
Continuous and
Discrete Signals

In this chapter we shall review several concepts concerning analog and digital sig-
nals, namely the Fourier, Z, and Laplace transforms, the sampling theorem, and the
aliasing problem. These topics are presented in order to establish notation that we
will use in mixed signal circuits. We will also present exponential, Euler, and bilin-
ear mappings from the s domain to the z domain, as well as transfer functions de-
scribing two-dimensional systems in both domains. Finally, we will describe the
discrete cosine transform, which is very important in image compression and will
be used in the second part of the book.

1.1 FOURIER, 2 , AND LAPLACE TRANSFORMS

A discrete-time signal is defined as a sequence {x(k)} resulting from sampling a
continuous-time signal x(t). The symbol x(k) denotes the element of the sequence
that is equal to the value of the function x(t) for t = kT, where T is the sampling in-
terval. The relation

x(k) = \ xk{t)dt (1.1)

describes the sampling operation, where

xk(t)=x(t)8(t-kT) (1.2)

8(t) is the delta function or distribution function. The function obtained as a sum of
(1.2) for all indices k

x(k) =
-JZ

x,it)dt (1.1)

xk{t)=x{t)d(t-kT) (1.2)
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4 CONTINUOUS AND DISCRETE SIGNALS

x(t)=X **o=*wZ 8v - " ) = Z x^^r ~kT> <' -3>
A- /c A-

is called a continuous-time PAM (pulse amplitude modulation) representation of a
discrete-time signal.

The periodic function x(t) with a period Tp can be expanded in a Fourier series in
the following complex form

x(t) = Yj cne>{27r/Tp)nr (1.4)

where

l rV2

c,,= — x(t)e"i{2rr-Tp)ntdt (1.5)

^ J - v 2

and / = V^T. The coefficients c;; fulfill the relation

cn = c\ = — (1.6)

where an, b,n n = 1, 2, 3, . . . , denote the coefficients of the Fourier series in a
trigonometric form.

An extension of the formulae (1.4) and (1.5) for Tp —> °° gives the Fourier trans-
form pair of an arbitrary continuous-time signal x(t) in the form

r i r
X{jco)=\ x{t)e~Jlordt, x{t)=—TT\ X{ja>)eJMtdoD (1.7)

For the signal {x(k)} the Fourier transform is called a discrete-time one (DTFT) and
takes the form

X{eJloT) = y x(k)e-J°}kT, x{k) = X(eicoT)eJcokTdo) (1.8)

If, however, in the above equations only TV samples x(k) are taken for k = 0, 1, . . . ,
N- 1 and only TV samples of X{eia>T) are calculated for QJ = no)0, n = 0, 1, . . . , N- 1,
where a)0 = (2TT/T)/N'= wA./7V, the discrete Fourier transform (DFT) is defined as

;V- 1

Xj,{n) = Xie^o7) = yjc{Ji)e-'l7Tnk/N (1.9)
/v-0

We see that the Fourier transform (1.7) gives relations between functions of real
variables t and k and the frequency variable o>, which is also a real variable. In the

x{f) = X Hi) = x(t)Z * ~kT) = Y X(W ~ W
k k kk k k

(1.3)

H~ — zc

~JZ

r pj(2Tr/T,7)nt (1.4)

l rV2

cn= — x(t)e"i{2rr-Tp)ntdt
TP

 J - V 2^ J - v 2

rTp/2
x{t)e"i{2wTp)ntdt (1.5)c// =

1

2
^/i - y ^ H

(1.6)

i r"
A-(0=—TTj X(7o>)e/wWw

f-JZ

(1.7)A"(yw) = I x(r)e-J""dt,
— 'X,

X(i(o) = x{t)e~Jlordt, x(t) =
1

2
77

T riT

x(k) = — X(e^r)e^okrdco
2 77 J-TT/T

T r/T

k

X{t) =

jUTdoj
277 LrtT

X(eJ(vT)e^X(e^oT) = ^ x{k)e-J°)kT,

X{jco)eiMtda)

x(k)e-/2mik/N
X^n)=X(eJn<^T)

x(k) =

eJtUOQ7\ -/2 TTiik/N
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case of the Laplace and Z transforms, after transformation ofx(t) andx(&) we obtain
functions

X(s) = f x{t)e~stdt (1.10)

and

CO

X(z) = Yx(k^k (M 1)

of complex variables s and z, respectively. We assume that the functions x(t) and
x(k) in (1.10), (1.11), are equal to zero for negative arguments t and k[x(t) = 0 for
t < 0 and x(/c) = 0 for k < 0], i.e., that they are causal functions. For causal func-
tions, the Laplace transform is equivalent to the Fourier transform for s = jco and
the Z transform to DTFT for z = eJ(oT. It means that the variable a) is represented
by the imaginary axis on the s plane and by the unit circle on the z plane. The
Laplace transform (1.10) of the PAM representation of x(k) described by (1.3) is
as follows:

00

X(s) = J^x(k)e-skT (1.12)
k=0

For

z = esT (1.13)

it gives the equivalence between the Laplace and Z transforms and the relation

X(j<o)=X(eJtoT) (1.14)

Equation (1.13) shows that the imaginary axis on the s plane is transformed into
the unit circle with the center in the origin of the coordinate system in the z domain.
On the basis of this equation, we can add that the left-hand side of the s plane is
transformed into the interior of this circle, whereas the right-hand side is trans-
formed into the exterior. For the z"1 plane

z-[=e~sT (1.15)

which is also often considered. The relations between the left- and right-hand sides
on the s plane and the interior and exterior of the unit circle in the z 1 domain are re-
versed.

The Z, Fourier, and Laplace transforms of functions corresponding to basic sig-
nals are shown in Table 1.1 Function u(t) denotes the unit step.

X(s) = \ x{t)e~stdt
Jo

x{t)e"dtX(s) =

(1.11)

(1.10)

(1.12)

(1.13)

00

X(s) = ^x(k)e-5kT

k=0k=0
x(k)e-skT

0 0

X(s) =

z = esT

X(j(o)=X(eJtoT) (1.14)

z-l=e~sT (1.15)

For

CO

k=--o

-sT
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Table 1.1 Transforms of basic signals

1.2 ALIASING PHENOMENON AND NYQUIST SAMPLING THEOREM

A linear, time-invariant (LTI) system excited by the signal x(t) responds with a con-
tinuous-time signal v(/). For the delta excitation [x(t) = 8(t)] the response is denoted
by h{t) and called the pulse response. Any response y(t) of the LTI system can be
expressed in the time domain as a convolution:

y(t) = x(t) * h(t) = | x(r)h(t - r)dr (1.16)

or as a multiplication

Y(s) = H(s)X{sl Y(joo) = H(ja))X(jco) (1.17)

x{t) Z{ u(n T)x(n T)} 'J{ x(t)} L{ u(t)x(t)}

5(0

u(t)

sgn(t)

n2,(o

&*>,*

u(t)e •"'

e-«\'\

cos coj

u(t)e~al cos fit

sin coj

u(t)e•""' sin fit
ze-"rsin jSr

z sin o)()T

z2-2ze ftTcos pT+e~2aT

z2 -ze aTcos /3r

z- - 2z cos (x)oT + 1

z- - z cos ^ T

z - e aT

-7 _ £> " ^

Z2_z^,r

Z ~ 1

Z(1-Z"A)

z - 1

z — 1

1 1 1

1

5
7r8{(x)) +

1

/ W

2

yw

2 sin /cw

O)

2 rr8( a> - co())

a + j(o

1

2a

Q'2 + Ct» 2

775((x> - (x)()) + 7T§( (0 + CL>O)

a +j(x)

(a+jco)2 + f32

/3

(a +j(o)2 + (32 (s + a)2 + jS2

)8

s2 + col

co()

s2 + co2

s

s + a

1

s + a

1

•s' -jtoo

1

5

1 _ ^ - A .

5

1

nxu)} L{u[t)x(t)}Z{u(nT)x(nT)\

Table 1.1 Transforms of basic signals

Y(s) = H(s)X(sl Y(joj) = H(jw)X(jw) (1.17)

y(t) = x(t) * hit) = x(r)h(t - r)dr
J—rr.

(1.16)

(X)J+ 1z2 - 2z cos

COS Cx)()T

aT cos jSr

cos /3r+ e a rz--2ze--af7'

~ - — 7 - ' cos coaT+ 1
JTT8(OJ - &>„)/775(CL>+ wr/) -
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in the Laplace and Fourier domains. Similarly, for a discrete-time system we have

DO

yk = x(k)*hk= X xjik_, (1.18)

in the discrete-time domain, or

Y(z) = H(z)X(z\ I V - 7 ) = H{eicoT)X{e'coT) (1.19)

in the Z and Fourier domains.
Multiplication in the function x(i) presented in the second form in (1.3)

i-« = M0]-[Z 8(t-kT)\ (1.20)

for LTI systems corresponds to convolution in the frequency domain

X(j(o) = X{eicoT)

= —~ [X(ja))] * U s Y 8(co - ma>s)

1 c-
= — J X(jCt) X 5(w - ft - wwjrfft

l "

It means that the Fourier transform X(eJ(oT) of a discrete signal can be obtained as a
sum of shifted Fourier transforms X(JCD) of a continuous-time signal [13]. Each com-
ponent in this sum is shifted by the integer multiple m of the sampling frequency a)s

= IITIT. It means that the spectrum of the discrete signal can contain high-frequency
components of x(t) transposed to low-frequency components. This phenomenon is
called aliasing. In order to eliminate aliasing, the signal x(t) is fed to an ideal low-pass
filter, called antialiasing filter, with the cutoff frequency coc < (os/2. In this case, there
will be no overlap of frequency components of the signal sampled at the output of this
filter. The continuous-time signal can be reconstructed again at the output of the next
low-pass filter, called the smoothing filter, excited by a discrete signal. Hence, the
signal x(t) which has the Fourier transform X(jto) and is sampled at frequency ITTIT,

can be reconstructed from its samples ifX(jco) = 0 for all \OJ\ > TT/T, (Nyquist sampling
theorem). The frequency coN = TTIT is called the Nyquist frequency. The system for
mixed signal processing, containing antialiasing and smoothing filters and presented
in Figure 1.1, can be realized as a CMOS circuit on a single chip.

Using the ideal lowpass filter, which has the pulse response

sin(7r//7)
hit) = (1.22)

TTtl T

DO

yk = x{k) * hk = X *iA-™
ni=--^

x{t) = [x{t)]-W 8{t-kT)\X %.t-kT)
k

x(t) = \x(t)] •

X(j(o) = X{eicoT)

1

2TT
[X(ja>)] * (x)c

/H=_oc
8(cx) — mo)s)

8(a> — ft — ma)s)dil

GC

m=-^
xuci)

l r~-^

J—yzT

1

T /;;=_GO

OC

X\J((o - mo)s)] (1.21)

h(t) =
sin(7rr/r)

irtlT
(1.22)

Y(z) = H{z)X{z\ Y{eicoT) = H(e/ojT)X(e^T)

DG

yk = x(k)*hk xmhk_m

k

Y{eicoT) = H(e/loT)X(e^T)Y(z) = H(z)X(z),
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in out

Figure 1.1 Example of a system for mixed signal processing composed of antialiasing
(AF) and smoothing (SF) filters, A/D and D/A converters, and a digital core (DP).

we can obtain the analog signal x(t) at the output of this filter excited by the PUM
representation x(t) as the convolution x(t) * /?(/). The reconstruction formula is as
follows

x(t) = x(0*
[ sin(7rt/7) 1 _

L TrtIT J ~

sin[77(/-w7)/7]

'" 7T(t-mY)/T~~
(1.23)

1.3 EULER AND BILINEAR TRANSFORMATIONS

LTI systems are described by transfer functions that are rational functions in z and s
domains. Discrete-time systems are often designed on the basis of continuous-time
systems with the use of the transfer function H(s). However, it is not possible to de-
rive the rational transfer function H(z) from H{s) using the transformation (1.13).
Hence, different approximations of relation (1.13) are used. The simplest ones re-
sult from the series expansion of exponential functions in the form

sT (sT)2 (sT)3

1! 2! 3!

or

-sT (sT)2 (sT)3

1! 2! 3!

and are called the forward and backward Euler transformations:

and

sT=z-1

sT= 1 - z -

(1.24)

(1-25)

(1.26)

(1-27)

respectively.
Another transformation, not so simple as the Euler transformations, but with

very interesting properties, is the bilinear transformation

sT _ z - \ _ \-z~

~i ~ z+ i ~ T T 7 (1.28)

AF A/D DP D/A SF

1! 2! 3!

-sT (sT)2 (sT)3

+ . . .zry=e-sT= 1 + + +

2 z + 1 1 + z " 1

s T z - \ 1 - z 1

8

f)]—-.yz
*m'

zc

<C

sT (s^2 (sT)3

1! 2! 3!
1 + -esT = - i - . . .



1.3 EULER AND BILINEAR TRANSFORMATIONS

or

_ , _ 1 -5772

~ 1 +5772

which can be obtained from the series representation of the In function

f z - 1 (z -1) 3 (z -1) 5

^ r = ln(z) = 2 + '— + '— + .
Lz+ 1 3(z+ I)3 5(z+ I)5

(1.29)

(1.30)

We see from relations (1.26) and (1.27) that the imaginary axis s =jco in the s do-
main corresponds to the line tangent to the unit circle at the point (0, 1) on the z and
z 1 planes, respectively. The left-hand side of the s plane corresponds to half-plane
on the left-hand side of this tangent in the z domain and on the right-hand side in the
z~l domain. Let us note that the exact transformation (1.13) transforms the left-hand
side of the s plane into the interior or exterior of the unit circle in the z and z 1 do-
mains, respectively. For s =j(o the bilinear relation (1.29) yields \z\ = 1 and, like the
exact transformation (1.13), transforms the imaginary axis in the analog domain
into the unit circle in the discrete domain. These relations between analog s and dis-
crete z domains are shown in Figure 1.2.

The Euler and bilinear transformations impose scaling of frequencies a)a and o)d

in analog and discrete domains. In the case of bilinear transformation, introducing
into (1.28) the frequencies s =j(oa and z = ejw^T, we obtain

Figure 1.2 Transformations between analog and discrete domains for forward Euler (a),
backward Euler (b), and bilinear (c) transformations.

9

Z
c)

1 1

i A;

7- .
b)

1

Z
a)

1 +5772

1 -5772
z"' =

z + 1 3 ( z + l ) 3 5 ( z + l ) 5

z - 1 ( z - 1 ) 3 ( z - 1 ) 5

+. ..+ •+^r=ln(z) = 2
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uj (odT

~ y " = t a n ~ y " (1>31)
Let us note that this relation compresses the whole frequency axis in the analog do-
main into the frequency range limited by the Nyquist frequency coiW = TT/T. This
property makes discrete filters obtained on the basis of prototype analog filters
more selective. On the other hand, the design process of discrete filters requires the
analog filter to change its frequencies according to the relation (1.31), in order to
obtain the desired frequencies in the counterpart discrete filter. This stage of the de-
sign process is called prewarping.

1.4 TWO-DIMENSIONAL DISCRETE COSINE TRANSFORM}

The Fourier transform presented in the previous sections can also be used for two-
dimensional (2-D) processing. However, the optimum transform for image com-
pression is the Karhunen-Loeve transformation (KLT) [31], because it packs the
greatest amount of energy in the smallest number of elements in the frequency do-
main of a 2-D signal and minimizes the total entropy of the signal sequence. Unfor-
tunately, the basis functions of KLTs are image-dependent, which is the most im-
portant implementation-related deficiency. It is observed that the two-dimensional
(2-D) discrete cosine transform (DCT) has the output close to the output produced
by the KLT [3], and uses image-independent basis functions. Hence, DCT-based
image coding is applied in all video compression standards. In these standards, the
image is divided into 8 x 8 blocks in the spatial domain and DCT transforms them
into 8><8 blocks in the 2-D frequency domain. Such block size is convenient with
respect to computational complexity. Larger sizes do not offer significantly better
compression.

2-D DCT can be expressed as

c(k)c{l) J . J . (2/+ \)kir (2/+ 1)/T7
= —7— I X *i/cos - cos (1.32)

4 i=0 j=0 1C> 1 0
);kl =

where k, 1 = 0, 1, . . . , 7 and

r 1
k = 0

(1.33)
k± 0

Assuming that the matrices Y and X are composed of elements y0 and xip ij = 0,
1, . . . , 7, respectively, the relation (1.32) can be also written in the matrix form as

Y=CXC (1.34)

where the matrix of coefficients C is as follows:

2 2
= tan-

a)HTa)aT

c(/c) =

• 1

V?
1, k± 0

k = 0
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c =

d
a
b
c
d
e

f
g

d
c

f
-g
-d
-a
-b
-e

d
e

-f
-a
-d
g
b
c

d
g

-b
-e
d
c

-f
-a

d
~g
-b

e
d

~c

-f
a

d
-e

~f
a

-d
~g

b
-c

d
—c
f
g

-d
a

-b
e

d
-a

b
-c
d

-e

f
~g

(1.35)

a = COS(TT/16), b = COS(2T7/16), C = COS(3TT/16), d - COS(4T7/16), e = COS(5TT/16),/=

COS(6TT/16), g = COS(7TT-/16).

The main property of 2-D DCT, with respect to implementation, is separability.
On the basis of the matrix equation (1.34), written in the form

Y = Z'C\ Z = X'C (1.36)

we can realize 2-D DCT with two 1-D ones. The matrix X denotes one input 8 x 8
block, and its transposition X in the relation Z = X'C means that it is read out col-
umn by column. The matrix Z, containing intermediate results, is obtained with the
use of 1-D DCT, and is saved in a memory array. Transposition of this matrix in the
first equation in (1.36) means that the elements of Z obtained successively for the
current block are memorized in row cells and for the previous block are read out
from column cells of the memory array. The intermediate results are processed in
the same way as the input matrix X, giving the output signal matrix Y. The imple-
mentation of a 2-D DCT processor will be presented in the second part of this book.

The matrix relations (1.36) can be expressed as

2 ^ (2/t+ 1)7777
(1.37)

describing a 1-D DCT in an explicit form, where w = 0, 1, . . . , N - 1. Equation
(1.37) can be used to show the relationship between DCT and DFT given by (1.9),
[47]. On the basis of x(k), a 2Ar-point sequence 4 can be obtained as

6 - * > •
I x2N-k-U

0 < / t < N- 1
N<k <2N- 1

(1.38)

Let us note that the second half of & for k = N, . . . , 2N - 1 is a mirror image of the
first half of & for k = 0, . . . , N - 1. The 2^-point DFT of 4 is, from the definition
(1.9), given by

2;V-1

k=0

AM

= X*(£)^/27777*/(2/V) + X X2N-k-l^27T"k!(2h[: (1.39)
h=0 k=N

2N

1

2

x2N-k-\i

x(k),
N £k<2N~ 1& = •

2 AM
£ e-j2imk!{2N)X2H{n) = X

2 AMA M

-jlmikHlN)

2 >£}

N i=o
x(k) cos

(2k+\)mr
y,i = c(n)

XlN-k-\ex(k)e~il7mkl(2N) +
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for /7 = 0, . . . , 2N - I. The first summation on the right-hand side of the above
equation can be written as

N-1 N-1

V x(fc\e-j2miki(2N) - gjmriQN) V x(k)e~J'i2k+l )"7r/(2;V) ( I .40)
A-0 /r=0

whereas the second one can be written as

2 AM 0
V x e-/2nnk/(2N) = y x^e-j2m«2N-k-l)/(2!V)

k = .\' k=N'-\

0

— g//7ir{ i -4,v)/(2/V) \ ^ x(k)e^2k+1 )n^2;V)

A'=A/-1

AM

= e '"^2^ 7 x(k)e*2k+l)"n/{m (1.41)
A-0

Introducing the results from (1.40) and (1.41) into (1.39), we obtain

X1N(n) = 2eJ'l^(2N) ^{k) cos — (1.42)
A=O 2yv

for « = 0, . . . , 2Â  - 1. Hence, the DCT transform yn in (1.37) can be obtained from
the 2A -̂point DFT using the equation

yn--^e^^X2N(n) ( 1 . 4 3 )

for w = 0, . . . , A ^ - 1.

1.5 TRANSFER FUNCTIONS OF A 2-D MULTIPORT NETWORK

Transfer functions / /of LTI systems are often described in analog (s) or discrete (z)
complex domains, as can be seen in relations (1.17) and (1.19). In this section, we
will consider relations between transfer functions of a system described in different
complex domains. The formulae that will be presented refer to two-dimensional
systems. The corresponding relationships for one-dimensional systems can be easi-
ly obtained as a special case of formulae introduced for 2-D systems.

Transfer functions Hm'\ m = 1, . . . , M, n = 1, . . . , N, of a 2-D LTI network are
rational functions of two complex variables. H"1" is an element of the matrix //that
describes a linear 2-D multiport network shown in Figure 1.3. N denotes the num-
ber of inputs, whereas M denotes the number of outputs. The elements of the input
and output vector signals x and y are also functions of the complex variables. Each
variable belongs to the s or z domain. Hence, there are four equivalent representa-

A / - 1

/r=0

-y(2A-t-l)/»7r/(2;V)

,-i2irnki{2N)
*2N-k-\e x(k)e ~/2 w^2N-k-l )'<2iV)

Y//cW'(2/v+l)/7 77/(2A0

A-=A/-1

Y//Ae/(2A'+l)/?7r/(2A0

k=0

A'-l

= e/V?TT/(2/V)

— ^//7 7r(l-4Ar)/(2A0

0

(2/C+ 1)«7T
A"(7c) COSX ? ,v</7)-2^"7 T / ( 2 A ' r )

/V- [

A-=0

(1.41)

(1.42)

)'n ~ ' e~>"^2N)X2P£n) (1.43)

k=N-\

02/V-l

k = N

f o r w = 0, . . . , A ^ - 1.

IN

c{n)
X2^n)

IN
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X
H y

Figure 1.3 Symbol of a linear 2-D multiport network.

Z - t z ^ - ' - z r 1 ! ] S / = [ s f - - - 5 / l ] / = 1 , 2 (1.44)

where the elements of the vectors Zh and Sh i = 1, 2, are ordered in descending pow-
ers of variables z,1, sh respectively. The sign ' denotes a transposed matrix or vec-

H
S,PS2'

S.QS]

Ph^PTi, Qh^QTj

P = PhTk, Q = QhT,IE S,PhZ2 j

S.QhZj' !

P = T' A

Q = Tk'Bh

Ah=Tk 'P

B h =T k Q

Ph=Tw 'A

Qh=Tk 'B

A = TJR

B = Tk'Qh

H
ZjAjjS '̂

ZiBhSJ

A = AhTk, B = BhTkk i

H
Z,AZ;
7 R7'

Ah=ATk, Bh=BTk ! t'f!f2_{

S = [sk... s i ] Z = [ z * . z ' l ]

Figure 1.4 Representations of 2-D network transfer functions.

S =

z' =

1+z"'

1-z-1

1-s

1 +s

tions of the transfer functions Hm'\ m = 1, . . . , M, n = 1, . . . , N: discrete, (H'mj <-
ZxA

mnzyZxBZ'2\ analog (//'"" <- S^S^QSi), and hybrid (//'"" «- SxP'irZ^I
S\QhZ'i) a n d (^m" ^- ^i^/"/7^2/zi^/^2), as is shown in Figure 1.4, [21]. Let us note
that each representation can have different numerators. However, they all have a
common denominator.

The polynomials in the numerators and the denominator are written in the matrix
form. The elements of matrices A'"", B, Pm'\ and Q are equal to coefficients of re-
spective polynomials, and Z,, 5, are vectors composed of complex variables zh s,-:

Z.BZ^
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tor. Let us note that the transfer function in the discrete domain is usually written in
the form

(I.45)

where the elements of the vector Z, are ordered in ascending powers of the variable

(1.46)

and where Am'\ B denotes the matrices Anu\ B transposed with respect to both diag-
onals. The description given by (1.45) is called the standard form of a transfer func-
tion.

The vectors S,, S2, Zh and Z2 are used for describing polynomials in the numera-
tors and denominators of the transfer functions. It does not mean that polynomials
are of the same order with respect to the given variable because some rows or
columns in the matrices Anu\ B, P"u\ and Q may be composed of zero elements. For
example, the denominator of the transfer function of a nonrecursive filter is equal to
I in the digital domain. One can describe this filter by the matrix B in the form

B =

0
0

0

0
0

(1.47)

We assume that the discrete and analog variables are bilinearly transformed

l - z r 1

S: =
1 + z H

1+V
/= 1,2 (1.48)

The above relationships are obtained from (1.28) and (1.29) where, for the sake of
simplicity, we will assume that the sampling periods in both dimensions i = 1, 2 are
T=2. Under these assumptions, we can obtain all transfer function representations,
multiplying matrices A""\ B, P""\ and Q by the transformation matrix Tk. The ma-
trix Tk can be generated in a recurrent manner:

ô = [l],^i =
- 1 1

1 1
T —

1 -2
-1 0
1 2

1

ZxA
mnZ2'

Z{ BZj
H"m

7 - 1

z / ~ L l z / zi J\ z - { • • - z ~ k

0
0

0 1

1-zr1

1+zr1

i - S /

1+5,'
^ - 1

1
1

0
2
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^3 =

1
1
1
1

3
_ j

-1
3

-3
-1

1
3

1
1
1
1

• •, Tk (1.49)

The procedure for construction of these matrices is as follows. The (/—l)th row
of the matrix 7}_, and the /th row of the matrix 7}, / = 2, • • • J + 1, j = 1, • • • , k, al-
ways form two neighboring rows of a Pascal triangle with To = [1]. For example,
the first row of To, the second row of 7\, the third row of T2, and the fourth row of
F3, etc. form a Pascal triangle. Similarly, the first row of T{, the second of T2, the
third row of T3, etc., or the first row of T2 and the second row of 7 ,̂ etc. also fonn
Pascal triangles. As far as the first row of each matrix is concerned, the /th element
of the first row of theyth matrix is the /th element of the last row of the same matrix
multiplied by (-1>/+/+1.

Using the bilinear transformation we can write

1
(1 +Z-1)""1

. - l y? - l( 1 - z - 1 }

(l + z-ly-2(\ - z~l)
(l+z-1)"-1

(1.50)

and

( 1 . 5 1 )

The comparison of (1.50) and (1.51), for n = 1 and n = /c, yields

S' = TkZ' (1.52)

where the scaling factor l/( 1 + z~{)'\ which does not affect the transfer function H"u\
has been dropped. We see that both s to z~l and z~x to s transformations in (1.48)
have the same form. Hence, similarly to (1.52), we can write

Z' - 7^5' (1.53)

and we see that, instead of the inverse matrix Tf\ the matrix Tk can be used for the
inverse z to s transformation. We find that

(1.54)

1

d-z-'r
(l+z-'Xl-z-1)""1

(1 +z-')(l +z-')"-2(l ~z~l)
(1 +z-')(l +z-')"-'

S' = TkZ' (1.52)

> -»

s
1

" s" "

5

1

(1 +Z"1)"

TVTit = 2^C7

(1 + z~l)n-2(\ -z~l)
(1 +Z"1)"-1
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where Uis a unit matrix. Hence, the normalization factor of matrix Tk is l/V2/l. The
transposition of (1.52) and (1.53) gives

S = ZTk (1-55)

and

Z = ST[ (1.56)

which completes the proof of relations

pmn — pninT1 pmn — pnin'j1 /O — DT /O — / I T

Amn ~ Amn'T Amn — Amn'T R — RT R — R T

P™ = T;M\ A>r = T£P"», Q = T£Bh9 Bh = T{Q

A>»« = T{Pr, P'/r = UA™\ B = Tf:Q/n Qh - Tk'B (1.57)

shown in the scheme in Figure 1.4.

1.6 PROBLEMS

1. On the basis of (1.6) prove that the Fourier series (1.4) in the complex form is
equivalent to the Fourier series in the trigonometric form:

c/0 " f ( 2TT \ (2TT \\

x{t) - — +Xla" ™s[-J-ntj + bn sin^—/7/jJ (1.58)

2. On the basis of the definition (1.10), calculate the Laplace transform X(s) of
the function x(t) = eAt.

3. Calculate the Laplace transforms shown in Table 1.1 of the functions e~ar, sin
(oj, cos (oot, e~at sin(3t, and <? a'cos fit.

Hint: Use the result from the previous example, introducing A = -a, A =jcoo,
or A = —a +j(3.

4. Calculate the Fourier series defined by (1.4), (1.5) of the periodic function

X 8(t-kT) (1.59)

5. Prove the relation

7\ V 8(t-kT)\ = <os X S(o>-ma)s) (1.60)

z = sn

S = ZTk> (1.55)

(1.56)

Dmn — pnin'T Dmn — pnin'j1 /O — DT /O — / I T

Amn ~ Ainn'T A mn — AmtTT R — RT R — R T

pinn — f" Amn Amn — T" pmn Cl — T'R R — T'O
L ~ LkAh ->Ah ~ * k* , \J - Ik** fa E>h ~ [kV

Amn — rr/ Pmn pmn — j ^ ' Amn R — T"/") O — T'R (1.57)

a0

2
x(t) -

n=\
an cos

277

T
1 p

nt\ + bn sin
( 2TT

TP

nt (1.58)

z_^
8{t-kT)V

T
'JZ

d(t-kT)\ = ws

zr.

f)l~—yi

8(co — fTi(os) (1.60)

5. Prove the relation

1 hh h ki h k-> h1 k
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used in (1.21), which means that the Fourier transform of a sequence of im-
pulses is also a sequence of impulses.
Hint: Use the inverse Fourier transform given in (1.7) and the result of the
previous problem.

6. Prove the relation (1.31).
7. Choose appropriate relations from (1.57) and calculate H\{zu s2), H['{su z2),

and //2(zh z2) for the transfer function

H(suS2)= -2 — (1.61)
l>i l]Q[sls2 1]

where

0 0 11 TO 0 1
p = l i o oh e = i o i l (L62)

Note that the 2-D transfer function (1.61) is obtained from the transfer function of
the first-order high-pass filter:

".(*)= 777 (»-63)

after the substitution s = s{ + si-

[Si\]P[s2
2S2\Y

[si \]Q[s2
2s2\y

H(sus2)=- (1.61)

1 0 Oj 1 0 1

"0 0 1ro o I
1 0 0

p —


