04 201006 ChO2.gxd 5/29/03 8:57 AM Page 15 $

Web Testing versus
Traditional Testing

Why Read This Chapter?

Web technologies require new testing and bug analysis methods. It is assumed
that you have experience in testing applications in traditional environments;
what you may lack, however, is the means to apply your experience to Web
environments. To effectively make such a transition, you need to understand
the technology and architecture differences between traditional testing and
Web testing.

TOPICS COVERED IN THIS CHAPTER

Introduction

The Application Model

Hardware and Software Differences

The Differences between Web and Traditional Client-Server Systems
Web Systems

® 6 & 6 o o

Bug Inheritance
(continued)

15

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 16 $

Chapter 2

TOPICS COVERED IN THIS CHAPTER (continued)

Back-End Data Accessing

Thin-Client versus Thick-Client Processing

*

.

¢ Interoperability Issues
¢ Testing Considerations
.

Bibliography

Introduction

This chapter presents the application model and shows how it applies to main-
frames, PCs, and, ultimately, Web/client-server systems. It explores the tech-
nology differences between mainframes and Web/client-server systems, as
well as the technology differences between PCs and Web/client-server sys-
tems. Testing methods that are suited to Web environments are also discussed.

Although many traditional software testing practices can be applied to the
testing of Web-based applications, there are numerous technical issues that are
specific to Web applications that need to be considered.

The Application Model

A computer system, which consists of hardware and software, can receive
inputs from the user, then stores them somewhere, whether in volatile memory
such as RAM (Random Access Memory), or in nonvolatile memory, such as
hard disk memory. It can execute the instructions given by software by per-
forming computation using the CPU (Central Processing Unit) computing
power. Finally, it can process the outputs back to the user. Figure 2.1 illustrates
how humans interact with computers. Through a user interface (UI), users
interact with an application by offering input and receiving output in many
different forms: query strings, database records, text forms, and so on. Appli-
cations take input, along with requested logic rules, and store them in mem-
ory, and then manipulate data through computing; they also perform file
reading and writing (more input/output and data storing). Finally, output
results are passed back to the user through the Ul Results may also be sent to
other output devices, such as printers.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 17 $

Web Testing versus Traditional Testing

17

Human SW/HW

LOGIC/RULES

Manipulate data

Data entries
m=' Data requests

Read/write/store data

3

USER Data rules
INTERFACE
Feedback Database or file-based system
ham N Requested data ham

Figure 2.1 The application model.

In traditional mainframe systems, as illustrated in Figure 2.2, all of an appli-
cation’s processes, except for Ul controls, occur on the mainframe computer.
User interface controls take place on dumb terminals that simply echo text
from the mainframe. Little computation or processing occurs on the terminals
themselves. The network connects the dumb terminals to the mainframe.
Dumb-terminal Uls are text-based or form-based (nongraphical). Users send
data and commands to the system via keyboard inputs.

Desktop PC systemes, as illustrated in Figure 2.3, consolidate all processes—
from Ul through rules to file systems—on a single physical box. No network is
required for a desktop PC. Desktop PC applications can support either a text-
based UI (command-line) or a Graphical User Interface (GUI). In addition to
keyboard input events, GUI-based applications also support mouse input
events such as click, double-click, mouse-over, drag-and-drop, and so on.

Human SW/HW

LOGIC/RULES FILE SYSTEMS

Data entries Manipulate data Read/write/store data

” | Data requests

USER Data rules
INTERFACE
Feedback Database or file-based system
< Requested data < <

O

Dumb Terminal -
Echoing Text Mainframe

Figure 2.2 Mainframe systems.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 18 $

18 Chapter 2
Human SW/HW
LOGIC/RULES
Data entries Manipulate data Read/write/store data
»| Data requests »
USER Data rules
INTERFACE
Feedback Database or file-based system
< am Requested data <

Desktop PC
Text or GUI

Figure 2.3 Desktop PC systems.

Client-server systems, upon which Web systems are built, require a network
and at least two machines to operate: a client computer and a server computer,
which serves requested data to the client computer. With the vast majority
of Web applications, a Web browser serves as the Ul container on the client
computer.

The server receives input requests from the client and manipulates the data
by applying the application’s business logic rules. Business logic rules are the
computations that an application is designed to carry out based on user
input—for example, sales tax might be charged to any e-commerce customer
who enters a California mailing address. Another example might be that cus-
tomers over age 35 who respond to a certain online survey will be mailed a
brochure automatically. This type of activity may require reading or writing to
a database. Data is sent back to the client as output from the server. The results
are then formatted and displayed in the client browser.

The client-server model, and consequently the Web application model, is
not as neatly segmented as that of the mainframe and the desktop PC. In the
client-server model, not only can either the client or the server handle some of
the processing work, but server-side processes can be divided between multi-
ple physical boxes or computers (application server, Web server, database
server, etc.). Figure 2.4, one of many possible client-server models, depicts I/O
and logic rules handled by an application server (the server in the center), while
a database server (the server on the right) handles data storage. The dotted lines

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 19 $

Web Testing versus Traditional Testing

19

in the illustration indicate processes that may take place on either the client-
side or the server-side. See Chapter 5, “Web Application Components,” for
information regarding server types.

A Web system may comprise any number of physical server boxes, each
handling one or more service types. Later in this chapter, Table 2.1 illustrates
some of the possible three-box server configurations. Note that the example is
relatively a basic system. A Web system may contain multiple Web servers,
application servers, and multiple database servers (such as a server farm, a
grouping of similar server types that share workload). Web systems may also
include other server types, such as e-mail servers, chat servers, e-commerce
servers, and user profile servers (see Chapter 5 for more information). Under-
standing how your Web application-under-test is structured is invaluable for
bug analysis—trying to reproduce a bug or learning how you can find more
bugs similar to the one that you are seeing.

Keep in mind that it is software, not hardware, that defines clients and
servers. Simply put, clients are software programs that request services from
other software programs on behalf of users. Servers are software programs
that offer services. Additionally, client-server is also an overloaded term; it is
only useful from the perspective of describing a system. A server may, and
often does, become a client in the chain of requests. In addition, the server-side
may include many applications and systems including mainframe systems.

Human SW/HW

LOGIC/RULES

Manipulate data Read/write/store data

Data entries
Data requests
Data rules

N

USER
INTERFACE

Feedback Database or file-based system

am Requested data

oo

Desktop PC Server Server
Text or GUI

Figure 2.4 Client-server systems.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 20 $

20

Chapter 2

Hardware and Software Differences

Mainframe systems (Figure 2.5) are traditionally controlled environments,
meaning that hardware and software are primarily supported (it does not
necessarily mean that all the subcomponents are produced by the same com-
pany), end to end, by the same manufacturer. A mainframe with a single oper-
ating system, and applications sold and supported by the same manufacturer,
can serve multiple terminals from a central location. Compatibility issues are
more manageable compared to the PC and client-server systems.

A single desktop PC system consists of mixed hardware and software—
multiple hardware components built and supported by different manufactur-
ers, multiple operating systems, and nearly limitless combinations of software
applications. Configuration and compatibility issues become difficult or
almost impossible to manage in this environment.

A Web system consists of many clients, as well as server hosts (computers).
The system’s various flavors of hardware components and software applica-
tions begin to multiply. The server-side of Web systems may also support a
mixture of software and hardware and, therefore, are more complex than
mainframe systems, from the configuration and compatibility perspectives.
See Figure 2.6 for an illustration of a client-server system running on a local
area network (LAN).

R

L
Mainframe
Dumb Dumb Dumb Dumb
Terminal Terminal Terminal Terminal

Figure 2.5 Controlled hardware and software environment.

04 201006 ChO2.gxd

5/29/03 8:57 AM Page 21 CE

Web Testing versus Traditional Testing

21

Internet

Cloud

DSU/CSU

110)

Router

IBM AS/400

Intel Laptop

i

UNIX Server

NT Server

Macintosh

Figure 2.6 A client-server system on a LAN.

The GUI of the PC makes multiple controls available on screen at any given
time (e.g., menus, pull-down lists, help screens, pictures, and command but-
tons.). Consequently, event-driven browsers (in event-driven model, inputs
are driven by events such as a mouse click or a keypress on the keyboard) are
also produced, taking advantage of the event-handling feature offered by the
operating system (OS). However, event-based GUI applications (data input
coupled with events) are more difficult to test. For example, each event
applied to a control in a GUI may affect the behavior of other controls. Also,
special dependencies can exist between GUI screens; interdependencies and
constraints must be identified and tested accordingly.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 22 $

22

Chapter 2

The Differences between Web and Traditional
Client-Server Systems

The last two sections point out the application architecture and hardware and
software differences among the mainframe, PC, and Web/client-server sys-
tems. We will begin this section by exploring additional differences between
Web and traditional systems so that appropriate testing considerations can be
formulated.

Client-Side Applications

As illustrated in Figure 2.7, most client-server systems are data-access-driven
applications. A client typically enables users, through the UlI, to send input
data, receive output data, and interact with the back end (for example, sending
a query command). Clients of traditional client-server systems are platform-
specific. That is, for each supported client operating system (e.g., Windows
16- and 32-bit, Solaris, Linux, Macintosh, etc.), a client application will be
developed and tested for that target operating system.

Most Web-based systems are also data-access-driven applications. The
browser-based clients are designed to handle similar activities to those sup-
ported by a traditional client. The main difference is that the Web-based client is
operating within the Web browser’s environment. Web browsers consist of
operating system-specific client software running on a client computer. It ren-
ders HyperText Markup Language (HTML), as well as active contents, to dis-
play Web page information. Several popular browsers also support active
content such as client-side scripting, Java applet, ActiveX control, eXtensible
Markup Language (XML), cascading style sheet (CSS), dynamic HTML
(DHTML), security features, and other goodies. To do this, browser vendors
must create rendering engines and interpreters to translate and format HTML
contents. In making these software components, various browsers and their
releases introduce incompatibility issues. See Chapter 10, “User Interface Tests,”
and Chapter 17, “Configuration and Compatibility Tests,” for more information.

From the Web application producer’s perspective, there is no need to
develop operating-system-specific clients since the browser vendors have
already done that (e.g., Netscape, Microsoft, AOL, etc.). In theory, if your
HTML contents are designed to conform to HTML 4 standard, your client
application should run properly in any browser that supports HTML 4 stan-
dard from any vendor. But in practice, we will find ourselves working labori-
ously to address vendor-specific incompatibility issues introduced by each
browser and its various releases. At the writing of this book, the golden rule is:
“Web browsers are not created equal.”

.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 23 $

Web Testing versus Traditional Testing 23

Windows 16-bit Windows 32-bit Solaris Client Macintosh Client

Client App Client App Client App m=p.4 | Client App
Develop

and test
four
platform-
specific
clients.

Solaris Macintosh

0 SERVERS

HTML Contents

Develop
. . -. . and test
Windows 9x Windows NT Solaris Macintos HTML
| | contents to
BROWSERS =4 | BROWSERS =P | BROWSERS =P | BROWSERS be sent to
- Microsoft Internet Explorer | |- Microsoft Internet Explorer | |- Microsoft Internet Explorer | |- Microsoft Internet Explorer browsers
- Netscape Navigator - Netscape Navigator - Netscape Navigator - Netscape Navigator :
- Others - Others - Others - Others
| HTML Contents | | HTML Contents | | HTML Contents | | HTML Contents |

Browser vendors are responsible for
producing platform-specific browsers.

Figure 2.7 Client-server versus Web-based clients.

In addition to the desktop client computer and browser, there are new types
of clients and browsers, which are a lot smaller than the desktop PC version.
These clients are often battery-powered, rather than wall-electric-powered as
is a desktop PC. These clients are mobile devices including PDAs (Personal
Digital Assistants), smart phones, and handheld PCs. Since these devices rep-
resent another class of client computers, there are some differences in the
mobile application model. For simplicity, in this chapter, we will only refer to
the desktop PC in the client discussion. Read Chapter 6, “Mobile Web Appli-
cation Platform,” for discussions on the mobile client application model.

Event Handling

In the GUI and event-driven model, inputs, as the name implies, are driven by
events. Events are actions taken by users, such as mouse movements and clicks,

.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 24 $

24

Chapter 2

or the input of data through a keyboard. Some objects (e.g., a push button)
may receive mouse-over events whenever a mouse passes over them. A mouse
single-click is an event. A mouse double-click is a different kind of event. A
mouse click with a modifier key, such as Ctrl, is yet another type of event.
Depending on the type of event applied to a particular UI object, certain pro-
cedures or functions in an application will be executed. In an event-driven
environment, this is a type of procedure referred to as event-handling code.

Testing event-driven applications is more complicated because it's very
labor-intensive to cover the testing of many combinations and sequences of
events. Simply identifying all possible combinations of events can be a chal-
lenge because some actions trigger multiple events.

Browser-based applications introduce a different flavor of event-handling
support. Because Web browsers were originally designed as a data presenta-
tion tool, there was no need for interactions other than single-clicking for nav-
igation and data submission, and mouse-over ALT attribute for an alternate
description of graphic. Therefore, standard HTML controls such as form-based
control and hyperlinks are limited to single-click events. Although script-
based events can be implemented to recognize other events such as double-
clicking and drag-and-drop, it’s not natural in the Web-based user interface to
do so (not to mention that those other events also cause incompatibility prob-
lems among different browsers.

In Web-based applications, users may click links that generate simulated
dialog boxes (the server sends back a page that includes tables, text fields, and
other UI objects). Users may interact with browser-based UI objects in the
process of generating input for the application. In turn, events are generated.
Some of the event-handling code is in scripts that are embedded in the HTML
page and executed on the client-side. Others are in UI components (such as
Java applets and ActiveX controls) embedded in the HTML page and executed
on the client-side. Still others are executed on the server-side. Understanding
where (client- or server-side) each event is handled enables you to develop
useful test cases as well as reproduce errors effectively.

Browser-based applications offer very limited keyboard event support. You
can navigate within the page using Tab and Shift-Tab keys. You can activate a
hyperlink to jump to another link or push a command button by pressing the
Enter key while the hyperlink text, graphic, or a button is highlighted. Sup-
ports for keyboard shortcuts and access keys, such as Alt-[key] or Ctrl-[key],
are not available for the Web applications running in the browser’s environ-
ment, although they are available for the browser application itself. Another
event-handling implication in browser-based applications is in the one-way
request and submission model. The server generally does not receive com-
mands or data until the user explicitly clicks a button, such as Submit to sub-
mit form data; or the user may request data from the server by clicking a link.

.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 25 $

Web Testing versus Traditional Testing

25

This is referred to as the explicit submission model. If the user simply closes
down a browser but does not explicitly click on a button to save data or to log
off, data will not be saved and the user is still considered logged on (on the
server-side).

TEST CASE DEVELOPMENT TIPS

Based on the knowledge about the explicit submission model, try the following
tests against your application under test:

TEST #1

¢ Use your valid ID and password to log on to the system.
¢ After you are in, close your browser instead of logging off.

¢ Launch another instance of the browser and try to log in again. What
happens? Does the system complain that you are already in? Does the
system allow you to get in and treat it as if nothing has happened? Does
the system allow you to get in as a different instance of the same user?

TEST #2

Suppose that your product has a user-license restriction: That is, if you have
five concurrent-user licenses, only five users can be logged on to the system
concurrently. If the sixth user tries to log on, the system will block it and inform
the sixth user that the application has run out of concurrent-user licenses.

¢ Use your valid set of ID and password to log on to the system as six sep-
arate users. As the sixth user logs on, you may find that the system will
detect the situation and block the sixth user from logging on.

¢ Close all five browsers that have already logged on instead of logging off.

¢ Launch another instance of the browser and try to log on again. Does the
system still block this log on because it thinks that there are five users
already on the system?

TEST #3
¢ Use your valid ID and password to log on to the system.
Open an existing record as if you are going to update it.

Close your browser instead of logging off.

Launch another instance of the browser and try to log on again.

® 6 o o

Try to open the same record that you opened earlier in the previous
browser. What happens? Is the record locked? Are you allowed to update
the record anyway?

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 26 $

26

Chapter 2

By the way, there is no right or wrong answer for the three preceding tests
because we don’t know how your system is designed to handle user session,
user authentication, and record locking. The main idea is to present you with
some of the possible interesting scenarios that might affect your application
under test due to the nature of the explicit submission model in Web-based
applications.

Application Instance and Windows Handling

Standard event-based applications may support multiple instances, meaning
that the same application can be loaded into memory many times as separate
processes. Figure 2.8 shows two instances of Microsoft Word application. Sim-
ilarly, multiple instances of a browser can run simultaneously. With multiple
browser instances, users may be able to log in to the same Web-based applica-
tion and access the same data table—on behalf of the same user or different
users. Figure 2.9 illustrates two browser instances, each accessing the same
application and data using the same or different user ID and password.

From the application’s perspective, keeping track of multiple instances, the
data, and the users who belong to each instance can be problematic. For exam-
ple, a regular user has logged in using one instance of the browser. An Admin
user has also logged in to the same system using another instance for the
browser. It’s common that the application server may mistakenly receive data
from and send data to one user thinking that the data belongs to the other
users. Test cases that uncover errors surrounding multiple-instance handling
should be thoroughly designed and executed.

[ormal [res tew reomon /15

b [[nomal) Times tew Roman s 14 [B

R R

Figure 2.8 Multiple application instances.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 27 $

Web Testing versus Traditional Testing 27

\E‘%‘}Eﬂ EasyFind)
Submit
N:
e | PROJECT: ITGEIugRepDrts i
Find
EasyFind Search Far: |Open-Asswgned to me i

EasyFind)

PROJECT ITG—SampIe i

EasyFind Search For: |Open—Assigned to me i

Formeind_| 2]

L B
Figure 2.9 Multiple application windows.

Within the same instance of a standard event-based application, multiple
windows may be opened simultaneously. Data altered in one of an applica-
tion’s windows may affect data in another of the application’s windows. Such
applications are referred to as multiple document interface (MDI) applications
(Figure 2.10). Applications that allow only one active window at a time are
known as single document interface (SDI) applications (Figure 2.11). SDI appli-
cations allow users to work with only one document at a time. Microsoft Word
(Figure 2.10) is an example of an MDI application. Notepad (Figure 2.11) is an
example of an SDI application.

Microsoft Word

Figure 2.10 Multiple document interface (MDI) application.

.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 28 $

28

Chapter 2

.'J Untitled - Notepad [_ (O] <]
File Edit Search Help

Motepad is an example of the Single Document InterFace;I
Model (SDI). That is, when a new document is created,
the existing one should be closed to make space for

the new one in the same window.

4| |_’|_JI

Figure 2.11 Single document interface (SDI) application.

Multiple document interface applications are more interesting to test
because they might fail to keep track of events and data that belong to multi-
ple windows. Test cases designed to uncover errors caused by the support of
multiple windows should be considered.

Multiple document interface or multiple windows interface are only avail-
able for clients in a traditional client-server system. The Web browser interface
is considered flat because it can only display one page at the time. There is no
hierarchical structure for the Web pages, therefore, one can easily jump to sev-
eral links and quickly lose track of the original position.

Ul Controls

In essence, an HTML page that is displayed by a Web browser consists of text,
hyperlinks, graphics, frames, tables, forms, and balloon help text (ALT tag).
Basic browser-based applications do not support dialog boxes, toolbars, status
bars, and other common UI controls. Extra effort can be made to take advan-
tage of Java applets, ActiveX controls, scripts, CSS, and other helper applica-
tions to go beyond the basic functionality. However, there will be compatibility
issues among different browsers.

Web Systems

The complexities of the PC model are multiplied exponentially in Web systems
(Figure 2.12). In addition to the testing challenges that are presented by multi-
ple client PCs and mobile devices, the server-side of Web systems involves
hardware of varying types and a software mix of OSs, service processes, server
packages, and databases.

29

‘2InpayydIe walshs g 1T an314

ajaubIp
od1ed
uoIsiApeo.g
equy
AIAIDG DIPWWO0DD
INODQ HOSODIN
Ya40d 2940 ‘oav
opaxny vig dvail
4em3ppPIN WODd
soIweuAgIaN unsg di/ddL
dSV SN [EEIEN dld SMOPUIA\
asaydsgam gl dvs €d0d ‘dLINS ‘FdVII XINN
5160799M vag 1j0s3|doaq 12d 151 ‘1SS ysojue
ale|ly 3ppeIo SdLLH dLIH xnur|
aaA135 uonedjddy dy3/231J0 deg Jyjea] jiomiaN swayshs Bupesado

JENNE]
jauenu|

I

8:57 AM Page 29

5/29/03

04 201006 ChO2.gxd

Web Testing versus Traditional Testing

WNINIMIMII'
T

il
[

aseqAs

apeIQ

10S HOosoDIN
XIULIOJu|

29d gl
aseqejeq

l

(D

’IHM

1l

L

ayoedy

53 adedsiaN
SIS
PEYSET R ETVY

[lemaut4

Ed=lml svasmous aam

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 30 $

30

Chapter 2

Hardware Mix

With Web systems and their mixture of many brands of hardware to support,
the environment can become very difficult to control. Web systems have the
capacity to use machines of different platforms, such as UNIX, Linux, Win-
dows, and Macintosh boxes. A Web system might include a UNIX server that
is used in conjunction with other servers that are Linux, Windows-based, or
Macintosh-based. Web systems may also include mixtures of models from the
same platform (on both the client- and server-sides). Such hardware mixtures
present testing challenges because different computers in the same system
may employ different OSs, CPU speeds, buses, I/O interfaces, and more. Each
combination has the potential to cause problems.

Software Mix

At the highest level, as illustrated in Figure 2.12, Web systems may consist of
various OSs, Web servers, application servers, middleware, e-commerce
servers, database servers, major enterprise resource planning (ERP) suites,
tirewalls, and browsers. Application development teams often have little con-
trol over the kind of environment into which their applications are installed. In
producing software for mainframe systems, development was tailored to one
specific system. Today, for Web systems, software is often designed to run on a
wide range of hardware and OS combinations, and risks of software incom-
patibility are always present. An example is that different applications may
not share the same version of a database server. On the Microsoft platform, a
missing or incompatible DLL (dynamic link library) is another example.
(Dynamic link libraries are software components that can exist on both the
client- and server-sides whose functions can be called by multiple programs
on demand.)

Another problem inherent in the simultaneous use of software from multi-
ple vendors is that when each application undergoes a periodic upgrade
(client- or server-side), there is a chance that the upgrades will not be compat-
ible with preexisting software.

A Web system software mix may include any combination of the following:

Multiple operating systems
Multiple software packages

|

|

m Multiple software components

m Multiple server types, brands, and models
|

Multiple browser brands and versions

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 31 $

Web Testing versus Traditional Testing 31

Server-Based Applications

Server-based applications are different from client applications in two ways.
First, server-based applications are programs that don’t have a UI with which
the end users of the system interact. End users only interact with the client-
side application. In turn, the client interacts with server-based applications to
access functionality and data via communication protocols, application pro-
gramming interface (API), and other interfacing standards. Second, server-
based applications run unattended; that is, when a server-based application is
started, it’s intended to stay up, waiting to provide services to client applica-
tions whether there is any client out there requesting services. In contrast, to
use a client application, an end user must explicitly launch the client applica-
tion and interact with it via a UL Therefore, to black-box testers, server-based
applications are black boxes.

You may ask: “So it is with desktop applications. What’s the big deal?” Here
is an example: When a failure is caused by an error in a client-side or desktop
application, the users or testers can provide essential information that helps
reproduce or analyze the failure because they are right in front of the applica-
tion. Server-based applications or systems are often isolated from the end
users. When a server-based application fails, as testers or users from the client-
side, we often don’t know when it failed, what happened before it failed, who
was or how many users were on the system at the time it failed, and so on. This
makes reproducing bugs even more challenging for us. In testing Web sys-
tems, we need a better way to track what goes on with applications on the
server-side.

One of the techniques used to enhance our failure reproducibility capability
is event logging. With event logging, server-based applications can record activ-
ities to a file that might not be normally seen by an end user. When an appli-
cation uses event logging, the recorded information that is saved can be read
in a reliable way. Operating systems often include logging utilities. For exam-
ple, Microsoft Windows 2000 includes the Event Viewer, which enables users
to monitor events logged in the Application (the most interesting for testing),
Security, and System logs. The Application log allows you to track events gen-
erated by a specific application. For example, you might want the log file to
read and write errors generated by your application. The Application log will
allow you to do so. You can create and include additional logging capabilities
to your application under test to facilitate the defect analysis and debugging
process, should your developers and your test teams find value in them. (Refer
to the “Server-Side Testing Tips” section of Chapter 12, “Server-Side Testing,”
for more information on using log files.) Have discussions with your develop-
ers to determine how event logging can be incorporated into or created to sup-
port the testing process.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 32 $

32

Chapter 2

Distributed Server Configurations

Server software can be distributed among any number of physical server
boxes, which further complicates testing. Table 2.1 illustrates several possible
server configurations that a Web application may support. You should identify
the configurations that the application under test claims to support. Matrices
of all possible combinations should be developed. Especially for commercial-
off-the-shelf server applications, testing should be executed on each configu-
ration to ensure that application features are intact. Realistically, this might not
be possible due to resource and time constraints. For more information on test-
ing strategies, see Chapter 17.

Table 2.1 Distributed Server Configurations

BOX 1 :10) @] BOX 3
One-box NT-based Web
model server

NT-based application
server

NT-based database

server
Two-box NT-based Web NT-based database
model server server

NT-based application

server
Three-box NT-based Web NT-based Web UNIX-based
model server server database server

NT-based application NT-based application

server server
One-box UNIX-based Web
model server

UNIX-based application
server

UNIX-based database

server
Two-box UNIX-based Web UNIX-based database
model server server

UNIX-based application
server

(continued)

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 33 $

Web Testing versus Traditional Testing

33

Table 2.1 (continued)

BOX 1 :10) @] BOX 3
Three-box NT-based Web NT-based Web NT-based
model server server database server

NT-based application NT-based application
server server

The Network

The network is the glue that holds Web systems together. It connects clients to
servers and servers to servers. This variable introduces new testing issues,
including reliability, accessibility, performance, security, configuration, and
compatibility. As illustrated in Figure 2.12, the network traffic may consist of
several protocols supported by the TCP/IP network. It’s also possible to have
several networks using different net OSs connecting to each other by gate-
ways. Testing issues related to the network can be a challenge or beyond the
reach of black-box testing. However, understanding the testing-related issues
surrounding the network enables us to better define testing problems and ask
for appropriate help. (See Chapter 4, “Networking Basics,” for more informa-
tion.) In addition, with the proliferation of mobile devices, wireless networks
are becoming more popular. It is useful to also have a good understanding of
how a wireless network may affect your Web applications, especially mobile
Web applications. (See Chapter 6, “Mobile Web Application Platform,” for an
overview of wireless network.)

Bug Inheritance

It is common for Web applications to rely on preexisting objects or compo-
nents. Therefore, the newly created systems inherit not just the features but
also the bugs that existed in the original objects.

One of the important benefits of both object-oriented programming (OOP) and
component-based programming is reusability. Rather than writing the code from
scratch, a developer can take advantage of preexisting features created by
other developers (with use of the application programming interface or the
API and proper permission) by incorporating those features into his or her
own application. In effect, code is recycled, eliminating the need to rewrite
existing code. This model helps accelerate development time, reduces the
amount of code that needs to be written, and maintains consistency between
applications.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 34 $

34

Chapter 2

The potential problem with this shared model is that bugs are passed along
with components. Web applications, due to their component-based architec-
ture, are particularly vulnerable to the sharing of bugs.

At the lowest level, the problem has two major impacts on testing. First,
existing objects or components must be tested thoroughly before other appli-
cations or objects can use their functionality. Second, regression testing must
be executed comprehensively (see “Regression Testing” in Chapter 3, “Soft-
ware Testing Basics,” for more information). Even a small change in a parent
object can alter the functionality of an application or object that uses it.

This problem is not new. Object-oriented programming and component-
based software have long been used in PCs. With the Web system architecture,
however, the problem is multiplied due to the fact that components are shared
across servers on a network. The problem is exacerbated by the demand that
software be developed in an increasingly shorter time.

At the higher level, bugs in server packages, such as Web servers and data-
base servers, and bugs in Web browsers themselves, will also have an effect on
the software under test (see Chapter 5 “Web Application Component,” for
more information). This problem has a greater impact on security risks. Chap-
ter 18, “Web Security Testing,” contains an example of a Buffer Overflow error.

Back-End Data Accessing

Data in a Web system is often distributed; that is, it resides on one or more
(server) computers rather than the client computer. There are several methods
of storing data on a back-end server. For example, data can be stored in flat
files, in a nonrelational database, in a relational database, or in an object-
oriented database. In a typical Web application system, it's common that a
relational database is employed so that data accessing and manipulation can
be more efficient compared to a flat-file database.

In a flat-file system, when a query is initiated, the results of that query are
dumped into files on a storage device. An application then opens, reads, and
manipulates data from these files and generates reports on behalf of the user.
To get to the data, the applications need to know exactly where files are located
and what their names are. Access security is usually imposed at the applica-
tion level and file level.

In contrast, a database, such as a relational database, stores data in tables of
records. Through the database engine, applications access data by getting a set
of records without knowing where the physical data files are located or what
they are named. Data in relational databases are accessed via database names
(not to be mistaken with file names) and table names. Relational database files
can be stored on multiple servers. Web systems using a relational database can
impose security at the application server level, the database server level, as

.

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 35 $

Web Testing versus Traditional Testing

35

well as at table and user-based privilege level. All of this means that testing
back-end data accessing by itself is a big challenge to testers, especially black-
box testers because they do not see the activities on the back end. It makes
reproducing errors more difficult and capturing test coverage more compli-
cated. See Chapter 14, “Database Tests,” for more information on testing back-
end database accessing.

Thin-Client versus Thick-Client Processing

Thin-client versus thick-client processing is concerned with where applica-
tions and components reside and execute. Components may reside on a client
machine and on one or more server machines. The two possibilities are:

Thin client. With thin-client systems, the client PC or mobile device does
very little processing. Business logic rules are executed on the server
side. Some simple HTML Web-based applications and handheld devices
utilize this model. This approach centralizes processing on the server
and eliminates most client-side incompatibility concerns. (See Table 2.2.)

Thick client. The client machine runs the Ul portion of the application as
well as the execution of some or all of the business logic. In this case, the
browser not only has to format the HTML page, but it also has to exe-
cute other components such as Java applet and ActiveX. The server
machine houses the database that processes data requests from the
client. Processing is shared between client and server. (See Table 2.3.)

Table 2.2 Thin Client

DESKTOP PC SERVER

THIN CLIENT

ul Application rules
Database

Table 2.3 Thick Client

DESKTOP PC SERVER
THICK CLIENT

ul Database

Application rules

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 36 $

36

Chapter 2

The client doing much of a system’s work (e.g., executing business logic
rules, DHTML, Java applets, ActiveX controls, or style sheets on the client-
side) is referred to as thick-client processing. Thick-client processing relieves
processing strain on the server and takes full advantage of the client’s proces-
sor. With thick-client processing, there are likely to be more incompatibility
problems on the client-side.

Thin-client versus thick-client application testing issues revolve around the
compromises among feature, compatibility, and performance issues. For more
information regarding thin-client versus thick-client application, please see
Chapter 5.

Interoperability Issues

Interoperability is the ability of a system or components within a system to
interact and work seamlessly with other systems or other components. This is
normally achieved by adhering to certain APIs, communication protocol stan-
dards, or to interface-converting technology such as Common Object Request
Broker Architecture (CORBA) or Distributed Common Object Model (DCOM).
There are many hardware and software interoperability dependencies associ-
ated with Web systems, so it is essential that our test-planning process include
study of the system architectural design.

Interoperability issues—it is possible that information will be lost or misin-
terpreted in communication between components. Figure 2.13 shows a simpli-
fied Web system that includes three box servers and a client machine. In this
example, the client requests all database records from the server-side. The
application server in turn queries the database server. Now, if the database
server fails to execute the query, what will happen? Will the database server
tell the application server that the query has failed? If the application server
gets no response from the database server, will it resend the query? Possibly,
the application server will receive an error message that it does not under-
stand. Consequently, what message will be passed back to the client? Will the
application server simply notify the client that the request must be resent? Or
will it neglect to inform the client of anything at all? All of these scenarios need
to be investigated in the study of the system architectural design.

04 201006 ChO2.gxd

5/29/03 8:57 AM Page 37 CE

Web Testing versus Traditional Testing

CLIENT-SIDE

Operating System

NETWORK

SERVER-SIDE

Web Browser

Operating System

<

Client-based Components

Web Server

TCP/IP Traffic >

Figure 2.13 Interoperability.

Testing Considerations

Application Server

VAR,

Operating System

Application Server

VAL,

Database

Operating System

SQL DB Stored Procedures

Data

The key areas of testing for Web applications beyond traditional testing

include:

System integration

Web-based help

Database

Security

Web Ul implementation

Server and client installation

Configuration and compatibility

Performance, load, and stress

04 201006 ChO2.gxd 5/29/03 8:57 AM Page 38 $

38

Chapter 2

For definitions for these tests, see Chapter 3, “Software Testing Basics.” In
addition, see Chapters 9 through 19 for in-depth discussions on these tests.

Now that we have established the fact that testing Web applications is com-
plex, our objective for the rest of the book is to offer you quick access to infor-
mation that can help you meet the testing challenges. The materials are built
upon some of the testing knowledge that you already have. We hope that you
will find the information useful.

Bibliography

Kaner, Cem, Jack Falk, Hung Q. Nguyen Testing Computer Software, 2nd edi-
tion. New York: John Wiley & Sons, Inc., 1999.

LogiGear Corporation. QA Training Handbook: Testing Web Applications. Foster
City, CA: LogiGear Corporation, 2002.

QA Training Handbook: Testing Windows Desktop and Server-Based Applica-
tions. Foster City, CA: LogiGear Corporation, 2002.

Microsoft Corporation. Microsoft SQL Server 2000 Resource Kit. Redmond, WA:
Microsoft Press, 2001.

Orfali, Robert, Dan Harkey, Jeri Edwards, Client/Server Survival Guide, Third
Edition. New York: John Wiley & Sons, 1999.

Reilly, Douglas J. Designing Microsoft ASPNET Applications. Redmond, WA:
Microsoft Press, 2001.

Inside Server-Based Applications. Redmond, WA: Microsoft Press, 2000.

