
C H A P T E R O N E

Introduction

Certum est quia impossibile est. TERTULLIAN, 155/160 A.D.—after 220 A.D.

This book is devoted to the parametric statistical distributions of economic size

phenomena of various types—a subject that has been explored in both statistical and

economic literature for over 100 years since the publication of V. Pareto’s famous

breakthrough volume Cours d’économie politique in 1897. To the best of our

knowledge, this is the first collection that systematically investigates various

parametric models—a more respectful term for distributions—dealing with income,

wealth, and related notions. Our aim is marshaling and knitting together the

immense body of information scattered in diverse sources in at least eight

languages. We present empirical studies from all continents, spanning a period of

more than 100 years.

We realize that a useful book on this subject matter should be interesting, a

task that appears to be, in T. S. Eliot’s words, “not one of the least difficult.” We

have tried to avoid reducing our exposition to a box of disconnected facts

or to an information storage or retrieval system. We also tried to avoid easy

armchair research that involves computerized records and heavy reliance on the

Web.

Unfortunately, the introduction by its very nature is always somewhat fragmentary

since it surveys, in our case rather extensively, the content of the volume. After

reading this introduction, the reader could decide whether continuing further study

of the book is worthwhile for his or her purposes. It is our hope that the decision will

be positive. To provide a better panorama, we have included in the Appendix brief

biographies of the leading players.

1.1 OUR AIMS

The modeling of economic size distributions originated over 100 years ago with the

work of Vilfredo Pareto on the distribution of income. He apparently was the first to
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observe that, for many populations, a plot of the logarithm of the number of incomes

Nx above a level x against the logarithm of x yields points close to a straight line of

slope �a for some a . 0. This suggests a distribution with a survival function

proportional to x�a, nowadays known as the Pareto distribution.

“Economic size distributions” comprise the distributions of personal incomes of

various types, the distribution of wealth, and the distribution of firm sizes. We also

include work on the distribution of actuarial losses for which similar models have

been in use at least since Scandinavian actuaries (Meidell, 1912; Hagstrœm, 1925)

observed that—initially in life insurance—the sum insured is likely to be

proportional to the incomes of the policy holders, although subsequently there

appears to have been hardly any coordination between the two areas. Since the lion’s

share of the available literature comprises work on the distribution of income, we

shall often speak of income distributions, although most results apply with minor

modifications to the other size variables mentioned above.

Zipf (1949) in his monograph Human Behavior and the Principle of Least

Effort and Simon (1955) in his article “On a class of skew distribution functions”

suggest that Pareto-type distributions are appropriate to model such different

variables as city sizes, geological site sizes, the number of scientific publications

by a certain author, and also the word frequencies in a given text. Since the early

1990s, there has been an explosion of work on economic size phenomena in the

physics literature, leading to an emerging new field called econophysics (e.g.,

Takayasu, 2002). In addition, computer scientists are nowadays studying file size

distributions in the World Wide Web (e.g., Crovella, Taqqu, and Bestavros, 1998),

but these works are not covered in this volume. We also exclude discrete Pareto-

type distributions such as the Yule distribution that have been utilized in

connection with the size distribution of firms by Simon and his co-authors (see

Ijiri and Simon, 1977).

Regarding the distribution of income, the twentieth century witnessed

unprecedented attempts by powerful nations such as Russia (in 1917) and China

(in 1949) and almost all Eastern European countries (around the same time) to carry

out far-reaching economic reforms and establish economic regimes that will reduce

drastically income inequality and result in something approaching the single-point

distribution of income when everyone is paid the same wages.

The most radical example is, of course, the blueprint for the economy of the

Peoples’ Republic of China (PRC) proclaimed by Mao Tse Tung on October 1, 1949

(his delivery of this plan was witnessed by one of the authors of this book in his

youth). Mao’s daring and possibly utopian promise of total economic equality for

close to 1 billion Chinese and a guaranteed “iron bowl” of rice for every citizen

totally receded into the background over the next 30 years due partially to blunders,

unfavorable weather conditions, fanaticism, and cruelty, but perhaps mainly because

of—as claimed by Pareto in the 1890s— the inability to change human nature and to

suppress the natural instinct for economic betterment each human seems to possess.

It is remarkable that only eight years after Mao’s death, the following appeared in

the Declaration of the Central Committee of the Communist Party of China in

October 1984:
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There has long been a misunderstanding about the distribution of consumer goods under

socialism as if it meant egalitarianism.

If some members of society got higher wages through their labor, resulting in a wide gap in

income it was considered polarization and a deviation from socialism. This egalitarian

thinking is utterly incompatible with scientific Marxist views of socialism.

In modern terminology, this translates to “wealth creation seems to be more

important than wealth redistribution.” Even the rigid Stalinist regime in North Korea

began flirting with capitalism after May 2002, triggering income inequality.

Much milder attempts at socialism (practiced, e.g., in Scandinavian countries in

the early years of the second part of the twentieth century) to reduce inequality by

government regulators, especially by substantial taxation on the rich, were a colossal

failure, as we are witnessing now in the early years of the twenty-first century.

Almost the entire world is fully entrenched in a capitalistic market economy that

appears to lead to a mathematical expression of the income distribution close to the

one discovered by Pareto, with possibly different a and insignificant modifications.

In fact, in our opinion the bulk of this book is devoted to an analysis of Pareto-type

distributions, some of them in a heavily disguised form, leading sometimes to

unrecognizable mathematical expressions.

It was therefore encouraging for us to read a recent book review of

Champernowne and Cowell’s Economic Inequality and Income Distribution

(1998) written by Thomas Piketty, in which Piketty defends the “old-fashionedness”

of the authors in their frequent reference to Pareto coefficients and claims that due to

the tremendous advances in computer calculations “at the age of SAS and STATA,”

young economists have never heard of “Pareto coefficients” and tend to assume “that

serious research started in the 1980s or 1990s.” We will attempt to provide the

background on and hopefully a proper perspective of the area of parametric income

distributions throughout its 100-year-plus history.

It should be admitted that research on income distribution was somewhat dormant

during the period from 1910–1970 in Western countries, although periodically

publications—mainly of a polemical nature—have appeared in basic statistical and

economic journals (see the bibliography). (An exception is Italy where, possibly due

to the influence of Pareto and Gini, the distribution of income has always been a

favorite research topic among prominent Italian economists and statisticians.) This

changed during the last 15 years with the rising inequality in Western economies

over the 1980s and a surge in inequality in the transition economies of Eastern

Europe in the 1990s. Both called for an explanation and prompted novel empirical

research. Indeed, as indicated on a recent Web page of the Distributional Analysis

Research Programme (DARP) at the London School of Economics (http://
darp.lse.ac.uk/),

the study of income distribution is enjoying an extraordinary renaissance: interest in the

history of the eighties, the recent development of theoretical models of economic growth

that persistent wealth inequalities, and the contemporary policy focus upon the concept of

social exclusion are evidence of new found concern with distributional issues.
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Readers are referred to the recently published 1,000-page Handbook of Income

Distribution edited by Atkinson and Bourguignon (2000) for a comprehensive

discussion of the economic aspects of income distributions. We shall concentrate on

statistical issues here.

On the statistical side, methods can broadly be classified as parametric and

nonparametric. The availability of ever more powerful computer resources during

recent decades gave rise to various nonparametric methods of density estimation, the

most popular being probably the kernel density approach. Their main attraction is

that they do not impose any distributional assumptions; however, with small data

sets—not uncommon in actuarial science—they might result in imprecise estimates.

These inaccuracies may be reduced by applying parametric models.

A recent comment by Cowell (2000, p. 145) seems to capture lucidly and

succinctly the controversy existing between the proponents and opponents to the

parametric approach in the analysis of size distributions:

The use of the parametric approach to distributional analysis runs counter to the general

trend towards the pursuit of non-parametric methods, although [it] is extensively applied in

the statistical literature. Perhaps it is because some versions of the parametric approach

have had bad press: Pareto’s seminal works led to some fanciful interpretations of “laws” of

income distribution (Davis, 1941), perhaps it is because the non-parametric method seems

to be more general in its approach.

Nevertheless, a parametric approach can be particularly useful for estimation of indices or

other statistics in cases where information is sparse [such as given in the form of grouped

data, our addition] . . . . Furthermore, some standard functional forms claim attention, not

only for their suitability in modelling some features of many empirical income

distributions but also because of their role as equilibrium distributions in economic

processes.

We are not concerned with economic/empirical issues in this book that involve

the choice of a type of data such as labor of nonlabor earnings, incomes before or

after taxes, individual or household incomes. These are, of course, of great

importance in empirical economic studies. Nor are we dealing with the equally

important aspects of data quality; we refer interested readers to van Praag,

Hagenaars, and van Eck (1983); Lillard, Smith, and Welch (1986); or Angle (1994)

in this connection. This problem is becoming more prominent as more data become

available and new techniques to cope with the incompleteness of data such as “top-

coding” and outliers are receiving significant attention. In the latter part of the

twentieth century, the works of Victoria-Feser and Ronchetti (1994, 1997), Cowell

and Victoria-Feser (1996), and more recently Victoria-Feser (2000), provided a

number of new tools for the application of parametric models of income distri-

butions, among them robust estimators and related diagnostic tools. They can pro-

tect the researcher against model deviations such as gross errors in the data or

grouping effects and therefore allow for more reliable estimation of, for example,

income distributions and inequality indices. (The latter task has occupied numerous

researchers for over half a century.)
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1.2 TYPES OF ECONOMIC SIZE DISTRIBUTIONS

In this short section we shall enumerate for completeness the types of size

distributions studied in this book. Readers who are interested solely in statistical

aspects may wish to skip this section. Those inclined toward broader economic-

statistical issues may wish to supplement our brief exposition by referring to

numerous books and sources, such as Atkinson and Harrison (1978),

Champernowne and Cowell (1998), Ijiri and Simon (1977), Sen (1997), or Wolff

(1987) and books on actuarial economics and statistics.

Distributions of Income and Wealth

As Okun (1975, p. 65) put it, “income and wealth are the two box scores in the

record book of people’s economic positions.” It is undoubtedly true that the size

distribution of income is of vital interest to all (market) economies with respect to

social and economic policy-making. In economic and social statistics, the size

distribution of income is the basis of concentration and Lorenz curves and thus at the

heart of the measurement of inequality and more general social welfare evaluations.

From here, it takes only a few steps to grasp its importance for further economic

issues such as the development of adequate taxation schemes or the evaluation of

effectiveness of tax reforms. Income distribution also affects market demand and its

elasticity, and consequently the behavior of firms and a fortiori market equilibrium.

It is often mentioned that income distribution is an important factor in determining

the amount of saving in a society; it is also a factor influencing the productive effort

made by various groups in the society.

Distributions of Firm Sizes

Knowledge of the size distribution of firms is important to economists studying

industrial organization, to government regulators, as well as to courts. For example,

courts use firm and industry measures of market share in a variety of antitrust cases.

Under the merger guidelines of the U.S. Department of Justice and the Federal Trade

Commission, whether mergers are challenged depends on the relative sizes of the

firms involved and the degree of concentration in the industry. In recent years, for

example, the Department of Justice challenged mergers in railroads, banks, soft

drink, and airline industries using data on concentration and relative firm size.

As of 2002 tremendous upheavals in corporate institutions that involve great

firms are taking place throughout the world especially in the United States and

Germany. This will no doubt result in drastic changes in the near future in the size

distribution of firms, and the recent frequent mergers and occasional breakdowns of

firms may even require a new methodology. We will not address these aspects, but it

is safe to predict new theoretical and empirical research along these lines.

Distributions of Actuarial Losses

Coincidentally, the unprecedented forest fires that recently occurred in the western

United States (especially in Colorado and Arizona) may challenge the conventional

wisdom that “fire liabilities are rare.” The model of the total amount of losses in a
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given period presented below may undergo substantial changes: In particular, the

existing probability distributions of an individual loss amount F(x) will no doubt be

reexamined and reevaluated.

In actuarial sciences, the total amount of losses in a given period is usually

modeled as a risk process characterized by two (independent) random variables: the

number of losses and the amount of individual losses. If

. pn(t) is the probability of exactly n losses in the observed period [0, t],

. F(x) is the probability that, given a loss, its amount is � x,

. F�n(x) is the nth convolution of the c.d.f. of loss amount F(x),

then the probability that the total loss in a period of length t is � x can be expressed

as the compound distribution

G(x, t) ¼
X1
n¼0

pn(t)F�n(x):

Although the total loss distribution G(x, t) is of great importance for insurers in

their task of determining appropriate premiums or reinsurance policies, it is the

probability distribution of an individual loss amount, F(x), that is relevant when a

property owner has to decide whether to purchase insurance or when an insurer

designs deductible schedules. Here we are solely concerned with the distributions of

individual losses.

1.3 BRIEF HISTORY OF THE MODELS FOR STUDYING

ECONOMIC SIZE DISTRIBUTIONS

A statistical study of personal income distributions originated with Pareto’s

formulation of “laws” of income distribution in his famous Cours d’économie

politique (1897) that is discussed in detail in this book and in Arnold’s (1983) book

Pareto Distributions.

Pareto was well aware of the imperfections of statistical data, insufficient

reliability of the sources, and lack of veracity of income tax statements. Nonetheless,

he boldly analyzed the data using his extensive engineering and mathematical

training and succeeded in showing that there is a relation between Nx—the number

of taxpayers with personal income greater or equal to x—and the value of the income

x given by a downward sloping line

log Nx ¼ log A � a log x (1:1)

or equivalently,

Nx ¼
A

xa
, A . 0, a . 0, x . x0, (1:2)
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x0 being the minimum income (Pareto, 1895). Economists and economic statisticians

(e.g., Brambilla, 1960; Dagum, 1977) often refer to a (or rather �a) as the elasticity

of the survival function with respect to income x

d log {1 � F(x)}

d log x
¼ �a:

Thus, a is the elasticity of a reduction in the number of income-receiving units when

moving to a higher income class. The graph with coordinates (log x, log Nx) is often

referred to as the Pareto diagram. An exact straight line in this display defines the

Pareto distribution.

Pareto (1896, 1897a) also suggested the second and third approximation equations

Nx ¼
A

(x þ x0)a
, A . 0, a . 0, x0 þ x . 0, (1:3)

and

Nx ¼
A

(x þ x0)a
e�bx, A . 0, a . 0, x . x0, b . 0: (1:4)

Interestingly enough, equation (1.2) provided the most adequate fit for the income

distribution in the African nation of Botswana, a republic in South Central Africa, in

1974 (Arnold, 1985).

The fact that empirically the values of parameter a remain “stable” if not

constant (see Table 1.1—based on the fitting of his equations for widely diverse

economies such as semifeudal Prussia, Victorian England, capitalist but highly

diversified Italian cities circa 1887, and the Communist-like regime of the Jesuits

in Peru during Spanish rule (1556–1821)—caused Pareto to conclude that human

nature, that is, humankind’s varying capabilities, is the main cause of income

inequality, rather than the organization of the economy and society. If we were to

examine a community of thieves, Pareto wrote (1897a, p. 371), we might well find

an income distribution similar to that which experience has shown is generally

obtained. In this case, the determinant of the distribution of income “earners”

would be their aptitude for theft. What presumably determines the distribution in a

community in which the production of wealth is the only way to gain an income is

the aptitude for work and saving, steadiness and good conduct. This prevents

necessity or desirability of legislative redistribution of income. Pareto asserted

(1897a, p. 360),

This curve gives an equilibrium position and if one diverts society from this position

automatic forces develop which lead it back there.

In the subsequent version of his Cours, Pareto slightly modified his position by

asserting that “we cannot state that the shape of the income curve would not change
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if the social constitution were to radically change; were, for example, collectivism to

replace private property” (p. 376). He also admitted that “during the course of the

19th century there are cases when the curve (of income) has slightly changed form,

the type of curve remaining the same, but the constants changing.” [See, e.g.,

Bresciani Turroni (1905) for empirical evidence using German data from the

nineteenth century.]

However, Pareto still maintained that “statistics tells us that the curve varies very

little in time and space: different peoples, and at different times, give very similar

curves. There is therefore a notable stability in the figure of this curve.”

The first fact discovered by Ammon (1895, 1898) and Pareto at the end of the

nineteenth century was that “the distribution of income is highly skewed.” It was a

somewhat uneasy discovery since several decades earlier the leading statistician

Quetelet and the father of biometrics Galton emphasized that many human

characteristics including mental abilities were normally distributed.

Numerous attempts have been made in the last 100 years to explain this paradox.

Firstly it was soon discovered that the original Pareto function describes only a

portion of the reported income distribution. It was originally recognized by Pareto

but apparently this point was later underemphasized.

Table 1.1 Pareto’s Estimates of a

Country Date a

England 1843 1.50

1879–1880 1.35

Prussia 1852 1.89

1876 1.72

1881 1.73

1886 1.68

1890 1.60

1894 1.60

Saxony 1880 1.58

1886 1.51

Florence 1887 1.41

Perugia (city) 1889 1.69

Perugia (countryside) 1889 1.37

Ancona, Arezzo, Parma, Pisa (total) 1889 1.32

Italian cities (total) 1889 1.45

Basle 1887 1.24

Paris (rents) 1887 1.57

Augsburg 1471 1.43

1498 1.47

1512 1.26

1526 1.13

Peru ca. 1800 1.79

Source: Pareto, 1897a, Tome II, p. 312.
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Pareto’s work has been developed by a number of Italian economists and

statisticians. Statisticians concentrated on the meaning and significance of the

parameter a and suggested alternative indices. Most notable is the work of Gini

(1909a,b) who introduced a measure of inequality commonly denoted as d. [See also

Gini’s (1936) Cowles Commission paper: On the Measurement of Concentration

with Special Reference to Income and Wealth.] This quantity describes to which

power one must raise the fraction of total income composed of incomes above a

given level to obtain the fraction of all income earners composed of high-income

earners.

If we let x1, x2, . . . , xn indicate incomes of progressively increasing amounts and

r the number of income earners, out of the totality of n income earners, with

incomes of xn�rþ1 and up, the distribution of incomes satisfies the following simple

equation:

xn�rþ1 þ xn�rþ2 þ � � � þ xn

x1 þ x2 þ � � � þ xn

� �d

¼
r

n
: (1:5)

If the incomes are equally distributed, then d ¼ 1. Also, d varies with changes

in the selected limit (xn�rþ1) chosen and increases as the concentration of

incomes increases. Nevertheless, despite its variation with the selected limit,

in applications to the incomes in many countries, the d index does not vary

substantially.

Analytically, for a Pareto type I distribution (1.2)

d ¼
a

a� 1
, (1:6)

however, repeated testing on empirical income data shows that calculated d often

appreciably differs from the theoretical values derived (for a known a) from this

equation.

As early as 1905 Benini in his paper “I diagramma a scala logarithmica,” and

1906 in his Principii de Statistica Metodologica, noted that many economic

phenomena such as savings accounts and the division of bequests when graphed on a

double logarithmic scale generate a parabolic curve

log Nx ¼ log A � a log x þ b( log x)2, (1:7)

which provides a good fit to the distributions of legacies in Italy (1901–1902),

France (1902), and England (1901–1902). This equation, however, contains two

constants that may render comparisons between countries somewhat dubious. Benini

thus finally proposes the “quadratic relation”

log Nx ¼ log A þ b( log x)2: (1:8)
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Mortara (1917) concurred with Benini’s conclusions that the graph with the

coordinates (log x, log Nx) is more likely to be an upward convex curve and

suggested an equation of the type

log Nx ¼ a0 þ a1 log x þ a2( log x)2 þ a3( log x)3 þ � � � �

In his study of the income distribution in Saxony in 1908, he included the first four

terms, whereas in a much later publication (1949) he used only the first three terms

for the distribution of the total revenue in Brazil in the years 1945–1946. Bresciani

Turroni (1914) used the same function in his investigation of the distribution of

wealth in Prussia in 1905.

Observing the fragmentary form of the part of the curve representing lower

incomes (which presumably must slope sharply upward), Vinci (1921, pp. 230–231)

suggests that the complete income curve should be a Pearson’s type V distribution

with density

f (x) ¼ Ce�b=xx�p�1, x . 0, (1:9)

or more generally,

f (x) ¼ Ce�b=(x�x0)(x � x0)�p�1, x . x0, (1:10)

where b, p . 0, x0 denotes as above the minimum income, and C is the normalizing

constant.

Cantelli (1921, 1929) provided a probabilistic derivation of “Pareto’s second

approximation” (1.3), and similarly D’Addario (1934, 1939) carried out a detailed

investigation of this distribution that (together with the initial first approximation)

has the following property: The average income f(x) of earners above a certain level

x is an increasing linear function of the variable x. However, this is not a

characterization of the Pareto distribution(s). D’Addario proposed an ingenious

average excess value method that involves indirect determination of the graph of the

function f (x) by means of f(x) utilizing the formula

f (x) ¼
af0(x)

x � f(x)
exp

ð1
x

f(z)

z � f(z)
dz

� �
:

This approach requires selecting the average f(x) and its parameters based on the

empirical data. The method was later refined by D’Addario (1969) and rechecked

by Guerrieri (1969–1970) for the lognormal and Pearson’s distributions of type III

and V.

For a complete income curve, Amoroso (1924–1925) provided the density

function

f (x) ¼ Ce�b(x�x0)1=s

(x � x0)( p�s)=s, x . x0, (1:11)
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x0 being the minimum income, C, b, p . 0, and s a nonzero constant such that

p þ s . 0 and fit it to Prussian data. This distribution is well known in the English

language statistical literature as the generalized gamma distribution introduced by

Stacy in 1962 in the Annals of Mathematical Statistics—which is an indication of

lack of coordination between the European Continental and Anglo-American

statistical literature as late as the sixties of the twentieth century. The cases s ¼ 1 and

s ¼ �1 correspond to Pearson’s type III and type V distributions, respectively.

Rhodes (1944), in a neglected work, succeeded in showing that the Pareto

distribution can be derived from comparatively simple hypotheses. These involve

constancy of the coefficient of variation and constancy of the type of distribution of

income of those in the same “talent” group, and require that, on average, the

consequent income increases with the possession of more talents.

D’Addario—like many other investigators of income distributions—was

concerned with the multitude of disconnected forms proposed by various

researchers. He attempted to obtain a general, relatively simply structured formula

that would incorporate numerous special forms. In his seminal contribution La

Trasformate Euleriane, he showed how transforming variables in several expressions

for the density of the income distribution lead to the general equation

f (x) ¼
1

G( p)
e�w(x)[w(x)] p�1jw0(x)j (1:12)

[here G( p) is the gamma function]. Given a density g(z), transforming the variable

x ¼ u(z) and obtaining its inverse z ¼ w(x), we calculate the density of the

transformed variable, f (x), say, by the formula

f (x) ¼ g[w(x)]jw0(x)j:

Here, if we use D’Addario’s terminology, g(z) is the generating function, z ¼ w(x)

the transforming function, and f (x) the transformed function. If the generating

function is the gamma distribution

g(z) ¼
1

G( p)
e�zz p�1, z 	 0,

then the Eulerian transform is given by (1.12). This approach was earlier suggested

by Edgeworth (1898), Kapteyn (1903) in his Skew Frequency Curves in Biology and

Statistics, and van Uven (1917) in his Logarithmic Frequency Distributions, but

D’Addario applied it skillfully to income distributions. More details are provided in

Section 2.4.

In 1931 Gibrat, a French engineer and economist, developed a widely used

lognormal model for the size distributions of income and of firms based on

Kapteyn’s (1903) idea of the proportional effect (by adding increments of income

to an initial income distribution in proportion to the level already achieved).

Champernowne (1952, 1953) refined Gibrat’s approach and developed formulas
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that often fit better than Gibrat’s lognormal distribution. However, when applied to

U.S. income data of 1947 that incorporate low-income recipients, his results are not

totally satisfactory. Even his four-parameter model gives unacceptable, gross errors.

Somewhat earlier Kalecki (1945) modified Gibrat’s approach by assuming that the

increments of the income are proportional to the excess in ability of given members

of the distribution over the lowest (or median) member. (A thoughtful observation by

Tinbergen, made as early as 1956, prompts to distinguish between two underlying

causes for income distribution. One is dealing here simultaneously with the

distribution of abilities to earn income as well as with a distribution of preferences

for income.)

A somewhat neglected (in the English literature) contribution is the so-called

van der Wijk’s law (1939). Here it is assumed that the average income above a limit

x,
P

xi.x xi=Nx, is proportional to the selected income level x, leading to the “law”

P
xi.x xi

Nx

¼ gx, (1:13)

where g is a constant of proportionality. For instance, if g ¼ 2, then the average

income of people with at least $20,000 must be in the vicinity of $40,000 and so on.

Bresciani Turroni proposed a similar relationship in 1910, but it was not widely

noticed in the subsequent literature.

Van der Wijk in his rather obscure volume Inkomens- en Vermogensverdeling

(1939) also provided an interpretation of Gibrat’s equation by involving the concept

of psychic income. This was in accordance with the original discovery of the

lognormal distribution inspired by the Weber–Fechner law in psychology (Fechner,

1860), quite unrelated to income distributions.

Pareto’s contribution stimulated further research in the specification of new

models to fit the whole range of income. One of the earliest may be traced to the

French statistician Lucien March who as early as 1898 proposed using the gamma

distribution and fitted it to the distribution of wages in France, Germany, and the

United States. March claimed that the suggestion of employing the gamma

distribution was due to the work of German social anthropologist Otto Ammon

(1842–1916) in his book Die Gesellschaftsordnung und ihre natürlichen

Grundlagen (1896 [second edition]), but we were unable to find this reference in

any one of the three editions of Ammon’s text. Some 75 years later Salem and Mount

(1974) fit the gamma distribution to U.S. income data (presumably unaware of

March’s priority).

Champernowne (1952) specified versions of the log-logistic distribution with two,

three, and four parameters. Fisk (1961a,b) studied the two-parameter version in detail.

Mandelbrot (1960, p. 79) observed that

over a certain range of values of income, its distribution is not markedly influenced either

by the socio-economic structure of the community under study, or by the definition chosen

for “income.” That is, these two elements may at most influence the values taken by certain

parameters of an apparently universal distribution law.
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and proposed nonnormal stable distributions as appropriate models for the size

distribution of incomes.

Metcalf (1969) used a three-parameter lognormal distribution. Thurow (1970)

and McDonald and Ransom (1979a) dealt with the beta type I distribution.

Dagum in 1977 devised two categories of properties for a p.d.f. to be specified as

a model of income or wealth distribution: The first category includes essential

properties, the second category important (but not necessary) properties. The

essential properties are

. Model foundations

. Convergence to the Pareto law

. Existence of only a small number of finite moments

. Economic significance of the parameters

. Model flexibility to fit both unimodal and zeromodal distributions

(It seems to us that property 3 is implied by property 2.) Among the important

properties are

. Good fit of the whole range of income

. Good fit of distributions with null and negative incomes

. Good fit of the whole income range of distributions starting from an unknown

positive origin

. Derivation of an explicit mathematical form of the Lorenz curve from the

specified model of income distributions and conversely

Dagum attributed special importance to the concept of income elasticity

Z(x, F) ¼
x

F(x)

dF(x)

dx
¼

d log F(x)

d log x

of a distribution function as a criterion for an income distribution.

He noted that the observed income elasticity of a c.d.f. behaves as a nonlinear and

decreasing function of F. To represent this characteristic of the income elasticity,

Dagum specified (in the simplest case) the differential equation

Z(x, F) ¼ ap{1 � [F(x)]1=p}, x 	 0,

subject to p . 0 and ap . 0, which leads to the Dagum type I distribution

F(x) ¼ 1 þ
x

b

� 	�ah i�p

, x . 0,

where a, b, p . 0.
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It was noted by Dagum (1980c, 1983) [see also Dagum (1990a, 1996)] that it is

appropriate to classify the income distributions based on three generating systems:

. Pearson system

. D’Addario’s system

. Generalized logistic (or Burr logistic) system

Only Champernowne’s model does not belong to any of the three systems.

The pioneering work of McDonald (1984) and Venter (1983) led to the

generalized beta (or transformed beta) distribution given by

f (x) ¼
axap�1

bapB( p, q)[1 þ (x=b)a] pþq
, x . 0: (1:14)

It is also known in the statistical literature as the generalized F (see, e.g., Kalbfleisch

and Prentice, 1980) and was rediscovered in a slightly different parameterization by

Majumder and Chakravarty (1990) a few years later. This family includes numerous

models used as income and size distributions, in particular the Singh and Maddala

(1976) model, the Dagum type I model (Dagum, 1977), the Fisk model, and

evidently the beta distribution of the second kind. In actuarial science the Singh–

Maddala and Dagum models are usually referred to as the Burr and inverse Burr

distributions, respectively, since they are members of the Burr (1942) system of

distributions.

We also mention the natural generalization of the Pareto distribution proposed by

Stoppa in 1990b,c. It is given by

F(x) ¼ 1 �
x

x0

� ��a� 
u
, 0 , x0 � x: (1:15)

This book is devoted to a detailed study of the distributions surveyed in this

section and their interrelations. The literature is immense and omissions are

unavoidable although we tried to utilize all the references collected during a

six-month extensive search. Due to the rather sporadic developments in that area,

only some isolated multivariate distributions are included.

1.4 STOCHASTIC PROCESS MODELS FOR

SIZE DISTRIBUTIONS

Interestingly enough, income and wealth distributions of various types can be

obtained as steady-state solutions of stochastic processes.

The first example is Gibrat’s (1931) model leading to the lognormal distribution.

He views income dynamics as a multiplicative random process in which the product

of a large number of individual random variables tends to the lognormal distribution.

This multiplicative central limit theorem leads to a simple Markov model of the “law
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of proportionate effect.” Let Xt denote the income in period t. It is generated by a

first-order Markov process, depending only on Xt�1 and a stochastic influence

Xt ¼ RtXt�1:

Here {Rt} is a sequence of independent and identically distributed random variables

that are independent of Xt�1 as well. X0 is the income in the initial period.

Substituting backward, we see that

Xt ¼ X0 � R0 � R1 � R2 � . . .Rt�1,

and as t increases, the distribution of Xt tends to a lognormal distribution provided

var( log Rt) , 1.

In the Gibrat model we assume the independence of Rt, which may not be

realistic. Moreover, the variance of log Xt is an increasing function of t and this often

contradicts the data. Kalecki (1945), in a paper already mentioned, modified the

model by introducing a negative correlation between Xt�1 and Rt that prevents

var( log Xt) from growing. Economically, it means that the probability that income

will rise by a given percentage is lower for the rich than for the poor. (The

modification is an example of an ingenious but possibly ad hoc assumption.)

Champernowne (1953) demonstrated that under certain assumptions the

stationary income distribution will approximate the Pareto distribution irrespectively

of the initial distribution. He also viewed income determination as a Markov process

(income for the current period depends only on one’s income for the last period and

random influence). He subdivided the income into a finite number of classes and

defined pij as the probability of being in class j at time t þ 1 given that one was in

class i at time t. The income intervals defining each class are assumed (1) to form a

geometric (not arithmetic) progression. The limits of class j are higher than those of

class j � 1 by a certain percentage rather than a certain absolute amount of income

and the transitional probabilities pij depend only on the differences j � i. (2) Income

cannot move up more than one interval nor down more than n intervals in any one

period; (3) there is a lowest interval beneath which no income can fall, and (4) the

average number of intervals shifted in a period is negative in each income bracket.

Under these assumptions, Champernowne proved that the distribution eventually

behaves like the Pareto law.

The assumptions of the Champernowne model can be relaxed by allowing for

groups of people (classified by age, occupation, etc.) and permitting movement from

one group to another. However, constancy of the transition matrix is essential;

otherwise, no stationary distribution will emerge from the Markov process.

Moreover, probabilities of advancing or declining ought to be independent of the

amount of income. Many would doubt the existence of a society whose institutional

framework is so static, noting that such phenomena as “inherited privilege,” and

cycles of poverty or prosperity are part and parcel of all viable societies.

To complicate the matter with the applicability of Champernowne’s model, it was

shown by Aitchison and Brown (1954) that if the transition probabilities pij depend
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on j=i (rather than j � i, as is the case in Champernowne’s model) and further that

the income brackets form an arithmetic (rather than geometric) progression, then the

limiting distribution is lognormal rather than Pareto. In our opinion the dependence

on j � i may seem to be more natural, but it is a matter of subjective opinion.

It should also be noted that the Champernowne and Gibrat models and some

others require long durations of time until the approach to stationarity is obtained.

This point has been emphasized by Shorrocks (1975).

Rutherford (1955) incorporated birth–death considerations into a Markov model.

His assumptions were as follows:

. The supply of new entrants grows at a constant rate.

. These people enter the labor force with a lognormal distribution of income.

. The number of survivors in each cohort declines exponentially with age.

Under these assumptions, the data eventually approximate the Gram–Charlier type

A distribution, which often provides a better fit than the lognormal. In Rutherford’s

model the overall variance remains constant over time.

Mandelbrot (1961) constructed a Markov model that approximates the Pareto

distribution similarly to Champernowne’s model, but does not require the strict law

of proportionate effect (a random walk in logarithms).

Wold and Whittle (1957) offered a rather general continuous-time model that also

generates the Pareto distribution: It is applied to stocks of wealth that grow at a

compound interest rate during the lifetime of a wealth-holder and are then divided

among his heirs. Deaths occur randomly with a known mortality rate per unit time.

Applying the model to wealth above a certain minimum (this is necessary because

the Pareto distribution only applies above some positive minimum wealth), Wold and

Whittle derived the Pareto law and expressed the exponent a as a function of (1) the

number of heirs per person, (2) the growth rate of wealth, and (3) the mortality rate

of the wealth owners.

The most complicated model known to us seems to be due to Sargan (1957). It is

a continuous-time Markov process: The ways in which transitions occur are

explicitly spelled out. His approach is quite general; it accommodates

. Setting of new households and dissolving of old ones

. Gifts between households

. Savings and capital gains

. Inheritance and death

It is its generality that makes it unwieldy and unintelligible.

As an alternative to the use of ergodic Markov processes, one can also explain

wealth or income distributions by means of branching processes. Steindl (1972),

building on the model of Wold and Whittle (1957) mentioned above, showed in this

way that the distribution of wealth can be regarded as a certain transformation of an

age distribution. Shorrocks (1975) explained wealth accumulations using the theory

16 INTRODUCTION



of queues. He criticized previously developed stochastic models for concentrating on

equilibrium distributions and proposed a model in which the transition probabilities

or parameters of the distribution are allowed to change over time.

These models were often criticized by applied economists who favor models

based on human capital and the concept of economic man (Mincer, 1958; Becker,

1962, 1964). Some of them scorn size distribution of income and refer to them as

antitheories. Their criticism often goes like this:

Allowing a stochastic mechanism to be the sole determinant of the income distribution is

TO GIVE UP BEFORE YOU START. The deterministic part of a model (in econometrics)

is “what we think we know,” the disturbance term is “what we don’t know.” The

probabilistic approach allocates 100% variance in income to the latter.

In our opinion this type of argument shows a lack of understanding of the concept

of stochastic model and by extension of the probabilistic-statistical approach.
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