Chapter 1

Review of
Elementary
Principles

1.1 INTRODUCTION

It is assumed that before entering the world of gas dynamics you have had a rea-
sonable background in mathematics (through calculus) together with a course in el-
ementary thermodynamics. An exposure to basic fluid mechanics would be helpful
but is not absolutely essential. The concepts used in fluid mechanics are relatively
straightforward and can be developed as we need them. On the other hand, some of
the concepts of thermodynamics are more abstract and we must assume that you al-
ready understand the fundamental laws of thermodynamics as they apply to stationary
systems. The extension of these laws to flow systems is so vital that we cover these
systems in depth in Chapters 2 and 3.

This chapter is not intended to be a formal review of the courses noted above;
rather, it should be viewed as a collection of the basic concepts and facts that will be
used later. It should be understood that a great deal of background is omitted in this
review and no attempt is made to prove each statement. Thus, if you have been away
from this material for any length of time, you may find it necessary occasionally to
refer to your notes or other textbooks to supplement this review. At the very least,
the remainder of this chapter may be considered an assumed common ground of
knowledge from which we shall venture forth.

At the end of this chapter a number of questions are presented for you to answer.
No attempt should be made to continue further until you feel that you can answer all
of these questions satisfactorily.

1.2 UNITS AND NOTATION

Dimension: a qualitative definition of a physical entity
(such as time, length, force)
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Unit: an exact magnitude of a dimension
(such as seconds, feet, newtons)

In the United States most work in the area of thermo-gas dynamics (particularly
in propulsion) is currently done in the English Engineering (EE) system of units.
However, most of the world is operating in the metric or International System (SI) of
units. Thus, we shall review both systems, beginning with Table 1.1.

Force and Mass

In either system of units, force and mass are related through Newton’s second law of
motion, which states that

d(momentum)
3 F o d(momentum)

1.1
R (1.1)
The proportionality factor is expressed as K = 1/g,, and thus
Z F— l d (mom:r)ltum) (1.2)

8e dt

For a mass that does not change with time, this becomes

ZF:'Z—a (1.3)

where ) F is the vector force summation acting on the mass m and a is the vector
acceleration of the mass.
In the English Engineering system, we use the following definition:

A 1-pound force will give a 1-pound mass an acceleration of 32.174
ft/sec’.

Table 1.1 Systems of Units*

Basic Unit Used
Dimension English Engineering International System
Time second (sec) second (s)
Length foot (ft) meter (m)
Force pound force (Ibf) newton (N)
Mass pound mass (Ibm) kilogram (kg)
Temperature Fahrenheit (°F) Celsius (°C)
Absolute Temperature Rankine (°R) kelvin (K)

¢ Caution: Never say pound, as this is ambiguous. It is either a pound force or a pound mass. Only for mass
at the Earth’s surface is it unambiguous, because here a pound mass weighs a pound force.
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With this definition, we have

1 1bm - 32.174 ft/sec?
&

1 Ibf =

and thus

Ibm-ft
Ibf-sec?

g = 32.174 (1.4a)

Note that g, is not the standard gravity (check the units). It is a proportionality factor
whose value depends on the units being used. In further discussions we shall take the
numerical value of g. to be 32.2 when using the English Engineering system.

In other engineering fields of endeavor, such as statics and dynamics, the British
Gravitational system (also known as the U.S. customary system) is used. This is very
similar to the English Engineering system except that the unit of mass is the slug.

In this system of units we follow the definition:

A 1-pound force will give a 1-slug mass an acceleration of 1
ft/sec?.

Using this definition, we have

1 slug - 1 ft/sec?
8c

11bf = (1.4b)

and thus

slug-ft

8e = 1bf-sec?

Since g. has the numerical value of unity, most authors drop this factor from the
equations in the British Gravitational system. Consistent with the thermodynamics
approach, we shall not use this system here. Comparison of the Engineering and
Gravitational systems shows that 1 slug = 32.174 lbm.

In the SI system we use the following definition:

A 1-N force will give a 1-kg mass an acceleration of
1 m/sec’.

Now equation (1.3) becomes

1kg - 1 m/s?
8c

IN=
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and thus

kg - m

e 1.4c
NS (L.40)

gc:]

Since g, has the numerical value of unity (and uses the dynamical unit of mass, i.e.,
the kilogram) most authors omit this factor from equations in the SI system. However,
we shall leave the symbol g, in the equations so that you may use any system of units
with less likelihood of making errors.

Density and Specific Volume

Density is the mass per unit volume and is given the symbol p. It has units of Ibm/ft?,
kg/m?, or slug/ft>.

Specific volume is the volume per unit mass and is given the symbol v. It has units
of ft*/lbm, m*/kg, or ft*/slug. Thus

1
p=- (1.5)
v

Specific weight is the weight (due to the gravity force) per unit volume and is given
the symbol y. If we take a unit volume under the influence of gravity, its weight will
be y. Thus, from equation (1.3) we have

y=pS  Ib/t or N/m? (1.6)

c

Note that mass, density, and specific volume do not depend on the value of the local
gravity. Weight and specific weight do depend on gravity. We shall not refer to specific
weight in this book; it is mentioned here only to distinguish it from density. Thus the
symbol y may be used for another purpose [see equation (1.49)].

Pressure

Pressure is the normal force per unit area and is given the symbol p. It has units of
Ibf/ft> or N/m>. Several other units exist, such as the pound per square inch (psi;
Ibf/in?), the megapascal (MPa; 1 x 10° N/m?), the bar (1 x 10° N/m?), and the
atmosphere (14.69 psi or 0.1013 MPa).

Absolute pressure is measured with respect to a perfect vacuum.

Gage pressure is measured with respect to the surrounding (ambient) pressure:

Pabs = Pamb T Pgage 1.7)

When the gage pressure is negative (i.e., the absolute pressure is below ambient) it is
usually called a (positive) vacuum reading:

Pabs = Pamb — Pvac (18)



1.2 UNITS AND NOTATION 5

Ambient pressure

Figure 1.1 Absolute and gage pressures.

Two pressure readings are shown in Figure 1.1. Case 1 shows the use of equation
(1.7) and case 2 illustrates equation (1.8). It should be noted that the surrounding
(ambient) pressure does not necessarily have to correspond to standard atmospheric
pressure. However, when no other information is available, one has to assume that
the surroundings are at 14.69 psi or 0.1013 MPa. Most often, equations require the
use of absolute pressure, and we shall use a numerical value of 14.7 when using the
English Engineering system and 0.1 MPa (1 bar) when using the SI system.

Temperature

Degrees Fahrenheit (or Celsius) can safely be used only when differences in temper-
ature are involved. However, most equations require the use of absolute temperature
in Rankine (or kelvins).

°R = °F 4 459.67 (1.9q)
K = °C +273.15 (1.9b)

The values 460 and 273 will be used in our calculations.

Viscosity
We shall be dealing with fluids, which are defined as

Any substance that will continuously deform when subjected to a shear stress.
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Thus the amount of deformation is of no significance (as it is with a solid), but rather,
the rate of deformation is characteristic of each individual fluid and is indicated by
the viscosity:

shear stress

i ity = 1.10
VISCOSIY rate of angular deformation ( )

Viscosity, sometimes called absolute viscosity, is given the symbol u and has the
units Ibf-sec/ft? or N - s/m>.

For most common fluids, because viscosity is a function of the fluid, it varies with
the fluid’s state. Temperature has by far the greatest effect on viscosity, so most charts
and tables display only this variable. Pressure has a slight effect on the viscosity of
gases but a negligible effect on liquids.

A number of engineering computations use a combination of (absolute) viscosity
and density. This kinematic viscosity is defined as

_ M8
V=
0

(1.11)

Kinematic viscosity has the units ft?/sec or m%/s. We shall see more regarding viscos-
ity in Chapter 9 when we deal with flow losses caused by duct friction.

Equation of State

In most of this book we consider all liquids as having constant density and all gases
as following the perfect gas equation of state. Thus, for liquids we have the relation

p = constant (1.12)

The perfect gas equation of state is derived from kinetic theory and neglects molecular
volume and intermolecular forces. Thus it is accurate under conditions of relatively
low density which correspond to relatively low pressures and/or high temperatures.
The form of the perfect gas equation normally used in gas dynamics is

p = pRT (1.13)
where
p = absolute pressure Ibf/ft? or N/m?
p = density Ibmy/ft? or kg/m?
T = absolute temperature °R or K

R = individual gas constant  ft-Ibf/lbm-°R  or N-m/kg-K

The individual gas constant is found in the English Engineering system by dividing
1545 by the molecular mass of the gas chemical constituents. In the SI system, R
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is found by dividing 8314 by the molecular mass. More exact numbers are given in
Appendixes A and B.

Example 1.1 The (equivalent) molecular mass of air is 28.97.

R= % _ 533 feibf/bm-oR R=31% eI N . mke K
= —— =533 ft- m- or = = . .
28.97 28.97 8

Example 1.2 Compute the density of air at 50 psia and 100°F.

p (50)(144)

= - 77  _—0.241 Ibm/ft
RT  (53.3)(460 + 100)

P

Properties of selected gases are given in Appendixes A and B. In most of this book
we use English Engineering units. However, there are many examples and problems
in ST units. Some helpful conversion factors are also given in Appendixes A and B.
You should become familiar with solving problems in both systems of units.

In Chapter 11 we discuss real gases and show how these may be handled. The sim-
plifications that the perfect gas equation of state brings about are not only extremely
useful but also accurate for ordinary gases because in most gas dynamics applications
low temperatures exist with low pressures and high temperatures with high pressures.
In Chapter 11 we shall see that deviations from ideality become particularly important
at high temperatures and low pressures.

1.3 SOME MATHEMATICAL CONCEPTS

Variables

The equation
y=f (1.14)

indicates that a functional relation exists between the variables x and y. Further, it
denotes that

x is the independent variable, whose value can be given anyplace within an ap-
propriate range.

y is the dependent variable, whose value is fixed once x has been selected.

In most cases it is possible to interchange the dependent and independent variables
and write

x=f() (1.15)
Frequently, a variable will depend on more than one other variable. One might write

P=f(xy2) (1.16)
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indicating that the value of the dependent variable P is fixed once the values of the
independent variables x, y, and z are selected.

Infinitesimal

A quantity that is eventually allowed to approach zero in the limit is called an in-
finitesimal. It should be noted that a quantity, say Ax, can initially be chosen to have
a rather large finite value. If at some later stage in the analysis we let Ax approach
zero, which is indicated by

Ax — 0

Ax is called an infinitesimal.

Derivative

If y = f(x), we define the derivative dy/dx as the limit of Ay/Ax as Ax is allowed
to approach zero. This is indicated by

2= lim 22 (1.17)

For a unique derivative to exist, it is immaterial how Ax is allowed to approach zero.

If more than one independent variable is involved, partial derivatives must be
used. Say that P = f(x,y,z). We can determine the partial derivative d P/dx by
taking the limit of A P/Ax as Ax approaches zero, but in so doing we must hold the
values of all other independent variables constant. This is indicated by

P . AP
— = lim ( — (1.18)
0x Ax—0 \ Ax vz

where the subscripts y and z denote that these variables remain fixed in the limiting
process. We could formulate other partial derivatives as

0P . AP
— = lim | — and so on (1.19)
ay Ay—0 Ay X,z

Differential

For functions of a single variable such as y = f(x), the differential of the dependent
variable is defined as

d
dy = 2 Ax (1.20)
dx

The differential of an independent variable is defined as its increment; thus

dx = Ax (1.21)
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and one can write

d
dy = Zax (1.22)
dx
For functions of more than one variable, such as P = f(x,y,z), the differential of
the dependent variable is defined as

oP P oP

4P = (_) Ax+ (-) Ay (—) A (1230)
ax ), /.. 9z /
P oP oP

P = <_) dx+ (—) dy + (—) d: (1.235)
ax /. 0y /... 0z /,

It is important to note that quantities such as d P, dx, dy, and 9z by themselves are
never defined and do not exist. Under no circumstance can one “separate” a partial
derivative. This is an error frequently made by students when integrating partial
differential equations.

or

Maximum and Minimum

If a plot is made of the functional relation y = f(x), maximum and/or minimum
points may be exhibited. At these points dy/dx = 0. If the point is a maximum,
d*y/dx? will be negative; whereas if it is a minimum point, d?y /dx? will be positive.

Natural Logarithms

From time to time you will be required to manipulate expressions containing natural
logarithms. For this you need to recall that

InA=x means e*=A (1.24)
InCD =InC +1In D (1.24a)
InE"=nlnkE (1.24b)

Taylor Series

When the functional relation y = f(x) is not known but the values of y together with
those of its derivatives are known at a particular point (say, x;), the value of y may
be found at any other point (say, x;) through the use of a Taylor series expansion:

d &P f () — x1)°
FO) = FO) + % (62— x1) + d—xf%

(1.25)

d3_f(x2 —x)?

a3 T
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To use this expansion the function must be continuous and possess continuous deriva-
tives throughout the interval x; to x,. It should be noted that all derivatives in the
expression above must be evaluated about the point of expansion x;.

If the increment Ax = x, — x; is small, only a few terms need be evaluated to
obtain an accurate answer for f(x;). If Ax is allowed to approach zero, all higher-
order terms may be dropped and

daf

fl) ~ fx) + (d—) dx fordx — 0 (1.26)
X X=X

1.4 THERMODYNAMIC CONCEPTS FOR CONTROL MASS ANALYSIS

We apologize for the length of this section, but a good understanding of thermody-
namic principles is essential to a study of gas dynamics.

General Definitions

Microscopic approach: deals with individual molecules, and with their motion
and behavior, on a statistical basis. It depends on our understanding of the
structure and behavior of matter at the atomic level. Thus this view is being
refined continually.

Macroscopic approach: deals directly with the average behavior of molecules
through observable and measurable properties (temperature, pressure, etc.).
This classical approach involves no assumptions regarding the molecular struc-
ture of matter; thus no modifications of the basic laws are necessary. The macro-
scopic approach is used in this book through the first 10 chapters.

Control mass: a fixed quantity of mass that is being analyzed. It is separated from
its surroundings by a boundary. A control mass is also referred to as a closed
system. Although no matter crosses the boundary, energy may enter or leave
the system.

Control volume: a region of space that is being analyzed. The boundary separating
it from its surroundings is called the control surface. Matter as well as energy
may cross the control surface, and thus a control volume is also referred to as
an open system. Analysis of a control volume is introduced in Chapters 2 and 3.

Properties: characteristics that describe the state of a system; any quantity that has
a definite value for each definite state of a system (e.g., pressure, temperature,
color, entropy).

Intensive property: depends only on the state of a system and is independent of its
mass (e.g., temperature, pressure).

Extensive property: depends on the mass of a system (e.g., internal energy, volume).

Types of properties:

1. Observable: readily measured
(pressure, temperature, velocity, mass, etc.)
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2. Mathematical: defined from combinations of other properties
(density, specific heats, enthalpy, etc.)

3. Derived: arrived at as the result of analysis
a. Internal energy (from the first law of thermodynamics)
b. Entropy (from the second law of thermodynamics)
State change: comes about as the result of a change in any property.

Path or process: represents a series of consecutive states that define a unique path
from one state to another. Some special processes:

Adiabatic — no heat transfer
Isothermal — T = constant
Isobaric — p = constant

Isentropic — s = constant

Cycle: a sequence of processes in which the system is returned to the original state.

Point functions: another way of saying properties, since they depend only on the
state of the system and are independent of the history or process by which the
state was obtained.

Path functions: quantities that are not functions of the state of the system but rather
depend on the path taken to move from one state to another. Heat and work are
path functions. They can be observed crossing the system’s boundaries during
a process.

Laws of Classical Thermodynamics

0? Relation among properties

0 Thermal equilibrium

1 Conservation of energy

2 Degradation of energy (irreversibilities)

The 07 law (sometimes called the 00 law) is seldom listed as a formal law of ther-
modynamics; however, one should realize that without such a statement our entire
thermodynamic structure would collapse. This law states that we may assume the
existence of a relation among the properties, that is, an equation of state. Such an
equation might be extremely complicated or even undefined, but as long as we know
that such a relation exists, we can continue our studies. The equation of state can also
be given in the form of tabular or graphical information.

For a single component or pure substance only three independent properties are
required to fix the state of the system. Care must be taken in the selection of these
properties; for example, temperature and pressure are not independent if the substance
exists in more than one phase (as in a liquid together with its vapor). When dealing
with a unit mass, only two independent properties are required to fix the state. Thus
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one can express any property in terms of two other known independent properties
with a relation such as

P = f(xy)

If two systems are separated by a nonadiabatic wall (one that permits heat transfer),
the state of each system will change until a new equilibrium state is reached for the
combined system. The two systems are then said to be in thermal equilibrium with
each other and will then have one property in common which we call the temperature.
The zeroth law states that two systems in thermal equilibrium with a third system
are in thermal equilibrium with each other (and thus have the same temperature).
Among other things, this allows the use of thermometers and their standardization.

First Law of Thermodynamics
The first law deals with conservation of energy, and it can be expressed in many
equivalent ways. Heat and work are two extreme types of energy in transit. Heat is
transferred from one system to another when an effect occurs solely as a result of a
temperature difference between the two systems.

Heat is always transferred from the system at the higher temperature to the one at
the lower temperature.

Work is transferred from a system if the total external effect can be reduced to the
raising of a mass in a gravity field. For a closed system that executes a complete cycle,

Yo=Yw (1.27)

where

Q = heat transferred into the system
W = work transferred from the system
Other sign conventions are sometimes used but we shall adopt those above for this

book.
For a closed system that executes a process,

0=W+AE (1.28)

where E represents the total energy of the system. On a unit mass basis, equation
(1.28) is written as

qg=w+ Ae (1.29)

The total energy may be broken down into (at least) three types:

V2
+&; (1.30)

28 &

e=u-+
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where
u = the intrinsic internal energy manifested by the
motion of the molecules within the system
V2
= the kinetic energy represented by the movement
28¢ of the system as a whole
g

—z = the potential energy caused by the position of the
8¢ system in a field of gravity

It is sometimes necessary to include other types of energy (such as dissociation
energy), but those mentioned above are the only ones that we are concerned with in
this book.

For an infinitesimal process, one could write equation (1.29) as

8q = dw +de (1.31)

Note that since heat and work are path functions (i.e., they are a function of how the
system gets from one state point to another), infinitesimal amounts of these quantities
are not exact differentials and thus are written as §q and w. The infinitesimal change
in internal energy is an exact differential since the internal energy is a point function
or property. For a stationary system, equation (1.31) becomes

8q = Sw +du (1.32)

The reversible work done by pressure forces during a change of volume for a station-
ary system is

Sw = pdv (1.33)

Combination of the terms u# and pv enters into many equations (particularly for
open systems) and it is convenient to define the property enthalpy:

h=u+ pv (1.34)

Enthalpy is a property since it is defined in terms of other properties. It is frequently
used in differential form:

dh=du+d(pv) =du+ pdv+vdp (1.35)

Other examples of defined properties are the specific heats at constant pressure (c,)
and constant volume (c,):
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ah
)= <ﬁ>p (1.36)

ou
Cy = <ﬁ>v (1.37)

Second Law of Thermodynamics

The second law has been expressed in many equivalent forms. Perhaps the most
classic is the statement by Kelvin and Planck stating that it is impossible for an
engine operating in a cycle to produce net work output when exchanging heat with
only one temperature source. Although by itself this may not appear to be a profound
statement, it leads the way to several corollaries and eventually to the establishment
of a most important property (entropy).

The second law also recognizes the degradation of energy quality by irreversible
effects such as internal fluid friction, heat transfer through a finite temperature dif-
ference, lack of pressure equilibrium between a system and its surroundings, and so
on. All real processes have some degree of irreversibility present. In some cases these
effects are very small and we can envision an ideal limiting condition that has none
of these effects and thus is reversible. A reversible process is one in which both the
system and its surroundings can be restored to their original states.

By prudent application of the second law it can be shown that the integral of Q@ /T
for a reversible process is independent of the path. Thus this integral must represent
the change of a property, which is called entropy:

_ [0k
AS:/ T (1.38)

where the subscript R indicates that it must be applied to a reversible process. An
alternative expression on a unit mass basis for a differential process is
Sqr

ds = — 1.39
s T (1.39)

Although you have no doubt used entropy for many calculations, plots, and so on,
you probably do not have a good feeling for this property. In Chapter 3 we divide
entropy changes into two parts, and by using it in this fashion for the remainder of
this book we hope that you will gain a better understanding of this elusive “creature.”

Property Relations

Some extremely important relations come from combinations of the first and second
laws. Consider the first law for a stationary system that executes an infinitesimal
process:

8q = dw +du (1.32)
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If it is a reversible process,

Sw=pdv (1.33) and 8qg =Tds (from 1.39)
Substitution of these relations into the first law yields
Tds=du+ pdv (1.40)
Differentiating the enthalpy, we obtained
dh =du+ pdv+vdp (1.35)
Combining equations (1.35) and (1.40) produces

Tds =dh—vdp (141

Although the assumption of a reversible process was made to derive equations (1.40)
and (1.41), the results are equations that contain only properties and thus are valid
relations to use between any end states, whether reached reversibly or not. These are
important equations that are used throughout the book.

Tds=du+ pdv (1.40)
Tds =dh—vdp (1.41)

If you are uncomfortable with the foregoing technique (one of making special
assumptions to derive a relation which is then generalized to be always valid since
it involves only properties), perhaps the following comments might be helpful. First
let’s write the first law in an alternative form (as some authors do):

8q —dw =du (1.32a)

Since the internal energy is a property, changes in u depend only on the end states
of a process. Let’s now substitute an irreversible process between the same end points
as our reversible process. Then du must remain the same for both the reversible and
irreversible cases, with the following result:

(06g — 0w)rey = du = (8g — SW)jrrey

For example, the extra work that would be involved in an ireversible compres-
sion process must be compensated by exactly the same amount of heat released (an
equivalent argument applies to an expansion). In this fashion, irreversible effects will
appear to be “washed out” in equations (1.40) and (1.41) and we cannot tell from
them whether a particular process is reversible or irreversible.
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Perfect Gases

Recall that for a unit mass of a single component substance, any one property can
be expressed as a function of at most rwo other independent properties. However, for
substances that follow the perfect gas equation of state,

p=pRT (1.13)

it can be shown (see p. 173 of Ref. 4) that the internal energy and the enthalpy are
functions of temperature only. These are extremely important results, as they permit
us to make many useful simplifications for such gases.

Consider the specific heat at constant volume:

ou
cy = <ﬁ>v (1.37)

If u = f(T) only, it does not matter whether the volume is held constant when
computing c,; thus the partial derivative becomes an ordinary derivative. Thus

du (1.42)
cy = — .
dt
or
du = ¢, dT (1.43)

Similarly, for the specific heat at constant pressure, we can write for a perfect gas:
dh =c,dT (1.44)

It is important to realize that equations (1.43) and (1.44) are applicable to any and all
processes (as long as the gas behaves as a perfect gas). If the specific heats remain
reasonably constant (normally good over limited temperature ranges), one can easily
integrate equations (1.43) and (1.44):

Au =c, AT (1.45)

Ah =c, AT (1.46)

In gas dynamics one simplifies calculations by introducing an arbitrary base for

internal energy. We let u = 0 when T = 0 absolute. Then from the definition of

enthalpy, % also equals zero when T = 0. Equations (1.45) and (1.46) can now be
rewritten as

u=c,T (1.47)

h=c,T (1.48)
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Typical values of the specific heats for air at normal temperature and pressure are ¢, =
0.240 and ¢, = 0.171 Btu/Ibm-°R. Learn these numbers (or their SI equivalents)! You
will use them often.

Other frequently used relations in connection with perfect gases are

y= (1.49)
Cy
R (1.50)
Cp—Cp = — .
r J
Notice that the conversion factor
J = 778 ft-1bf/Btu (1.51)

has been introduced in (1.50) since the specific heats are normally given in units of
Btu/Ibm-°R. This factor will be omitted in future equations and it will be left for you
to consider when it is required. It is hoped that by this procedure you will develop
careful habits of checking units in all your work. What units are used for specific heat
and R in the SI system? (See the table on gas properties in Appendix B.) Would this
require a J factor in equation (1.50)?

Entropy Changes

The change in entropy between any two states can be obtained by integrating equation
(1.39) along any reversible path or combination of reversible paths connecting the
points, with the following results for perfect gases:

v

Asia=c, In 2 +¢, In 2 (1.52)
V1 P1
T

Asia=c,In=2 —RIn 22 (1.53)
T, D1
T

Asis=c,In-2+RIn2 (1.54)
T V]

Remember, absolute values of pressures and temperatures must be used in these
equations; volumes may be either total or specific, but both volumes must be of the
same type. Watch the units on ¢, ¢,, and R.

Process Diagrams

Many processes in the gaseous region can be represented as a polytropic process, that
is, one that follows the relation

pv" = const = C; (1.55)
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Figure 1.2 General polytropic process plots for perfect gases.

where n is the polytropic exponent, which can be any positive number. If the fluid is
a perfect gas, the equation of state can be introduced into (1.55) to yield

Tv"~! = const = C, (1.56)

Tp'="/" = const = C; (1.57)

Keep in mind that C;, C,, and C3 in the equations above are different constants. It is
interesting to note that certain values of n represent particular processes:

n=0 — p = const
n=1 — T = const
n=y — s = const
n=00 — v = const

These plot in the p—v and T—-s diagrams as shown in Figure 1.2, Learn these di-
agrams! You should also be able to figure out how temperature and entropy vary
in the p—v diagram and how pressure and volume vary in the 7—s diagram (Try
drawing several T = const lines in the p—v plane. Which one represents the highest
temperature?).

REVIEW QUESTIONS

A number of questions follow that are based on concepts that you have covered in earlier
calculus and thermodynamic courses. State your answers as clearly and concisely as possible
using any source that you wish (although all the material has been covered in the preceding
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review). Do not proceed to Chapter 2 until you fully understand the correct answers to all
questions and can write them down without reference to your notes.

1.1.

1.2
1.3.
14.

1.5.

1.6.

1.7.
1.8.
1.9.

1.10.

1.11.

1.12.
1.13.

1.14.

1.15.
1.16.
1.17.
1.18.
1.19.

1.20.
1.21.
1.22.

1.23.

How is an ordinary derivative such as dy/dx defined? How does this differ from a
partial derivative?

What is the Taylor series expansion, and what are its applications and limitations?
State Newton’s second law as you would apply it to a control mass.

Define a 1-pound force in terms of the acceleration it will give to a 1-pound mass. Give
a similar definition for a newton in the SI system.

Explain the significance of g. in Newton’s second law. What are the magnitude and
units of g. in the English Engineering system? In the SI system?

What is the relation between degrees Fahrenheit and degrees Rankine? Degrees Celsius
and Kelvin?

What is the relationship between density and specific volume?
Explain the difference between absolute and gage pressures.

What is the distinguishing characteristic of a fluid (as compared to a solid)? How is this
related to viscosity?

Describe the difference between the microscopic and macroscopic approach in an
analysis of fluid behavior.

Describe the control volume approach to problem analysis and contrast it to the control
mass approach. What kinds of systems are these also called?

Describe a property and give at least three examples.

Properties may be categorized as either intensive or extensive. Define what is meant by
each, and list examples of each type of property.

When dealing with a unit mass of a single component substance, how many independent
properties are required to fix the state?

Of what use is an equation of state? Write down one with which you are familiar.
Define point functions and path functions. Give examples of each.

What is a process? What is a cycle?

How does the zeroth law of thermodynamics relate to temperature?

State the first law of thermodynamics for a closed system that is executing a single
process.

What are the sign conventions used in this book for heat and work?
State any form of the second law of thermodynamics.

Define a reversible process for a thermodynamic system. Is any real process ever
completely reversible?

What are some effects that cause processes to be irreversible?
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1.24.
1.25.
1.26.

1.27.

1.28.

1.29.

1.30.

1.31.
1.32.

1.33.

1.34.

REVIEW OF ELEMENTARY PRINCIPLES

What is an adiabatic process? An isothermal process? An isentropic process?
Give equations that define enthalpy and entropy.

Give differential expressions that relate entropy to
(a) internal energy and
(b) enthalpy.

Define (in the form of partial derivatives) the specific heats ¢, and c,. Are these
expressions valid for a material in any state?

State the perfect gas equation of state. Give a consistent set of units for each term in
the equation.

For a perfect gas, specific internal energy is a function of which state variables? How
about specific enthalpy?

Give expressions for Au and Ah that are valid for perfect gases. Do these hold for any
process?

For perfect gases, at what temperature do we arbitrarily assign u = 0 and & = 0?

State any expression for the entropy change between two arbitrary points which is valid
for a perfect gas.

If a perfect gas undergoes an isentropic process, what equation relates the pressure to
the volume? Temperature to the volume? Temperature to the pressure?

Consider the general polytropic process (pv" = const) for a perfect gas. In the p—v and
T—-s diagrams shown in Figure RQ1.34, label each process line with the correct value
of n and identify which fluid property is held constant.

Figure RQ1.34

REVIEW PROBLEMS

If you have been away from thermodynamics for a long time, it might be useful to work the
following problems.
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1.2

1.3.

1.4.

1.5.
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How well is the relation ¢, = ¢, + R represented in the table of gas properties in
Appendix A? Use entries for hydrogen.

A perfect gas having specific heats ¢, = 0.403 Btu/lbm-°R and ¢, = 0.532 Btu/lbm-°R

undergoes a reversible polytropic process in which the polytropic exponent n = 1.4.

Giving clear reasons, answer the following:

(a) Will there be any heat transfer in the process?

(b) Which would this process be nearest, a horizontal or a vertical line on a p—v ora T—s
diagram? (Alternatively, state between which constant property lines the process
lies.)

Nitrogen gas is reversibly compressed from 70°F and 14.7 psia to one-fourth of its

original volume by (1) a T = const process or (2) a p = const process followed by

a v = const process to the same end point as (1).

(a) Which compression involves the least amount of work? Show clearly on a p—v
diagram.

(b) Calculate the heat and work interaction for the isothermal compression.

For the reversible cycle shown in Figure RP1.4, compute the cyclic integrals [§ d(-)] of
dE, 5Q, dH, 6W, and dS.

1 . 2

Figure RP1.4
P
pr=pr=10x10Pa
L___ < p3=ps=04x10°Pa

4 K '3

: : V] = V4 = 0.6m3

|

: : Vo= Vs =1.0m®

1%

A perfect gas (methane) undergoes a reversible, polytropic process in which the poly-

trotic exponent is 1.4.

(a) Using the first law, arrive at an expression for the heat transfer per unit mass solely as
a function of the temperature difference AT. This should be some numerical value
(use SI units).

(b) Would this heat transfer be equal to either the enthalpy change or the internal energy
change for the same AT?






