in modern probability.
They are also central to modern finance theory. The simplicity of the
martingale definition, a process which has mean value at any future time,
conditional on the present, equal to its present value, belies the range and
power of the results which can be established. In this chapter we will introduce
continuous time martingales and develop several important results. The value
of some of these will be self-evident. Others may at first seem somewhat
esoteric and removed from immediate application. Be assured, however, that
we have included nothing which does not, in our view, aid understanding or
which is not directly relevant to the development of the stochastic integral in
Chapter 4, or the theory of continuous time finance as developed in Chapter
7.
A brief overview of this chapter and the relevance of each set of results

is as follows. Section 3.1 below contains the definition, examples and basic
properties of martingales. Throughout we will consider general continuous
time martingales, although for the financial applications in this book we only
need martingales that have continuous paths. In Section 3.2 we introduce
and discuss three increasingly restrictive classes of martingales. As we impose
more restrictions, so stronger results can be proved. The most important class,
which is of particular relevance to finance, is the class of uniformly integrable
martingales. Roughly speaking, any uniformly integrable martingale M , a
stochastic process, can be summarized by M∞, a random variable: given
M we know M∞, given M∞ we can recover M . This reduces the study of
these martingales to the study of random variables. Furthermore, this class
is precisely the one for which the powerful and extremely important optional
sampling theorem applies, as we show in Section 3.3. A second important space
of martingales is also discussed in Section 3.2, square-integrable martingales.
It is not obvious in this chapter why these are important and the results may
seem a little abstract. If you want motivation, glance ahead to Chapter 4,
otherwise take our word for it that they are important.
Section 3.3 contains a discussion of stopping times and, as mentioned
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above, the optional sampling theorem (‘if a martingale is uniformly integrable
then the mean value of the martingale at any stopping time, conditional on
the present, is its present value’). The quadratic variation for continuous
martingales is introduced and studied in Section 3.4. The results which we
develop are interesting in their own right, but the motivation for the discussion
of quadratic variation is its vital role in the development of the stochastic
integral. The chapter concludes with two sections on processes more general
than martingales. Section 3.5 introduces the idea of localization and defines
local martingales and semimartingales. Then, in Section 3.6, supermartingales
are considered and the important Doob—Meyer decomposition theorem is
presented. We will call on the latter result in Chapter 8 when we study term
structure models.

3.1 DEFINITION AND BASIC PROPERTIES

Definition 3.1 Let (Ω,F ,P) be a probability triple and {Ft} be a filtration
on F . A stochastic processM is an {Ft} martingale (or just martingale when
the filtration is clear) if:

(M.i) M is adapted to {Ft};
(M.ii) E

J|Mt|
o
<∞ for all t ≥ 0;

(M.iii) E[Mt|Fs] =Ms a.s., for all 0 ≤ s ≤ t.

Remark 3.2: Property (M.iii) can also be written as E[(Mt −Ms)1F ] = 0 for
all s ≤ t, for all F ∈ Fs. We shall often use this representation in proofs.

Example 3.3 Brownian motion is a rich source of example martingales. Let
W be a Brownian motion and {Ft} be the filtration generated by W . Then it
is easy to verify directly that each of the following is a martingale:

(i) {Wt, t ≥ 0};
(ii) {W 2

t − t, t ≥ 0};
(iii) {exp(λWt − 1

2λ
2t), t ≥ 0} for any λ ∈ R (Wald’s martingale).

Taking Wald’s martingale for illustration, property (M.i) follows from the
definition of {Ft}, and property (M.ii) follows from property (M.iii) by setting
s = 0. To prove property (M.iii), note that for t ≥ 0,

E[Mt] =

8 ∞
−∞

exp(λu− 1
2λ

2t)
exp(−u2/2t)√

2πt
du

=

8 ∞
−∞

exp(−(u− λt)2/2t)√
2πt

du

= 1 .
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Thus, appealing also to the independence of Brownian increments, E[Mt −
Ms|Fs] = E[Mt − Ms] = 0, which establishes property (M.iii).

We will meet these martingales again later.

Example 3.4 Most martingales explicitly encountered in practice are Markov
processes, but they need not be, as this example demonstrates. First define a
discrete time martingale M via

M0 = 0

Mn = Mn−1 + αn, n ≥ 1,

where the αn are independent, identically distributed random variables taking
the values ±1 with probability 1/2. Viewed as a discrete time process, M is
Markovian. Now define Mc

t = M�t� where �t� is the integer part of t. This is
a continuous time martingale which is not Markovian. The process (Mt, t) is
Markovian but it is not a martingale.

Example 3.5 Not all martingales behave as one might expect. Consider the
following process M. Let T be a random exponentially distributed time,
P(T > t) = exp(−t), and define M via

Mt =
{

1 if t − T ∈ Q+,
0 otherwise,

Q+ being the positive rationals. Conditions (M.i) and (M.ii) of Definition 3.1
are clearly satisfied for the filtration {Ft} generated by the process M. Further,
for any t ≥ s and any F ∈ Fs,

E[Mt1F] ≤ E[1{t−T∈Q+}] = 0 = E[Ms1F].

Thus E[Mt|Fs] = Ms a.s., which is condition (M.iii), and M is a martingale.

Example 3.5 seems counter-intuitive and we would like to eliminate from
consideration martingales with behaviour such as this. We will do this by
imposing a (right-) continuity constraint on the paths of martingales that we
will consider henceforth. We shall see, in Theorem 3.8, that this restriction is
not unnecessarily restrictive.

Definition 3.6 A function x is said to be càdlàg (continu à droite, limites
à gauche) if it is right-continuous with left limits,

lim
h↓0

xt+h = xt

lim
h↓0

xt−h exists.

In this case we define xt− := limh↓0 xt−h (which is left-continuous with right
limits).

We say that a stochastic process X is càdlàg if, for almost every ω, X. (ω)
is a càdlàg function. If X. (ω) is càdlàg for every ω we say that X is entirely
càdlàg.



34 Martingales

The martingale in Example 3.5 is clearly not càdlàg, but it has a càdlàg
modification (the process M ≡ 0).
Definition 3.7 Two stochastic processesX and Y are modifications (of each
other) if, for all t,

P(Xt = Yt) = 1 .

We say X and Y are indistinguishable if

P(Xt = Yt, for all t) = 1 .

Theorem 3.8 Let M be a martingale with respect to the right-
continuous and complete filtration {Ft}. Then there exists a unique (up to
indistinguishability) modification M ∗ of M which is càdlàg and adapted to
{Ft} (hence is an {Ft} martingale).

Remark 3.9: Note that it is not necessarily the case that every sample path
is càdlàg, but there will be a set (having probability one) of sample paths,
in which set every sample path will be càdlàg. This is important to bear in
mind when, for example, proving several results about stopping times which
are results about filtrations and not about probabilities (see Theorems 3.37
and 3.40).

Remark 3.10: The restriction that {Ft} be right-continuous and complete is
required to ensure that the modification is adapted to {Ft}. It is for this
reason that the concept of completeness of a filtration is required in the study
of stochastic processes.

A proof of Theorem 3.8 can be found, for example, in Karatzas and Shreve
(1991). Càdlàg processes (or at least piecewise continuous ones) are natural
ones to consider in practice and Theorem 3.8 shows that this restriction is
exactly what it says and no more — the càdlàg restriction does not in any
way limit the finite-dimensional distributions that a martingale can exhibit.
The ‘up to indistinguishability’ qualifier is, of course, necessary since we can
always modify any process on a null set. Henceforth we will restrict attention
to càdlàg processes. The following result will often prove useful.

Theorem 3.11 Let X and Y be two càdlàg stochastic processes such that,
for all t,

P(Xt = Yt) = 1 ,

i.e. they are modifications. Then X and Y are indistinguishable.

Proof: By right-continuity,

{Xt W= Yt, some t} =
�
q∈Q
{Xq W= Yq} ,




