
3

Data is clearly an important aspect of software-based systems — something we’ve all
known for decades — and yet many organizations still struggle with their approach to
data-oriented issues within their software processes.

The goal of the agile data (AD) method is to define strategies that enable IT profes-
sionals to work together effectively on the data aspects of software systems. This isn’t
to say that AD is a “one size fits all” methodology. Instead, consider AD as a collection
of philosophies that will enable software developers within your organization to work
together effectively when it comes to the data aspects of software-based systems.
Although the focus of this book is proven techniques for agile software development,
it’s critical to define an underlying methodological foundation.

In this chapter, I help you understand the AD method by exploring the following
topics:

■■ Why working together is currently difficult

■■ The agile movement

■■ The philosophies of agile data

■■ Agile data in a nutshell

■■ Does agile data address our problems?

The Agile Data Method
It is possible to take an agile approach to data-oriented development.

The first step is to choose to work this way.

C H A P T E R

1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 3

Why Working Together Is Currently Hard

In many organizations, the relationship between data professionals and developers is
often less than ideal. Yes, there are some organizations where these two communities
work together quite well, but there are always tensions — some healthy tension exists
between groups, and from these your organization can benefit, but when the tension
isn’t healthy these differences often lead to conflicts. The challenges that data profes-
sionals and developers must overcome can include:

Different visions and priorities. Developers are often focused on the specific
needs of a single project and often strive to work as much as possible in isola-
tion from the rest of the organization. Database administrators (DBAs) focus on
the database(s) that they are responsible for, often “protecting” the databases by
minimizing changes to them. Data administrators and data architects focus on
the overall data needs of the enterprise, sometimes to the virtual exclusion of the
immediate needs of project teams. Clearly, the scope of each group is different,
their priorities are different, and the issues that the groups deal with are differ-
ent. To make matters worse, your project stakeholders, including direct users all
the way up to senior management, have varying priorities and visions as well.

Overspecialization of roles. Specialists have a tendency to become too narrowly
focused; they can work so hard to know everything there is to know about a
small slice of software development that they can become oblivious of every-
thing else. For example, it’s quite common to find senior Java developers that
have never heard about data normalization (discussed in Chapter 4), or even
understand why you would want to do such a thing, and data architects who
can’t read a Unified Modeling Language (UML) state chart diagram (discussed
in Chapter 2). Because these roles are overly specialized, the people in those
roles often have difficulties relating to others. At the other end of the spectrum
are generalists who understand the big picture but don’t have any concrete
skills to offer a development team. We need to find the sweet spot between these
two extremes. An underlying philosophy of Agile Modeling (Ambler 2002a) is
that software developers should have a general understanding of the overall
software process and have one or more specialties. Because agile modelers are
generalists, they understand the broad range of issues pertinent to the “software
game” and yet they still have specific, valuable skills to offer to their team.

Process impedance mismatch. One of the few things that processes such as the
Unified Process (Kruchten 2000; Ambler 2001b), Extreme Programming (XP)
(Beck 2000), Scrum (Beedle and Schwaber 2001), DSDM (Stapleton 1997), Crystal
Clear (Cockburn 2001b), feature-driven development (FDD) (Palmer and Felsing
2002), and Agile Modeling (AM) have in common is that they all work in an
evolutionary (iterative and incremental) manner. Unfortunately, many within
the data community still view software development as a serial or near-serial
process. Clearly, there is an impedance mismatch here, indicating that the data
community needs to rethink its approach. You will see in Part II of this book that
it is possible to take an evolutionary approach to data, a change that will require
cultural and organizational adjustments to succeed.

4 Chapter 1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 4

Technology impedance mismatch. Developers work with objects and compo-
nents, whereas data professionals work with databases and files. Software-
engineering principles form the underlying foundational paradigm for objects
and components, whereas set theory forms the underlying foundational para-
digm for relational databases (by far the most popular database technology).
Because the underlying paradigms are different, the technologies don’t work
together perfectly, and an impedance mismatch exists. This mismatch can be
overcome, although doing so requires a significant skillset (this topic is covered
in Chapter 7).

Ossified management. The technology and techniques used by software devel-
opers change rapidly, a fact that we all know very well. As people progress up
the corporate hierarchy, they deal less with technology and more with people
issues, the end result being that many managers have lost their technical edge.
The implication is that management’s previous development experiences, on
which they base technical decisions, may no longer be applicable. We experi-
enced this when we moved from procedural to object-oriented technologies —
what may have been a good decision on a COBOL project often proves to be the
kiss of death to a Java project. We’re clearly seeing this problem once again as
we move to agile software processes. Management needs to change with the
times.

Organizational challenges. Common problems, such as poor communication or
politics among individuals and groups, hurt the data aspects of software devel-
opment just as badly as they hurt other efforts, by preventing everyone from
working together effectively.

Poor documentation. Most documentation seems to be at one of the following
extremes: little or no documentation or overly complex documentation that
nobody reads. Mutually agreed-to development standards and guidelines,
legacy system documentation, legacy database documentation, and enterprise
models can be valuable resources when written well. Chapter 10 presents agile
strategies for writing documentation.

Ineffective architectural efforts. Most organizations face significant challenges
when it comes to enterprise architecture, the most common of which being that
they don’t know where to start. Biased enterprise architectures that overly focus
on one view of the enterprise lead to architectures that do not adequately
address the real needs of an organization. As the Zachman Framework (ZIFA
2002; Hay 2003) indicates, there are many potential views that you want to con-
sider. These views are data/structure, function/process, network, people, time,
and motivation. Ivory tower architectures — those formulated by teams that
have removed themselves from the day-to-day realities of project teams — look
good on paper but unfortunately fail in practice. Furthermore, developers need
to accept that their efforts must reflect and conform to the constraints imposed
on them by their organization’s environment.

Ineffective development guidelines. Many organizations struggle to come to a
collection of development guidelines that all software developers will work to.
There are a large number of causes for this, including people not understanding

The Agile Data Method 5

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 5

the need to follow such guidelines, people unwilling to follow someone else’s
guidelines, overly complex guidelines, overly simplistic guidelines, a “one size
fits all” attitude that leads to inappropriate guidelines for a specific platform,
and an unwillingness to evolve guidelines over time. When you have an effec-
tive collection of guidelines available to you, and (this is key) everyone under-
stands and applies them appropriately, you can dramatically improve the
productivity of your software development efforts.

Ineffective modeling efforts. This is often the result of several of the previously
identified problems. People focused on a specific aspect of development will
often produce models that wonderfully reflect the priorities of that narrow view
but fail to take into account the realities of other views. An enterprise data
model may present an excellent vision of the data required by an organization,
but an enterprise model that reflects the data, functional, usage, and technical
requirements of an organization is likely to be far more useful. A UML class dia-
gram may reflect the needs of a single project, but if it doesn’t reflect the realities
of the legacy data sources that it will access then it is of little value in practice.
Modelers, and software developers in general, need to work together and look
at the full picture to be truly effective.

Detecting That You Have a Problem

It is very easy for organizations to deny that they have a problem. It can be very diffi-
cult for senior management to detect problems until it’s too late because the bad news
that they need to hear is filtered out long before it gets to them. Similarly, it can be dif-
ficult for people elsewhere in the organization to detect problems — perhaps every-
thing is going quite well in their opinion — unfortunately the value system that they’re
using to judge the situation isn’t ideal, making them blind to the problems that they are
causing.

As a consultant I have the privilege of working in a wide range of organizations, and
it seems to me that about one in ten organizations is reasonably successful with its
approach to data-oriented activities, about six in ten think they’re doing well but really
aren’t, and the remaining three in ten know that they have a problem but don’t know
what to do about it. It doesn’t have to be this way.

So how do you know you’ve got a problem? Enterprise data professionals, includ-
ing both data architects and data administrators, will be frustrated by the fact that proj-
ect developers on project teams ignore their advice, standards, guidelines, and
enterprise models. Worse yet, application developers often don’t even know about
these people and things in the first place. Developers will be frustrated by what they
perceive (often rightfully so) to be the glacial pace of enterprise data professionals to
make or authorize seemingly simple changes. DBAs often find themselves stuck in
between these two warring factions, trying to get their work done, while struggling to
keep the peace. If one or more of these problems is common within your organization
you’ve got a problem.

6 Chapter 1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 6

The following is a list of potential symptoms that may indicate that your organiza-
tion has one or more challenges that the agile data method may help you address:

■■ People are significantly frustrated with the efforts, or lack thereof, of one or
more groups.

■■ Software is not being developed, or if it is it is taking far too long or is much
too expensive.

■■ Finger pointing occurs such that you hear things like “the data administrators
are holding up progress” or “the developers aren’t following corporate guide-
lines.” Worse yet, the finger pointer typically doesn’t perceive that he or she is
also part of the problem.

■■ Political issues are given higher priority than working together to develop,
maintain, and support software-based systems.

■■ Ongoing feuds exist between people and groups. Phrases that start with “you
always” and “you never” are good indicators of this.

■■ Well-known problems within your organization are not being addressed. Fur-
thermore, suggestions for improvements appear to be ignored, nothing hap-
pens, and no reason for rejection is provided.

■■ People are working excessively long hours with little or no reward.

■■ Decisions affecting teams — in particular project teams — are made in an
apparently arbitrary and arrogant fashion.

We need to find a way to work together effectively. There are clear differences
between the data and development communities as well as between the project and
enterprise communities. The fact that we’re talking about different communities is also
part of the problem, arguably one of the root causes. You have a fundamental decision
to make: Should you use these differences as an excuse to exacerbate existing problems
within your organization or should you revel in these differences and find a way to
take advantage of them? I prefer the latter approach. My experience is that the values
and principles of the agile movement form the basis for an effective approach to work-
ing together.

The Agile Movement

To address the challenges faced by software developers an initial group of 17 method-
ologists formed the Agile Software Development Alliance (www.agilealliance.org),
often referred to simply as the Agile Alliance, in February 2001. An interesting thing
about this group is that the members all came from different backgrounds, and yet they
were able to come to an agreement on issues that methodologists typically don’t agree
upon (Fowler 2001a). This group of people defined a manifesto for encouraging better
ways of developing software, and then, based on that manifesto, formulated a collec-
tion of principles that defines the criteria for agile software development processes
such as AM.

The Agile Data Method 7

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 7

The Manifesto for Agile Software Development
The manifesto (Agile Alliance 2001a) is defined by four simple value statements — the
important thing to understand is that while you should value the concepts on the
right-hand side, you should value the things on the left-hand side even more. A good
way to think about the manifesto is that it defines preferences, not alternatives, encour-
aging a focus on certain areas but not eliminating others. The Agile Alliance values are
as follows:

Individuals and interactions over processes and tools. Teams of people build
software systems, and to do that they need to work together effectively — teams
include but are not limited to programmers, testers, project managers, modelers,
and customers. Who do you think would develop a better system: five software
developers with their own tools working together in a single room or five low-
skilled “hamburger flippers” with a well-defined process, the most sophisti-
cated tools available, and the best offices money could buy? If the project were
reasonably complex, my money would be on the software developers, wouldn’t
yours? The point is that the most important factors that you need to consider are
the people and how they work together; if you don’t get that right the best tools
and processes won’t be of any use. Tools and processes are important, don’t get
me wrong, it’s just that they’re not as important as working together effectively.
Remember the old adage, a fool with a tool is still a fool. This can be difficult for
management to accept because they often want to believe that people and time,
or men and months, are interchangeable (Brooks 1995).

Working software over comprehensive documentation. When you ask a user
whether he or she would want a fifty-page document describing what you
intend to build or the actual software itself, what do you think that person will
pick? My guess is that 99 times out of 100, the user will choose working soft-
ware, assuming of course that he or she expects that you can actually deliver. If
that is the case, doesn’t it make more sense to work so that you produce soft-
ware quickly and often, giving your users what they prefer? Furthermore, I sus-
pect that users will have a significantly easier time understanding any software
that you produce than complex technical diagrams describing its internal work-
ings or describing an abstraction of its usage. Documentation has its place, writ-
ten properly, it is a valuable guide for people’s understanding of how and why a
system is built and how to work with the system. However, never forget that the
primary goal of software development is to create software, not documents —
otherwise, it would be called documentation development wouldn’t it?

Customer collaboration over contract negotiation. Only your customer can tell
you what they want. No, they likely do not have the skills to exactly specify the
system. No, they likely won’t get it right at first. Yes, they’ll likely change their
minds. Working together with your customers is hard, but that’s the reality of the
job. Having a contract with your customers is important, but, while having an
understanding of everyone’s rights and responsibilities may form the founda-
tion of that contract, a contract isn’t a substitute for communication. Successful
developers work closely with their customers, they invest the effort to discover
what their customers need, and they educate their customers along the way.

8 Chapter 1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 8

Responding to change over following a plan. People change their priorities for a
variety of reasons. As work progresses on your system, your project stakehold-
ers’ understanding of the problem domain and of what you’re building changes.
The business environment changes. Technology changes over time and not
always for the better. Change is a reality of software development, a reality that
your software process must reflect. There is nothing wrong with having a proj-
ect plan; in fact, I would be worried about any project that didn’t have one, but a
project plan must be malleable; that is, there must be room to change it as your
situation changes; otherwise, your plan quickly becomes irrelevant.

The interesting thing about these value statements is that almost everyone will
instantly agree to them, and yet rarely do people adhere to them in practice. Senior
management always claims that its employees are the most important aspect of the
organization, and yet often they follow ISO-9000-compliant processes and treat their
staff as replaceable assets. Even worse, management often refuses to provide sufficient
resources to comply with the processes that they insist project teams follow — the bot-
tom line: management needs to eat its own dog food. Everyone will readily agree that
the creation of software is the fundamental goal of software development, yet many
people still insist on spending months producing documentation describing what the
software is and how it is going to be built instead of simply rolling up their sleeves and
building it. You get the idea — people often say one thing and do another. This has to
stop now. Agile modelers do what they say and say what they do.

The Principles for Agile Software Development
To help define agile software development, the members of the Agile Alliance refined
the philosophies captured in their manifesto into a collection of 12 principles (Agile
Alliance 2001b) that methodologies, including agile data (AD), should conform to.
These principles are:

■■ Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

■■ Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

■■ Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference for the shorter time scale.

■■ Business people and developers must work together daily throughout the
project.

■■ Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

■■ The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

■■ Working software is the primary measure of progress.

■■ Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

The Agile Data Method 9

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 9

■■ Continuous attention to technical excellence and good design enhances agility.

■■ Simplicity — the art of maximizing the amount of work not done — is
essential.

■■ The best architectures, requirements, and designs emerge from self-organizing
teams.

■■ At regular intervals, the team reflects on how to become more effective and
then tunes and adjusts its behavior accordingly.

Stop for a moment and think about these principles. Is this the way that your soft-
ware projects actually work? Is this the way that you think projects should work?
Reread the principles again. Are they radical and impossible goals as some people
would claim? Are they meaningless motherhood and apple pie statements? Or are they
simply common sense? My belief is that these principles form a foundation of common
sense upon which you can base successful software-development efforts, a foundation
that can be used to direct the data-oriented efforts of software developers.

The Philosophies of Agile Data

First and foremost, the agile data method subscribes to the values and principles of the
Agile Alliance. Although this advice is a very good start, it needs to be extended with
philosophies that reflect the realities faced by data professionals. The philosophies of
agile data are:

Data. Data is one of several important aspects of software-based systems. Most, if
not all, applications are based on moving, utilizing, or otherwise manipulating
some kind of data, after all.

Enterprise issues. Development teams must consider and act appropriately
regarding enterprise issues. Their applications must fit into the greater scheme
of things by conforming to the common enterprise architecture (or at least to the
future agreed-upon architecture), by following common development stan-
dards, and by reusing existing legacy assets wherever possible.

Enterprise groups. Enterprise groups exist to nurture enterprise assets and to
support other groups, such as development teams, within your organization.
These enterprise groups should act in an agile manner that reflects the expecta-
tions of their customers and the ways in which their customers work.

Every project is unique. Each development project is unique, requiring a flexible
approach tailored to its needs. One software process does not fit all, and there-
fore the relative importance of data varies based on the nature of the problem
being addressed.

Teamwork. Software developers must work together effectively, actively striving
to overcome the challenges that make it difficult to do so.

Sweet spot. You should actively strive to find the “sweet spot” for any issue,
avoiding the black and white extremes to find the gray that works best for your
overall situation.

10 Chapter 1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 10

Interestingly, most of these philosophies aren’t specific to data; instead, they are
applicable to software-development efforts in general. As the first principle implies,
you need to look at the overall picture and not just data; therefore, data-specific princi-
ples very likely won’t serve you very well. Heresy? No. Just common sense.

Agile Data in a Nutshell

The best way to understand the AD method is to explore its four roles — agile DBA,
application developer, enterprise administrator, and enterprise architect — and how
they interact with each other. The first two roles, the focus of this book, are project-level
development roles. The second two roles, which are featured prominently throughout
the book due to their importance, are enterprise-level support roles. An agile software
developer can take on one or more of these roles, although his or her focus will very
likely be on one or both of the project-level roles.

Let’s explore each role in greater detail.

Agile DBAs
An agile DBA (Schuh 2001) is anyone who is actively involved with the creation and
evolution of the data aspects of one or more applications. The responsibilities of this
role include, but are not limited to, the responsibilities typically associated with the tra-
ditional roles of database programmers, database administrators (DBAs), data testers,
data modelers, business analysts, project managers, and deployment engineers. This is
the type of role that a DBA within a small organization typically finds himself or her-
self in: a sort of “data jack of all trades.”

The primary customers of agile DBAs are application developers, although enter-
prise administrators and enterprise architects are very close seconds. When agile DBAs
are asked to support the business community, their primary customers will also
include direct end users and their managers. This is particularly true when agile DBAs
support applications that are data focused, in particular reporting applications.

An agile DBA will work closely with application developers, typically supporting a
single larger team or several smaller teams as the case may be. Agile DBAs can often be
responsible for several data sources (for example, databases, files, XML structures, and
so on) or at least be coresponsible for them. For example, if two development teams
access the same database and each of them has its own agile DBA, those two people
will then need to work together to evolve that database over time. This is slightly dif-
ferent from Schuh’s original vision of an agile DBA — his focus was on how a DBA can
be effective on a single team, whereas the AD method looks at the entire enterprise.
The important thing is that you work in a manner appropriate to your environment.

The biggest potential change for traditional DBAs in becoming an agile DBA is that
they will need to learn to work in an evolutionary manner. Modern development
processes such as the Unified Process (UP) or Extreme Programming (XP) don’t pro-
vide detailed requirements up front nor do they focus on detailed models (and cer-
tainly not detailed data models up front). Instead they evolve their models over time to
reflect their changing understanding of the problem domain as well as the changing

The Agile Data Method 11

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 11

requirements of their stakeholders. Some project teams may choose to work in a more
serial manner, they may even choose to produce a detailed conceptual data model
early in the project’s life cycle, but those teams will be few and far between (although
you will be expected to support them too). Agile DBAs will need to communicate the
constraints imposed by legacy data sources (discussed in Chapter 8), working with
application developers to understand those constraints and work appropriately.

Agile DBAs will evolve their legacy data schemas over time, applying common
database refactorings (discussed in Chapter 12) as appropriate and working with new
tools to evolve and migrate their data schemas over time. This is a difficult but neces-
sary task. Agile DBAs will also need to work with application developers to model
their data needs, working with UML-based artifacts such as class diagrams with some
project teams and conceptual data models with other teams. Agile DBAs will work
with application developers to write and test database code such as stored procedures,
data-oriented code within applications that interacts with their data sources, and even
aid in mapping the application schema to the data schema. Performance tuning (dis-
cussed in Chapter 15), both of the database and mappings to the database, is an impor-
tant aspect of the job.

Agile DBAs commonly work with enterprise administrators, who are responsible
for maintaining and evolving the corporate meta data describing the enterprise and
the corporate development standards and guidelines. Agile DBAs will use this infor-
mation and follow the standards and guidelines, as well as provide valuable feedback.
Agile DBAs will also interact with enterprise administrators and other agile DBAs to
evolve the various enterprise data sources over time, including critical meta data.

Agile DBAs also work with enterprise architects to ensure that their work fits into
the overall picture and to help evolve the enterprise architecture over time.

Much of the material presented in this book is presented from the point of view of
agile DBAs and application developers. I wrote it this way to remain both as consistent
and as simple as possible.

Application Developers
For the sake of the agile data method an application developer is anyone who is actively
involved with the creation and evolution of the nondata aspects of a software applica-
tion (remember, any given person could take on several roles). The primary focus of an
application developer is on the single system or product line that he or she is assigned
to. The responsibilities of this role can include the responsibilities traditionally associ-
ated with the “traditional roles” of programmers, modelers, testers, team leads, busi-
ness analysts, project managers, and deployment engineers.

As noted earlier, application developers work very closely with agile DBAs who are
responsible for working on the data aspects of one or more applications. The primary
customers of application developers include the potential users of their system, their
managers, and the operations and support group(s) within their organization. Sec-
ondary customers include other project stakeholders such as senior management,
enterprise administrators, and enterprise architects.

It is important for application developers to recognize that although their primary
focus is fulfilling the current needs of direct project stakeholders, their project exists

12 Chapter 1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 12

within the larger scope of the organization. This philosophy reflects AM’s (discussed in
Chapter 10) principles Software Is Your Primary Goal and Enabling The Next Effort Is Your
Secondary Goal — in this case part of the next effort is ensuring that your project con-
forms to the overall enterprise vision. Application developers are best served by rec-
ognizing that they are working on one project of many within their organization, that
many projects came before theirs, that many projects will come after theirs, and that,
therefore, they need to work with people in the other roles to ensure that they do the
right thing.

Application developers will adopt and follow agile software development processes
such as FDD, DSDM, and XP. When it comes to modeling and documentation, they are
likely to enhance these processes with the principles and practices of AM. All three of
these processes, being agile, implore developers to work closely with their project
stakeholders. An implication is that developers are responsible for helping to educate
their stakeholders, including both users and managers, in the basics of software devel-
opment to help them make more informed decisions when it comes to technology.

An organization’s legacy systems, including legacy data sources (discussed in
Chapter 8), will constrain the efforts of application developers. These systems will
often be very difficult to evolve, and if they can evolve it will often happen very slowly.
Luckily, agile DBAs will be able to help application developers deal with the realities
imposed upon them by legacy data sources, but they will need to work with enterprise
administrators and more so with enterprise architects to ensure that their efforts reflect
the long-term needs of your organization. Like agile DBAs, application developers will
also need to recognize that they need to follow their organization’s development prac-
tices, including the guidelines and standards supported by enterprise administrators.
Application developers are expected to provide feedback regarding the standards and
guidelines; everyone in the organization should do so and be prepared to work with
the enterprise administrators to develop guidelines for development environments
that are new to the organization.

Application developers also need to work closely with enterprise architects to
ensure that their project takes advantage of existing enterprise resources and fits prop-
erly into the overall enterprise vision. The enterprise architects should be able to pro-
vide this guidance and will work with your team to architect and even build your
system. Furthermore, application developers should expect to be mentored in “senior”
skills such as architecture and modeling. This approach makes it easy for your team to
support enterprise efforts and helps keep the enterprise architects grounded because
they quickly discover whether their architecture actually works in practice.

Enterprise Administrators
An enterprise administrator is anyone who is actively involved in identifying, docu-
menting, evolving, protecting, and eventually retiring corporate IT assets. These assets
include corporate data, corporate development standards/guidelines, and reusable
software such as components, frameworks, and services. The responsibilities of this
role potentially include, but are not limited to, the responsibilities associated with tra-
ditional roles of data administrators, network administrators, reuse engineers, and
software process specialists. Enterprise administrators work closely with enterprise

The Agile Data Method 13

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 13

architects, although their primary customer teams are senior management and project
teams. In many ways enterprise administrators are the “keepers of the corporate
gates,” supporting project teams, while at the same time guiding them to ensure that
the long-term vision of the enterprise is fulfilled. An important goal is to guard and
improve the quality of corporate assets, including but not limited to data. Good enter-
prise administrators are generalists with one or more specialties, one of which could
be data administration, who understand a wide range of issues pertinent to the
enterprise.

Enterprise administrators recognize that there is more to this job than data adminis-
tration and will work in an evolutionary manner when supporting agile software-
development teams. This is because enterprise administrators work closely with agile
DBAs, and to a lesser extent application developers, who work in this manner. Enter-
prise administrators work with agile DBAs to ensure that their databases reflect the
overall needs and direction of the enterprise. Enterprise administrators will find ways
to communicate the importance of their role to agile DBAs and application developers,
and the best way to do this is to focus on things that will make them more effective in
their jobs — few people refuse a helping hand. Trying to impose your will through
onerous processes or management edicts very likely won’t work.

Enterprise administrators work with both agile DBAs and application developers to
ensure that these folks understand the corporate standards and guidelines that they
should follow. However, their role is to support the standards and guidelines, not
enforce them. A good rule of thumb is that if you need to act as the “standards police,”
then you have lost the battle. Furthermore, this failure is very likely your fault because
you didn’t communicate the standards well, didn’t gain support, or tried to enforce
unrealistic guidelines. If the standards and guidelines make sense, they’re written well,
and they’re easy to conform to, data and application developers will be willing to fol-
low them. However, when this is not the case, when the standards and guidelines
aren’t appropriate or place an inordinate burden on projects, enterprise administrators
should expect pushback. Yes, some individuals may chaff at following standards and
guidelines but that’s something that project coaches/managers will need to deal with.

When pushback occurs, an enterprise administrator works with the project team(s)
to explore and address the problem. They are prepared to evolve the standards and
guidelines over time to reflect lessons learned and the changing realities of the organi-
zation. One size will not fit all — your relational database naming conventions may be
very different from your Java naming conventions and that’s okay because those are
two different environments with two different sets of priorities.

Enterprise administrators work closely with enterprise architects to communicate
the constraints imposed by the current environment to the architects. More impor-
tantly, the enterprise administrators need to understand the future direction envi-
sioned by the enterprise architects to ensure that their efforts support the long-term
direction of the organization.

Enterprise Architects
An enterprise architect is anyone who is actively involved in the creation, evolution, and
support/communication of the enterprise architecture. The architecture will often be

14 Chapter 1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 14

described as a collection of models. These models describe a wide variety of views, one
of which may be data oriented, although network/hardware views, business process
views, usage views, and organizational structure views (to name a few) are equally as
valuable. The responsibilities of this role includes, but is not limited to, the responsi-
bilities associated with the traditional roles of enterprise data architects, enterprise
process architects, enterprise network architects, and so on.

As with the role of enterprise administrator, the role of enterprise architect has a
greater scope than just that of dealing with data — instead they look at the entire enter-
prise picture. The enterprise architect’s main job is to look into the future, to attempt to
identify a direction in which the organization is going, and hence to determine how its
IT infrastructure needs to evolve. Enterprise architects are naturally constrained by the
current situation the organization finds itself in, its environment, and its ability to
evolve. Enterprise architects work closely with enterprise administrators to ensure that
they understand the current environment and to communicate their vision for the
future. The primary customers of enterprise architects are the organization’s senior
management, including both IT management and business management, whom they
work with to evolve the enterprise vision. The project teams are also primary cus-
tomers because their work should reflect the overall enterprise architecture and
because they provide critical feedback to that architecture.

Enterprise architects focus on a wide variety of architectural issues, data being only
one of them. Their main goal is to develop and then support enterprise architectural
models. It isn’t sufficient for an enterprise architect to produce good models, he or she
must evangelize those models, work with development teams, and educate senior
management in the implications of the architecture of system-related issues in general.
In addition to the CIO and CTO of your organization, your enterprise architects are
likely to have the most visibility with senior management; therefore, they need to be
prepared to aid senior management to make strategic decisions.

Enterprise architects work with agile DBAs and with application developers. The
most important thing that enterprise architects can do is to “walk the talk” and roll up
their sleeves and get actively involved with the project. This will earn the respect of the
developers, dramatically increasing the chance that they’ll actually understand and
follow the vision of the enterprise architecture. The advantage of this approach is that
it provides immediate and concrete feedback as to whether the architecture actually
works and provides valuable insights for how the architecture needs to evolve.

Enterprise architects need to be prepared to work in an iterative and incremental
manner. They are ill advised to try to create an all-encompassing set of enterprise mod-
els up front. Instead, create an initial, high-level architecture, and then work closely
with one or more development teams to make sure that it works. AM includes a prac-
tice called Model In Small Increments that is based on the premise that the longer you
model without receiving concrete feedback, such at that provided by an actual project,
the greater the chance that your model doesn’t reflect the real-world needs of your
organization. Agile enterprise architects avoid ivory-tower architectures this way. An
agile approach to enterprise architecture is described at the following Web page: www.
agiledata.org/essays/enterpriseArchitecture.html.

The Agile Data Method 15

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 15

Agile Software Developers

An underlying assumption of the AD method is that your organization wants to take
an agile approach to software development. Agile software development reflects a
shift of mindset, a new way of thinking. To succeed at the AD method, people in the
four roles described earlier must have this mindset, a mindset that is characterized by
the following traits:

Teamwork. Agile software developers recognize the importance of working
together effectively with others and will act accordingly. They have the humility
to respect and appreciate the views and abilities of others; without this humility,
they are unlikely to willingly choose to collaborate with others. A critical impli-
cation is that everyone is going to have to rethink the way that they work and be
willing to change for the greater good. The attitude that “my group is the center
of the universe and everyone has to conform to our vision and follow our
process” doesn’t work well.

Common, effective processes. Agile software developers actively seek to define
an overall approach that everyone agrees to. My experience is that processes
imposed from the top are very likely to fail because all it takes is one group to
reject the process and “go rogue.” A better process-improvement strategy is to
organically grow a workable software process that reflects the needs of everyone
involved. Because software developers are intelligent people with valuable
skills, you are likely to find that a collection of principles that everyone agrees
to is often the most important part of an effective process. In the case of the AD
method these are the values and principles of agile software development as
well as the AD philosophies.

Co-location. Agile software developers are willing to co-locate with others as
needed. You might need to give up your comfortable cubicle or office for a while
to work in a shared team space, or even have someone share your office to work
with you on a project. This reflects the fact that communication and collabora-
tion are critical to your success; you are much more effective working with
others than you are working alone.

Generalizing specialists. Agile software developers are generalists with one or
more specialties. The implication is that everyone needs to have a wide range of
skills and be willing to work with others to improve upon existing skills and to
learn new ones. (Chapter 23 explores this concept in greater detail.)

Process flexibility. Agile software developers are also prepared to tailor their
approach to meet the needs of the projects they are involved with. For example,
a project team working on a reporting database may very well take a different
approach than one working on an online application written in Java or C#. No
single approach suits all situations.

Sufficient documentation. Agile software developers recognize that documenta-
tion is a necessity in their jobs, something they can be very effective at if they
choose. For example, enterprise architects recognize that the goal of enterprise

16 Chapter 1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 16

modeling is to produce effective models that meet the needs of their audience,
not to produce reams of documentation. They recognize that many traditional
architectural efforts fail because developers are not willing to invest the time to
wade through the documentation to learn the architecture. Application develop-
ers realize that system documentation is required to support future enhancement
efforts and agile DBAs realize that documentation is required that describes the
data sources that they support. Agile software developers will take an agile
approach to documentation (discussed in Chapter 10) and produce well-written
and concise documents that are just barely good enough.

Does Agile Data Solve Our Problems?

An important question to ask is whether the philosophies and suggested cultural
changes discussed in this book address the problems that organizations face when it
comes to the data aspects of software development. The following list shows that this
in fact is the case, discussing each of the potential problems mentioned earlier in the
chapter and the solution suggested by the AD method.

Different visions and priorities. Agile data implores software developers to
work together and to understand and respect the viewpoints of their coworkers.

Overspecialization of roles. Agile data asks software developers to find the
“sweet spot” between the extremes of being a generalist and being a specialist,
ideally by becoming a generalist with one or more specialties.

Process impedance mismatch. Agile data makes it clear that enterprise and data
professionals must to be prepared to work following an incremental and itera-
tive approach, the norm for most modern development and the defacto stan-
dard for agile software development. It also makes it apparent that application
developers must recognize that the existing environment, and future vision for
the organization, places constraints on their efforts.

Technology impedance mismatch. Agile data requires that software developers
work together closely, learning from each other as they do so. Agile DBAs have
the skills to map the application schema to the data schema, to write data-ori-
ented code, and to performance tune their work.

Ossified management. Agile data asks enterprise architects to work with senior
management and educate them in the realities of modern software develop-
ment. Similarly, application developers should work with and help educate all
levels of management.

Organizational challenges. Agile data requires software developers to work
with one another and with your project stakeholders, to respect them, and to
actively strive to work together effectively.

Poor documentation. Agile data directs software developers to follow the princi-
ples of Agile Documentation (discussed in Chapter 10).

The Agile Data Method 17

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 17

Ineffective architectural efforts. Agile data advises enterprise architects to take a
multiview/model approach to architecture and to actively work on a project
team to support and prove that their architecture works. The feedback from
these efforts should then be reflected in future iterations of the architecture.

Ineffective development guidelines. Agile data implores enterprise administra-
tors to write clear, effective, and applicable standards and guidelines and to be
prepared to act on feedback from the development teams.

Ineffective modeling efforts. Agile data directs software developers to follow
the principles and practices of the AM methodology (discussed in Chapter 10).

Summary

The heart of the agile data method is its philosophies and the changes that those
philosophies imply for the way that software developers approach their jobs. The first
step is to recognize that you have a problem; many organizations have a serious prob-
lem with respect to how their application developers and data professionals work
together on one level, as well as how project team members work together with enter-
prise team members on another level. However, it isn’t enough for the agile data
method to merely present a collection of philosophies, it must also describe real-world,
proven techniques that software developers can apply on the job. You should consider
these techniques, select the ones that sound like they’ll benefit you, tailor them, and
apply them appropriately within your environment. Software developers can work
together effectively, but they must choose to do so.

18 Chapter 1

03 202835 Ch01.qxd 9/11/03 9:13 AM Page 18

