
1 Experiments and Probability

1.1 DEFINITION OF AN EXPERIMENT

To fully appreciate the meaning of probability and acquire a strong mathematical
foundation for analytical work, it is necessary to define precisely the concept of an
experiment and sample space mathematically. These definitions provide consistent
methods for the assignment of elementary probabilities in paradoxical situations, and
thus allow for meaningful calculation of probabilities of events other than the
elementary events. Although at the beginning this approach may seem stilted, it
will lead to a concrete concept of probability and an interpretation of derived
probabilities.

An experiment $ is specified by the three tuple (S, 3F, &*(•)), where S is a finite,
countable, or noncountable set called the sample space, J^ is a Borel field specify-
ing a set of events, and ^ ( . ) is a probability measure allowing calculation of
probabilities of all events.

1.1.1 The Sample Space

The sample space S is a set of elements called outcomes of the experiment $ and the
number of elements could be finite, countable, or noncountable infinite. For exam-
ple, S could be the set containing the six faces of a die, S = {/i,/?,/^/^,./^,^}' o r

the positive integers, S = {i: / = 1, 2 , . . . } , or the real values between zero and one,
S = {x : 0 < x < 1}, respectively.

An event is defined as any subset of S. On a single trial of the experiment an
outcome is obtained. If that outcome is a member of an event, it is said that the event
has occurred. In this way many different events occur at each trial of the experiment.
For example, if fx is the outcome of a single trial of the experiment then the events
{/iK {f\Ji), (fu&}, • • •, {/i JeK • • •. {/1./3./5}' • • -, all occur. Events consisting
of single elements, like fh are called elementary events. The impossible event
corresponds to the empty set (f> and never occurs, while the certain event, S,
contains all outcomes and thus always occurs no matter what the outcome of the
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2 EXPERIMENTS AND PROBABILITY

trial is. Events A and B are called mutually exclusive or disjoint if A D B = 0, where
<fi is the null set.

Two events A and B are called independent if P(A HB) = P(A) • P(B). The
events AX,A2, . . . ,An are defined to be independent if the probabilities of all inter-
sections two, three, . . . , and n events can be written as products. This implies for all
i,j, £ , . . . , that the following conditions must be satisfied for independence

P(AinAJ) = P(Ai)P(AJ)

P(A,. H Aj H Ak) = P(A^P(Aj)P{Ak)
(1.1)

P(A, n A2 n . . . n AU) = P(Al)P(A2)...P(^j

1.1.2 The Borel Field

A field can be defined as a nonempty class of sets such that (1) if a € ^, then the
complement o f a e F and (2) if a e 3* and b e 8F then aU b e # \ Thus a field
contains all finite unions, and by virtue of compliments and DeMorgan's theorem, all
intersections of the collection. If we further require that all infinite unions and
intersections are present in the collection, a Borel field is defined.

The set of all events of our experiment that will have probabilities assigned to
them (measurable events) must be a Borel field to have mathematical consistency. If
A, a collection of events, has a finite number of elements, a Borel field can be formed
as the set of those events plus all possible subsets obtained by unions and intersec-
tions of those events including the null set (j) and entire set S.

If a set is noncountable, it is little harder to describe a Borel field. The most
common Borel field, containing the real numbers, is the smallest Borel field contain-
ing the following intervals: {x : x < x{] for all x{ e real numbers. This will contain
all finite and infinite closed and open intervals of the form [a, b], [a, b), (a, b], and
(a, b), where a and b are real numbers and the intersections and unions of those
intervals thereof.

1.1.3 The Probability Measure

The probability measure, ^ ( . ) , must be a consistent assignment of probabilities
such that the following conditions are satisfied

(1) For any event A e #", the probability of the event A,P(A)9 is such that
P{A) > 0.

(2) For the certain event, S, P(S) = 1.
(3) If A and B are any two events such that A H B = <j> then P(A U B) =

P(A) + P(B).
(3a) If Af G BF for i = 1, 2, . . . , and Ai Pi Af = (j) for all i ^ / , then

P(AX U A2 U . . . U At U . . . ) = P(Al) + P(A2) + • • • + P(At) + • • -.
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With these conditions satisfied, the probability of any event A e 3F can be calcu-
lated. How does one go about assigning probabilities such that we satisfy the
conditions above?

For the case where S is a set with a finite number of elements the conditions
above can be satisfied by assigning probabilities to all the events with only single
outcomes, {£,}, where £, e S, such that conditions (1) and (2) above are satisfied.
This mapping from the sample space S to the positive reals is called the distribution
function for the probability measure and equivalently specifies the probability
measure.

When S is a set with a noncountably infinite number of elements the assignment
above is not useful as the probabilities of most elementary events will be zero. In this
case the assignment of probabilities is consistent if the probabilities of the events
{x : x < x{} for all x{ e real numbers are assigned such that

(1) 0 < P{x : x < x{} < 1 (bounded).
(2) P{x : x <x2} > P{x : x < x{} for all x2 > x{ (nondecreasing function of x)

and
(3) lim as e -> 0 of P{x :x<x{+e] equals P{x : x < x{} (continuous from the

right side).

This mapping: x -> P{x : x < x{}, defined for all x, is called the cumulative
distribution function and equivalently describes the probability measure for the
noncountable case. From this distribution function we are able to calculate all
probabilities of events that are members of the Borel field !F. The cumulative
distribution function could have also been used to specify the probability measure
for the case where S has a countable or finite number of elements.

A number of examples of experiments will now be presented. They will include a
couple of coin-tossing experiments and a die-rolling experiment. The experiments
will be described by specifying their sample space, Borel field, and probability
measures.

EXAMPLE 1.1

This experiment consists of a single flipping of a coin that results in either a head or
a tail showing. Give its description by specifying as (S, ^, £?(>))•

SOLUTION

The possible outcomes of the experiment are either a head or a tail. Thus the sample
space can be described as the set S = {head, tail}.

The Borel field J^ consists of the elementary events {head} and {tail}, the null
set 0 , and S.
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To complete the description of the experiment, a probability measure must be
assigned. This particular assignment could be based on previous experience, careful
experimentation, use of favorable to total alternatives, or any other interpretation of
the concept of probability. There is no right or wrong assignment, but certain assign-
ments (models) may be more appropriate in explaining the results of corresponding
physical experiments. For the purpose of this example, we assume that this coin has
been tampered with for more often a head comes up than a tail, which we specify by
P{head} = p and P{tail} — \ — p. These two assignments comprise the distribution
function and thus the probability measure ^(.) for the experiment. •

EXAMPLE 1.2

A more realistic assignment for the experiment of flipping a coin could be the
experiment (S, &, &{.))) denned as follows: S = {head, tail, edge} with ^(.)
described by P{h) = 0.49, P{t] = 0.49, P{e} = 0.02. The Borel field & is defined
as the power set of S.

(a) Identify all the events (elements) of the Borel field, (b) Calculate the prob-
abilities of those events.

SOLUTION

(a) The Borel field 3F specifying the measurable events is the power set of S (all
possible subsets of S) given by

& = {0, W, W, {el {A, tl {A, el [t, e], {A, t, e}}

where 0 is the impossible event, and {h, t, e] is the certain event. The other
events consist of all possible proper subsets of S, single elements, and
combinations of two elements.

(b) By definition P(0) = 0 and the probabilities of the elementary events are
given in the specification of the probability measure of the experiment as
P{h} = 0.49, P{t} = 0.49, and P{e} = 0.02. The probabilities of the other
events can be determined by repeated application of property (3) for the
probability measure. For example the events [h] and {e} are mutually
exclusive therefore P{h, e) can be found as follows:

P{h, e] = P({h} U {e}) - P{h) + P{e]

- 0 . 4 9 + 0.02 = 0.51

Similar ly P{h, t) = 0 .98, P{t, e) = 0 . 5 1 , and P{h, t,e}=\. •
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EXAMPLE 1.3

An experiment consists of the "random" selection of a point somewhere in the
closed interval [0,1]. Let the sample space S be described as S = {x : 0 < x < 1}.
Define the Borel field 3F to be the smallest field containing the events
{x : 0 < x < x{} for all xx e real numbers. Define the probability measure ^( . ) ,
for the experiment by the following: P{x : x < x{] = x{ for all 0 < x{ < 1.

(a) Give three or four outcomes of this experiment, (b) Give a couple examples of
regions in the event space (Borel field), (c) Determine the probabilities of the
following events:

{0 < x < 0.5), {0.25 < x < 0.75}, {x > 0.75}, {x < 0.5}, and [x = 0.5}.

SOLUTION

(a) The outcomes of the experiment are any real numbers in the closed interval
[0,1]. Some examples are 0.333, n/4, 0.00001, and 0.2346.

(b) Possible regions in the event space are (0.5, 0.75], [0.6235, 0.8976), [0.2,
0.3], (0.627, 0.8), and any union of these types of regions.

(c) The probabilities of events can be determined by using set operations, the
probability measure, and property (3). By direct application of the probability
measure given, P{0 <x< 0.5} is seen as

P{0 <x< 0.5} = 0.5

P{0.25 < x < 0.75} can be determined indirectly as follows: We know that

{0 < x < 0.75} = {0 < x < 0.25} U {0.25 < x < 0.75}

Since {0 < x < 0.25} n {0.25 < x < 0.75} = 0 , we have by property (3)
that

P{0 < x < 0.75} = P{0 < x < 0.25} + P{0.25 <x< 0.75}

Then rearranging and using the definition for the probability measure, we
have

P{0.25 < x < 0.75} = P{0 < x < 0.75} - P{0 < x < 0.25}

= 0 . 7 5 - 0 . 2 5 - 0 . 5

P{x > 0.75} is found indirectly using { 0 < x < 1} = { 0 < X < 0.75} U
{x > 0.75}. Since {0 < x < 0.75} and {x > 0.75} are mutually exclusive,
we have

P{0 <x < 1} =P{0<x<0.15}+P{x> 0.75}
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After rearranging, P{x > 0.75} is easily seen to be

P[x > 0.75} =P[0<x<\]-P{0<x< 0.75}

= l - 0.75 = 0.25

Using similar concepts, it can be shown that P{x < 0.5} = 0.5 and
P{x = 0.5} = 0. M

1.2 COMBINED EXPERIMENTS

Combined experiments play an important role in probability theory applications.
There are many ways we can combine experiments, including cartesian products in
which independent trials of the same or different experiments can be described. In
some cases the probabilities of events will depend on the results of previous trials of
experiments or random selection of different experiments. A number examples of
combined experiments are now explored beginning with the classical case of
sampling with replacement.

1.2.1 Cartesian Product of Two Experiments

Consider the case of having two separate experiments specified by the following:
i{ : (5 ' 1 ,^ 1 ,^ 1 ( . ) ) and S'2 : (S2, ^ 2 , ^2(.)). The sample spaces Sx and S2 are
usually different sets, for example, results of a coin toss and results of a die roll,
but they could be the same sets representing separate trials of the same experiment as
in repeated coin-tossing experiments. We can define a new combined experiment by
using the cartesian product concept as S — $\®S'2, where the new sample space
S = S{ ® S2 is the cartesian product of the two sample spaces expressible by the
ordered pair of elements where the first element is from S{ and the second is from S2.

EXAMPLE 1.4

Let experiment 6\ : (Sx,^ x,&x(.)) and S2 : (52, #"2, ^ 2 (0) b e defined as follows:
S)

l is the experiment of flipping a coin with outcomes head (h) and tail (t) with equal
probability of occurrence. S2 is the experiment of random selection of a colored ball
from a box with outcomes red (r), white (w), and blue (b) with replacement. Define
the new experiment 6° as $ — S\ ® S2 with experiments S\ and S2 being performed
independently of each other; that is, the outcome of experiment S\ in no way effects
the outcome of df2, and vice versa. Set up a reasonable model for this new experi-
ment.

6

P{0 <x <0.75}
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SOLUTION

To specify the model it suffices to give S, # \ t?(.) of the new experiment &.
The new sample space S is the cartesian product of the two experiments and given

by S = SX®S2. Elements of S are ordered pairs with the first element coming from
Sx = {A, t) and the second from S2 = (r> w> b}; therefore

S = {(A, r), (A, w), (A, b), (f, r), (f, w), (f, 6)}

The new Borel field J^ is selected as the power set of S, that is all possible unions
and intersections of S. This includes the null set, the entire set, and all possible pairs,
triples, and so on, as shown below:

0 , {(A, r)}, {(A, w)}9 {(A, b)h {(t, r)}, {(*, w)}, {(*, b)}
{(A, r), (A, w)}, {(A, r\ (A, b)}, {(A, r), (t, r)}, {(h, r), (f, w)}, . . .
{{K r), (A, w), (A, b)}, {(h, r), (A, w), (f, r)}, {(A, r), (A, w), (t, w)},..iF =

{(A, r), (A, w), (A, i) , (r, r), (r, w), (t, b)}

The probability measure ^(.) can be described by specifying the probability of
the elementary events. Once these are known, the probability of any event can be
found by writing the event as a union of those events and using property (3). Since
the experiments are independent, it is reasonable to assign probabilities of the
elementary events as a product of the probabilities from each experiment. For exam-
ple, P{(A, r)} = P{h} • P{r). If head and tail are equally probable in S\ then it is
reasonable for ^j(.) to be described by P{h] = P{t] = ^, and if we have reason to
believe that red, white, and blue are not equally probable in $2»

 m e n ^li-) could be
given by P{r] = 0.5, P[w] = 0.3, P{b] = 0.2 Thus, for this example, the probabil-
ity measure ^(.) can be described by specifying the probabilities of the elementary
events (the distribution function):

P{(h, r)} = P{(h)} • P{(r)} = 0.25 P{(t, r)} - P{(t)} • P{(r)} = 0.25

P{(h, w)} = P{{h)} • P{(w)} = 0.15 P{(t, w)} = P{(t)} • P{(w)} = 0.15

P{(h, b)} = P{(h)} • P{(b)} = 0.1 />{(/, b)} = P{(t)} • P{(b)} = 0.1

The event of a head in the new experiment is H — {(A, r), (A, w), (A, &)}, an<^ its

probability of occurrence can be detennined using property (3) as

P(H) = P{(A, r), (A, w), (A, 6) = P({(A, r)} U {(A, w)} U {(A, Z?)}}

= 0.25 + 0.15 + 0.1 =0 .5 •

1.2.2 Cartesian Product of n Experiments

Consider the case of having n separate experiments specified by Sk : (S/c, 3Fk, &k(.))
for k = 1, 2 , . . . , n. Define a new combined experiment S : (S, ^ , ^(.)) as a
cartesian product: <f = #'t ® ^ 2 ® * * *® $n where the new sample space
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S = Sx ® S2® • • -® Sn is the cartesian product of the n spaces and expressible by
the ordered ^-tuples of elements whose first element is from Sx and the second from
S2 . . . , the nth from Sn. The $k are, in general, different, but in many cases the
experiment could be formed from independent trials of the same experiment. Also
there is an important class of problems where the experiments are the same, yet they
cannot be thought of as independent. A good example of this is the random selection
of outcomes without replacement. Examples of each type are now presented.

Binomial Distribution. C o n s i d e r the expe r imen t S°x : (Sx, 3?x,0
>

x(.)) w h e r e the
outcomes of the experiment are either failure indicated by a 0 or a success indicated
by a 1; therefore Sx = {0, 1}. Assume that the probability measure ^ ( . ) for the
experiment is given by Pfsuccess} — P{\] — p and P{failure} — P{0} — \—p and
that the J s

= ^ , @
is the set {0 , {0}, {1}, {0, 1}}. Define a new experiment by

'•••®<^! where $ : (S, 3F, &*(.)) describes the new experiment.
Assume that this represents independent trials of the same experiment $x where
the probability of success or failure is the same for each trial.

The S, $F, &(.) are now described for this new experiment. The new S is the
cartesian product *S' = S 1 ®Si®. . .®S 1 and consists of all possible ^-tuples where
the elements are either 0 or 1 as shown below:

S =

(0, 0,..
(0, 0, ..
(0, 0,..
(0, 0,..

•, 0, 0)
. ,0 ,1)
. ,1 ,0)
. ,1 ,1)

( 1 , 1 , . . . , 1,1)

(1.2)

The new probability measure is specified once the distribution function or prob-
abilities of the elements of S are determined. By virtue of the independent experi-
ment assumption, the probability of each elementary event of the new experiment is
the product of the probabilities for the elementary events in the single trial. For
example, the P{(0, 1, 1, 0, . . . , 0, 1, 1)} is given by

P{(0, 1, 1,0, . . . , 0 , 1, 1)} = P{O}-P{1}-P{1} P(0)

= P\I-PY-4

• P{0} • P{\} • P{\}

(1.3)

As a matter of fact every sequence that has only four ones (successes) will have this
same probability. The total number of these sequences is the combination of n things
taken four at a time, since we have n locations and we want only four of them with
ones. The probability distribution function for the new experiment can then be
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determined as follows, where the first entry is the elementary sequence and after the
arrow is the corresponding probability:

Outcome Probability

(0, 0 , . . . , 0, 0) -> P(0, 0 , . . . , 0, 0) = P(0) • P(0) •. • P(0) • P(0) = p\\ -pf

(0, 0 , . . . , 0, 1) -> P(0, 0 , . . . , 0, 1) = P(0) • P(0) • • .P(0) • P(l) =p\\ -pf~[

(0, 0 , . . . , 1, 0) -^ P(0, 0 , . . . , 1, 0) = P(0) • P(0) • • -P(l) • P(0) = ^ ( 1 - p f " 1

(0 ,0 , . . . , 1, 1) -> P(0, 0 , . . . , 1, 1) = P(0) • P(0) • • P(l) • P(l) = /?2(l -p)w~ 2

( 1 , 1 , . . . , 1,1) -> P(l, 1 1.1) = P ( l ) . P( l ) . • P(l) • P(l) =/>"(l -/>)°

(1.4)

The Borel field will be the power set associated with S and specifies all events for
which probabilities are assigned.

Probabilities of different type of events for the above example can be determined
by using the distribution function described. There are a wide number of applications
as a success can mean all kinds of things. For example, a success could be obtaining
an ace in drawing a card from a standard deck of cards with replacement, or
obtaining successful reception of a binary symbol from a random communication
channel.

The event of exactly k successes out of n independent trials appears frequently
in physical situations and its probability will now be derived using the results above.
Define the event Ax as the event of exactly one success out of n trials. From the
results above we see that the probability of exactly one success out of n trials is

P(A{) = P(exactly one success out of n trials)

= P({(0, 0 , . . . , 0, 1)} U {(0, 0 , . . . , 1, 0)} U . . . U {(1, 0 , . . . , 0, 0)}

= P{(0, 0 , . . . , 0, 1)} +P{(0, 0 1,0)} + -- • +P{(1, 0 , . . . , 0, 0)}

-(>-,r-
(1.5)

Similarly the probability of exactly k successes out of n trials can be found to be

P{Ak) = P(exactly k success out of n trials)

•G)
In some problems we may wish to know the probability that the number of

successes out of n trials is within a range of values. The probability that the
number of successes k is in the range m < k <n can be obtained by adding the
probabilities of exactly k successes for that range, since the events Ak and Aj are

/ (I-/>)"-*
(1.6)
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mutually exclusive events for all k and j such that k =£j. Therefore

P\J <

successes /
/ exactly K

successes

/ number of \ / / exactly J \ ( exactly J + 1 \
[J < <K)=p[[ + +
\ successes / \ \ successes/ \ successes /

•(:

=p(\jAk)=:j:(n
J)p

kv-py-k (i-7)

\k=j / k=j\kj

EXAMPLE 1.5
Consider the experiment of tossing a fair coin with the sample space S = {h, t} and
probability distribution P{h] = 0.6 and P{t] = 0.4. Suppose the experiment is
performed 10 times independently to define a new cartesian product experiment.

(a) Determine the probability that we get exactly 5 heads in the 10 trials.

(b) Determine the probability that we get greater than 7 heads in the 10 trials.

(c) Determine the probability that we get less than or equal 9 heads in the 10 trials.
(d) Determine the probability that the number of tails is greater than or equal to 4

and less than or equal 5.

SOLUTION

The desired probabilities are determined for Eqs. (1.6) and (1.7) as follows:

(a) P(A{) = /"(exactly 5 heads out of 10 trials)

• ( >
6)5(0.4)10~5 = 0.20066

/ / number \ / / exactly \ / exactly \ / exactly \ \
(b) P ( 8 < < 10 )=P[[ 1 + 1 + 1 I)

V " of heads " / \V8 heads/ \9 heads/ \ 10 heads//

= (1J)(0.6)8(0.4)2 + ^ly.efiOAy + ( [J)(0.6)>.4)°
-0.1269790

(c) ^(less than or equal 9 heads out of 10 trials)
= 1 — P(exacly 10 heads out of 10 trials)

= 1 - ( J(0.6)10(0.4)° = 0.99395

/ number \ / / exactly \ / exactly \ \
(d) P 4 < <5)=P[[ I + ( I )

V " o f heads" J \\4 heads/ \ 5 heads//

^(0.6)4(0.4)6+ ^Vo.5)5(O.4)5 =0.1315425 •

EXAMPLE 1.5

\pk(\-p)n-k

10
5

of heads ^ 8 heads/ 9 heads, 10 heads,

10N

10,

(
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Approximations for Binomial Probabilities. The probabilities of k successes in n
trials of a Bernoulli experiment was found to be as in Eq. (1.6) and evaluating
probabilities of ranges of successes is given in Eq. (1.7). In Figure 1.1 the P(k
successes out of n trials) is plotted for values of n equal to 5, 10, and 50 for all
values of k, and a P(success) = 0.6. The graphs show a tendency toward a hill-
shaped curve similar to a Gaussian function. These plots would be symmetrical
around the point 0.5 n if p = 0.5. However, when p does not equal 0.5, as for the
cases given, the plot is not quite symmetrical. If the number of trials is large, the
calculation load due to the factorials is considerable, and certain approximations to
these probabilities become useful. Many of these approximations are good provided
that the number of trials «, number of successes k, and probability of success p
satisfy a given set of conditions. Of these approximations we will present the
DeMoivre and Poisson approximations and the regions where the approximations
are reliable.

DeMoivre-Laplace Approximation. For np(\ — p) > 1 and \k — np\ of the order
ofy/np{\ -p),

\2 ^
^ / d -/>)--* - i F«Pi- fe^ (1.8)

y/2nnp(\ -p) I 2np(\-p)\

Poisson Approximation. For n ^> \,p <̂C 1, and np of order 1,

(1.9)

Approximation of Regions of Successes in Bernoulli Trials. Say that we are inter-
ested in approximating the probability that the number of successes k in n repeated
trials of a Bernoulli experiment is in the range kx < k < k2. If this range of successes

Figure 1.1 Plots of P (k successes out of n trials) for/? = 0.6 and n — 5, 10. 50.

0 1 2 3 4 5 k 0 1 2 3 4 5 6 7 8 9 10 k 0 10 20 30 40 50 k

N = 5, p = 0.6 N = 10, p = 0.6 N = 50, p = 0.6

Binom(k, 5) Binom(k, 10) Binom(k, 50)

0.04

0

0.12

0.08

P(k successes)P(k successes)
0.3

0.2

0.1

• 0

P(k successes)
0.4

0.3

0.2

0.1

0-

{l)Ai-prk^e^^f
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contains values that satisfy the DeMoivre-Laplace approximation, then the summa-
tion can be approximated by using the error function or the O(x) function as follows:

«,V«/ \y/np(l-p)/ \Jnp(l-p)J
(1.10)

PX 1

where O(x) = —1= e~^l2dy
J-oo V27T

The <D(JC) can only be determined by numerical integration as there is no anti-
derivative and it is convenient to use the table given in Appendix E.

EXAMPLE 1.6 (APPROXIMATIONS)

Consider the experiment of transmitting a single binary symbol across a commu-
nication channel that has an error probability P(error) = 0.01 (a pretty poor chan-
nel). Suppose that 1000 symbols are transmitted independently.

(a) Determine exactly the probability that exactly 10 errors occur in the 1000
trials.

(b) Are the conditions satisfied to use the DeMoivre-Laplace approximation? If
so, evaluate the probability using the approximation and compare to the
results in (a).

(c) Are the conditions satisfied to use the Poisson approximation? If not,
calculate the probability using the approximation and compare to exact
answer.

(d) Determine exactly the probability that the number of errors is greater than 7
but less than 16. Also use the DeMoivre approximation to determine the
probability and compare it to the exact answer.

(e) Assuming 10,000 independent transmissions across a channel that has an
error probability of 0.0001, determine the probability of exactly one error in
the total transmission. Are the conditions satisfied to use the Poisson
approximation? If so, determine the approximate results and compare to
the exact results.

SOLUTION

(a) Using Eq. (1.6), the Bernoulli trials result, gives

/•(exactly 10 errors in 1000 trials) = (!^° J(0.01)l0(0.99)990 = 0.12574

ff'Va-prW^^W-A^
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(b) To see if the conditions are satisfied, it is necessary to calculate the following:

np{\ -p)= 1000(0.01)(0.99) = 9.9

\k-np\ = \\0- 1000(0.01)1 = 0

v V O -P) = v/1000(0.01)(0.99) = 3.1464

Since np(\ —p)>\ and \k — np\ is of the same order of as y/np{\ —p), the
probability of exactly 10 errors can be approximated by the Gaussian
function from Eq. (1.8) as follows:

( Z°Y^(0.99r « ' exp l - ( 1 Q - 1 Q ) ) - l = 0.126809
V 10 / V2^3.1464 P ( 2(9.9) J

The exact result and approximate result differ in the third decimal. Although
close, since np(\ — p) is only an order of magnitude rather than ^> 1, there is
a loss in accuracy.

(c) To use the Poisson approximation the conditions n ^> l,p <$C 1, and np of
order 1 must be satisfied. At 1000, n is big enough, at 0.01 p is is small
enough, but np = 10 is only marginally of order 1. Therefore we expect that
the Poisson approximation will be marginal. Using the approximation given
in Eq. (1.9) anyway gives

11^°Vo.Ol)lo(O.99)990 « e ( ~ 1 0 ) ^ = 0.12511

It is seen that this result is still pretty close to the exact value of 0.12574
determined in part (a).

(d) Since |8 - 101 and 115 - 101 are of order 3.1464 and 1000(0.01)(0.09) =
9.9 is marginally ^> 1, then the approximation given in Eq. (1.10) can be used
as follows:

s(T)^^""-(^)-Ci^)
= O(1.589) -<£(-0.635647)
= 0.94408 - (1 - 0.73748) = 0.68156

(e) The probability of exactly one error is given by the formula (1.6) as

/ exactly 1 error \ /10 ,000\ 1 Q
P[ I = ( )(0.0001)l(0.9999)9

Vin 10,000 trials/ \ \ JK

= 0.367898

To use the Poisson approximation the conditions n ^> 1, p <$C 1, and np of order 1
must be satisfied. At 10,000, n is big enough, at 0.0001, p is is small enough, and

N9999
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np — 1 is definitely of order 1, so all conditions are satisfied and the approximation
should be very good. The approximation from Eq. (1.9) is as follows:

v9999 m1

e{-l)±-y = 0.36788
('10 '1

000 ')0.00011(0.9999r

It is seen that the approximation is accurate to the fourth decimal place.

Multinomial Distribution. A combined experiment that is an extension of the
Bernoulli trial experiment just described, which resulted in the binomial distribution,
is the case of multiple occurrences of several different events on multiple trials of the
same experiment. Consider an experiment S\ : (Sx, 3Fx, ^i(-))- Define a set of
events Ah i — 1 to /c, consisting of elements of Sx such that their union is the certain
event, they are pairwise disjoint, and their probabilities are given by P(A() — pt for
i = 1 to k.

Define a new experiment $ by $ = Sx ®S\® • • -® $\ described by
S : (S, # \ £?{.)). Assume that this represents n independent trials of the same
experiment S{. Let nh i — \ to /c, be the number of times event Af occurs in the
new experiment, which is composed of n repeated trials. Also assume that ni > 0
and nx + n2 + h nk — n.

It can be shown that the probability that Ai occurs exactly nl times in the n trials is

(Ax occurs exactly nx times, ^
A2 occurs exactly n2 times,

Ak occurs exactly nk times )

n\
nx\n2\. •«*!

/7i tU

Pi Pi 'Pk (1.15)

EXAMPLE 1.7

An archer shoots at a target on a single trial of an experiment. Assume that the
following events are defined: A{ the arrow hits the bull's eye, A2 the arrow hits the
first ring of the target not on the bulls eye, and A3 the arrow misses the target entirely.
The probabilities of these events are given by

P(^!) = 0.1, P(A2) = 0J, and P(A3) = 0.2

Assume that the archer shoots a number of arrows and that the results of each arrow
shot are independent from the others. Find:

(a) The probability that on six arrows shot, the archer hit the bulls eye twice, hits
the ring three times, and misses the target once.

(b) The probability that on five arrows shot, the archer hits the bulls eye three
times and the ring twice.

p

= 0.36788
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SOLUTION

The desired probabilities are determined from Eq. (1-15) as follows

( A{ occurs exactly 2 times, \ ^
A2 occurs exactly 3 times, = —-— (0.l)2(0J)\0.2)1 = 0.04116
A3 occurs exactly 1 times /

( A{ occurs exactly 3 times, \ ^,

A2 occurs exactly 2 times, = —-j—(0. l)3(0.7)2(0.2)° = 0.049
A3 occurs exactly 0 times /

Hypergeometric Distribution. In the previous compound experiments the trials of
the experiment were considered to be independent. A very important class of experi-
mentation problems is sampling done without replacement, for a finite number of
elements, and without independent trials. For example, if a is the number of success-
ful (s) elements and b is the number of failure ( / ) elements and n elements are
drawn at random but not replaced, the corresponding outcomes of the experiment do
not contain all possible ^-tuples of s and/. So the rc-tuple {s, s,..., s] and sequences
containing more than a successes are not possible.

It can be shown for this experiment that the probability of k successes out of n
trials can be determined as

(a)( b )\k)\n-k)
P(k successes in n trials) = x ; v r-^-, k = 0, 1 , . . . (1.16)

a + b
n

The next example is typical of the type of problems for which the hypergeometric
formula above can be used.

EXAMPLE 1.8

Consider a standard deck of 52 playing cards with 4 aces, 4 kings, . . . , and 4 twos.
Say we draw 5 cards at random without replacement. What is the probability that our
draw consists of (a) exactly 3 aces? (b) no aces? (c) more than two aces?

SOLUTION

(a) Using the formula (1.16) above, we find the probability of drawing exactly
three aces as

DC 48

P(3 successes in 5 trials) = — / 4 g X
 7~ = 0.001736

5

(a)

(b) A2 occurs exactly 2 times,
A3 occurs exactly 0 times 3!2!0!

-(0.1)3(0.7)2(0.2)° = 0.049

Hypergeometric Distribution. In the previous compound experiments the trials of

It can be shown for this experiment that the probability of k successes out of n
trials can be determined as
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(b) Using the formula (1.16) above, we find the probability of drawing exactly
zero aces as

(4)( 4 8 )
I o M 5 - 0 /

P(0 aces in 5 trials) = v ' x ^ - = 0.6588
( 5 )

(c) Using the formula (1.16) for two independent events, we find the probability
of drawing more than two aces as

P(more than 2 aces in 5 draws)

= P((exactly 3 aces in 5 draws) U (exactly 4 aces in 5 draws)

(X-s), C)G-«)+ - ' , ' = 0.001754469
48 + 4 \ Z48 + 4

5 V 5

1.2.3 Counting Experiments

A special class of compound experiments deal with successive application of experi-
ments where the total experiment may be stopped at any point depending on the
results from the current experiment. Two common distributions result from these
compound experiments.

Geometric Distribution. The geometric distribution is a result of another form of
compound experiment. Define a countable number of identical experiments
Sk : (S*, ̂ > , &k(')) f o r k= 1,2,. . . . Each of these experiments will be of the
Bernoulli type (two possible outcomes) previously discussed, with identical prob-
abilities of success; the result of the experiment, if performed, is independent of
previous or future experiments. The new experiment is described as follows: Perform
experiment <̂ j if a success is obtained, then stop; if a success does not happen, then
perform experiment S2\ if a success occurs, then stop otherwise. Continue this
process until a success occurs. Thus the number of trials is not the same each
time the compound experiment is performed, and thus the sample space is not a
cartesian product.

Yip is the probability of success on each experiment, then the sample space, Borel
field and probability measure can be described as follows: The elementary events are
sequences of 1 's (for success) and 0's for failures but with the property that they end
on a 1 and only have 0's preceding the 1. Thus S can be described by

S = {(1), (0, 1), (0, 0, 1), . . . , (0, 0, . . . , 0, 1), ...} (1.17)

Notice that (1, 0), (0, 1, 0), (1, 1), etc., are not elements of the sample space since
the new experiment would stop at a 1 and not proceed to the next one. Events that

P(0 aces in 5 trials) = = 0.6588
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are collections of outcomes are not of the same sequence length. For example,
{(1), (0, 1)} is an event where a success is obtained in less than or equal to 2 trials.

The probability measure ^(.) can be specified by giving the distribution function
for the elementary events. The P{(1)} is the probability of getting a success on the
very first trial. Since the probability of a success on the first experiment is /?, the
probability of getting {(1)} is also/?,

P{(l)}=P (1.18)

The probability of getting {(0, 1)} equals the probability of getting a failure on
performing the first experiment and getting a success on the performance of the
second experiment. Since results of each experiment are independent if performed,
the P{(0, 1)} can be written as a product:

P{(0,l)} = (l-p)p (1.19)

Similarly the probability of the elementary event consisting of a sequence of
k — 1 failures (0's) followed by a single success (1) is

P{(0, 0 , . . . , 0 , 1)} = (1 -pf-lp

(k — l)zeros

These probabilities as k -> oo determine the distribution function, or equivalently
the probability measure ^( . ) . It can be shown that

The Borel field is again defined as the power set of S, that is, all possible subsets
of S. The probabilities of arbitrary events that are the subsets of S can then be found
by adding up the probabilities of the elementary elements in the event. For example,
define the event A to be the set of outcomes such that a success occurs on the
performance of an odd number of experiments. Thus A can be written as

A = {(1), (0, 0, 1), (0, 0, 0, 0, 1 ) , . . . , (0{2k\ 1),...} (1.22)

The probability of A can be determined by adding up the probabilities of the
elementary events and using the properties of a geometric sequence as follows.

P(A) = P({(1), (0, 0, 1), (0, 0, 0, 0, 1 ) , . . . , (0(2k\ 1),...})

k=o \1 -(1 -») / 2-/7

(1.23)

Negative Binomial Distribution. An extension of the geometric experiment is a
compound experiment in which the number of trials necessary to obtain k successes
is desired rather than the number of trials needed for a single success. The basic
underlying experiment is to define a countable number of identical experiments
Sk : (Sk, <Fk, 0>k (.)) for k — 1, 2, Each of these experiments will be of the
Bernoulli type with identical probabilities of success, and the result of the experi-
ment, if performed, is independent of previous or future experiments. The new

Ed-/»)*-'/» = 1
k=l

(1.21)

(1.20)

(1-/7)2V=P 1

l-(l-p)2,

1
2-/7
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experiment is described as follows: Perform experiment 8i if a success is obtained
and it is the Mi, then stop; if not, continue to the next experiment ii+x. Continue this
process until the Mi success occurs.

Let x be the number of trials in which the k\h success occurs; then the probability
of that event can be shown to be

P(event that the kth success occurs on the xth trial)

= ( 1 1 ! V ( l ~ p)X~k * = * . * + l > * + 2 , . . . (1 .24)
The following example illustrates the type of problems that will use the negative

Binomial distribution given above.

EXAMPLE 1.9

Suppose the probability of getting a/2 on the single toss of a die is 0.2. Find (a) the
probability that the fourth f2 occurs on the 6th trial; (b) that the fifth f2 occurs before
the 7th trial.

SOLUTION

(a) P(event that the 4th success occurs on the 6th trial)

= ( 6 " X )0.24(l - 0.2)6~4 = 0.02048 (1.25)
\ 4 - 1/

(b) P(event that the 5th success occurs before the 7th trial)

= P((event that the 5th success occurs on the 5th trial)

U event that the 5th success occurs on the 6th trial))

= ( )0.25(l-0.2)5~5 + ( ~ )0.2 5( l -0.2) 6" 5 (1.26)
\ 5 — 1 / \ 5 — 1 /

1.2.4 Selection Combined Experiment

A different type of combined experiment will now be considered that is a combina-
tion of three or more experiments. For purpose of illustration only three component
experiments are presented. Let the three experiments be defined as

£0:(S0,&0,&0(.)l &X:(SU&X,&X(.% S\ : (S2, ^ 2 , ^ 2 ( . ) )

The sample space for $0 consists of only two outcomes (ex and e2). These outcomes
serve to help us select which one of the other experiments will be performed. If the
outcome is e}, then $x is performed with outcome a,; if the outcome is e2 then S2 is
performed with outcome /?7. Thus the combination experiment $ : (S, #", ^(.)) can
be described as follows: The sample space S will consist of ordered pairs of elements



1.2 COMBINED EXPERIMENTS 19

the first either ex or e2 and the second either a, e Sx or fit e S2. Thus a trial of the
combined experiment results in an outcome £ = (e,S), where ee{ex,e2) and

The Borel field 3F will be defined to be the set of all possible subsets of S, and the
associated probability measure can be described as

P([(ehSj)}) = P0(ei)'P(dj) where

P(5j)=P{(<*j) if <?,- = *! or (1.27)

P(SJ) = P2(PJ) ifei = e2

The product of the probabilities is because of the assumption that the experiment <f0
is independent of the experiments S\ and S°2.

EXAMPLE 1.10

Define three experiments by <f0 : (So, « "̂0, ^0(-))» ^i : (si» ^"i» ^i(-)X and <f2 : (52,
#"2, ^2(-))- Experiment ^ 0 is performed with So = { ĵ, <?2}- If the outcome is ex then
box 1 is chosen and experiment S\ performed, while if e2 is the outcome, S2 is
performed. Experiment Sx is the random selection of a colored ball from a box with
outcomes Sx — {r, w, b} where r means red, w means white, and b means blue ball
chosen. The probability distribution for this experiment is given by

Px(r) = 0.5, P{(w) = 0.3, Px(b) = 0.2

Similarly S2 is the random selection of a colored ball from box 2 having sample
space with outcomes S2 = {r, w, b] and probability distribution given by

P2(r) = 0.4, P2(w) = 0.1, P2(b) = 0.5

(a) Describe the sample space S for the this new compound experiment.
(b) Assume P0(ex) = 0.6 and describe the probability measure .^(.) for this new

compound experiment.
(c) Show the event that the ball drawn is red.
(d) Show the event that box 1 is selected.

SOLUTION

(a) The new sample space S consists of ordered pairs

S = {(ex,r), (ex,w), (ex,b), (e2, r), (e2, w), (e2, b)}

This sample space is illustrated in Figure 1.2(a).
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f*(e1?r) •(e2 , r)N \ ( • (el5r) • (e2,r) j (• (e1?r)
 N« • (e2,r)

! j i !
j • (el5w) • (e2,w)! • (ebw) • (e2,w) ! • (ehw) | • (e2,w)
| j I j
^ . b ) •(e2,by •(eltb) •(e2,b) \Zj£iVj# (e2,b)

(a) Sample Space (b) Event Red (c) Event Box 1

Figure 1.2 Set diagram for (a) Sample Space S, (b) Event red, (c) Event Box 1.

(b) The ^(.) is specified by giving the distribution function. Using the results
shown in the previous section because the experiments were given as
independent, the distribution function is determined as

Outcome —> Probability

(e,,r) -* P{(el,r)]=P0{el]-Pl{r) = 0.6-0.5 = 0.3

(e,, w) -+ P{(e^w)) = P0{e{} • P,{vv} = 0.6 • 0.3 = 0.18

(e,, b) - • P{{ex, b)} = P0{ex} • P, {b} = 0.6 • 0.2 = 0.12

(e2, r) -> P{(e2, r)} = P0{e2} • P2{r] = 0.4 • 0.5 = 0.2

(e2, w) -+ P{(e2, w)} = P0[e2] • P2{w} = 0.4 • 0.3 = 0.12

(e2, b) -+ P{(e2, b)} = P0{e2} • P2{b] = 0.4 • 0.2 = 0.08

(c) The event the ball is red is shown in the Figure 1.2 and given by

Ball is red= {(>,, r), (e2, r)}

(d) The event box 1 is chosen, also shown in Figure 1.2, is as follows:

Box 1 is chosen = [(e{, r), (ei, w), (ex, b)} •

1.3 CONDITIONAL PROBABILITY

The probability measure allows us to calculate the probabilities of all events that are
members of the Borel field for the defined experiment. It will become useful to
define the concept of conditional probability of events. Given a conditioning event C
such that P(C) > 0, the conditional probability of any event A assuming C is
defined as

P M | C)4^£) (1.28)

The following examples consider the calculation of conditional probabilities for
discrete and continuous sample spaces. It is seen that the fundamental set operations
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and the probability measure for the underlying experiment are used to obtain condi-
tional probabilities.

EXAMPLE 1.11

Consider an experiment defined as a single toss of a "crooked" die with sample
space S = {fl,f2,f3,f4,f5,f6}. The probability measure, maybe based on past
history, is known to be

P{fx\=\ P{f2)=\ ^{/3)=g
P{f*\=-k P[fs\ = h P{fe}=j-2

Let the conditioning event C be given as C = {/i,/3,/5}, the face of the die is odd,
and calculate the P(A | C) where A — {/i,/2}, the face is less than or equal 2.

SOLUTION

By the definition of conditional probability, Eq. (1.28), P(A\C) is

pr,ir,_P^^C) _P({fuf2}n{f{J3J5})

P({fi}) = 1/2 = 1 6
P{{fxJ*Js\) 1/2+1/8+1/32 21

EXAMPLE 1.12

Consider the experiment of tossing two altered dice independently where the indi-
vidual probabilities are as given in Example 1.11. Determine the probability of the
event that one die is a six conditioned on the event that the sum of the two dice is 10.

SOLUTION

The sample space for the new experiment is the cartesian product of the single toss
experiment, and thus the sample space S consists of the set of all ordered pairs with
ft as first element and Jj as second example:

S = { ( ^ , J 5 ) : U = 1 , 2 , . . . , 6 }

The probability distribution for the sample space is the mapping from S to the reals,
and by the independence condition, it is determined as the product

{fnfj) -> P{(fiJj)) = Pifi) ' P{fj) for / , 7 = 1 , 2 6

P(A n c)

P(C) PdfufiJs})

..., <
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The events under consideration are as follows:

{one die is 6} = {(f6jj) :y = 1, 2 , . . . , 5} U {{ft,f6): i = 1, 2 , . . . , 5} U {(/6,/6)}

{sum of dice equals 10} = {(/4,/6), (/6>/4), (/5,/5)}

{sum of dice equals 10} n {one die is 6} = {(ft,,f6), (f6<A)}

From the sets above the conditional probability desired is seen to be

. . . , . . . . i r m /'({one die is a 6} n {sum is 10})
F({one d le ,s a 6} | {sum ,s 10}) = P ( { s u m is 1 0 } )

PUfA.fe)) + P{(AJ6)) + PiifsJs)}
(l/16)(l/32) +(1/32)(1/16)

(l/16)(l/32) + (1/32)(1/16) + (1/32)0/32)

EXAMPLE 1.13

Define an experiment that has as outcomes, t, the set of real numbers greater than or
equal to zero and that the outcome represents the time until a certain device fails.
The probability measure for the experiment is described as

P(failure time t < x) = 1 - e~x for x > 0

The Borel field is given by the smallest field containing the intervals {t: 0 < t < x)
for all x > 0. Find the ^(failure time t < 2 \ failure time t > 1).

SOLUTION

From the definition of conditional probability the probability that the time to failure
is less than or equal 2 for the device given that the failure time is greater than 1 is

n/rx- -i ^i . rr- M i n P({failure t < 2} n {failure t > 1})
^({failure t < 2} \ (failure t > 1}) = - ^ " . / ] i n

P({failure t > 1})

Using set operations gives

{failure t < 2} n {failure t > 1} = {failure 1 < t < 2}

and the denominator is seen to be

/•({failure / > 1}) = 1 - ^({failure t < 1})

= 1 - ( 1 -e-]) = e~l

P{(f4J6))+P{(f6J4)}

_4

~5

Using set operations gives

{failure t < 2} n {failure t > 1} = {failure 1 < t < 2}

and the denominator is seen to be

^({failure / > 1}) = 1 - ^({failure t < 1})

= 1 - ( 1 -e-]) = e~l
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Substituting these two results into the first equation gives us the following result

^ f a i l u r e , < 2} | ( fa i lu res i ] ) = ^ ^ ^ l ^ l
/^({failure t > 1})

=
( i-e~y-g~'>=i-g- .

e~l

There are a number of special cases that deserve mentioning with regard to
conditional probability. Usually A and C are overlapping but not necessarily
included. The following special cases are for inclusion and nonoverlapping events:

If A C C, then A n C = A; thus P(A | C) - ^ \

If ^ D C , t h e n ^ n C = C;thusP(,4|C) = - ^ = 1 (1.29)

If ^ n C = 0 , then P(A \ C) = ]-~=~ = 0

If events 4̂ and C are independent, P(^ n C) = P(A)P(C)9 then conditional prob-
abilities for the events can be written as

Therefore, if events are independent, the conditional probabilities of the events are
the same as the unconditional probabilities

1.3.1 Total Probability Theorem

Given n events AX,A2,... ,An such that

A{ HAj = 0 for all i =fij (mutually exclusive)
(1.31)

U A{ — S (exhaustive)
/=i

Then it can be shown that the total probability of an arbitrary event B can be written
in terms of the following conditional probabilities as

P(B) = P(B\Al)P(Al) + P(B\A2)P(A2) + • • • + P(B\An)P(An)

= £,P(B\Ai)P(Ai) °'3 2 )

!=1

ifAcC, then AC\C = A\ thus P(A \ C) =

If A D C, then A n C = C; thus P(A | C) =

If/4nC = 0,thenP(^|C) =
P(C)

= 0

P(A)

P(C)

P(C)

P(C)
= i (1.29)

P(A\C) =
P(A n C) P(A)P(C)

= P(A)
P(C) P(C)

P{C\A) =
P(C(1A) P(C)P(A)

= P(C)
P(A) P(A)

(1.30)
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1.3.2 Bayes's Theorem

A very important theorem that has many applications is Bayes's theorem which
involves the determination of conditional probabilities P(Ak | B) under the same
framework as above. It is easily shown that

P(Ak\B)= P(B\Ak)P(Ak)
P(B\A[)P(Al)+P(B\A2)P(A2) + •••+ P(B\A,,)P(An)

= P(B\Ak)P(Ak) (1.33)

£p(5M,)/U)
1=1

An example is now presented that is representative of the type of problem that can be
solved using Bayes's theorem and the total probability theorem.

EXAMPLE 1.14

Consider an experiment involving a random selection of one of three boxes. The
random selection is of a single ball from the box chosen. The boxes contain red,
white, and blue balls with specified probabilities of selection. Assume that

P(boxl) = 0.5 P(box2) = 0.3 F(box3) = 0.2
P(red|boxl) = 0.4 P(red|box2) = 0.5 P(red|box3) = 0.1

P(white | boxl) = 0.3 P(white | box2) = 0.3 P(white | box3) = 0.2
P(blue | boxl) = 0.3 P(blue | box2) = 0.2 P(blue | box3) = 0.7

(a) Find the probability of getting a red ball.

(b) Find the conditional probability, P(A \ B), where B is the event box 2 selected
and A is the event a red ball is selected.

SOLUTION

(a) The total probability theorem can be used to obtain the probability of getting
a red ball as follows:

P(red) = P(red | box 1 >P(box 1) + P(red | box2)F(box2) + P(red | box3)P(box3)

= 0.4 • 0.5 + 0.3 • 0.5 + 0.1 • 0.2 = 0.37

(b) The probability of box 2 given that the ball is red can be determined by using
Bayes's theorem and the results of part (a) as

P(box2 | red) =
 / 3 ( r e d | b C ; x 2 ) P ( b O x 2 )

p(red)

= ^ = 0.4054
0.5-0.3

0.37



1.4 RANDOM POINTS 25

1.4 RANDOM POINTS

The random placement of points in an interval is an important problem. Concep-
tually it is analogous to random arrival times used in basic inventory problems, and it
is used as a basis for shot noise in communication theory. The random placement of
the points can be uniformly or nonuniformly distributed on an interval as seen in the
following sections.

1.4.1 Uniform Random Points in an Interval

Define an experiment $ : (S, 3F, &{.)) as the random placement of a point t some-
where in the closed interval [0, T] as shown in Figure \3(a). The sample space is
S = {t: 0 < t < T}, <F is the smallest field containing the sets {t: t < t{] for all
tx e S, and ^(.) is defined by P{t: t < tx} = tx/T, for all t{ e S. Thus it can be seen
that the probability that the point selected will be in any given interval is the ratio of
that interval's length to the total length T. Probabilities of other events that are
unions of nonoverlapping intervals can be obtained by adding up the probabilities
for each of the intervals.

The purpose of this section is to talk about the random placement of n points, not
just one point, in an interval [0, T] see Figure 1.3(6). A convenient way to design
such an experiment is to form a new compound experiment Sn : {Sn, #"„, £?„{.))
composed of ordered ^-tuples of times, (tx, t2,..., tn), obtained from repeating the
experiment $ defined above independently. Assume an independence of the trials so
that the probability measure can be described as the product

P{tx <xl,t2<x2,...,tn<xn}=P{t{ <x{}P{t2<x{}...P{tn<xn} (1.34)

The Borel field is defined to be the smallest field containing the events {tx < x{,
t2 < x2,..., tn <xn] for all x{, x2,..., xn e [0, T]. We are interested in answering
questions relating to calculating the probabilities that a certain number of points fall
in a given interval or intervals.

{I • 1}
0 l T

(a) Sample space

0 ti I, t-i ti X

(b) Random placement of n points

k points
l-« • ( . . . . ] . • 1
0 ^ ^ T

(c) k points in interval ^ out of n points

Figure 1.3 Random times in interval [0, 7"].

=p\h P\tn<xn)
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Say that the probability that exactly k of the points fall in a given interval (tx, t2]
of length ta as shown in Figure 1.3(c) is desired. Let A be the event that on a single
trial the point selected at random falls in the given interval. Using the uniform
probability measure ^(.)> we give the probability of A by P(A) = (t2 — tx) = ta.
Thus, on n independent trials, the probability of getting k points in the interval is
binomially distributed as

( n\
\pk(\ -pf~k

k )

wherep = | (1.35)

Further assume that /?, the number of trials, is very large, n >̂ 1, and that the
relative width of the interval is very small, ta/T <$C 1, and k is of the order nta/T. The
resulting Poisson approximation is written as

/ exactly k points in (tx, t2) \ (zUlA ^ntaiT^
V out of n trials / GXPV T ) k\ (1.36)

where ta — t2 — t{

In the limiting case this result will give an interpretation in terms of an average
number of points per unit interval. If n —• oo, T —> oo, and n/T -» A, then it can be
shown that

lim ^(exactly 1 point in ta)

*.-+<> I -l (L37)

Another probability of interest is that of getting exactly ka points in interval ta and
exactly kb in interval tb as indicated in Figure 1.4.

Let A,B,C equal the events that on a single trial of the experiment exactly one
point falls in ta,tb, and not in ta or tb, respectively. Then the probability of getting
exactly ka points in interval ta, exactly kb points in interval tb, and exactly
n — ka — kb points not in ta or tb out of n trials can be obtained from the multinomial
result as

( K ^ ta \
kb'mtb (tat(tb\kb(\ ta tbX~K'kb am

n-ka~kb\-W{n-ka-kb)\\T) \T) V'T'T)
 ( L 3 8 )

t ta or tb )

< > < >

0 ka points kb points T

Figure 1.4 Exactly ka points in interval ta and exactly kb in interval tb.

P(k points in (/,, t2) for n trials)

n-ka-kb

n\
ka\kb\(n -ka~ kh)\ T

ta tb
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The individual events exactly ka points in ta and exactly kh points in tb out of n trials
have probabilities as follows:

^.nu=(;j(ro-r-
(1 39)

^.n«=(;j(|)"(.-r"
Since the product of the above two probabilities does not equal that of Eq. (1.38),

the events exactly ka points in ta and exactly kb points in tb out of n trials are not
independent events.

1.4.2 Nonuniform Random Points in an Interval

In certain problems the random points are not placed uniformly in the interval. A
common way to describe a nonuniform rate is to assign the probability measure by
using a weighting function oc(t) that satisfies the following properties:

a(0 > 0 for all t e [0, T]

[T (1.40)
a(t)dt = 1

Jo
On a single trial of the experiment, the random placement of a single point in the
interval [0, T], the probability that the point selected is in {t{, t2} is given by

P{te(t{,t2]} = \\{t)dt (1.41)
hi

Thus, if oc(t) has a peak at t = tx, it means that the point selected at random has a
higher probability of being close to tx than other values of t. If n independent trials
of this experiment are performed, the probability of exactly k points out of n trials
being in the interval {tx, t2} can be determined from Eq. (1.6) as

/ * pointsman (»\Al y,-*
V out of n trials / \k)

where p = P{t e (t{, t2]} = a(f) dt
J/,

For the case of a nonuniform rate with the assumption that «, the number of trials, is
very large, n ^> 1, and that the relative width of the interval ta = (t{, t2) is veiy
small, ta/T <$: 1, and k of the order nta/T, the Poisson approximation results in the
following probability where p is given as above:

„ / exactly k points in (f,, u) \ . x (np)
Pi J ^r ^ • i ^ e x P(- ' ^ ) -7T~ (I-43)

\ out of n trials ) k\

(1.42)
0->

.til) dt
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1.5 SUMMARY

In this chapter the mathematical definitions of an experiment in terms of a sample
space, a Borel field, and a probability measure were given. The concept of an
experiment is basic to the understanding of random variables and random processes
to be discussed in later chapters. The assignment of the probability measure for
several experiments obtained by combining other experiments led to the binomial,
multinomial, and hypergeometric distributions.

The important concept of conditional probability was defined, and several exam-
ples were presented to illustrate the relationship to the sample space and the prob-
ability measure. Using this definition a discussion of the total probability theorem
and the Bayes theorem for obtaining the a posteriori probability followed. These
concepts have a fundamental role in the detection and estimation of random vari-
ables and random processes as will be seen in Chapters 2, 8, and 9.

The chapter concluded with a short discussion on the random placement of points
in a given interval. These experiments are important in analyzing problems involving
random times of arrival and other related problems.

It was not the intent of this chapter to give an exhaustive presentation on experi-
ments and their use but to provide background material that would be used in the
remainder of the text. For those wishing a more thorough presentation there are
many excellent texts, including Papoulis [1], Freund [3], Drake [4], and Parzen [7].

PROBLEMS

1.1 A regular 6 sided die is tossed twice, (a) What is the probability that the sum
of the tosses is 6? (b) What is the probability that the die is a 1 on the first
throw given that the sum is 6? (c) What assumptions did you make in
obtaining your answers?

1.2 For a standard deck of 52 playing cards, what is
(a) the probability of being dealt at least 3 aces in a 5 card poker hand?
(b) the probability that a card drawn at random is a red card or an ace?

1.3 A small deck of cards contains four kings and four queens. Two cards are
drawn without replacement. For this problem the suit is of no concern. Define
an experiment, assuming that at the first draw each card is equally likely and
that the second card drawn is equally likely from the remaining cards.

1.4 If the events A and B are mutually exclusive events and if Ac and Bc represent
the compliments of A and B, respectively, prove or disprove that
(a) Ac and B are mutually exclusive events.
(b) Ac and Bc are mutually exclusive events.
(c) A and B are independent events.
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(d) Ac and S are mutually exclusive events.

(e) A and 0 , the null event, are mutually exclusive events.
(f) Ac and Bc are independent events.
(g) A and Bc are independent events.
(h) A and S (the certain event) are independent events.
(i) Ac and 0 , the null event, are independent events.

1.5 A fisherman caught 10 fish, 3 of which were under six inches. Two of them
are selected at random and measured. What is the probability that both fish
selected are under six inches?

1.6 For three tosses of a fair coin, determine the probability of the following
sequences:
(a) HHH.
(b) HTH.
(c) Two heads and one tail in any order.
(d) More heads than tails.
(e) More heads than tails given at least one tail.
(f) More heads than tails given less than two heads.

1.7 We have a box full of 50 balls. A trial of an experiment is the selection of a
ball at random from a box. There are 5 balls of each of 10 different colors—
call them C{,C2, • • •, Qo-
(a) What is the probability of getting exactly 3 balls of color Cx in 10 trials

of the experiment with replacement?
(b) What is the probability of getting exactly 3 balls of color Cx in 10 trials

of the experiment without replacement?
(c) What is the probability of getting exactly 3 balls of C{, 2 balls of C2, and

3 balls of C4 in 10 trials of the experiment with replacement.

1.8 We have a "crooked" coin, call it c, with the probability of getting a head
being | and a "fair" coin, call i t / with probability of getting a head of \. An
experiment is defined as selecting one of these coins at random, with
probability of selecting the fair coin of 0.6, and flipping the coin selected.
A single trial results in a head (h) or a tail (t).
(a) Determine the probability of getting a head on a single trial of the

experiment.
(b) Given that on a single trial a head has occurred, determine the probability

that the crooked coin was selected.
(c) Given two trials and that both outcomes were heads determine the

probability that the crooked coin was selected.
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1.9 Consider an urn with 3 red, 2 white, and 1 blue ball. An experiment consists
in the drawing of an ordered pair of balls without replacement.
(a) Give the sample space for this experiment.
(b) What are the probabilities of all the elementary events. Explain any

assumptions you made in assigning these probabilities.
(c) Calculate the probability of the event that a blue ball is drawn in a single

trial of the experiment above.

1.10 Consider an urn with 3 red, 2 white, and 1 blue ball. An experiment is the
drawing of an ordered triple of balls without replacement.
(a) Give the sample space for this experiment.
(b) What are the probabilities of all the elementary events? Explain any

assumptions you made in assigning these probabilities.

(c) Calculate the probability of the event that none of the three balls drawn is
blue in a single trial of the experiment above.

1.11 An urn contains two white balls and six red ones.
(a) What is the probability that one ball drawn at random is white?
(b) What assumptions did you make in arriving at your answer?

1.12 The probability that a rifleman hits the bull's-eye is 0.3, the probability that he
hits the target but not the bull's-eye is 0.6 and the probability that he misses
the target all together is 0.1. Determine the probability that in five shots at the
target he will hit the bull's eye twice, the target but not the bull's eye twice
and miss the target once.

1.13 In playing an opponent of equal ability, which is more probable: to win
exactly three games out of four or to win exactly five games out of eight?
Substantiate your answer.

1.14 A weighted coin is tossed ten times. On each trial the probability of a head is
0.8 and the probability a tail is 0.2. Determine the probabilities of the
following events, (a) Exactly 5 heads, (b) At least 5 heads, (c) More than 5
heads, (d) Number of heads is greater than or equal to 5 and less than or
equal to 7.

1.15 Given that a team is leading the world series 3 games to 2. What is the
probability they will win the series if each team has an equal probability of
winning at each game? (Remember the first team to win 4 games wins the
series.)
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1.16 We have 10 people each on a bus to Las Cruces which has four stops. Each
person, acting independently from the others, has a probability of \ of getting
off at each stop.
(a) What is the probability that on one trip to Las Cruces that exactly three

people get off on stop 1, exactly two people get off at stop 2, exactly two
people get off at stop 3, and exactly three people get off at stop 4?

(b) What is the probability that none get off at stop 1?
(c) What is the probability that less than 8 get off at stop 1?

1.17 The probability of getting a head on a single flip of a coin is p. The coin is
tossed 10 times independently.
(a) Define the sample space for this experiment.
(b) Describe the probability assignment for the experiment.

(c) Give the event that an odd number of heads occur.

(d) Determine the probability of the event described in (c).

1.18 Given an honest standard deck of 52 playing cards a dealer draws one card at
random from the deck and records it. He then slips the card back into the
deck, shuffles, and is ready to draw another card.
(a) What is the probability that in 10 independent draws of the specified

procedure above he will draw two or more aces?

(b) If the card was not replaced after each draw but kept out of the deck,
what is the probability that of two cards drawn both are aces?

1.19 Say we have a hat with 10 letters, 3 a% 5 b% and 2 c's and a letter is drawn at
random from the hat recorded and replaced. This experiment is repeated
independently a number of times.
(a) What is the probability that on 10 draws that we get exactly k a'sl

Evaluate for k = 3.
(b) What is the probability that on 10 draws we get exactly 2 a's, 6 6's, and 2

c's?
(c) If we draw 10 times, what is the probability that we get more than 2 a's?
(d) If we draw 10 times, what is the probability that we get at least 2 a's?
(e) Determine the probability that we have 3 or 4 a's given that we have at

least two a's.
(f) Suppose that on the first 10 trials we get 5 a% 2 b% and 3 c's. What is the

probability that on the 11th trial that we get an al
(g) If the letters are not replaced, find the probabilities for the following

sequences: (a, a, a), (a, b, c), (c, c, c), and (a, a, b).
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1.20 Given experiments Sx and S2 which are defined as follows:

S\ :(S[,&
r
x,0

>
x(.)),Sx = { 1 , 2 } , ^ = power set of Sx,

0>x(.):P[l} = 2/3,P{2}=\/3

S2 : (S2, ^ 2 , 0>2(.)), ̂ 2 = {«» b), < 2̂ = P 0 W e r Set o f ^
(.):/>{a}=l/4,/>{&} = 3/4

(a) Give all elements of J^-
(b) Considering <f t and S2 to be independent experiments, define a new

experiment ^ = Sx 0 ^2>
 m e cartesian product, and specify its sample

space, £, Borel field, J^, and probability measure, ^(.) . Be specific.
(c) Specify, for the combined experiment $, the event that a 1 is obtained,

and find the probability for this event.

1.21 Let S\ \(Sx,&
r
x,0

>
x(.)) and i2 '-(S2^2^i(-)) b e independent experi-

ments with

Sx = [a, b, c}, 3Fx all subsets of S{, and

0>x : (P{a] = \/2,P{b} - 1/4, P{c} = 1/4)

52 = {1, 2, 3}, ^ 2 all subsets of S2, and

^ , :(P{l} = l/3,P{2}=l/3,P{3} = l/3)

(a) List the elements of the cartesian product space S — S{ 0 S2.

(b) What is the new ̂ (.) for this combined experiment?
(c) For this new sample space, list the elements of the event that the number

drawn is odd.

1.22 Say we have a big bag of red, blue, black, and white marbles. It is known that
the probabilities of taking a red, blue, black, or white marble from the bag at
random are, respectively, 0.3, 0.4, 0.2, and 0.1. Say we draw five marbles
(with replacement) from the bag and the results at each trial are independent.
(a) Define the sample space for this new combined experiment.
(b) How many elements are there in this sample space?
(c) Specify the event R that at least one of the marbles is red.
(d) Specify the event Q that exactly two of the marbles are red.
(e) Give any elementary event for the new experiment and find its prob-

ability.
(f) Determine the probability that of the five marbles drawn exactly two of

them are white and exactly one of them is red.
(g) What is the probability that the number of red marbles is greater than 1?

Less than 2?
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1.23 Evaluate the following integrals:

. f20 1 } ( * -10 ) 2 l ,
(a) —=—exp{ \dx

J - iov^lO F [ 200 j
_. f525 1 [ (x-500)2)
(b) J_4 2 5vso- e x pr"^oo-}^

1.24 A fair coin, /^head) = 0.5, is tossed five times. Determine the probability
that the number of heads occuring is greater than 2. Less than 2. Exactly
equal to 2. Either 1 or 2.

1.25 An honest die is rolled 1000 times.
(a) Determine the probability that the number of 3's is between 120 and 150.
(b) Find the probability that the number of 3's is less than 20.

1.26 Consider the number of 3's that result from 600 tosses of a fair six-sided die.
Find the probability that the number of 3's is between 60 and 140 inclusive.

1.27 An experiment of tossing a coin has the following outcomes: h, t, and e with
given probabilities P{h] = 0.5, P[t] = 0.495, and P{e] = 0.005 (e means
landed on edge).
(a) Give the exact expression for finding the probability that in 1000

independent trials that the number of heads is between and including
485 and 500.

(b) Give an approximate answer for the results in (a), if possible, and justify
your approximation.

(c) In 1000 independent trials, what is the exact expression for the prob-
ability that the coin lands on edge less than two times.

(d) Give an approximate answer for your results in (c), if possible, and
justify your approximation if you make one.

(e) Determine the probability that on 5 trials of the experiment we get exactly
two /z's, two t's and one e.

1.28 In a binary communication channel, the probability of making an error in the
transmission of a single binary symbol is p. Assume that digits are sent along
the channel independently.
(a) It is desired that the probability of 2 or fewer errors in the transmission of

100 symbols is 0.99. What is the largest value of p that satisfies this
condition?

(b) Let p = 0.001. If less than 2 errors occur in 100 trials, determine the
probability that there were no errors.
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(c) If p = 1, "a worthless channel," determine the probability that the
number of errors N out of 1000 trials is 400 < N < 600.

1.29 In a binaiy communication channel the probability of making an error on a
given transmission of a binary symbol is 0.01.
(a) In sending of 10,000 independent symbols, determine the probability that

the number of errors is between and including 95 to 100 errors.
(b) What is the probability that the number of errors is 2 or less in the

transmission of 100 symbols?

1.30 A player sits on the origin of a graph and flips a crooked coin where bias to
heads is given by P(H) = | . If the result of the toss is a head, he moves one
unit to the right, and if it is a tail, he moves one unit to the left. The coin is
flipped again, and he moves from his new position in the same way.
Repeating this procedure a total of 1200 times, what is the probability that
the player ends up sitting on a number N where 350 < N < 450?

1.31 If the probability that a person will catch a fish in 0.01 minutes is 0.02,
(a) Determine the probability that a person will not catch a single fish in one

hour.
(b) Find the probability that in 2 hours he will catch at least 4 fish.

1.32 Suppose that there is a diagnostic test for measles. Define C as the event that
a person tested has measles and A as the event that the test states that the
person tested has the measles. Assume that P(A \ C) — 0.95 and
P(AC\CC) = 0.95. Say the probability that a person taking the test actually
has measles is 0.005.
(a) Compute the probability that a person who tests positive actually does

have measles.
(b) Compute the probability of A.

1.33 Consider a source that sends a 0 or a 1 with known probabilities

P(0 sent) =p and P(l sent) = 1 -p

The digit is sent over a noisy channel with the following transition
probabilities:

P(0 received 11 sent) = P(l received |0 sent) = 1/4

P(0 received10 sent) = P(\ received11 sent) = 3/4

(a) Find the probability that a 0 is received.
(b) What does p need to be for this probability to be | ?
(c) What is the probability that a 1 was sent given that a 1 was received?
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1.34 Given two boxes B{ and B2 where B{ contains 8 red and 8 white balls and B2

contains 5 red and 10 white balls. An experiment consists of selecting one of
the boxes with p{Bx) = 0.4 and P(B2) = 0.6, and then selecting a ball at
random from the selected box.
(a) Find the probability that the ball drawn is red.

(b) If a red ball is chosen, determine the probability that it is from box Bx.

1.35 In a year's time if a tree is not watered, it will die with a probability of \, and if
watered, it will die with probability of \. After a year, the tree is dead.
Determine the probability that the tree was watered.

1.36 A crooked coin (P{head} = 0.25) is flipped twice with experimental outcome
that at least one toss resulted in a head. Given this partial information, what is
the conditional probability that both tosses resulted in heads.

1.37 From a master handwritten manuscript composed of the letters a, b, and c
(the author has a limited vocabulary) with P(a) — 0.5, P{b) = 0.2, and
P(c) — 0.3. A typist copies the manuscript making random errors when
typing the letters a, b, and c with probabilities as follows P(b\a) — 0.05,
P(c\a) = 0.1, P(a\b) = 0.8, P(c\b) = 0.7, P(a\c) = 0.2, P(b\c) = 0.2.
(a) What is the probability that a letter a typed was really a letter b in the

original document?

(b) Given that a letter c was typed, what is the probability that there was a
letter c in that position in the original manuscript?

REFERENCES

1. Papoulis, Athanasios, Probability, Random Variables, and Stochastic Processes, McGraw
Hill, 1965.

2. Mood, Alexander M., Franklin A. Graybill, and Duane C. Boes, Introduction to the Theoiy
of Statistics, 3rd ed. McGraw-Hill, 1974.

3. Freund, John E., Mathematical Statistics, Prentice-Hall, 1964.

4. Drake, Alvin W., Fundamentals of Applied Probability Theory, McGraw-Hill, 1967.

5. Davenport, Jr., William B., Probability and Random Processes, 1970.

6. Stark, Henry and John W. Woods, Probability, Random Processes, and Estimation Theoiy
for Engineers, Prentice-Hall, 1986.

7. Parzen, Emanuel, Modern Probability Theory and Its Applications, Wiley, 1960.


