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1 A WORKED EXAMPLE

This chapter presents an exhaustive analysis of a simple example,
in order to give the reader a first overall view of the problems met
in quantitative sensitivity analysis and the methods used to solve
them. In the following chapters the same problems, questions, and
techniques will be presented in full detail.

We start with a sensitivity analysis for a mathematical model in
its simplest form, and work it out adding complications to it one
at a time. By this process the reader will meet sensitivity analysis
methods of increasing complexity, starting from the elementary
approaches to the more quantitative ones.

1.1 A simple model

A simple portfolio model is:

Y = Cs Ps + Ct Pt + Cj Pj (1.1)

where Y is the estimated risk1 in €, Cs, Ct, Cj are the quantities
per item, and Ps, Pt, Pj are hedged portfolios in €.2 This means
that each Px, x = {s, t, j} is composed of more than one item –
so that the average return Px is zero €. For instance, each hedged
portfolio could be composed of an option plus a certain amount
of underlying stock offsetting the option risk exposure due to

1 This is the common use of the term. Y is in fact a return. A negative uncertain value of Y is
what constitutes the risk.

2 This simple model could well be seen as a composite (or synthetic) indicator camp by aggre-
gating a set of standardised base indicators Pi with weights Ci (Tarantola et al., 2002; Saisana
and Tarantola, 2002).
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movements in the market stock price. Initially we assume
Cs, Ct, Cj = constants. We also assume that an estimation pro-
cedure has generated the following distributions for Ps, Pt, Pj :

Ps ∼ N ( p̄s, σs) , p̄s = 0, σs = 4
Pt ∼ N ( p̄t, σt) , p̄t = 0, σt = 2
Pj ∼ N

(
p̄j , σ j

)
, p̄j = 0, σ j = 1.

(1.2)

The Pxs are assumed independent for the moment. As a result
of these assumptions, Y will also be normally distributed with
parameters

ȳ = Cs p̄s + Ct p̄t + Cj p̄j (1.3)

σy =
√

C2
s σ 2

s + C2
t σ 2

t + C2
j σ

2
j . (1.4)

Box 1.1 SIMLAB

The reader may want at this stage, or later in the study, to get
started with SIMLAB by reproducing the results (1.3)–(1.4).
This is in fact an uncertainty analysis, e.g. a characterisation
of the output distribution of Y given the uncertainties in its
input. The first thing to do is to input the factors Ps, Pt, Pj

with the distributions given in (1.2). This is done using the
left-most panel of SIMLAB (Figure 7.1), as follows:

1. Select ‘New Sample Generation’, then ‘Configure’, then
‘Create New’ when the new window ‘STATISTICAL PRE
PROCESSOR’ is displayed.

2. Select ‘Add’ from the input factor selection panel and add
factors one at a time as instructed by SIMLAB. Select ‘Ac-
cept factors’ when finished. This takes the reader back to
the ‘STATISTICAL PRE PROCESSOR’ window.

3. Select a sampling method. Enter ‘Random’ to start with,
and ‘Specify switches’ in the right. Enter something as a
seed for random number generation and the number of
executions (e.g. 1000). Create an output file by giving it a
name and selecting a directory.
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4. Go back to the left-most part of the SIMLAB main menu
and click on ‘Generate’. A sample is now available for the
simulation.

5. We now move to the middle of the panel (Model execution)
and select ‘Configure (Monte Carlo)’ and ‘Select Model’.
A new panel appears.

6. Select ‘Internal Model’ and ‘Create new’. A formula parser
appears. Enter the name of the output variable, e.g. ‘Y’ and
follow the SIMLAB formula editor to enter Equation (1.1)
with values of Cs, Ct, Cj of choice.

7. Select ‘Start Monte Carlo’ from the main model panel. The
model is now executed the required number of times.

8. Move to the right-most panel of SIMLAB. Select ‘Anal-
yse UA/SA’, select ‘Y’ as the output variable as prompted;
choose the single time point option. This is to tell SIMLAB
that in this case the output is not a time series.

9. Click on UA. The figure on this page is produced. Click on
the square dot labelled ‘Y’ on the right of the figure and
read the mean and standard deviation of Y. You can now
compare these sample estimates with Equations (1.3–1.4).
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Let us initially assume that Cs < Ct < Cj , i.e. we hold more
of the less volatile items (but we shall change this in the follow-
ing). A sensitivity analysis of this model should tell us something
about the relative importance of the uncertain factors in Equation
(1.1) in determining the output of interest Y, the risk from the
portfolio.

According to first intuition, as well as to most of the existing
literature on SA, the way to do this is by computing derivatives,
i.e.

Sd
x

= ∂Y
∂ Px

, with x = s, t, j (1.5)

where the superscript ‘d’ has been added to remind us that this
measure is in principle dimensioned (∂Y/∂ Px is in fact dimension-
less, but ∂Y/∂Cx would be in €). Computing Sd

x
for our model we

obtain

Sd
x

= Cx, with x = s, t, j. (1.6)

If we use the Sd
x
s as our sensitivity measure, then the order of

importance of our factors is Pj > Pt > Ps , based on the assumption
Cs < Ct < Cj . Sd

x gives us the increase in the output of interest Y
per unit increase in the factor Px. There seems to be something
wrong with this result: we have more items of portfolio j but this
is the one with the least volatility (it has the smallest standard
deviation, see Equation (1.2)). Even if σs � σt, σ j , Equation (1.6)
would still indicate Pj to be the most important factor, as Y would
be locally more sensitive to it than to either Pt or Ps .

Sometime local sensitivity measures are normalised by some ref-
erence or central value. If

y0 = Cs p0
s + Ct p0

t + Cj p0
j . (1.7)

then one can compute

Sl
x = p0

x

y0

∂Y
∂ Px

, with x = s, t, j. (1.8)
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Applying this to our model, Equation (1.1), one obtains:

Sl
x = Cx

p0
x

y0
, with x = s, t, j. (1.9)

In this case the order of importance of the factors depends on
the relative value of the Cxs weighted by the reference values p0

xs.
The superscript ‘l ’ indicates that this index can be written as a
logarithmic ratio if the derivative is computed in p0

x.

Sl
x
= p0

x

y0

∂Y
∂ Px

∣∣∣∣
y0,p0

x

= ∂ ln (Y)
∂ ln (Px)

∣∣∣∣
y0,p0

x

. (1.10)

Sl
x

gives the fractional increase in Y corresponding to a unit frac-
tional increase in Px. Note that the reference point p0

s , p0
t , p0

j
might be made to coincide with the vector of the mean val-
ues p̄s, p̄t, p̄j , though this would not in general guarantee that
ȳ = Y( p̄s, p̄t, p̄j ), even though this is now the case (Equation
(1.3)). Since p̄s, p̄t, p̄j = 0 and ȳ = 0, Sl

x
collapses to be identical

to Sd
x .

Also Sl
x is insensitive to the factors’ standard deviations. It seems

a better measure of importance than Sd
x , as it takes away the di-

mensions and is normalised, but it still offers little guidance as
to how the uncertainty in Y depends upon the uncertainty in the
Pxs.

A first step in the direction of characterising uncertainty is a nor-
malisation of the derivatives by the factors’ standard deviations:

Sσ
s = σs

σy

∂Y
∂ Ps

= Cs
σs

σy

Sσ

t
= σt

σy

∂Y
∂ Pt

= Ct
σt

σy
(1.11)

Sσ

j
= σ j

σy

∂Y
∂ Pj

= Cj
σ j

σy

where again the right-hand sides in (1.11) are obtained by applying
Equation (1.1). Note that Sd

x and Sl
x are truly local in nature, as they
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Table 1.1 Sσ
x measures for model (1.1) and different values

of Cs, Ct, Cj (analytical values).

Cs, Ct, Cj = Cs, Ct, Cj = Cs, Ct, Cj =
Factor 100, 500, 1000 300, 300, 300 500, 400, 100

Ps 0.272 0.873 0.928
Pt 0.680 0.436 0.371
Pj 0.680 0.218 0.046

need no assumption on the range of variation of a factor. They can
be computed numerically by perturbing the factor around the base
value. Sometimes they are computed directly from the solution of
a differential equation, or by embedding sets of instructions into
an existing computer program that computes Y. Conversely, Sσ

x
needs assumptions to be made about the range of variation of the
factor, so that although the derivative remains local in nature, Sσ

x
is a hybrid local–global measure.

Also when using Sσ
x , the relative importance of Ps, Pt, Pj de-

pends on the weights Cs, Ct, Cj (Table 1.1). An interesting result
concerning the Sσ

x s when applied to our portfolio model comes

from the property of the model that σy =
√

C2
s σ 2

s + C2
t σ 2

t + C2
j σ

2
j ;

squaring both sides and dividing by σ 2
y we obtain

1 = C2
s σ 2

s

σ 2
y

+ C2
t σ 2

t

σ 2
y

+ C2
j σ

2
j

σ 2
y

. (1.12)

Comparing (1.12) with (1.11) we see that for model (1.1) the
squared Sσ

x give how much each individual factor contributes to
the variance of the output of interest. If one is trying to assess how
much the uncertainty in each of the input factors will affect the
uncertainty in the model output Y, and if one accepts the variance
of Y to be a good measure of this uncertainty, then the squared
Sσ

x seem to be a good measure. However beware: the relation
1 = ∑

x=s,t, j (Sσ
x )2 is not general; it only holds for our nice, well

hedged financial portfolio model. This means that you can still
use Sσ

x if the input have a dependency structure (e.g. they are cor-
related) or the model is non-linear, but it is no longer true that the
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squared Sσ
x gives the exact fraction of variance attributable to each

factor.
Using Sσ

x we see from Table 1.1 that for the case of equal weights
(= 300), the factor that most influences the risk is the one with the
highest volatility, Ps . This reconciles the sensitivity measure with
our expectation.

Furthermore we can now put sensitivity analysis to use. For
example, we can use the Sσ

x -based SA to build the portfolio (1.1)
so that the risk Y is equally apportioned among the three items
that compose it.

Let us now imagine that, in spite of the simplicity of the port-
folio model, we chose to make a Monte Carlo experiment on it,
generating a sample matrix

M =

p(1)
s p(1)

t p(1)
j

p(2)
s p(2)

t p(2)
j

... ... ...

p(N)
s p(N)

t p(N)
j

= [ps, pt , pj ]. (1.13)

M is composed of N rows, each row being a trial set for the eval-
uation of Y. The factors being independent, each column can be
generated independently from the marginal distributions specified
in (1.2) above. Computing Y for each row in M results in the
output vector y:

y =
y(1)

y(2)

. . .

y(N)

(1.14)

An example of scatter plot (Y vs Ps) obtained with a Monte Carlo
experiment of 1000 points is shown in Figure 1.1. Feeding both
M and y into a statistical software (SIMLAB included), the analyst
might then try a regression analysis for Y. This will return a model
of the form

y(i) = b0 + bs p(i)
s + bt p(i)

t + bj p(i)
j (1.15)
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Figure 1.1 Scatter plot of Y vs. Ps for the model (1.1) Cs = Ct = Cj = 300.
The scatter plot is made of N = 1000 points.

where the estimates of the bxs are computed by the software based
on ordinary least squares. Comparing (1.15) with (1.1) it is easy
to see that if N is at least greater than 3, the number of factors,
then b0 = 0, bx = Cx, x = s, t, j .

Normally one does not use the bx coefficients for sensitivity anal-
ysis, as these are dimensioned. The practice is to computes the
standardised regression coefficients (SRCs), defined as

βx = bxσx/σy. (1.16)

These provide a regression model in terms of standardised vari-
ables

ỹ = y − ȳ
σy

; p̃x = px − p̄x

σx
(1.17)

i.e.

ỹ = ŷ − ȳ
σy

=
∑

x=s,t, j

βx
px − p̄x

σx
=

∑
x=s,t, j

βxp̃x (1.18)

where ŷ is the vector of regression model predictions. Equation
(1.16) tells us that the βxs (standardised regression coefficients)
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for our portfolio model are equal to Cxσx/σy and hence for linear
models βx = Sσ

x because of (1.11). As a result, the values of the βxs
can also be read in Table 1.1.

Box 1.2 SIMLAB

You can now try out the relationship βx = Sσ
x . If you have

already performed all the steps in Box 1.1, you have to retrieve
the saved input and output samples, so that you again reach
step 9. Then:

10. On the right most part of the main SIMLAB panel, you
activate the SA selection, and select SRC as the sensitivity
analysis method.

11. You can now compare the SRC (i.e. the βx) with the values
in Table 1.1.

We can now try to generalise the results above as follows: for
linear models composed of independent factors, the squared SRCs
and Sσ

x s provide the fraction of the variance of the model due to
each factor.

For the standardised regression coefficients, these results can be
further extended to the case of non-linear models as follows. The
quality of regression can be judged by the model coefficient of
determination R2

y. This can be written as

R2
y =

N∑
i=1

(ŷ(i) − ȳ)2

N∑
i=1

(y(i) − ȳ)2

(1.19)

where ŷ(i) is the regression model prediction. R2
y ∈ [0, 1] represents

the fraction of the model output variance accounted for by the
regression model. The βxs tell us how this fraction of the output



P1: FRU

C01 WU082-Saltelli January 8, 2004 16:44 Char Count= 0

10 A worked example Chap. 1

variance can be decomposed according to the input factors, leaving
us ignorant about the rest, where this rest is related to the non-
linear part of the model. In the case of the linear model (1.1) we
have, obviously, R2

y = 1.
The βxs are a progress with respect to the Sσ

x ; they can always
be computed, also for non-linear models, or for models with no
analytic representation (e.g. a computer program that computes
Y). Furthermore the βxs, unlike the Sσ

x , offer a measure of sensi-
tivity that is multi-dimensionally averaged. While Sσ

x corresponds
to a variation of factor x, all other factors being held constant,
the βx offers a measure of the effect of factor x that is aver-
aged over a set of possible values of the other factors, e.g. our
sample matrix (1.13). This does not make any difference for a
linear model, but it does make quite a difference for non-linear
models.

Given that it is fairly simple to compute standardised regression
coefficients, and that decomposing the variance of the output of
interest seems a sensible way of doing the analysis, why don’t we
always use the βxs for our assessment of importance?

The answer is that we cannot, as often R2
y is too small, as e.g. in

the case of non-monotonic models.3

1.2 Modulus version of the simple model

Imagine that the output of interest is no longer Y but its absolute
value. This would mean, in the context of the example, that we
want to study the deviation of our portfolio from risk neutrality.
This is an example of a non-monotonic model, where the func-
tional relationship between one (or more) input factor and the
output is non-monotonic. For this model the SRC-based sensitiv-
ity analysis fails (see Box 1.3).

3 Loosely speaking, the relationship between Y and an input factor X is monotonic if the curve
Y = f (X) is non-decreasing or non-increasing over all the interval of definition of X. A model
with k factors is monotonic if the same rule applies for all factors. This is customarily verified,
for numerical models, by Monte Carlo simulation followed by scatter-plots of Y versus each
factor, one at a time.
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Box 1.3 SIMLAB

Let us now estimate the coefficient of determination R2
y for

the modulus version of the model.

1. Select ‘Random sampling’ with 1000 executions.

2. Select ‘Internal Model’ and click on the button ‘Open exist-
ing configuration’. Select the internal model that you have
previously created and click on ‘Modify’.

3. The ‘Internal Model’ editor will appear. Select the formula
and click on ‘Modify’. Include the function ‘fabs()’ in the
Expression editor. Accept the changes and go back to the
main menu.

4. Select ‘Start Monte Carlo’ from the main model panel to
generate the sample and execute the model.

5. Repeat the steps in Box 1.2 to see the results. The estimates
of SRC appear with a red background as the test of signif-
icance is rejected. This means that the estimates are not
reliable. The model coefficient of determination is almost
null.

Is there a way to salvage our concept of decomposing the vari-
ance of Y into bits corresponding to the input factors, even for
non-monotonic models? In general one has little a priori idea of
how well behaved a model is, so that it would be handy to have
a more robust variance decomposition strategy that works, what-
ever the degree of model non-monotonicity. These strategies are
sometimes referred to as ‘model free’.

One such strategy is in fact available, and fairly intuitive to get
at. It starts with a simple question. If we could eliminate the un-
certainty in one of the Px, making it into a constant, how much
would this reduce the variance of Y? Beware, for unpleasant mod-
els fixing a factor might actually increase the variance instead of
reducing it! It depends upon where Px is fixed.



P1: FRU

C01 WU082-Saltelli January 8, 2004 16:44 Char Count= 0

12 A worked example Chap. 1

The problem could be: how does Vy = σ 2
y change if one can fix

a generic factor Px at its mid-point? This would be measured by
V(Y|Px = p̄x). Note that the variance operator means in this case
that while keeping, say, Pj fixed to the value p̄j we integrate over
Ps, Pt.

V(Y|P̄j = p̄j ) =
+∞∫

−∞

∫ +∞

−∞
N ( p̄s, σs) N ( p̄t, σs) [(Cs Ps + Ct Pt + Cj p̄j )

− (Cs p̄s + Ct p̄t + Cj p̄j )]2dPsdPt. (1.20)

In practice, beside the problem already mentioned that
V(Y|Px = p̄x) can be bigger than Vy, there is the practical problem
that in most instances one does not know where a factor is best
fixed. This value could be the true value, which is unknown at the
simulation stage.

It sounds sensible then to average the above measure
V(Y|Px = p̄x) over all possible values of Px, obtaining E(V(Y|Px)).
Note that for the case, e.g. x = j , we could have written
Ej (Vs,t(Y|Pj )) to make it clear that the average operator is over
Pj and the variance operator is over Ps, Pt. Normally, for a model
with k input factors, one writes E(V(Y|Xj )) with the understand-
ing that V is over X− j (a (k − 1) dimensional vector of all factors
but Xj ) and E is over Xj .

E(V(Y|Px)) seems a good measure to use to decide how influ-
ential Px is. The smaller the E(V(Y|Px)), the more influential the
factor Px is. Textbook algebra tells us that

Vy = E(V(Y|Px)) + V(E(Y|Px)) (1.21)

i.e. the two operations complement the total unconditional vari-
ance. Usually V(E(Y|Px)) is called the main effect of Px on Y,
and E(V(Y|Px)) the residual. Given that V(E(Y|Px)) is large if Px

is influential, its ratio to Vy is used as a measure of sensitivity,
i.e.

Sx = V(E(Y|Px))
Vy

(1.22)

Sx is nicely scaled in [0, 1] and is variously called in the literature
the importance measure, sensitivity index, correlation ratio or first
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Table 1.2 Sx measures for model Y and different values of
Cs, Ct, Cj (analytical values).

Cs, Ct, Cj = Cs, Ct, Cj = Cs, Ct, Cj =
Factor 100, 500, 1000 300, 300, 300 500, 400, 100

Ps 0.074 0.762 0.860
Pt 0.463 0.190 0.138
Pj 0.463 0.048 0.002

order effect. It can be always computed, also for models that are not
well-behaved, provided that the associate integrals exist. Indeed, if
one has the patience to calculate the relative integrals in Equation
(1.20) for our portfolio model, one will find that Sx = (Sσ

x )2 = β2
x ,

i.e. there is a one-to-one correspondence between the squared Sσ
x ,

the squared standardised regression coefficients and Sx for linear
models with independent inputs. Hence all what we need to do
to obtain the Sxs for the portfolio model (1.1) is to square the
values in Table 1.1 (see Table 1.2). A nice property of the Sxs when
applied to the portfolio model is that, for whatever combination
of Cs, Ct, Cj , the sum of the three indices Ss, St, Sj is one, as one
can easily verify (Table 1.2). This is not surprising, as the same was
true for the β2

x when applied to our simple model. Yet the class of
models for which this nice property of the Sxs holds is much wider
(in practice that of the additive models4).

Sx is a good model-free sensitivity measure, and it always gives
the expected reduction in the variance of the output that one would
obtain if one could fix an individual factor.

As mentioned, for a system of k input uncertain factors, in gen-
eral

∑k
i=1 Si ≤ 1.

Applying Sx to model |Y|, modulus of Y, one gets the estimations
in Table 1.3. with SIMLAB.

We can see that the estimates of the expected reductions in the
variance of |Y| are much smaller than for Y. For example, in the
case of Cs, Ct, Cj = 300, fixing Ps gives an expected variance re-
duction of 53% for |Y|, whilst the reduction of the variance for Y
is 76%.

4 A model Y = f (X1, X2, . . . , Xk) is additive if f can be decomposed as a sum of k functions
fi , each of which is a function only of the relative factor Xi .
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Table 1.3 Estimation of Sxs for model |Y| and different values
of Cs, Ct, Cj .

Cs, Ct, Cj = Cs, Ct, Cj = Cs, Ct, Cj =
Factor 100, 500, 1000 300, 300, 300 500, 400, 100

Ps 0 0.53 0.69
Pt 0.17 0.03 0.02
Pj 0.17 0 0

Given that the modulus version of the model is non-additive,
the sum of the three indices Ss, St, Sj is less than one. For ex-
ample, in the case Cs, Ct, Cj = 300, the sum is 0.56. What can
we say about the remaining variance that is not captured by
the Sxs? Let us answer this question not on the modulus ver-
sion of model (1.1) but – for didactic purposes – on the slightly
more complicated a six-factor version of our financial portfolio
model.

Box 1.4 SIMLAB

Let us test the functioning of a variance-based technique with
SIMLAB, by reproducing the results in Table 1.3

1. Select the ‘FAST’ sampling method and then ‘Specify
switches’ on the right. Select ‘Classic FAST’ in the combo
box ‘Switch for FAST’. Enter something as seed and a num-
ber of executions (e.g. 1000). Create a sample file by giving
it a name and selecting a directory.

2. Go back to the left-most part of the SIMLAB main menu
and click on ‘Generate’. A FAST-based sample is now avail-
able for the simulation.

3. Load the model with the absolute value as in Box 1.3 and
click on ‘Start (Monte Carlo)’.

4. Run the SA: a pie chart will appear reporting the estimated
of Sx obtained with FAST. You can also see the tabulated
values, which might be not as close to those reported in
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Table 1.3 due to sampling error (the sample size is 1000).
Try again with larger sample sizes and using the Sobol
method, an alternative to the FAST method.

1.3 Six-factor version of the simple model

We now revert to model (1.1) and assume that the quantities Cxs
are also uncertain. The model (1.1) now has six uncertain inputs.
Let us assume

Cs ∼ N (250, 200)

Ct ∼ N (400, 300)

Cj ∼ N (500, 400) .

(1.23)

The three distributions have been truncated at percentiles [11,
99.9], [10.0, 99.9] and [10.5, 99.9] respectively to ensure that
Cx > 0.

There is no alternative now to a Monte Carlo simulation: the
output distribution is in Figure 1.2, and the Sxs, as from Equation
(1.22), are in Table 1.4. The Sxs have been estimated using a large

Figure 1.2 Output distribution for model (1.1) with six input factors, ob-
tained from a Monte Carlo sample of 1000 elements.
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Table 1.4 Estimates of first
order effects Sx for model (1.1)
with six input factors.

Factor Sx

Ps 0.36
Pt 0.22
Pj 0.08
Cs 0.00
Ct 0.00
Cj 0.00
Sum 0.66

number of model evaluations (we will come back to this in future
chapters; see also Box 1.5).

How is it that all effects for Cx are zero? All the Px are centred
on zero, and hence the conditional expectation value of Y is zero
regardless of the value of Cx, i.e. for model (1.1) we have:

E(Y|Cx = c*
x ) = E(Y) = 0, for all c*

x (1.24)

and as a result, V(E(Y|Cx)) = 0. This can also be visualised in
Figure 1.3; inner conditional expectations of Y can be taken
averaging along vertical ‘slices’ of the scatter plot. In the case of
Y vs. Cs (lower panel) it is clear that such averages will form a
perfectly horizontal line on the abscissas, implying a zero variance
for the averaged Ys and a null sensitivity index. Conversely, for Y
vs. Ps (upper panel) the averages along the vertical slices will form
an increasing line, implying non-zero variance for the averaged Ys
and a non-null sensitivity index.

As anticipated the Sxs do not add up to one. Let us now try a
little experiment. Take two factors, say Ps, Pt, and estimate our
sensitivity measure on the pair i.e. compute V(E(Y|Ps, Pt))/Vy. By
definition this implies taking the average over all factors except
Ps, Pt, and the variance over Ps, Pt. We do this (we will show how
later) and call the results Sc

Ps Pt
, where the reason for the superscript

c will be clear in a moment. We see that Sc
Ps Pt

= 0.58, i.e.

Sc
Ps Pt

= V(E(Y|Ps, Pt))
Vy

= SPs + SPt = 0.36 + 0.22. (1.25)
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Figure 1.3 Scatter plots for model (1.1): (a) of Y vs. Ps , (b) of Y vs. Cs . The
scatter plots are made up of N = 1000 points.

This seems a nice result. Let us try the same game with Cs, Ps . The
results show that now:

Sc
Cs Ps

= V(E(Y|Cs, Ps))
Vy

= 0.54 > SCs + SPs = 0.36. (1.26)
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Table 1.5 Incomplete list of pair-wise effects Sxz for
model (1.1) with six input factors.

Factors Sxz

Ps, Cs 0.18
Pt, Ct 0.11
Pj , Cj 0.05
Ps, Ct 0.00
Ps, Cj 0.00
Pt, Cs 0.00
Pt, Cj 0.00
Pj , Cs 0.00
Pj , Ct 0.00
Sum of first order terms (Table 1.4) 0.66
Grand sum 1

Let us call SCs Ps the difference

SCs Ps = V(E(Y|Cs, Ps))
Vy

− V(E(Y|Cs))
Vy

− V(E(Y|Ps))
Vy

= Sc
Cs Ps

− SCs − SPs . (1.27)

Values of this measure for pairs of factors are given in
Table 1.5.

Note that we have not listed all effects of the type Px, Py, and
Cx, Cy in this table as they are all null.

Trying to make sense of this result, one might ponder that
if the combined effect of two factors, i.e. V(E(Y|Cs, Ps))/Vy, is
greater than the sum of the individual effects V(E(Y|Cs))/Vy and
V(E(Y|Ps))/Vy, perhaps this extra variance describes a synergistic
or co-operative effect between these two factors. This is in fact
the case and SCs Ps is called the interaction (or two-way) effect of
Cs, Ps on Y and measures that part of the effect of Cs, Ps on Y
that exceeds the sum of the first-order effects. The reason for the
superscript c in Sc

Cs Ps
can now be explained: this means that the

effect measured by Sc
Cs Ps

is closed over the factors Cs, Ps, i.e. by
it we capture all the effects that include only these two factors.
Clearly if there were a non-zero interaction between Cs and a third
factor, say Ct, this would not be captured by Sc

Cs Ps
. We see from
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Tables 1.4–5 that if we sum all first-order with all second-order
effects we indeed obtain 1, i.e. all the variance of Y is accounted
for.

This is clearly only valid for our financial portfolio model be-
cause it only has interaction effects up to the second order; if we
were to compute higher order effects, e.g.

SCs Ps Pt = Sc
Cs Ps Pt

− SCs Ps − SPs Pt − SCs Pt − SCs − SPs − SPt (1.28)

they would all be zero, as one may easily realise by inspect-
ing Equation (1.1). Sc

Cs Ps Pt
on the other hand is non-zero, and is

equal to the sum of the three second-order terms (of which only
one differs from zero) plus the sum of three first-order effects.
Specifically

Sc
Cs Ps Pt

= 0.17 + 0.02 + 0.35 + 0.22 = 0.76.

The full story for these partial variances is that for a system with
k factors there may be interaction terms up to the order k, i.e.

∑
i

Si +
∑

i

∑
j>i

Si j +
∑

i

∑
j>i

∑
l> j

Si jl + . . . S12···k = 1 (1.29)

For the portfolio model with k = 6 all terms above the sec-
ond order are zero and only three second-order terms are
nonzero.

This is lucky, one might remark, because these terms would be
a bit too numerous to look at. How many would there be? Six
first order,

(6
2

) = 15 second order,
(6

3

) = 20 third order,
(6

4

) = 15
fourth order,

(6
5

) = 6 fifth order, and one, the last, of order k = 6.
This makes 63, just equal to 2k − 1 = 26 − 1, which is the formula
to use. This result seems to suggest that the Si , and their higher
order relatives Si j , Si jl are nice, informative and model free, but
they may become cumbersomely too many for practical use unless
the development (1.29) quickly converges to one. Is there a recipe
for treating models that do not behave so nicely?

For this we use the so-called total effect terms, whose description
is given next.
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Let us go back to our portfolio model and call X the set of all
factors, i.e.

X ≡ (Cs, Ct, Cj , Ps, Pt, Pj ) (1.30)

and imagine that we compute:

V(E(Y|X−Cs ))
Vy

= V(E(Y|Ct, Cj , Ps, Pt, Pj ))
Vy

(1.31)

(the all-but-Cs notation has been used). It should now be apparent
that Equation (1.31) includes all terms in the development (1.29),
of any order, that do not contain the factor Cs . Now what happens
if we take the difference

1 − V(E(Y|X−Cs ))
Vy

? (1.32)

The result is nice; for our model, where only a few higher-order
terms are non-zero, it is

1 − V(E(Y|X−Cs ))
Vy

= SCs + SCs Ps (1.33)

i.e. the sum of all non-zero terms that include Cs . The generalisa-
tion to a system with k factors is straightforward:

1 − V(E(Y|X−i ))
Vy

= sum of all terms of any order
that include the factor Xi .

Note that because of Equation (1.21), 1 − V(E(Y|X−i ))/Vy =
E(V(Y|X−i ))/Vy. We indicate this as STi and call it the total
effect term for factor Xi . If we had computed the STi indices for
a three-factor model with orthogonal inputs, e.g. our modulus
model of Section 1.2, we would have obtained, for example, for
factor Ps :

STPs = SPs + SPs Pt + SPs Pj + SPs Pt Pj (1.34)

and similar formulae for Pt, Pj . For the modulus model, all
terms in (1.34) could be non-zero. Another way of looking at
the measures V(E(Y|Xi )), E(V(Y|X−i )) and the corresponding
indices Si , STi is in terms of top- and bottom-marginal variances.
We have already said that E(V(Y|Xi )) is the average output
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Table 1.6 Estimates of the main effects and
total effect indices for model (1.1) with six input
factors.

Factor Sx STx

Ps 0.36 0.57
Pt 0.22 0.35
Pj 0.08 0.14
Cs 0.00 0.19
Ct 0.00 0.12
Cj 0.00 0.06
Sum 0.66 1.43

variance that would be left if Xi could be known or could be
fixed. Consequently V(E(Y|Xi )) is the expected reduction in the
output variance that one would get if Xi could be known or
fixed. Michiel J. W. Jansen, a Dutch statistician, calls this latter
a top marginal variance. By definition the total effect measure
E(V(Y|X−i )) is the expected residual output variance that one
would end up with if all factors but Xi could be known or fixed.
Hence the term, still due to Jansen, of bottom marginal variance.
For the case of independent input variables, it is always true that
Si ≤ STi , where the equality holds for a purely additive model.

In a series of works published since 1993, we have argued that
if one can compute all the k Si terms plus all the k STi ones, then
one can obtain a fairly complete and parsimonious description
of the model in terms of its global sensitivity analysis proper-
ties. The estimates for our six-factor portfolio model are given in
Table 1.6.

As one might expect, the sum of the first-order terms is less than
one, the sum of the total order effects is greater than one.

Box 1.5 SIMLAB

Let us try to obtain the numbers in Table 1.6 using SIMLAB.
Remember to configure the set of factors so as to include the
three factors Cx with their respective distributions and trun-
cations (see Equations (1.23)).
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1. Select the ‘FAST’ sampling method and then ‘Specify
switches’ on the right. Now select ‘All first and total or-
der effect calculation (Extended FAST)’ in the combo box
‘Switch for FAST’. Enter an integer number as seed and the
cost of the analysis in terms of number of model executions
(e.g. 10 000).

2. Go back to the SIMLAB main menu and click on ‘Gen-
erate’. After a few moments a sample is available for the
simulation.

3. Load the model as in Box 1.3 and click on ‘Start (Monte
Carlo)’.

4. Run the SA: two pie charts will appear reporting both the
Sx and STx estimated with the Extended FAST. You can also
look at the tabulated values. Try again using the method
of Sobol’.

Here we anticipate that the cost of the analysis leading to Table
1.6 is N(k + 2), where the cost is expressed in number of model
evaluations and N is the column dimension of the Monte Carlo
matrix used in the computations, say N = 500 to give an order
of magnitude (in Box 1.5 N = 1000/8 = 1250). Computing all
terms in the development (1.29) is more expensive, and often pro-
hibitively so.5 We would also anticipate, this time from Chapter 4,
that a gross estimate of the STx terms can be obtained at a lower
cost using an extended version of the method of Morris. Also for
this method the size is proportional to the number of factors.

1.4 The simple model ‘by groups’

Is there a way to compact the results of the analysis further? One
might wonder if one can get some information about the overall
sensitivity pattern of our portfolio model at a lower price. In fact
a nice property of the variance-based methods is that the variance

5 The cost would be exponential in k, see Chapter 5.
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Table 1.7 Estimates of main effects and total effect
indices of two groups of factors of model (1.1).

Factor Sx STx

P ≡ (Ps, Pt, Pj ) 0.66 1.00
C ≡ (Cs, Ct, Cj ) 0.00 0.34
Sum 0.66 1.34

decomposition (1.29) can be written for sets of factors as well.
In our model, for instance, it would be fairly natural to write a
variance decomposition as:

SC + SP + SC,P = 1 (1.35)

where C = Cs, Ct, Cj and P = Ps, Pt, Pj . The information we ob-
tain in this way is clearly less than that provided by the table with
all Si and STi .6

Looking at Table 1.7 we again see that the effect of the C set at
the first order is zero, while the second-order term SC,P is 0.34, so
it is not surprising that the sum of the total effects is 1.34 (the 0.34
is counted twice):

STC = SC + SC,P

STP = SP + SC,P
(1.36)

Now all that we know is the combined effect of all the amounts of
hedges purchased, Cx, the combined effect of all the hedged port-
folios, Px, plus the interaction term between the two. Computing
all terms in Equation 1.35 (Table 1.7) only costs N × 3, one set of
size N to compute the unconditional mean and variance, one for C
and one for P, SC,P being computed by difference using (1.35). This
is less than the N × (6 + 2) that one would have needed to com-
pute all terms in Table 1.6. So there is less information at less cost,
although cost might not be the only factor leading one to decide to
present the results of a sensitivity analysis by groups. For instance,
we could have shown the results from the portfolio model as

Ss + St + Sj + Ss,t + St,j + Ss,j + Ss,t,j = 1 (1.37)

6 The first-order sensitivity index of a group of factors is equivalent to the closed effect of all
the factors in the group, e.g.: SC = Sc

Cs ,Ct ,Cj
.
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Table 1.8 Main effects and total effect indices of three
groups of factors of model (1.1).

Factor Sx STx

s ≡ (Cs, Ps) 0.54 0.54
t ≡ (Ct, Pt) 0.33 0.33
j ≡ (Cj , Pj ) 0.13 0.13
Sum 1 1

where s ≡ (Cs, Ps) and so on for each sub-portfolio item, where a
sub-portfolio is represented by a certain amount of a given type of
hedge. This time the problem has become additive, i.e. all terms of
second and third order in (1.37) are zero. Given that the interac-
tions are ‘within’ the groups of factors, the sum of the first-order
effects for the groups is one, i.e. Ss + St + Sj = 1, and the total
indices are the same as the main effect indices (Table 1.8).

Different ways of grouping the factors might give different in-
sights into the owner of the problem.

Box 1.6 SIMLAB

Let us estimate the indices in Table 1.7 with SIMLAB.

1. Select the ‘FAST’ sampling method and then ‘Specify
switches’ on the right. Now select ‘All first and total or-
der effect calculation on groups’ in the combo box ‘Switch
for FAST’. Enter something as seed and a number of exe-
cutions (e.g. 10 000).

2. Instead of generating the sample now, load the model first
by clicking on ‘Configure (Monte Carlo)’ and then ‘Select
Model’.

3. Now click on ‘Start (Monte Carlo)’. SIMLAB will generate
the sample and run the model all together.

4. Run the SA: two pie charts will appear showing both the
Sx and STx estimated for the groups in Table 1.7. You can
also look at the tabulated values. Try again using larger
sample sizes.
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1.5 The (less) simple correlated-input model

We have now reached a crucial point in our presentation. We have
to abandon the last nicety of the portfolio model: the orthogonality
(independence) of its input factors.7

We do this with little enthusiasm because the case of dependent
factors introduces the following considerable complications.

1. Development (1.29) no longer holds, nor can any higher-order
term be decomposed into terms of lower dimensionality, i.e. it
is no longer true that

V(E(Y|Cs, Ps))
Vy

= Sc
Cs Ps

= SCs + SPs + SCs Ps (1.38)

although the left-hand side of this equation can be computed,
as we shall show. This also impacts on our capacity to treat
factors into sets, unless the non-zero correlations stay confined
within sets, and not across them.

2. The computational cost increases considerably, as the Monte
Carlo tricks used for non-orthogonal input are not as efficient
as those for the orthogonal one.

Assume a non-diagonal covariance structure C for our problem:

C =

Ps Pt Pj Cs Ct Cj

Ps 1
Pt 0.3 1
Pj 0.3 0.3 1
Cs . . . 1
Ct . . . −0.3 1
Cj . . . −0.3 −0.3 1

(1.39)

We assume the hedges to be positively correlated among one an-
other, as each hedge depends upon the behaviour of a given stock

7 The most intuitive type of dependency among input factors is given by correlation. However,
dependency is a more general concept than correlation, i.e. independency means orthogonality
and also implies that the correlation is null, while the converse is not true, i.e. null correlation
does not necessarily imply orthogonality (see, for example, Figure 6.6 and the comments to
it). The equivalence between null correlation and independency holds for multivariate normal
distributions.
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Table 1.9 Estimated main effects and total effect
indices for model (1.1) with correlated inputs (six
factors).

Factor Sx STx

Ps 0.58 0.35
Pt 0.48 0.21
Pj 0.36 0.085
Cs 0.01 0.075
Ct 0.00 0.045
Cj 0.00 0.02
Sum 1.44 0.785

price and we expect the market price dynamics of different stocks
to be positively correlated. Furthermore, we made the assumption
that the Cxs are negatively correlated, i.e. when purchasing more
of a given hedge investors tends to reduce their expenditure on
another item.

The marginal distributions are still given by (1.2), (1.23) above.
The main effect coefficients are given in Table 1.9. We have also
estimated the STx indices as, for example, for Ps :

STPs = E(V(Y|X−Ps ))
V(Y)

= 1 − V(E(Y|X−Ps ))
V(Y)

(1.40)

with a brute force method at large sample size. The calculation of
total indices for correlated input is not implemented in SIMLAB.

We see that now the total effect terms can be smaller than
the first-order terms. This should be intuitive in terms of bottom
marginal variances. Remember that E(V(Y|X−i )) is the expected
residual variance that one would end up with if all factors but Xi

could be known or fixed. Even if factor Xi is still non-determined,
all other factors have been fixed, and on average one would be
left with a smaller variance, than one would get for the orthog-
onal case, due to the relation between the fixed factors and the
unfixed one. The overall result for a non-additive model with non-
orthogonal inputs will depend on the relative predominance of
the interaction, pushing for STi > Si as for the Cxs in Table 1.9,
and dependency between input factors, pushing for STi < Si as for
the Pxs in Table 1.9. For all additive models with non-orthogonal
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Table 1.10 Decomposition of V(Y) and relative value of V(E(Y|Xi )),
E(V(Y|X−i )) for two cases: (1) orthogonal input, all models and (2)
non-orthogonal input, additive models. When the input is non-orthogonal
and the model non-additive, V(E(Y|Xi )) can be higher or lower than
E(V(Y|X−i )).

Case (1) Orthogonal input
factors, all models. For
additive models the two rows
are equal.

V(E(Y|Xi )) top
marginal. (or
main effect) of
Xi

E(V(Y|Xi )) bottom
marginal. (or total
effect) of X−i

E(V(Y|X−i )) bottom
marginal (or total
effect) of Xi

V(E(Y|X−i )) top
marginal (or main
effect) of X−i

Case (2) Non-orthogonal input
factors, additive models only. If
the dependency between inputs
vanishes, the two rows become
equal. For the case where Xi

and X−i are perfectly correlated
both the E(V(Y|.)) disappear
and both the V(E(Y|.)) become
equal to V(Y).

V(E(Y|Xi )) top
marginal of Xi

E(V(Y|X−i ))
bottom marginal
of Xi

E(V(Y|Xi )) bottom
marginal
of X−i

V(E(Y|X−i )) top
marginal of X−i

V(Y) (Unconditional)

input factors it will be STi ≤ Si . In the absence of interactions
(additive model) it will be STi = Si for the orthogonal case. If,
still with an additive model, we now start imposing a depen-
dency among the input factors (e.g. adding a correlation struc-
ture), then STi will start decreasing as E(V(Y|X−i )) will be lower
because having conditioned on X−i also limits the variation of Xi

(Table 1.10).
We take factor Ps as an example for the discussion that follows.

Given that for the correlated input case STPs can no longer be
thought of as the sum of all terms including factor Ps , what is the
point of computing it? The answer lies in one of the possible uses
that is made of sensitivity analysis: that of ascertaining if a given
factor is so non-influential on the output (in terms of contribution
to the output’s variance as usual!) that we can fix it. We submit
that if we want to fix a factor or group of factors, it is their STx

or STx respectively that we have to look at. Imagine that we want
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to determine if the influence of Ps is zero. If Ps is totally non-
influential, then surely

E(V(Y|X−Ps )) = 0 (1.41)

because fixing ‘all but Ps ’ results in the inner variance over Ps

being zero (under that hypothesis the variance of Y is driven only
by non-Ps), and this remains zero if we take the average over all
possible values of non-Ps . As a result, STPs is zero if Ps is totally non-
influential. It is easy to see that the condition E(V(Y|X−Ps )) = 0 is
necessary and sufficient for factor Ps to be non-influent, under any
model or correlation/dependency structure among input factors.

1.6 Conclusions

This ends our analysis of the model in Equation (1.1). Although
we haven’t given the reader any of the computational strategies to
compute the Sx, STx measures, it is easy to understand how these
can be computed in principle. After all, a variance is an integral.
It should be clear that under the assumptions that:

1. the model is not so terribly expensive that one cannot afford
Monte Carlo simulations, and

2. one has a scalar objective function Y and is happy with its
variance being the descriptor of interest.

Then

1. variance based measures offer a coherent strategy for the de-
composition of the variance of Y;

2. the strategy is agile in that the owner of the problem can decide
if and how to group the factors for the analysis;

3. this strategy is model free, i.e. it also works for nasty, non-
monotonic, non-additive models Y, and converge to easy-to-
grasp statistics, such as the squared standardised regression
coefficients β2

x for the linear model;
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4. it remains meaningful for the case where the input factors are
non-orthogonal;

5. it lends itself to intuitive interpretations of the analysis, such as
that in terms of top and bottom marginal variances, in terms
of prioritising resources to reduce the uncertainty of the most
influential factors or in terms of fixing non-influential factors.
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