
CHAPTER 1

FUNDAMENTAL CONCEPTS

1-1. Introduction. The topic of this book is the theory and analysis
of electromagnetic phenomena that vary sinusoidally in time, henceforth
called a-c (alternating-current) phenomena. The fundamental concepts
which form the basis of our study are presented in this chapter. It is
assumed that the reader already has some acquaintance with electro-
magnetic field theory and with electric circuit theory. The vector analy-
sis concepts that we shall need are summarized in Appendix A.

We shall view electromagnetic phenomena from the "macroscopic"
standpoint, that is, linear dimensions are large compared to atomic dimen-
sions and charge magnitudes are large compared to atomic charges. This
allows us to neglect the granular structure of matter and charge. We
assume all matter to be stationary with respect to the observer. No
treatment of the mechanical forces associated with the electromagnetic
field is given.

The rationalized mksc system of units is used throughout. In this
system the unit of length is the meter, the unit of mass is the kilogram,
the unit of time is the second, and the unit of charge is the coulomb.
We consider these units to be fundamental units. The units of all other
quantities depend upon this choice of fundamental units, and are called
secondary units. The mksc system of units is particularly convenient
because the electrical units are identical to those used in practice.

The concepts necessary for our study are but a few of the many electro-
magnetic field concepts. We shall start with the familiar Maxwell equa-
tions and specialize them to our needs. New notation and nomenclature,
more convenient for our purposes, will be introduced. For the most part,
these innovations are extensions of a-c circuit concepts.

1-2. Basic Equations. The usual electromagnetic field equations are
expressed in terms of six quantities. These are

8, called the electric intensity (volts per meter)
3C, called the magnetic intensity (amperes per meter)
3D, called the electric flux density (coulombs per square meter)
(B, called the magnetic flux density (webers per square meter)
<J, called the electric current density (amperes per square meter)
qvj called the electric charge density (coulombs per cubic meter)
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FIG. 1-1. dX and ds on an open surface. FIG. 1-2. ds on a closed surface.

We shall call a quantity well-behaved wherever it is a continuous tunction
and has continuous derivatives. Wherever the above quantities are well-
behaved, they obey the Maxwell equations

V X S = - ^ V.(B = 0

»-»
V X 3C = — + 3 V • £> = qv

These equations include the information contained in the equation of
continuity

V - * - - t d-2)
which expresses the conservation of charge. Note that we have used
boldface script letters for the various vector quantities, since we wish to
reserve the usual boldface roman letters for complex quantities, intro-
duced in Sec. 1-7.

Corresponding to each of Eqs. (1-1) are the integral forms of Maxwell's
equations

j) £ • d\ = - 21 / ® ' <*s <ff> « * ^s = 0
(1-3)

j) 3C • d\ = j I / T> - ds + / / 3 • ds (jj) £> • ds = / / / qv dr

These are actually more general than Eqs. (1-1) because it is no longer
required that the various quantities be well-behaved. In the equations
of the first column, we employ the usual convention that d\ encircles ds
according to the right-hand rule of Fig. 1-1. In the equations of the
last column, we use the convention that ds points outward from a closed
surface, as shown in Fig. 1-2. The circle on a line integral denotes a
closed contour; the circle on a surface integral denotes a closed surface.
The integral form of Eq. (1-2) is

#^-ds=~^///^dT (1-4)
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FUNDAMENTAL CONCEPTS 3

where the same convention applies. This is the statement of conserva-
tion of charge as it applies to a region.

We shall use the name field quantity to describe the quantities dis-
cussed above. Associated with each field quantity there is a circuit
quantity, or integral quantity. These circuit quantities are

v, called the voltage (volts)
i, called the electric current (amperes)
q, called the electric charge (coulombs)
}[/j called the magnetic flux (webers)
x//6, called the electric flux (coulombs)
w, called the magnetomotive force (amperes)

The explicit relationships of the field quantities to the circuit quantities
can be summarized as follows:

v = f S • d\

i = ff 3-ds
Q = / / / Qv dr

yp = jj (B • ds

V = fj £> • ds

u = I 3C • dl

(1-5)

All the circuit quantities are algebraic quantities and require reference
conditions when designating them. Our convention for a "line-integral"
quantity, such as voltage, is positive reference at the start of the path of
integration. This is illustrated by Fig. 1-3. Our convention for a
"surface-integral" quantity, such as current, is positive reference in the
direction of ds. This is shown in Fig. 1-4. Charge is a "net-amount"
quantity, being the amount of positive charge minus the amount of nega-
tive charge.

We shall call Eqs. (1-1) to (1-4) field equations, since all quantities
appearing in them are field quantities. Corresponding equations written
in terms of circuit quantities we shall describe as circuit equations. Equa-

FIG. 1-3. Reference convention for FIG. 1-4. Reference convention for
voltage. current.
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tions (1-3) are commonly written in mixed field and circuit form as

^6-<fl = - ^ (ffxR-ds = 0

(f)K'd\ = —r- + i <&£>-ds = q

Similarly, the equation of continuity in mixed field and circuit form is

Finally, the various equations can be written entirely in terms of circuit
quantities. For this, we shall use the notation that 2 denotes summation
over a closed contour for a line-integral quantity, and summation over a
closed surface for a surface-integral quantity. In this notation, the cir-
cuit forms of Eqs. (1-6) are

2—* 2—
and the circuit form of Eq. (1-7) is

2< - - £ <">
Note that the first of Eqs. (1-8) is a generalized form of Kirchhoff's volt-
age law, and Eq. (1-9) is a generalized form of Kirchhoff's current law.

It is apparent from the preceding summary that many mathematical
forms can be used to present a single physical concept. An understand-
ing of the concepts is an invaluable aid to remembering the equations.
While an extensive exposition of these concepts properly belongs in an
introductory textbook, let us here summarize them. Consider the sets
of Eqs. (1-1), (1-3), (1-6), and (1-8). The first equation in each set is
essentially Faraday's law of induction. It states that a changing mag-
netic flux induces a voltage in a path surrounding it. The second equa-
tion in each set is essentially Ampere's circuital law, extended to the
time-varying case. It is a partial definition of magnetic intensity and
magnetomotive force. The third equation of each set states that mag-
netic flux has no "flux source," that is, lines of (B can have no beginning
or end. The fourth equation in each set is Gauss' law and states that
lines of 3D begin and end on electric charge. It is essentially a partial
definition of electric flux. Finally, Eqs. (1-2), (1-4), (1-7), and (1-9) are
all forms of the law of conservation of charge. They state that charge

(1-6)

(1-7)
dq

' dt<&> & • ds

d^
dt

+ iu p = q
(1-8)

dq
dt
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can be neither created nor destroyed, merely transported. Lines of cur-
rent must begin and end at points of increasing or decreasing charge
density.

1-3. Constitutive Relationships. In addition to the equations of
Sec. 1-2 we need equations specifying the characteristics of the medium
in which the field exists. We shall consider the domain of £ and 3C as
the electromagnetic field and express 3>, (B, and $ in terms of £ and (JC.
Equations of the general form

£> = S>(£,3C)

(B = <B(£,3C) (1-10)
<J = <j(£,*C)

are called constitutive relationships. Explicit forms for these can be found
by experimentation or deduced from atomic considerations.

The term free space will be used to denote vacuum or any other medium
having essentially the same characteristics as vacuum (such as air). The
constitutive relationships assume the particularly simple forms

in free space (1-11)

where e0 is the capacitivity or permittivity of vacuum, and ju0 is the indue-
tivity or permeability of vacuum. It is a mathematical consequence of
the field equations that (eo/xo)"̂  is the velocity of propagation of an
electromagnetic disturbance in free space. Light is electromagnetic in
nature, and this velocity is called the velocity of light c. Measurements
have established that

c = _ = 2.99790 X 108 « 3 X 108 meters per second (1-12)
\AoMo

The choice of either e0 or /z0 determines a system of electromagnetic units
according to our equations. By international agreement, the value of JU0

has been chosen as

fxo = 4TT X 10~7 henry per meter (1-13)

for the mksc system of units. It then follows from Eq. (1-12) that

eo = 8.854 X 10"12 « ~ X 10~9 farad per meter (1-14)
OO7T

for the mksc system of units.
Under certain conditions, the constitutive relationships become simple

proportionalities for many materials. We say that such matter is linear

3D = eo£ \
<B = MO3C >

5 = 0 j
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in the simple sense, and call it simple matter for short. Thus

in simple matter (1-15)

where, as in the free-space case, e is called the capacitivity of the medium
and /x is called the inductivity of the medium. The parameter a is called
the conductivity of the medium. We originally made the qualifying state-
ment that Eqs. (1-15) hold "under certain conditions." They may not
hold if 8 or 3C are very large, or if time derivatives of 8 or 3C are very large.

Matter is often classified according to its values of a, e, and /x. Mate-
rials having large values of a are called conductors and those having small
values of a are called insulators or dielectrics. For analyses, it is often
convenient to approximate good conductors by perfect conductors, charac-
terized by a = oo, and to approximate good dielectrics by perfect dielec-
trics, characterized by a = 0. The capacitivity e of any material is never
less than that of vacuum €0. The ratio er = c/eo is called the dielectric
constant or relative capacitivity. The dielectric constant of a good con-
ductor is hard to measure but appears to be unity. For most linear
matter, the inductivity ju is approximately that of free space /x0. There
is a class of materials, called diamagnetic, for which p is slightly less than
jLt0 (of the order of 0.01 per cent). There is a class of materials, called
paramagnetic, for which ju is slightly greater than JU0 (again of the order of
0.01 per cent). A third class of materials, called ferromagnetic, has values
of n much larger than /x0, but these materials are often nonlinear. For
our purposes, we shall call all materials except the ferromagnetic ones
nonmagnetic and take /x = Mo for them. The ratio fxr = fi/n0 is called the
relative inductivity or relative permeability and is, of course, essentially
unity for nonmagnetic matter.

Quite often the restriction on the time rate of change of the field,
made on the validity of Eqs. (1-15), can be overcome by extending the
definition of linearity. We say that matter is linear in the general sense,
and call it linear matter, when the constitutive relationships are the
following linear differential equations:

in linear matter (1-16)« = MK + M - s - + w - 5 i r + • • •

<, = , £ + „ , _ + „,__ + . . .

Even more complicated formulas for the constitutive relationships may

3D = eS ]

3 =<rZ )

£> = eZ + €i
dS , 028

^ ' ~zdt*
€ 2
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be necessary in some cases, but Eqs. (1-16) are the most general that we
shall consider. Note that Eqs. (1-16) reduce to Eqs. (1-15) when the time
derivatives of 8 and 5C become sufficiently small.

The physical significance of the extended definition of linearity is as
follows. The atomic particles of matter have mass as well as charge,
so when the field changes rapidly the particles cannot " follow" the field.
For example, suppose an electron has been accelerated by the field, and
then the direction of 8 changes. There will be a time lag before the
electron can change direction, because of its momentum. Such a picture
holds for <$ if the electron is a free electron. It holds for SD if the electron
is a bound electron. A similar picture holds for (B except that the mag-
netic moment of the electron is the contributing quantity. We shall not
attempt to give significance to each term of Eqs. (1-16). It will be shown
in Sec. 1-9 that all terms of Eqs. (1-16) contribute to an "admittivity"
and an "impedivity" of a material in the time-harmonic case.

1-4. The Generalized Current Concept, It was Maxwell who first
noted that Ampere's law for statics, V X 3C = ,0, was incomplete for
time-varying fields. He amended the law to include an electric displace-
ment current dS>/dt in addition to the conduction current. He visualized
this displacement current in free space as a motion of bound charge in
an "ether," an ideal weightless fluid permeating all space. We have
since discarded the concept of an ether, for it has proved undetectable
and even somewhat illogical in view of the theory of relativity. In
dielectrics, part of the term d5>/dt is a motion of the bound particles
and is thus a current in the true sense of the word. However, it is con-
venient to consider the entire d£)/dt term as a current. In view of the
symmetry of Maxwell's equations, it also is convenient to consider the
term d(R/dt as a magnetic displacement current Finally, to represent
sources, we amend the field equations to include impressed currents, elec-
tric and magnetic. These are the currents we view as the cause of the
field. We shall see in the next section that the impressed currents repre-
sent energy sources.

The symbols $ and 311 will be used to denote electric and magnetic
currents in general, with superscripts indicating the type of current. As
discussed above, we define total currents

& = ?7 + & + &
* d-17)

M " dt ^ ^

where the superscripts t, c, and i denote total, conduction, and impressed
currents. The symbols i and k will be used to denote net electric and
magnetic currents, and the same superscripts will indicate the type.
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Thus, the circuit form corresponding to Eqs. (1-17) is

* - % + {° + *
f (1-18)

* . - * + *•

The i and k are, of course, related to the $ and TO by

i = JJ g.ds k = ff Wl-ds (1-19)
where these apply to any of the various types of current.

In terms of the generalized current concept, the basic equations of
electromagnetism become, in the differential form,

V X £ = -OT1 V X 3C = $' (1-20)

and in the integral form,

j>Z-di= - If mf-ds j> 3C • d\ = II &' • ds (1-21)

Also, the mixed field-circuit form is

<£ £ • d\ = -¥ (f)3C-dl = i* (1-22)

and the circuit form is

Sv = -A;' 2u = i« (1-23)

Note that these look simpler than the equations of Sec. 1-2. Actually,
we have merely included many concepts in the functions 3fll' and $'; so
some of the information contained in the original Maxwell equations has
become hidden. However, our study comprises only a small portion of
the general theory of electromagnetism, and the forms of Eqs. (1-20) to
(1-23) are well suited to our purposes.

Note that we have omitted the "divergence equations" of Maxwell
from our above sets of equations. We have done so to emphasize that
this information is included in the above sets. For example, taking the
divergence of each of Eqs. (1-20), we obtain

v • arc' = o v • g* = o (1-24)

for V • V X Cfc = 0 is an identity. Similarly, Eqs. (1-21) applied to
closed surfaces became

& 9fR' • ds = 0 & $ • ds = 0 (1-25)

Thus, the total currents are solenoidal. Lines of total current have no
beginning or end but must be continuous.

The i and k are, of course, related to the $ and 9TC by

fc<U
dt

k*

(1-19)
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•A/W

Source T gi 11 i±3*

As an illustration of the general-
ized current concept, consider the
circuits of Figs. 1-5 and 1-6. In
Fig. 1-5, the "current source" gf
produces a conduction current gc

through the resistor and a displace-
ment current $d = dSD/cM through
the capacitor. In Fig. 1-6, the
"voltage source" 911* produces an
electric current in the wire which in
turn causes the magnetic displace-
ment current 9fRd = d(R/dt in the magnetic core. In these pictures we
have used the convention that a single-headed arrow represents an elec-
tric current, a double-headed arrow represents a magnetic current.

/* large

FIG. 1-5. Types of electric current.

FIG. 1-6. Types of magnetic current.

It is not possible at this time to give the reader a complete picture of
the usefulness of impressed currents. Figures 1-5 and 1-6 anticipate one
application, namely, that of representing sources. More generally, the
impressed currents are those currents we view as sources. In a sense,
the impressed currents are those currents in terms of which the field is

expressed. In one problem, a conduction
current might be considered as the source,
or impressed, current. In another prob-
lem, a polarization or magnetization current
might be considered as the source current.
Our understanding of the concept will grow
as we learn to use it.

1-6. Energy and Power. Consider a re-
gion of electromagnetic field, as suggested
by Fig. 1-7. The field obeys the Maxwell
equations, which in generalized current

FIG. 1-7. A region containing
sources.

M*

i

MSource (

9
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notation are Eqs. (1-20). As an extension of circuit concepts, it can
be shown that a product £ • g is a power density. This suggests a scalar
multiplication of the second of Eqs. (1-20) by 8. Also, in view of the
vector identity

V ( 8 X 3 C ) = 3 C V X 8 - 8 V X 3 C

a scalar multiplication of the first of Eqs. (1-20) by 3FC is suggested. The
difference of the resulting two equations is

V • (8 X JC) + 8 • g + K - 9TC* = 0 (1-26)

If this equation is integrated throughout a region, and the divergence
theorem applied to the first term, there results

8X3C-(is + HI (8 • g + 3C • TO') dr = 0 (1-27)

We shall interpret these as equations for the conservation of energy, Eq.
(1-26) being the differential form and Eq. (1-27) being the integral form.

The generally accepted interpretation of Eqs. (1-26) and (1-27) is as
follows. The Poynting vector

S = £X3C (1-28)

is postulated to be a density-of-power flux. The point relationship

pf = v • S = V • (8 X 3C) (1-29)

is then a volume density of power leaving the point, and the integral

(?f = & S • ds = $ 8 X JC • ds (1-30)

is the total power leaving the region bounded by the surface of inte-
gration. The other terms of Eq. (1-26) can then be interpreted as the
rate of increase in energy density at a point. Similarly, the other terms
of Eq. (1-27) can be interpreted as the rate of increase in energy within
the region. Further identification of this energy can be made in particu-
lar cases.

For media linear in the simple sense, as defined by Eqs. (1-15), the
last two terms of Eq. (1-26) become

K ' mt = Ft V2 M X 2 )
 + K ' OT*

where 0 and 0IT represent possible source currents. The terms

we = i^€6
2 wm = K/z3C2 (1-32)
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are identified as the electric and magnetic energy densities of static fields,
and this interpretation is retained for dynamic fields. The term

pd = <r£2 (1-33)

is identified as the density of power converted to heat energy, called
dissipated power. Finally, the density of power supplied by the source
currents is defined as

P* = - (S • £' + 3C • TO*) (1-34)

The reference direction for source power is opposite to that for dissipated
power, as evidenced by the minus sign of Eq. (1-34). In terms of the
above-defined quantities, we can rewrite Eq. (1-26) as

Ps = Pf + Pd + -r: (We + V)m) (1-35)
dt

A word statement of this equation is: At any point, the density of power
supplied by the sources must equal that leaving the point plus that dissi-
pated plus the rate of increase in stored electric and magnetic energy
densities.

A more common statement of the conservation of energy is that which
refers to an entire region. Corresponding to the densities of Eqs. (1-32),
we define the net electric and magnetic energies within a region as

Wc = H fff e82 dr Wm = H fff M3C2 dr (1-36)

Corresponding to Eq. (1-33), we define the net power converted to heat
energy as

"" *S*dr (1-37)
* - / / /

Finally, corresponding to Eq. (1-34), we define the net power supplied
by sources within the region as

(Ps = - fff (6 • g + 3C • TO*) dr (1-38)

In terms of these definitions, Eq. (1-27) can be written as

(Ps = (?/ + (Pd + j t {We + •WJ (1-39)

Thus, the power supplied by the sources within a region must equal that
leaving the region plus that dissipated within the region plus the rate of
increase in electric and magnetic energies stored within the region.

If we proceed to the general definition of linearity, Eqs. (1-16), the
separation of power into a reversible energy change (storage) and an
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irreversible energy change (dissipation) is no longer easy. Contributions
to energy storage and to energy dissipation may originate from both
conduction and displacement currents. However, Eqs. (1-35) and (1-39)
still apply to media linear in the general sense. We merely cannot
identify the various terms. In Sec. 1-10 we shall see that for a-c fields
the division of energy into stored and dissipated components again
assumes a simple form.

1-6. Circuit Concepts. The usual equations of circuit theory are
specializations of the field equations. Our knowledge of circuit concepts
can therefore be of help to us in understanding field concepts. In this
section we shall quickly review this relationship of circuits to fields.

Kirchhoff's current law for circuits is an application of the equation of
conservation of charge to surfaces enclosing wire junctions. To demon-
strate, consider the parallel RLC circuit of Fig. 1-8. Let the letter o
denote the junction, and the letters a, 6, c, d denote the upper terminals
of the elements. We apply Eq. (1-7) to a surface enclosing the junction,
as represented by the dotted line in Fig. 1-8. The result is

ioa + iob + %c + %d + it + ^ | = 0

where the ion are the currents in the wires, it is the leakage current cross-
ing the surface outside of the wires, and q is the charge on the junction.
The term dq/dt can be thought of as the current through the stray capaci-
tance between the top and bottom junctions. In most circuit applica-
tions both %i and dq/dt are negligible, and the above equation reduces to

ioa + iob + toe + iod = 0

This is the usual expression of the Kirchhoff current law for the circuit of
Fig. 1-8.

Kirchhoff's voltage law for circuits is an application of the first Max-
well equation to closed contours following the connecting wires of the
circuit and closing across the terminals of the elements. To demonstrate,
consider the series RLC circuit of Fig. 1-9. Let the letters a to A denote

FIG. 1-8. A parallel RLC
circuit.

Source Rl L-

C
d

b
a

o S
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FIG. 1-9. A series RLC
circuit.

the terminals of the elements as shown. We apply the first of Eqs. (1-6)
to the contour abcdefgha, following the dotted lines between terminals.
This gives

Vab + Vbc + Vcd + Vde

dti
+ V6f + Vfg + Vgh + Vha + -jj = 0

where the vmn are the voltage drops along the contour and \f/ is the mag-
netic flux enclosed. The voltages vab, vCd, vef} and vgh are due to the resist-
ance of the wire. The term d\[//dt is the voltage of the stray inductance
of the loop. When the wire resistance and the stray inductance can be
neglected, the above equation reduces to

Vbc + Vde + Vfg + Vha = 0

This is the usual form of Kirchhoff's voltage law for the circuit of Fig. 1-9.
In addition to Kirchhoff's laws, circuit theory uses a number of

"element laws." Ohm's law for resistors, v = Ri, is a specialization of
the constitutive relationship $ = <rS. The law for capacitors, q = Cv,
expresses the same concept as 3D = e£. We have from the equation
of continuity i = dq/dt, so the capacitor law can also be written as
i = C dv/dL The law for inductors, rp = Li, expresses the same con-
cept as <B = ju3C. From the first Maxwell equation we have v = dty/dt,
so the inductor law can also be written as v = L di/dt. Finally, the vari-
ous energy relationships for circuit theory can be considered as special-
izations of those for field theory. Detailed expositions of the various
specializations mentioned above can be found in elementary textbooks.
Table 1-1 summarizes the various correspondences between field concepts
and circuit concepts.

1-7. Complex Quantities. When the fields are a-c, that is, when the
time variation is harmonic, the mathematical analysis can be simplified

Source

h

8 L
ej

L

d

cb
r

a

R

C
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TABLE 1-1. CORRESPONDENCES BETWEEN CIRCUIT CONCEPTS AND FIELD CONCEPTS

Circuit concepts

Voltage v

Current i

Magnetic flux 4/

Charge q

KirchhofFs voltage law (generalized)

Kirchhoff s current law (generalized)
V . dq

Element laws (linear)

Resistors i — — v
a

Capacitors q = Cv
dv

or i = C —
dt

Inductors \f/ = Li
di

o r v = Llt

Power flow p/ — vi

Power dissipation in resistors

(?d = vi = —• v2

H

Energy in capacitors
V?, = y2qv = y2cv*

Energy in inductors
*Wm = yifi = MLi*

Field concepts

Electric intensity £

Electric current density $
or magnetic intensity 3C

Magnetic flux density (B

Charge density qv

or electric flux density ©

Maxwell-Faraday equation
d(B

Equation of continuity
dqv

Constitutive relationships (linear in the simple
sense)

Conductors $c — aS
Dielectrics 30 = e£

as
or a - - « -

Magnetic properties (B = IJLW.

or 2fTld = n —
dt

Power flow S = £ X 5C

Power dissipation

Vd = £ ' 3C = o-S2

Electric energy
we = H£> • S = %&2

Magnetic energy
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by using complex quantities. The basis for this is Euler's identity

ei<* = cos a + j sin a

where j = y/—l. This gives us a relationship between real sinusoidal
functions and the complex exponential function.

Any a-c quantity can be represented by a complex quantity. A scalar
quantity is interpreted according to1

v = y/2 \V\ cos (at + a) = y/2 Re (Vd»%) (1-40)

where v is called the instantaneous quantity and V = |V|e'a is called the
complex quantity. The notation Re ( ) stands for "the real part of,"
that is, the part not associated with j . Other names for V are "phasor
quantity" and "vector quantity," the last name causing confusion with
space vectors. In our notation v represents a voltage, hence V is a complex
voltage. Equation (1-40) with v replaced by i and V replaced by / would
define a complex current, and so on. Note that the complex quantity is
not a function of time but it may be a function of position. Note also
that the magnitude of the complex quantity is the effective (root-mean-
square) value of the instantaneous quantity. We have chosen it so
because (1) a-c quantities are usually specified or measured in effective
values in practice, and (2) equations for complex power and energy retain
the same proportionality factors as do their instantaneous counterparts.
For example, in circuit theory the instantaneous power is p = vi} and
complex power is P = VI*. A factor of J^ appears in the equation for
complex power if peak values of v and i are used for \V\ and |7|.

Complex notation can readily be extended to vectors having sinusoidal
time variation. A complex E is defined as related to an instantaneous £
according to

£ = y/2 Re (Ee'"wO (1-41)

This means that the spatial components of E are related to the spatial
components of £ by Eq. (1-40). For example, the x components of E
and £ are related by

8* = \ / 2 Re (Erft**) = y/2 \EX\ cos (at + ax)

where Ex = \Ex\e*a*. Similar equations relate the y and z components of
E and £. The phase of each component may be different from the phases
of the other two components, that is, ax, aV9 and az are not necessarily
equal. In our notation £ is an electric intensity, hence E is called the com-
plex electric intensity. Equation (1-41) with E replaced by H and £ by 3C

1 The convention v = -\/2 Im {Ve'at) can also be used, where Im ( ) stands for
" the imaginary part of." The factor y/2 can be omitted if it is desired that | V\ be the
peak value of v.
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defines a complex magnetic intensity H, representing the instantaneous
magnetic intensity 3fC, and so on. Note that the magnitude of a com-
ponent of the complex vector is the effective value of the corresponding
component of the instantaneous vector. This choice corresponds to that
taken for complex scalars and has essentially the same advantages.

A real vector, such as 8 or 3C, can be thought of as a triplet of real
scalar functions, namely, the x, y, and z components. At any instant of
time, the vector has a definite magnitude and direction at every point in
space and can be represented in three dimensions by arrows. A complex
vector, such as E or H, is a group of six real scalar functions, namely,
the real and imaginary parts of the x, y, and z components. It cannot be
represented by arrows in three-dimensional space except in special cases.
One such special case is that for which <xx = ay = az, so that the vector
has a real direction in space. In this case the instantaneous vector always
points in the same direction (or opposite direction), at a point in space,
changing only in amplitude. We could define a "complex magnitude"
and a "complex direction" for a complex vector as extensions of the
corresponding definitions for real vectors, but these would have little use.

Throughout this book we shall use the following notation. Instan-
taneous quantities are denoted by script letters or lower-case letters.
Complex quantities which represent the instantaneous quantities are
denoted by the corresponding capital letter. Vectors are denoted by
boldface type.

1-8. Complex Equations. The symbol Re ( ) can be considered as a
mathematical operator which selects the real part of a complex quantity.
A set of rules for manipulating the operator Re ( ) can be formulated
from the properties of complex functions. The following are the rules
we shall need. Let a capital letter denote a complex quantity and a
lower-case letter denote a real quantity. Then

Re (A) + Re (B) = Re (A + B)
Re (aA) = a Re (A)

f Re(A)dx = Re(J A dx}

The proof of these is left to the reader.
In addition to the above equations we shall need the following lemma.

If A and B are complex quantities, and Re (Ae3<at) = Re (Beiut) for all t,
then A = B. We can readily show this by first taking t = 0, obtaining
Re (A) = Re (£), and then taking cot = TT/2, obtaining Im (A) = Im (B).
Thus, A = B, for the above two equalities are the definition of this.

To illustrate the derivation of an equation for complex quantities from

d_

dx Re (A) = Re dA
dx

(1-42)
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one for instantaneous quantities, consider

v = J 8 • dX

Expressing v and € in terms of their complex counterparts, we have

V 2 Re (W"0 = / \ / 2 Re (Be*") • dl

By steps justifiable by Eqs. (1-42), this reduces to

y/2 Re (Fe**) = \ / 2 Re (e><" / E • dl)

Cancellation of the \ / 2 ' s a n ^ application of the above lemma then gives

V = f E-dl

Note that this is of the same form as the original instantaneous equation.
We have illustrated the procedure with a scalar equation, but the same
steps apply to the components of a vector equation.

From our rules for manipulation of the Re ( ) operator, it should be
apparent that any equation linearly relating instantaneous quantities
and not involving time differentiation takes the same form for complex
quantities. Thus, the complex circuit quantities V9 7, U, and K are
related to the complex field quantities E, H, J, and M according to

V = f E-dl U = f H-dl
/ = JJ j . ds K = j] M • ds

There is no time differentiation explicit in the field equations written in
generalized current notation. The complex forms of these must therefore
also be the same as the instantaneous forms. For example, the complex
form of Eqs. (1-20) is

V X E = -M< V X H « J* (1-44)

Even though these complex equations look the same as the corresponding
instantaneous equations, we should always keep in mind the difference in
meaning.

As an illustration of the procedure when the instantaneous equation
exhibits a time differentiation, consider the equation

Again we express the instantaneous quantities in terms of the complex

(1-43)

dtV X 8 =



18 TIME-HARMONIC ELECTROMAGNETIC FIELDS

quantities, and obtain

V X [V2 Re (Ee*")l = - 4 W* Re (Be'-1)]
at

The time variation is explicit, and the differentiation can be performed.
By steps justifiable by Eqs. (1-42), the above equation becomes

y/2 Re (V X Ee*-f) = - y/2 Re (jaS*"1)

By the foregoing lemma, this reduces to

V X E = -ywB

It should now be apparent that each time derivative in a linear instan-
taneous equation is replaced by a jca multiplier in the corresponding com-
plex equation. For example, the Maxwell equations in complex form
corresponding to Eqs. (1-1) are

V X E = -jcoB V • B = 0
V X H = > D + J V • D = Qv

 U " 4 0 ;

The other forms of these can be obtained in a similar fashion.
1-9. Complex Constitutive Parameters. The constitutive relation-

ships for matter linear in the general sense can be specialized to the a-c
case by the procedure of the preceding section. To illustrate, consider
the first of Eqs. (1-16), which is

The complex form of this equation is readily found as

D = (6 + JCH-I - C0262 + ' ' - )E

The quantity (e + j^i — w2e2 + • • •) is just a complex function of co,
which we shall denote by e(w). Thus, the complex equation

D = e(w)E

which looks like the form for simple media, is actually valid for media
linear in the general sense.

The other two of Eqs. (1-16) simplify in a similar manner; so we have
the a-c constitutive relationships

D = e(w)E
B = jEt(co)H (1-46)

for linear media. We call £ the complex permittivity of the medium, jX
the complex permeability of the medium, and & the complex conductivity

3) + • • •
d2

dt2«2
d
dt€ + €! 8

y = ^(W)E
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of the medium. Remember that these parameters are not necessarily
the d-c parameters, but

«(«) , jGt(u),*(w) - > €, n,<r
w->0

The d-c parameters may apply over a wide range of frequencies for some
materials but never over all frequencies (vacuum excepted).

In terms of the generalized current concept, the induced currents
(caused by the field) are

J = (& + jue)E = #(co)E
M = jafiEL = i(«)H l M / j

The parameter T/(CO) has the dimensions of admittance per length and will
be called the admittivity of the medium. The parameter 2(w) has the
dimensions of impedance per length and will be called the impedivity
of the medium. Note that y is a combination of the & and £ parameters.
A measurement of y is relatively simple, but it is difficult to separate &
from L The distinction is primarily philosophical. If the current is due
to free charge, we include its effect in &. If the current is due to bound
charge, we include its effect in e. Thus, when talking of conductors, the
usual convention is to let # = & + jcoea. When discussing dielectrics,
it is common to let y = jut.

To represent sources, impressed currents are added to the induced
currents of Eqs. (1-47). Thus, the general form of the a-c field equations
is

- V X E = «(«)H + M<
V X H = £(co)E + P ( 1 " 4 8 )

The 2(«) and y(w) specify the characteristics of the media. The p and
M* represent the sources. Equations (1-48) are therefore two equations
for determining the complex field E, H. Solutions to these equations are
the principal topic of this book.

1-10. Complex Power. In Sec. 1-5 we considered expressions for
instantaneous power and energy in terms of the instantaneous field
vectors. We shall show now that similar expressions in terms of the
complex field vectors represent time-average power and energy in a-c
fields. For this, we shall need the concept of complex conjugate quan-
tities, denoted by *, and defined as follows. If A = a1 + ja" = M|^'a,
the conjugate of A is A* = a' — ja" = |j4.|e~'a. It follows from this
that i i * = |A|2.

Let us first consider any two a-c quantities a and (B, which may be
scalars or components of vectors. These are in general of the form

a = y/2 \A\ cos (at + a) = y/2 Re (Ae*-1)
(B = y/2 \B\ cos (cot + ff) = y/2 Re (Be?ut)
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where A = \A\eia and B = \B\eiP. The product of two such quantities is

a® = y/2 \A\ cos (a>t + a) <\/2 \B\ cos (wt + ff)
= |il | |5|[cos (a - 0) + cos (2«« + a + 0)] (1-49)

We shall denote the time average of a quantity by a bar over that quan-
tity. The time average of the above expression is

QE = |A| \B\ cos (a - 0)
We also note that

AB* = |A| |JB|[cos (a - 0) + j sin (a - /?)]

so it is evident that

5 5 = Re (AB*) (1-50)

This identity forms the basis of definitions of complex power.
The instantaneous Poynting vector [Eq. (1-28)] can be expanded in

rectangular coordinates as

S = Ux(S|/3C« Sa3Cy) + U|;(02r3Cx — SstfCz) + Ua(Sx5Cy Sy5Ca;)

This is a sum of terms, each of which is the form of Eq. (1-49). It there-
fore follows that

§ = £ X 3C = Re (E X H*)

In view of this we define a complex Poynting vector

S = E X H* (1-51)

whose real part is the time average of the instantaneous Poynting vector,
or

S = Re (S) (1-52)

We shall interpret the imaginary part of S later.
We can obtain an equation in which S appears by operating on the

complex field equations in a manner similar to that used in the instanta-
neous case. Starting from Eqs. (1-44), we scalarly multiply the first by
H* and the conjugate of the second by E. The difference of the resulting
two equations is

E • V X H* - H* • V X E = E • P* + H* • M<

The left-hand term is — V • (E X H*) by a mathematical identity; so
we have

V . ( E X H * ) + E . f + H * . M ' = O (1-53)

The integral form of this is obtained by integrating throughout a region
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and applying the divergence theorem. This results in

(jf> E X H* • ds + fff (E • P* + H* • MO dr = 0 (1-54)

Compare these with Eqs. (1-26) and (1-27). We shall call Eqs. (1-53)
and (1-54) expressions for the conservation of complex power, the former
applying at a point and the latter applying to an entire region.

The various terms of the above equations are interpreted as follows.
As suggested by Eqs. (1-29) and (1-52), we define a complex volume density
of power leaving a point as

pf = v • S = V • (E X H*) (1-55)

The real part of this is a time-average volume density of power leaving a
point, or

Re (pf) = pf (1-56)

where p/ is defined by Eq. (1-29). Similarly, we define the complex
power leaving a region as

Pf = <$> S • ds = (jj) E X H* • ds (1-57)

It is evident from Eqs. (1-30) and (1-52) that the real part of this is the
time-average power flow, or

Re (Pf) = 5>f (1-58)

Note that these relationships are quite different from those used to inter-
pret most complex quantities [Eqs. (1-40) and (1-41)]. This is because
S, p, and (P are not sinusoidal quantities but are formed of products of
sinusoidal quantities.

To interpret the other terms of Eq. (1-53), let us first specialize to the
case of a source-free field in media linear in the simple sense. We then
have

P = yE = (er + ju>e)E
M< = m = jco/xH

so E - P * = (r|#|2 -ico€|jE|2

H * • M< = jo>ix\H\2

where \E\2 means E • E* and \H\2 means H • H*. In terms of the instan-
taneous energy and power definitions of Eqs. (1-32) and (1-33), we have

pd = <r\E\* \

We = i^€|^|2 > in simple media (1-59)
wm = yw\u\A

We can now write Eq. (1-53) as
V • S + pd + j2a>(wm - we) = 0 (1-60)



2 2 TIME-HARMONIC ELECTROMAGNETIC FIELDS

Thus, the imaginary part of p/ as defined by Eq. (1-55) is 2w times the
difference between the time-average electric and magnetic energy den-
sities. The integral relationships corresponding to Eqs. (1-59) are

in simple media (1-61)

where <?d, %#«, and VPm are defined by Eqs. (1-36) and (1-37). The
specialization of Eq. (1-54) to source-free simple media is therefore

S • ds + &d + j2a>(V?m - 'We) = 0 (1-62)

corresponding to the point relationship of Eq. (1-60). Note that this
interpretation of complex power is precisely that chosen in circuit theory.

If sources are present, a complex power density supplied by the sources
can be denned as

ps = - (E • p * + H* • MO (1-63)

The real part of this is the time-average power density supplied by the
sources, or

Re (ps) = p8 (1-64)

where ps is defined by Eq. (1-34). We can write Eq. (1-53) in general as

Ps = pf + pd + j2u(wm - we) (1-65)

where all terms have been identified for simple media. Similarly, the
total complex power supplied by sources within a region can be defined as

Ps = - jjj (E • p* + H* • MO dr (1-66)

where, from Eq. (1-38), it is evident that

Re (P.) = &8 (1-67)

Then the form of Eq. (1-65) applicable to an entire region is

P3 = Pf + «Pd + j2aCWm - V?e) (1-68)

The real part of this represents a time-average power balance. The
imaginary part is related to time-average energies, and, in conformity with
circuit theory nomenclature, is called reactive power.

Note that we have never defined (?d, V?m, or V?e for media linear in the
general sense. We can, however, continue to use Eq. (1-68) for the

Vd= Jff <r\E\*dr
We = lJJfe\E\>dr .
wm

1
2

M | # | 2 cZr
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general case of linear media by extending our definitions. This is done
as follows. The time-average power dissipation is defined in general as

&d = Re [fff(v\E\2 + W) dr] (1-69)

which reduces to the first of Eqs. (1-61) in simple media. The first
term of the integrand represents both conduction and dielectric losses, and
the second term represents magnetic losses. The time-average electric
and magnetic energies are defined in general as

^ = ^Im(///^l2^)
(1-70)

which reduce to the last two of Eqs. (1-61) in simple media. The first of
Eqs. (1-70) includes kinetic energy stored by free charges as well as the
usual field and polarization energies. More discussion of this concept
is given in the next section.

1-11. A-C Characteristics of Matter. In source-free regions, the com-
plex field equations read

- V X E = 2(co)H V X H = #(co)E

In free space, & and y assume their simplest forms, being

z/(w) = i^o.. x . i in free space (1-71)
2(<o) = j<ap0 j

These hold for all frequencies and all field intensities. In metals, the
conductivity remains very close to the d-c value for all radio frequencies,
that is, up to the infrared frequency spectrum. The permittivity of
metals is hard to measure but appears to be approximately that of
vacuum. Thus,

K,{ ~~ * ^e° \ in nonmagnetic metals (1-72)

In ferromagnetic metals, MO would be replaced by #. We shall consider
this case later.

In good dielectrics, it is common practice to neglect & and express y
entirely in terms of L Thus,

} , , . } in nonmagnetic dielectrics (1-73)
2(co) = jai»o )

Let us now consider e(w) in more detail.1 We can express £ in both rec-
1 A. Von Hippie, "Dielectric Materials and Applications," John Wiley & Sons,

Inc., New York, 1954,

Wm 1
2u

In &\Hf dr
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tangular and polar form as

*(„) = e' - j e " = \t\e->* (1-74)

where e', e", and d are real quantities. We call e' the a-c capacitivity,
e" the dielectric loss factor, and 6 the dielectric loss angle. In Sec. 1-13 we
shall see that they are related to the capacitance, resistance, and loss
angle, respectively, of an ideal circuit capacitor. In terms of power and
energy, we have from Eqs. (1-69) and (1-70) that

W. = lfffj\E\*dT
Vd = [ff »tr\E\*dT

(1-75)

Thus, ef contributes to stored energy (acts like e in simple matter), and
coc" contributes to power dissipation (acts like cr in simple matter).
Measured values of e(co) are usually expressed in terms of er and tan 6, or
in terms of e' and e". We shall use the latter representation.

A "perfect dielectric" would be one for which e" = 0. The only
perfect dielectric is vacuum. A "good dielectric" is defined to be one
for which e' remains almost constant at all radio frequencies and for
which e" is very small. Examples of good dielectrics are polystyrene,
paraffin, and Teflon. Figure 1-10 shows e' and e" versus frequency for
polystyrene to illustrate the characteristics of a good dielectric. There
is also a group of "lossy dielectrics," characterized by a varying e' and
a large e" in the radio-frequency range. Examples of lossy dielectrics
are Plexiglas, porcelain, and Bakelite. Figure 1-11 shows e and e"
versus frequency for Plexiglas to illustrate the characteristics of a lossy
dielectric. There is a group of dielectrics which have unusually high
dielectric constants. The titanate and ferrite ceramics fall into this
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FIG. 1-11. e(co) = e' — je" versus frequency for Plexiglas at 25°C.

class (the latter also being ferromagnetic). Such dielectrics are usually
lossy. A qualitative explanation of the behavior of £ can be made in
terms of atomic concepts, but we shall view e as simply a measured
parameter. A table of e for some common dielectrics is given in
Appendix B.

In ferromagnetic matter, when it can be considered linear, both con-
duction and dielectric losses may be significant. In addition to these,
magnetic losses become important. Thus,

y — a + jw€ in ferromagnetic matter (1-76)

The parameter jEt(co) can be treated in a manner analogous to the treat-
ment of a(oj). Thus, we express p. in both rectangular and polar form as

A(«) = /*' - iM" = lAl*-*- (1-77)

where /z', /x", and 5m are real quantities. We call \x' the a-c inductivity,
\x" the magnetic loss factor, and 8m the magnetic loss angle. In Sec. 1-13
we shall see that they are related to the inductance, resistance, and loss
angle, respectively, of an ideal circuit inductor. In terms of power and
energy, we have from Eqs. (1-69) and (1-70) that

#<*= fff o>n"\H\*dr
(1-78)
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FIG. 1-12. £(co) = p! — jp" versus frequency for Ferramic A at 25°C.

where the above (9d is only the time-average magnetic power loss, to
which must be added the conduction and dielectric losses for the total
power dissipation. Thus, // contributes to stored energy and /z" to
power dissipation. Measured values of JLI(CJ) are usually expressed in
terms of \i! and tan 8m, or in terms of // and /x". We shall use the latter
representation.

Ferromagnetic metals are extremely lossy materials (primarily due to
o-), and also quite nonlinear with respect to #. They are seldom inten-
tionally used at radio frequencies. However, the ferromagnetic ceramics
can be profitably used at radio frequencies to obtain high values of //.
They are lossy in the magnetic sense, in that they also have appreciable
//'. Figure 1-12 shows y.' and ylf versus frequency for Ferramic A, to
illustrate the characteristics of ferrite ceramics. These materials become
even more useful when magnetized by a d-c magnetic field, in which case
A assumes the form of an asymmetrical tensor. Magnetized ferrites can
be used to build "nonreciproeal" devices, such as "isolators" and
" circulators.>n

1-12. A Discussion of Current. The concept of current has broadened
considerably since its inception. Originally, the term current meant the
flow of free charges in conductors. This concept was extended to include
displacement current, which was visualized as the displacement of bound
charge in matter and in an "ether." The existence of an ether has been
disproved, but the concept of displacement current has been retained,

1 C. L. Hogan, The Ferromagnetic Effect at Microwave Frequencies, Bell System
Tech. J., vol. 31, no. 1, January, 1952.
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even though it is not entirely a motion of charge. A further generaliza-
tion was made to include magnetic displacement current as a "dual"
concept of the electric displacement current. Finally, impressed cur-
rents, both electric and magnetic, have been introduced to represent
sources. Because of the breadth of the concept of current, many dif-
ferent phenomena are included, and the nomenclature used is somewhat
lengthy. We shall summarize the notation and concepts in complex
form in this section.

Consider the complex electric current density. Internal to conductors,
the current is, for all practical purposes, due entirely to the motion of
free electrons. Such current is called the conduction current and is
expressed mathematically by J = o-E. (We shall consider & = a, a real
quantity, for this discussion. This is usually true at radio frequencies.)
Even in dielectrics there is some conduction current, but it is usually
small. In free space there is no motion of charges at all, and we have
only a free-space displacement current, given by J = ./o^oE. In matter,
in addition to the conduction current and the free-space displacement
current, we have a current due to the motion of bound charges. This
is called the polarization current and is expressed mathematically by
J = jo)(e — eo)E. Because the term J = jweE is of the same mathe-
matical form as the free-space displacement current, it is called the
displacement current. For our purposes, still another division of the
electric current is convenient. This involves viewing the current in
terms of a component in phase with E, called the dissipative current,
j = (o- -[- co€")E, and a component out of phase with E, called the
reactive current, J = jWE. This is essentially a generalization of the
circuit concept of current, where the dissipative current produces the
power loss and the reactive current gives rise to the stored energy. All
the currents mentioned are classified as induced currents, that is, are
caused by the field. Impressed currents are used to represent sources or
known quantities. In this sense, they are independent of the field and
are said to cause the field. The total electric current is the sum of the
induced currents plus the impressed currents. The nomenclature used
for electric currents is summarized in the first column of Table 1-2.

Both the nomenclature and the concepts of complex magnetic currents
are similar to those for electric currents. The one essential difference
in the two concepts is the nonexistence of magnetic "charges" in nature.
Thus, there is no free magnetic charge and no magnetic conduction cur-
rent. In absence of matter, we have a magnetic free-space displacement
current, M = jw/zoH, analogous to the electric case. When matter is
present, we have magnetic effects due to the motion of the atomic
particles, giving rise to an induced magnetic current in addition to the
free-space displacement current. We call this the magnetic polarization
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TABLE 1-2. CLASSIFICATION OF ELECTRIC AND MAGNETIC CURRENTS

Type

Conduction

Free-space displacement

Polarization

Displacement

Dissipative

Reactive

Induced

Impressed

Total

Complex electric
current density

<rE

JCO€QE

jco(e - eo)E

jweE

(<r + coe")E

jtoe'E

#E = (<r + ja;e)E
- (<r + W€" + jcoe^E

P

y = #E + y

Complex magnetic
current density

JCCJJLOHL

jujZH.

o>M"H

IH = juifil
= («M" + iV)H

M»

current, expressed by M = ju{p. — /*0)H. The term M = iwj&H is called
the magnetic displacement current, being the sum of the free-space dis-
placement current and the polarization current. We find it convenient
to divide the magnetic current into a component in phase with H, called
the magnetic dissipative current, M = w/-i"H, and a component out of
phase with H, called the magnetic reactive current, M = juy/H. The
dissipative magnetic current contributes to the power loss, and the
reactive magnetic current contributes to the stored energy. All the
aforementioned magnetic currents are induced currents, that is, caused by
the field. In nonmagnetic matter, the induced magnetic current is
simply the free-space displacement current, M = ju^oH, a reactive cur-
rent. To represent sources or known quantities, we use impressed cur-
rents. The nomenclature for magnetic currents is summarized in the
second column of Table 1-2.

A convenient classification of matter from the electric current stand-
point can be made in terms of a quality factor Q. This is defined as

~ _ magnitude of reactive current density
magnitude of dissipative current density

(1-79)

a + we"

In nonmagnetic matter, this involves a ratio of stored electric energy to
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power dissipated. In terms of the energy and power densities, Eq. (1-79)
can be written as

V (<7 + C0€")|#|2

peak density of electric energy
= CO average density of power dissipated
__ 9 peak density of electric energy , _-*

density of energy dissipated in one cycle

Thus, the concept of Q in nonmagnetic matter can be considered as an
extension of the concept of Q for capacitors in circuit theory. A good
dielectric is a high-Q material, while conductors have an extremely
low Q.

When magnetic matter is considered, there is an additional power
dissipation due to magnetic hysteresis loss. The interpretation given to
Eq. (1-80) must be modified, since it includes only the power loss due to
electric effects. In this case, the Q defined above would be called the
electric Q, and an analogous magnetic quality factor Qm could be defined.
Since we deal principally with nonmagnetic materials, we shall not expand
this concept further.

1-13. A-C Behavior of Circuit Elements. The complex notation used
for a-c fields is the extension of the complex notation used for a-c circuits.
The complex field equations bear a relationship to the complex circuit
equations which is similar to that for the time-varying case, given in
Sec. 1-6. Circuit elements (resistors, capacitors, and inductors) are
merely configurations of matter and thus have characteristics which
depend upon the properties of matter. Insight into the interpretation of
the impedivity and admittivity functions of field theory can be gained by
considering their relationship to the more familiar characteristics of
impedance and admittance of circuit elements.

The basic elements of circuit theory are small1 two-terminal structures
whose fields are largely confined internal to the elements. According to
the concepts of Sec. 1-10, the complex power supplied to a circuit element

P = &d + j2a>(V?m - We) (1-81)

In terms of circuit concepts, the power supplied to an element also can
be written as

P = \I\2Z = |F|2F* (1-82)

where Z and Y are the impedance and admittance of the element. In
general, an element is called an impedor. When P is primarily real, the

1 The smallness of an element depends upon the frequency, or wavelength, as we
shall see in Chap. 2.
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FIG. 1-13. A capacitor according to circuit concepts, (a) Physical capacitor; (b)
equivalent circuit; (c) complex diagram.

element is called a resistor, and when P is primarily imaginary, the
element is called a reactor. A reactor is called an inductor or capacitor
according as Im (Z) is positive or negative, respectively. It should be
noted that P, and hence Z, is a function of frequency. Thus, the designa-
tion of an element as a resistor, inductor, or capacitor is, to some degree,
dependent upon frequency. We usually classify elements according to
their low-frequency behavior.

For an explicit discussion, consider the parallel-plate capacitor of Fig.
l~13a. The low-frequency equivalent circuit of this element is shown in
Fig. 1-136, where the conductance G accounts for energy dissipation and
the capacitance C accounts for energy storage. The relationship of
complex terminal current / to complex terminal voltage V is

/ = Ig + Ic = YV = ((? + ja>C)V (1-83)

Figure l-13c shows the complex diagram representing this equation. The
complex power to the element is1

P = \v\\G-juC)

For a "good" capacitor (coC » G) the current leads the voltage by almost
90°, and the power is principally reactive. For a "poor" capacitor
((? » o)C) the current and voltage are almost in phase, and the power is
principally dissipative. The element in this case could be classified
as a resistor. The angle between Ic and / is called the loss angle 8, as
shown in Fig. 1-13c.

Let us idealize the problem to a capacitor with perfectly conducting
plates. Furthermore, we shall approximate the field by

I_
A

V
d J = —

1 We are using the convention P = VI*. Some authors define P = IV*, in which
case the sign of reactive power is opposite to that which we get.

Deectrc

(a) (« (c)

V G C

S

I8

IIcIc

+y/

h

V

E =



FUNDAMENTAL CONCEPTS 31

where A is the area of the plates and d is their separation. The a-c
constitutive relationship for the field between the capacitor plates is

J = $E = (cr + we" + jae')E

where we have taken & = <r. Substituting for E and / from the preceding
equations, we have

I = y^V = (* + coe" + jW) ~ V

A comparison of this with Eqs. (1-83) shows that

F = ^ ( ? = ( * + «€") J C = €/A

Thus, for our idealized circuit element, the admittance is proportional to
the admittivity of the matter between the plates. The equivalency of
"field power," Eq. (1-81), to "circuit power," Eq. (1-82), also can be
demonstrated. For our idealized element

p = jjj $*\E\*dr = y*\E\*Ad = |F|2F*

We can use this result to define the admittance of a cube and then view
admittivity $ as the admittance of a unit cube.

The magnetic properties of matter are similarly related to the circuit
behavior of an inductor. To demonstrate this, consider the toroidal
inductor of Fig. l-14a. The low-frequency equivalent circuit of this
element is shown in Fig. 1-14&, where the resistance R accounts for energy
dissipation and the inductance L accounts for energy storage. The
relationship of complex terminal voltage V to complex terminal current
7 is

V = Vr + Vi = ZI = (R + jo>L)I (1-84)

The complex diagram representing this equation is shown in Fig. l-14c.

FIG. 1-14. An inductor according to circuit concepts, (a) Toroidal inductor; (6)
equivalent circuit; (c) complex diagram.
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The complex power to the element is

P = \I\2(R+jo>L)

For a good inductor (wL >̂> R) the current lags the voltage by almost
90°, and the power is principally reactive. For a poor inductor (R ^>
wL) the current and voltage are almost in phase, and the power is princi-
pally dissipative. The element in this case could be classified as a
resistor. The angle between Vt and V is called the magnetic loss angle
8m, as shown on Fig. l-14c.

We now idealize the problem to an inductor of perfectly conducting
wire and approximate the field by

NI T/

I NA

where N is the number of turns, I is the average circumference, and A is
the cross-sectional area. The magnetic constitutive relationship for the
field in the core is

M = ffl = («/*" + jw')H

A substitution for H and M from the preceding equations gives

,7 A N2A T , „ . . ,v N2A _

Comparing this with Eq. (1-84), we see that

Thus, for the idealized inductor, the impedance is proportional to the
impedivity of the matter. From Eq. (1-82), the power supplied to the
inductor is

P = fff z\H\2dr = &\H\*Al = \I\2Z

which is consistent with Eq. (1-82). Using this result to define the
impedance of a cube, we can think of impedivity as the impedance of a
unit cube.

This development serves to illustrate the close correspondences between
a-c circuit concepts and a-c field concepts. A summary of the various
concepts is given in Table 1-3.

1-14. Singularities of the Field. A field is said to be singular at a
point for which the function or its derivatives are discontinuous. Most
of our discussion so far has been about well-behaved fields, but we have
meant to include by implication certain types of allowable singularities.

Z = z
N2A

I R = V,N2A

I
L = y! N*A

I

I

N2A
V = 6 I = w/z" + jwp' N2A

I
I

H M =
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TABLE 1-3. CORRESPONDENCES BETWEEN A-C CIRCUIT CONCEPTS

AND A-C FIELD CONCEPTS

33

A-C circuit concepts

Complex voltage V

Complex current /

Complex power flow VI*

Impedance Z(co)

Admittance F(co)

Resistors:

Admittance, F(co) = —
R

Current, / = — V
R

Power dissipation — VV*
R

Capacitors:

Admittance, F(co) = — + juC
R

Current, / = Q; + jcoCJ V

Stored energy y2CVV*

Power dissipation -~ VV*
R

Inductors:
Impedance, Z(co) = R + jcoL
Voltage, V = (R + j<oL)I
Stored energy, J^L/7*
Power dissipation, RII*

A-C field concepts

Complex electric intensity E
Complex magnetic current density M

Complex electric current density J
Complex magnetic intensity H

Density of complex power flow E X H*

Impedivity z(co)

Admittivity #(co)

Conductors (<r ^> coe0):

Admittivity, i)(oo) « a

Current density, J » <rE

Density of power dissipation, oE • E*

Dielectrics (we" ̂ > <r):

Admittivity, (̂co) ~ we" + jaie'

Current density, J ~ (toe" + ja>e)E

Density of stored energy, %e'E * E*

Density of power dissipation, we"E • E*

Magnetic properties:
Impedivity, z(«) = oo;u" + jco/i'
Magnetic current, M = (cop" +jco/z')H
Density of stored energy, Hiu'H • H*
Density of power dissipation, o>/z;/H • H*

These can occur at material boundaries (discontinuous & and y) and at
singular source distributions, such as sheets and filaments of currents.

As evidenced by Eqs. (1-44), the total electric and magnetic currents
are vortices of H and — E, respectively. Suppose we have a surface dis-
tribution of currents Js and Ms, as represented by Fig. 1-15. By applying

0H-cfl = P ^E-dl = -JP (1-85)
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Region (1) j n

I S
_ Ms ____— » FIG. 1-15. Surface currents.

^ * * r ^ ^ Reg'on (2)

to rectangular paths enclosing a portion of the surface currents, we obtain1

n X [H(1) - H<2>] = Js [E<» - E<2>] X n = Ms (1-86)

where n is the unit vector normal to the surface and pointing into region
(1). The superscripts (1) and (2) denote the side of S on which E or H
is evaluated. Equations (1-86) are essentially the field equations at
sheets of currents. They express at current sheets the same concept as
Eqs. (1-44) express at volume distributions of currents. If Js and Ms are
impressed currents, Eqs. (1-86) are the " boundary conditions" to be
satisfied at the source.

Equations (1-86) apply regardless of whether or not a discontinuity
in media exists on S. Whenever ]s and Ms are zero, Eqs. (1-86) state that
the tangential components of E and H are continuous across the surface.
If z and y are finite in both regions 1 and 2, no induced surface current
can result. Thus, tangential components of E and H are continuous across
any material boundary, perfect conductors excepted. If one side of S is a
perfect electric conductor, say region 2, a surface conduction current J,
can exist even though E is zero, since y = a is infinite. In this case,
Eqs. (1-86) reduce to

n X H = J s j
n X E = 0 j at a perfect conductor (1-87)

where n points into the region of field. Thus, the "boundary condition"
at a perfect electric conductor is vanishing tangential components of E.
The perfect magnetic conductor is defined to be a material for which the
tangential components of H are zero at its surface. This is, however,
purely a mathematical concept. The necessary "magnetic conduction
current" on its surface has no physical significance.

Finally, at a filament of current, the field must be singular such that
Eqs. (1-85) yield the current enclosed, no matter how small the contour.
For example, at a filament of electric current /, the boundary condition
for H is

i H • d\ > I (1-88)
C radius of C-+0

A similar limit of the second of Eqs. (1-85) must be satisfied at a filament
of magnetic current.

1 R. F. Harrington, "Introduction to Electromagnetic Engineering," McGraw-
Hill Book Company, Inc., p. 74, 1958.

J,
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It is often convenient for mathematical and discussional purposes to

consider the various singular quantities as limits of nonsingular quantities.
For example, we can think of an abrupt material boundary as the limit
of a continuous, but rapid, change in # and L Similarly, a sheet of
current can be thought of as a volume distribution of current having a
large magnitude and confined to a thin shell. By such expediencies we
can avoid much tedium in the exposition of the theory.

PROBLEMS

1-1. Using Stokes' theorem and the divergence theorem, show that Eqs. (1-1) are
equivalent to Eqs. (1-3).

1-2. The conduction current in conductors is affected by the magnetic field as well
as by the electric field (Hall effect). Using an atomic model, justify that

3 « cr£ + <r2hZ X (B

where h is the Hall constant. For copper (h = —5.5 X 10~n), determine the (B for
which the second term of the above equation is 1 per cent of the first term.

1-3. Given £ = uxy
2 sin (at and 3C = uyx cos <at, determine $ and Sfll*. Determine

i* and kl through the disk z = 0, x2 + yz = 1.
1-4. For the field of Prob. 1-3, determine the Poynting vector. Show that Eq.

(1-26) is satisfied for this field.
1-5. Starting from Maxwell's equations, derive the circuit law for capacitors,

i = C dv/dt, and the circuit law for inductors, v — L di/dt.
1-6. Determine the instantaneous quantities corresponding to (a) / = 10 + i 5 ,

(6) E = u,(5 -h J3) + uy(2 + J3), (c) H = (u, + uy)^<*+»).
1-7. Prove Eqs. (1-42).
1-8. Given H = nx sin y in a source-free region of Plexiglas, determine E and £ at

a frequency of (a) 1 megacycle, (6) 100 megacycles.
1-9. Show that Qo - 0 (complex charge density vanishes) in a source-free region

of homogeneous matter, linear in the general sense.
1-10. Show that the instantaneous Poynting vector is given by

S = Re (S + E X He>'2wi)

Why is S not related to S by Eq. (1-41)?
1-11. Consider the unit cube shown in Fig. 1-16 which has all sides except the

face x = 0 covered by perfect conductors. If Ez = 100 sin (iry) and Hy = e>#ir/6 sin (iry)

FIG. 1-16. Unit cube for Prob. 1-11.

X^
I Y

e
M

1

Z



36 TIME-HARMONIC ELECTROMAGNETIC FIELDS

over the open face and no sources exist within the cube, determine (a) the time-
average power dissipated within the cube, (b) the difference between the time-average
electric and magnetic energies within the cube.

1-12. Suppose a filament of z-directed electric current /•" = 10 is impressed along
the z axis from z = 0 to z = 1. If E = u*(l + j), determine the complex power and
the time-average power supplied by this source.

1-13. Suppose we have a 10-megacycle field E = VLX5, H = uy2, at some point in a
material having a — 10~4, e = (8 — jlQr2)^t and p. — (14 — j)fi0 at the operating
frequency. Determine each type of current (except impressed) listed in Table 1-2.

1-14. A small capacitor has a d-c capacitance of 300 micromicrofarads when air-
filled. When it is oil-filled, it is found to have an impedance of (500 — j) X 103 at
w = 106. Determine #, e, and e" of the oil, neglecting conductor losses.

1-15. For a practical toroidal inductor of the type shown in Fig. l-14a, show that
the power loss in the wire will usually be much larger than that in a core of low-loss
ferromagnetic material.

1-16. Assume that e = e' — je" is an analytic function of w and show that

,. x , 2 /•« we"(w) dw
c'(co) = eo + - I —„ o

ir JO W2 — co2

•"(„) = - ? f ""[«'("> - * o l
ir J0 w2 - co2

,2

— eo] dw

(Equations of this type are valid for any analytic function regular in the lower half
plane.)

1-17. Derive Eqs. (1-86).


