
1 The Role of Statistics

In this chapter we informally discuss how statistics is used to attempt to answer questions

raised in research. Because probability is basic to statistical decision making, we will also

present a few probability rules to show how probabilities are computed. Since this is an

overview, we make no attempt to give precise definitions. The more formal development will

follow in later chapters.

1.1. THE BASIC STATISTICAL PROCEDURE

Scientists sometimes use statistics to describe the results of an experiment or an investigation.

This process is referred to as data analysis or descriptive statistics. Scientists also use

statistics another way; if the entire population of interest is not accessible to them for some

reason, they often observe only a portion of the population (a sample) and use statistics to

answer questions about the whole population. This process is called inferential statistics.

Statistical inference is the main focus of this book.

Inferential statistics can be defined as the science of using probability to make decisions.

Before explaining how this is done, a quick review of the “laws of chance” is in order. Only

four probability rules will be discussed here, those for (1) simple probability, (2) mutually

exclusive events, (3) independent events, and (4) conditional probability. For anyone wanting

more than covered here, Johnson and Kuby (2000) as well as Bennett, Briggs, and Triola

(2003) provide more detailed discussion.

Early study of probability was greatly influenced by games of chance. Wealthy games

players consulted mathematicians to learn if their losses during a night of gaming were due

to bad luck or because they did not know how to compute their chances of winning. (Of

course, there was always the possibility of chicanery, but that seemed a matter better

settled with dueling weapons than mathematical computations.) Stephen Stigler (1986)

states that formal study of probability began in 1654 with the exchange of letters between

two famous French mathematicians, Blaise Pascal and Pierre de Fermat, regarding a

question posed by a French nobleman about a dice game. The problem can be found in

Exercise 1.1.5.

In games of chance, as in experiments, we are interested in the outcomes of a random

phenomenon that cannot be predicted with certainty because usually there is more than one

outcome and each is subject to chance. The probability of an outcome is a measure of how

likely that outcome is to occur. The random outcomes associated with games of chance should

be equally likely to occur if the gambling device is fair, controlled by chance alone. Thus the

probability of getting a head on a single toss of a fair coin and the probability of getting an

even number when we roll a fair die are both 1/2.
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Because of the early association between probability and games of chance, we label some

collection of equally likely outcomes as a success. A collection of outcomes is called an event.

If success is the event of an even number of pips on a fair die, then the event consists of

outcomes 2, 4, and 6. An event may consist of only one outcome, as the event head on a single

toss of a coin. The probability of a success is found by the following probability rule:

probability of success ¼
number of successful outcomes

total number of outcomes

In symbols

P(success) ¼ P(S) ¼
ns

N

where nS is the number of outcomes in the event designated as success and N is the total

number of possible outcomes. Thus the simple probability rule for equally likely outcomes is

to count the number of ways a success can be obtained and divide it by the total number of

outcomes.

Example 1.1. Simple Probability Rule for Equally Likely Outcomes

There is a game, often played at charity events, that involves tossing a coin such as a 25-cent

piece. The quarter is tossed so that it bounces off a board and into a chute to land in one of nine

glass tumblers, only one of which is red. If the coin lands in the red tumbler, the player wins

$1; otherwise the coin is lost. In the language of probability, there are N ¼ 9 possible

outcomes for the toss and only one of these can lead to a success. Assuming skill is not a factor

in this game, all nine outcomes are equally likely and P(success) ¼ 1/9.
In the game described above, P(win) ¼ 1/9 and P(loss) ¼ 8/9. We observe there is only

one way to win $1 and eight ways to lose 25¢. A related idea from the early history of

probability is the concept of odds. The odds for winning are P(win)/P(loss). Here we say,

“The odds for winning are one to eight” or, more pessimistically, “The odds against winning

are eight to one.” In general,

odds for success ¼
P(success)

1� P(success)

We need to stress that the simple probability rule above applies only to an experiment with

a discrete number of equally likely outcomes. There is a similarity in computing probabilities

for continuous variables for which there is a distribution curve for measures of the variable. In

this case

P(success) ¼
area under the curve where the measure is called a success

total area under the curve

A simple example is provided by the “spinner” that comes with many board games. The

spinner is an arrow that spins freely around an axle attached to the center of a circle. Suppose

that the circle is divided into quadrants marked 1, 2, 3, and 4 and play on the board is

determined by the quadrant in which the spinner comes to rest. If no skill is involved in

spinning the arrow, the outcomes can be considered uniformly distributed over the 3608 of the
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circle. If it is a success to land in the third quadrant of the circle, a spin is a success when the

arrow stops anywhere in the 908 of the third quadrant and

P(success) ¼
area in third quadrant

total area
¼

90

360
¼

1

4

While only a little geometry is needed to calculate probabilities for a uniform distribution,

knowledge of calculus is required for more complex distributions. However, finding

probabilities for many continuous variables is possible by using simple tables. This will be

explained in later chapters.

The next rule involves events that are mutually exclusive, meaning one event excludes the

possibility of another. For instance, if two dice are rolled and the event is that the sum of spots

is y ¼ 7, then y cannot possibly be another value as well. However, there are six ways that the

spots, or pips, on two dice can produce a sum of 7, and each of these is mutually exclusive of

the others. To see how this is so, imagine that the pair consists of one red die and one green;

then we can detail all the possible outcomes for the event y ¼ 7:

Red die: 1 2 3 4 5 6

Green die: 6 5 4 3 2 1

Sum: 7 7 7 7 7 7

If a success depends only on a value of y ¼ 7, then by the simple probability rule the number

of possible successes is nS ¼ 6; the number of possible outcomes is N ¼ 36 because each of

the six outcomes of the red die can be paired with each of the six outcomes of the green die and

the total number of outcomes is 6 � 6 ¼ 36. Thus P(success) ¼ nS/N ¼ 6/36 ¼ 1/6.
However, we need a more general statement to cover mutually exclusive events, whether or

not they are equally likely, and that is the addition rule.

If a success is any of kmutually exclusive events E1, E2, . . . , Ek, then the addition rule for

mutually exclusive events is P(success) ¼ P(E1) þ P(E2) þ � � � þ P(Ek). This holds true with

the dice; if E1 is the event that the red die shows 1 and the green die shows 6, then P(E1) ¼

1/36. Then, because each of the k ¼ 6 events has the same probability,

P(success) ¼
1

36

� �
þ

1

36

� �
þ

1

36

� �
þ

1

36

� �
þ

1

36

� �
þ

1

36

� �
¼

6

36
¼

1

6

Here 1/36 is the common probability for all events, but the addition rule for mutually exclusive

events still holds true even when the probability values are not the same for all events.

Example 1.2. Addition Rule for Mutually Exclusive Events

To see how this rule applies to events that are not equally likely, suppose a coin-operated

gambling device is programmed to provide, on random plays, winnings with the following

probabilities:

Event P(Event)

Win 10 coins 0.001

Win 5 coins 0.010
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Event P(Event)

Win 3 coins 0.040

Win 1 coin 0.359

Lose 1 coin 0.590

Because most players consider it a success if any coins are won, P(success) ¼

0.0001 þ 0.010 þ 0.040 þ 0.359 ¼ 0.410, and the odds for winning are 0.41/0.59 ¼

0.695, while the odds against a win are 0.59/0.41 ¼ 1.44.

We might ask why we bother to add 0.0001 þ 0.010 þ 0.040 þ 0.359 to obtain

P(success) ¼ 0.41 when we can obtain it just from knowledge of P(no success). On a play at

the coin machine, one either wins of loses, so there is the probability of a success,

P(S) ¼ 0.41, and the probability of no success, P(no success) ¼ 0.59. The opposite of a

success, is called its complement, and its probability is symbolized as P(�SS). In a play at the

machine there is no possibility of neither a win nor a loss, P(S)þ P(�SS) ¼ 1:0, so rather than

counting the four ways to win it is easier to find P(S) ¼ 1:0� P(�SS) ¼ 1:0� 0:59 ¼ 0:41. Note
that in the computation of the odds for winning we used the ratio of the probability of a win to

its complement, P(S)=P(�SS).

At games of chance, people who have had a string of losses are encouraged to continue to

play with such remarks as “Your luck is sure to change” or “Odds favor your winning now,”

but is that so? Not if the plays, or events, are independent. A play in a game of chance has no

memory of what happened on previous plays. So using the results of Example 1.2, suppose we

try the machine three times. The probability of a win on the first play is P(S1) ¼ 0.41, but the

second coin played has no memory of the fate of its predecessor, so P(S2) ¼ 0.41, and

likewise P(S3) ¼ 0.41. Thus we could insert 100 coins in the machine and lose on the first 99

plays, but the probability that our last coin will win remains P(S100) ¼ 0.41. However, we

would have good reason to suspect the honesty of the machine rather than bad luck, for with

an honest machine for which the probability of a win is 0.41, we would expect about 41 wins

in 100 plays.

When dealing with independent events, we often need to find the joint probability that two

or more of them will all occur simultaneously. If the total number of possible outcomes (N) is

small, we can always compile tables, so with the N ¼ 52 cards in a standard deck, we can

classify each card by color (red or black) and as to whether or not it is an honor card (ace, king,

queen, or jack). Then we can sort and count the cards in each of four groups to get the

following table:

Color

Honor Black Red Total

No 18 18 36

Yes 8 8 16

Total 26 26 52

If a card is dealt at random from such a deck, we can find the joint probability that it will be

red and an honor by noting that there are 8 such cards in the deck of 52; hence P(red and

honor) ¼ P(RH) ¼ 8/52 ¼ 2/13. This is easy enough when the total number of outcomes is
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small or when they have already been tabulated, but in many cases there are too many or there

is a process such as the slot machine capable of producing an infinite number of outcomes.

Fortunately there is a probability rule for such situations.

The multiplication rule for finding the joint probability of k independent events E1,

E2, . . . , Ek is

P(E1 and E2 and . . .Ek) ¼ P(E1)� P(E2)� � � � � P(Ek)

With the cards, k is 2, E1 is a red card, and E2 is an honor card, so P(E1E2) ¼

P(E1) � P(E2) ¼ (26/52) � (16/52) ¼ (1/2) � (4/13) ¼ 4/26 ¼ 2/13.

Example 1.3. The Multiplication Rule for Independent Events

Gender and handedness are independent, and if P(female) ¼ 0.50 and P(left handed) ¼ 0.15,

then the probability that the first child of a couple will be a left-handed girl is

P(female and left handed) ¼ P(female)� P(left handed) ¼ 0:50� 0:15 ¼ 0:075

If the probability values P(female) and P(left handed) are realistic, the computation is easier

than the alternative of trying to tabulate the outcomes of all first births. We know the

biological mechanism for determining gender but not handedness, so it was only estimated

here. However, the value we would obtain from a tabulation of a large number of births would

also be only an estimate. We will see in Chapter 3 how to make estimates and how to say

scientifically, “The probability that the first child will be a left-handed girl is likely

somewhere around 0.075.”

The multiplication rule is very convenient when events are independent, but frequently

we encounter events that are not independent but rather are at least partially related. Thus

we need to understand these and how to deal with them in probability. When told that a

person is from Sweden or some other Nordic country, we might immediately assume that

he or she has blue eyes, or conversely dark eyes if from a Mediterranean country. In our

encounters with people from these areas, we think we have found that the probability of

eye color P(blue) is not the same for both those geographic regions but rather depends, or

is conditioned, on the region from which a person comes. Conditional probability is

symbolized as P(E2jE1), and we say “The probability of event 2 given event 1.” In the case

of eye color, it would be the probability of blue eyes given that one is from a Nordic

country.

The conditional probability rule for finding the conditional probability of event 2 given

event 1 is

P(E2jE1) ¼
P(E1E2)

P(E1)

In the deck of cards, the probability a randomly dealt card will be red and an honor card is

P(red and honor) ¼ 8/52, while the probability it is red is P(R) ¼ 26/52, so the probability

that it will be an honor card, given that it is a red card is P(RH)/P(R) ¼ 8/26 ¼ 4/13, which
is the same as P(H) because the two are independent rather than related. Hence independent

events can be defined as satisfying P(E2jE1) ¼ P(E2).
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Example 1.4. The Conditional Probability Rule

Suppose an oncologist is suspicious that cancer of the gum may be associated with use of

smokeless tobacco. It would be ideal if he also had data on the use of smokeless tobacco by

those free of cancer, but the only data immediately available are from 100 of his own cancer

patients, so he tabulates them to obtain the following:

Smokeless Tobacco

Cancer Site No Yes Total

Gum 5 20 25

Elsewhere 60 15 75

Total 65 35 100

There are 25 cases of gum cancer in his database and 20 of those patients had used smokeless

tobacco, so we see that his best estimate of the probability that a randomly drawn gum cancer

patient was a user of smokeless tobacco is 20/25 ¼ 0.80. This probability could also be found

by the conditional probability rule. If P(gum) ¼ P(G) and P(user) ¼ P(U), then

P(UjG) ¼
P(GU)

P(G)
¼

(20=100)

(25=100)
¼

20

25
¼ 0:80

Are gum cancer and use of smokeless tobacco independent? They are if P(UjG) ¼ P(U), and

from the data set, the best estimate of users among all cancer patients is P(U) ¼ 35/
100 ¼ 0.35. The discrepancy in estimates is 0.80 for gum cancer patients compared to 0.35 for

all patients. This leads us to believe that gum cancer and smokeless tobacco usage are related

rather than independent. In Chapter 5, we will see how to test to see whether or not two

variables are independent.

Odds obtained from medical data sets similar to but much larger than that in Example 1.4

are frequently cited in the news. Had the odds been the same in a data set of hundreds or

thousands of gum cancer patients, we would report that the odds were 0.80/0.20 ¼ 4.0 for

smokeless tobacco, and 0.35/0.65 ¼ 0.538 for smokeless tobacco among all cancer patients.

Then, for sake of comparison, we would report the odds ratio, which is the ratio of the two

odds, 4.0/0.538 ¼ 7.435. This ratio gives the relative frequency of smokeless tobacco users

among gum cancer patients to smokeless tobacco users among all cancer patients, and the

medical implications are ominous. For comparison, it would be helpful to have data on the

usage of smokeless tobacco in a cancer-free population, but first information about an

association such as that in Example 1.4 usually comes from medical records for those with a

disease.

Caution is necessary when trying to interpret odds ratios, especially those based on very

low incidences of occurrence. To show a totally meaningless odds ratio, suppose we have two

data sets, one containing 20 million broccoli eaters and the other of 10 million who do not eat

the vegetable. Then, if we examine the health records of those in each group, we find there are

two in each group suffering from chronic bladder infections. The odds ratio is 2.0, but we

would garner strange looks rather than prestige if we attempted to claim that the odds for
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chronic bladder infection is twice as great for broccoli eaters when compared to those who do

not eat the vegetable. To use statistics in research is happily more than just to compute and

report numbers.

The basic process in inferential statistics is to assign probabilities so that we can reach

conclusions. The inferences we make are either decisions or estimates about the population.

The tool for making inferences is probability (Figure 1.1).

We can illustrate this process by the following example.

Example 1.5. Using Probabilities to Make a Decision

A sociologist has two large sets of cards, set A and set B, containing data for her research. The

sets each consist of 10,000 cards. Set A concerns a group of people, half of whom are women.

In set B, 80% of the cards are for women. The two files look alike. Unfortunately, the

sociologist loses track of which is A and which is B. She does not want to sort and count the

cards, so she decides to use probability to identify the sets. The sociologist selects a set. She

draws a card at random from the selected set, notes whether or not it concerns a woman,

replaces the card, and repeats this procedure 10 times. She finds that all 10 cards contain data

about women. She must now decide between two possible conclusions:

1. This is set B.

2. This is set A, but an unlikely sample of cards has been chosen.

In order to decide in favor of one of these conclusions, she computes the probabilities of

obtaining 10 cards all for females:

P(10 females) ¼ P(first is female)

� P(second is female)� � � � � P(tenth is female)

The multiplication rule is used because each choice is independent of the others. For the set A,

the probability of selecting 10 cards for females is (0.50)10 ¼ 0.00098 (rounded to two

significant digits). For set B, the probability of 10 cards for females is (0.80)10 ¼ 0.11 (again

rounded to two significant digits). Since the probability of all 10 of the cards being for women

FIGURE 1.1. Statistical inference.
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if the set is B is about 100 times the probability if the set is A, she decides that the set is B, that

is, she decides in favor of the conclusion with the higher probability.

When we use a strategy based on probability, we are not guaranteed success every time.

However, if we repeat the strategy, we will be correct more often than mistaken. In the above

example, the sociologist could make the wrong decision because 10 cards chosen at random

from set A could all be cards for women. In fact, in repeated experiments using set A, 10 cards

for females will appear approximately 0.098% of the time, that is, almost once in every

thousand 10-card samples.

The example of the files is artificial and oversimplified. In real life, we use statistical

methods to reach conclusions about some significant aspect of research in the natural,

physical, or social sciences. Statistical procedures do not furnish us with proofs, as do many

mathematical techniques. Rather, statistical procedures establish probability bases on which

we can accept or reject certain hypotheses.

Example 1.6. Using Probability to Reach a Conclusion in Science

A real example of the use of statistics in science is the analysis of the effectiveness of Salk’s

polio vaccine.

A great deal of work had to be done prior to the actual experiment and the statistical

analysis. Dr. Jonas Salk first had to gather enough preliminary information and experience in

his field to know which of the three polio viruses to use. He had to solve the problem of how to

culture that virus. He also had to determine how long to treat the virus with formaldehyde so

that it would die but retain its protein shell in the same form as the live virus; the shell could

then act as an antigen to stimulate the human body to develop antibodies. At this point, Dr.

Salk could conjecture that the dead virus might be used as a vaccine to give patients immunity

to paralytic polio.

Finally, Dr. Salk had to decide on the type of experiment that would adequately test his

conjecture. He decided on a double-blind experiment in which neither patient nor doctor knew

whether the patient received the vaccine or a saline solution. The patients receiving the saline

solution would form the control group, the standard for comparison. Only after all these

preliminary steps could the experiment be carried out.

When Dr. Salk speculated that patients inoculated with the dead virus would be immune to

paralytic polio, he was formulating the experimental hypothesis: the expected outcome if the

experimenter’s speculation is true. Dr. Salk wanted to use statistics to make a decision about

this experimental hypothesis. The decision was to be made solely on the basis of probability.

He made the decision in an indirect way; instead of considering the experimental hypothesis

itself, he considered a statistical hypothesis called the null hypothesis—the expected outcome

if the vaccine is ineffective and only chance differences are observed between the two sample

groups, the inoculated group and the control group. The null hypothesis is often called the

hypothesis of no difference, and it is symbolized H0. In Dr. Salk’s experiment, the null

hypothesis is that the incidence of paralytic polio in the general population will be the same

whether it receives the proposed vaccine or the saline solution. In symbols†

H0: p I ¼ pC

†The use of the symbol p has nothing to do with the geometry of circles or the irrational number 3.1416 . . . .
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in which pI is the proportion of cases of paralytic polio in the general population if it were

inoculated with the vaccine and pC is the proportion of cases if it received the saline solution.

If the null hypothesis is true, then the two sample groups in the experiment should be alike

except for chance differences of exposure and contraction of the disease.

The experimental results were as follows:

Proportion with

Paralytic Polio

Number in

Study

Inoculated Group 0.0001603 200,745

Control Group 0.0005703 201,229

The incidence of paralytic polio in the control group was almost four times higher than in the

inoculated group, or in other words the odds ratio was 0.0005703/0.0001603 ¼ 3.56.

Dr. Salk then found the probability that these experimental results or more extreme ones

could have happened with a true null hypothesis. The probability that pI ¼ pC and the

difference between the two experimental groups was caused by chance was less than 1 in

10,000,000, so Salk rejected the null hypothesis and decided that he had found an effective

vaccine for the general public.†

Usually when we experiment, the results are not as conclusive as the result obtained by Dr.

Salk. The probabilities will always fall between 0 and 1, and we have to establish a level

below which we reject the null hypothesis and above which we accept the null hypothesis. If

the probability associated with the null hypothesis is small, we reject the null hypothesis and

accept an alternative hypothesis (usually the experimental hypothesis). When the probability

associated with the null hypothesis is large, we accept the null hypothesis. This is one of the

basic procedures of statistical methods—to ask: What is the probability that we would get

these experimental results (or more extreme ones) with a true null hypothesis?

Since the experiment has already taken place, it may seem after the fact to ask for the

probability that only chance caused the difference between the observed results and the null

hypothesis. Actually, when we calculate the probability associated with the null hypothesis,

we are asking: If this experiment were performed over and over, what is the probability that

chance will produce experimental results as different as are these results from what is

expected on the basis of the null hypothesis?

We should also note that Salk was interested not only in the samples of 401,974 people

who took part in the study; he was also interested in all people, then and in the future, who

could receive the vaccine. He wanted to make an inference to the entire population from the

portion of the population that he was able to observe. This is called the target population, the

population about which the inference is intended.

Sometimes in science the inference we should like to make is not in the form of a decision

about a hypothesis; but rather it consists of an estimate. For example, perhaps we want to

estimate the proportion of adult Americans who approve of the way in which the president is

handling the economy, and we want to include some statement about the amount of error

possibly related to this estimate. Estimation of this type is another kind of inference, and

it also depends on probability. For simplicity, we focus on tests of hypotheses in this

†This probability is found using a chi-square test (see Section 5.3).
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introductory chapter. The first example of inference in the form of estimation is discussed in

Chapter 3.

EXERCISES

1.1.1. A trial mailing is made to advertise a new science dictionary. The trial mailing list is

made up of random samples of current mailing lists of several popular magazines. The

number of advertisements mailed and the number of people who ordered the dictionary

are as follows:

Magazine

A B C D E

Mailed: 900 810 1100 890 950

Ordered: 18 15 10 30 45

a. Estimate the probability and the odds that a subscriber to each of the magazines will

buy the dictionary.

b. Make a decision about the mailing list that will probably produce the highest

percentage of sales if the entire list is used.

1.1.2. In Examples 1.5 and 1.6, probability was used to make decisions and odds ratios could

have been used to further support the decisions. To do so:

a. For the data in Example 1.5, compute the odds ratio for the two sets of cards.

b. For the data in Example 1.6, compute the odds ratio of getting polio for those

vaccinated as opposed to those not vaccinated.

1.1.3. If 60% of the population of the United States need to have their vision corrected, we

say that the probability that an individual chosen at random from the population needs

vision correction is P(C) ¼ 0.60.

a. Estimate the probability that an individual chosen at random does not need vision

correction. Hint: Use the complement of a probability.

b. If 3 people are chosen at random from the population, what is the probability that all

3 need correction, P(CCC)? Hint: Use the multiplication law of probability for

independent events.

c. If 3 people are chosen at random from the population, what is the probability that

the second person does not need correction but the first and the third do, P(CNC)?

d. If 3 people are chosen at random from the population, what is the probability that 1

out of the 3 needs correction, P(CNN or NCN or NNC)? Hint: Use the addition law

of probability for mutually exclusive events.

e. Assuming no association between vision and gender, what is the probability that a

randomly chosen female needs vision correction, P(CjF)?

1.1.4. On a single roll of 2 dice (think of one green and the other red to keep track of all

outcomes) in the game of craps, find the probabilities for:

a. A sum of 6, P(y ¼ 6)
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b. A sum of 8, P(y ¼ 8)

c. A win on the first roll; that is, a sum of 7 or 11, P(y ¼ 7 or 11)

d. A loss on the first roll; that is, a sum of 2, 3, or 12, P(y ¼ 2, 3, or 12)

1.1.5. The dice game about which Pascal and de Fermat were asked consisted in throwing a

pair of dice 24 times. The problem was to decide whether or not to bet even money on

the occurrence of at least one “double 6” during the 24 throws of a pair of dice. Because

it is easier to solve this problem by finding the complement, take the following steps:

a. What is the probability of not a double 6 on a roll, P(E) ¼ P(y = 12)?

b. What is the probability that y ¼ 12 on all 24 rolls, P(E1E2, . . . , E24)?

c. What is the probability of at least one double 6?

d. What are the odds of a win in this game?

1.1.6. Sir Francis Galton (1822–1911) was educated as a physician but had the time, money,

and inclination for research on whatever interested him, and almost everything did.

Though not the first to notice that he could find no two people with the same

fingerprints, he was the first to develop a system for categorizing fingerprints and to

persuade Scotland Yard to use fingerprints in criminal investigation. He supported his

argument with fingerprints of friends and volunteers solicited through the newspapers,

and for all comparisons P(fingerprints match) ¼ 0. To compute the number of events

associated with Galton’s data:

a. Suppose fingerprints on only 10 individuals are involved.

i. How many comparisons between individuals can be made? Hint: Fingerprints

of the first individual can be compared to those of the other 9. However, for the

second individual there are only 8 additional comparisons because his

fingerprints have already been compared to the first.

ii. How many comparisons between fingers can be made? Assume these are

between corresponding fingers of both individuals in a comparison, right thumb

of one versus right thumb of the other, and so on.

b. Suppose fingerprints are available on 11 individuals rather than 10. Use the results

already obtained to simplify computations in finding the number of comparisons

among people and among fingers.

1.2. THE SCIENTIFIC METHOD

The natural, physical, and social scientists who use statistical methods to reach conclusions all

approach their problems by the same general procedure, the scientific method. The steps

involved in the scientific method are:

1. State the problem.

2. Formulate the hypothesis.

3. Design the experiment or survey.

4. Make observations.

5. Interpret the data.

6. Draw conclusions.
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We use statistics mainly in step 5, “interpret the data.” In an indirect way we also use

statistics in steps 2 and 3, since the formulation of the hypothesis and the design of the

experiment or survey must take into consideration the type of statistical procedure to be used

in analyzing the data.

The main purpose of this book is to examine step 5. We frequently discuss the other steps,

however, because an understanding of the total procedure is important. A statistical analysis

may be flawless, but it is not valid if data are gathered incorrectly. A statistical analysis may

not even be possible if a question is formulated in such a way that a statistical hypothesis

cannot be tested. Considering all of the steps also helps those who study statistical methods

before they have had much practical experience in using the scientific method. A full

discussion of the scientific method is outside the scope of this book, but in this section we

make some comments on the five steps.

STEP 1. STATE THE PROBLEM. Sometimes, when we read reports of research, we get the

impression that research is a very orderly analytic process. Nothing could be further from the

truth. A great deal of hidden work and also a tremendous amount of intuition are involved

before a solvable problem can even be stated. Technical information and experience are

indispensable before anyone can hope to formulate a reasonable problem, but they are not

sufficient. The mediocre scientist and the outstanding scientist may be equally familiar with

their field; the difference between them is the intuitive insight and skill that the outstanding

scientist has in identifying relevant problems that he or she can reasonably hope to solve.

One simple technique for getting a problem in focus is to formulate a clear and explicit

statement of the problem and put the statement in writing. This may seem like an unnecessary

instruction for a research scientist; however, it is frequently not followed. The consequence is

a vagueness and lack of focus that make it almost impossible to proceed. It leads to the

collection of unnecessary information or the failure to collect essential information.

Sometimes the original question is even lost as the researcher gets involved in the details of

the experiment.

STEP 2. FORMULATE THE HYPOTHESIS. The “hypothesis” in this step is the experimental

hypothesis, the expected outcome if the experimenter’s speculations are true. The

experimental hypothesis must be stated in a precise way so that an experiment can be

carried out that will lead to a decision about the hypothesis. A good experimental hypothesis is

comprehensive enough to explain a phenomenon and predict unknown facts and yet is stated

in a simple way. Classic examples of good experimental hypotheses are Mendel’s laws, which

can be used to explain hereditary characteristics (such as the color of flowers) and to predict

what form the characteristics will take in the future.

Although the null hypothesis is not used in a formal way until the data are being

interpreted, it is appropriate to formulate the null hypothesis at this time in order to verify that

the experimental hypothesis is stated in such a way that it can be tested by statistical

techniques.

Several experimental hypotheses may be connected with a single problem. Once these

hypotheses are formulated in a satisfactory way, the investigator should do a literature search

to see whether the problem has already been solved, whether or not there is hope of solving it,

and whether or not the answer will make a worthwhile contribution to the field.

STEP 3. DESIGN THE EXPERIMENT OR SURVEY. Included in this step are several

decisions. What treatments or conditions should be placed on the objects or subjects of the

investigation in order to test the hypothesis? What are the variables of interest, that is,

what variables should be measured? How will this be done? With how much precision?

Each of these decisions is complex and requires experience and insight into the particular

area of investigation.
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Another group of decisions involves the choice of the sample, that portion of the

population of interest that will be used in the study. The investigator usually tries to utilize

samples that are:

(a) Random

(b) Representative

(c) Sufficiently large

In order to make a decision based on probability, it is necessary that the sample be random.

Random samples make it possible to determine the probabilities associated with the study.

A sample is random if it is just as likely that it will be picked from the population of interest as

any other sample of that size. Strictly speaking, statistical inference is not possible unless

random samples are used. (Specific methods for achieving random samples are discussed in

Section 2.2.)

Random, however, does not mean haphazard. Haphazard processes often have hidden

factors that influence the outcome. For example, one scientist using guinea pigs thought that

time could be saved in choosing a treatment group and a control group by drawing the

treatment group of animals from a box without looking. The scientist drew out half of the

guinea pigs for testing and reserved the rest for the control group. It was noticed, however, that

most of the animals in the treatment group were larger than those in the control group. For

some reason, perhaps because they were larger, or slower, the heavier guinea pigs were drawn

first. Instead of this haphazard selection, the experimenter could have recorded the animals’

ear-tattoo numbers on plastic disks and drawn the disks at random from a box.

Unfortunately, in many fields of investigation random sampling is not possible, for

example, meteorology, some medical research, and certain areas of economics. Random

samples are the ideal, but sometimes only nonrandom data are available. In these cases the

investigator may decide to proceed with statistical inference, realizing, of course, that it is

somewhat risky. Any final report of such a study should include a statement of the author’s

awareness that the requirement of randomness for inference has not been met.

The second condition that an investigator often seeks in a sample is that it be

representative. Usually we do not know how to find truly representative samples. Even when

we think we can find them, we are often governed by a subconscious bias.

A classic example of a subconscious bias occurred at a Midwestern agricultural station in

the early days of statistics. Agronomists were trying to predict the yield of a certain crop in a

field. To make their prediction, they chose several 6-ft � 6-ft sections of the field which they

felt were representative of the crop. They harvested those sections, calculated the arithmetic

average of the yields, then multiplied this average by the number of 36-ft2 sections in the field

to estimate the total yield. A statistician assigned to the station suggested that instead they

should have picked random sections. After harvesting several random sections, a second

average was calculated and used to predict the total yield. At harvest time, the actual yield of

the field was closer to the yield predicted by the statistician. The agronomists had predicted a

much larger yield, probably because they chose sections that looked like an ideal crop. An

entire field, of course, is not ideal. The unconscious bias of the agronomists prevented them

from picking a representative sample. Such unconscious bias cannot occur when experimental

units are chosen at random.

Although representativeness is an intuitively desirable property, in practice it is usually

an impossible one to meet. How can a sample of 30 possibly contain all the properties of a

population of 2000 individuals? The 2000 certainly have more characteristics than can
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possibly be proportionately reflected in 30 individuals. So although representativeness

seems necessary for proper reasoning from the sample to the population, statisticians

do not rely on representative samples—rather, they rely on random samples. (Large

random samples will very likely be representative). If we do manage to deliberately

construct a sample that is representative but is not random, we will be unable to compute

probabilities related to the sample and, strictly speaking, we will be unable to do statistical

inference.

It is also necessary that samples be sufficiently large. No one would question the necessity

of repetition in an experiment or survey. We all know the danger of generalizing from a single

observation. Sufficiently large, however, does not mean massive repetition. When we use

statistics, we are trying to get information from relatively small samples. Determining a

reasonable sample size for an investigation is often difficult. The size depends upon the

magnitude of the difference we are trying to detect, the variability of the variable of interest,

the type of statistical procedure we are using, the seriousness of the errors we might make, and

the cost involved in sampling. (We make further remarks on sample size as we discuss various

procedures throughout this text.)

STEP 4. MAKE OBSERVATIONS. Once the procedure for the investigation has been decided

upon, the researcher must see that it is carried out in a rigorous manner. The study should be

free from all errors except random measurement errors, that is, slight variations that are due to

the limitations of the measuring instrument.

Care should be taken to avoid bias. Bias is a tendency for a measurement on a variable to

be affected by an external factor. For example, bias could occur from an instrument out of

calibration, an interviewer who influences the answers of a respondent, or a judge who sees

the scores given by other judges. Equipment should not be changed in the middle of an

experiment, and judges should not be changed halfway through an evaluation.

The data should be examined for unusual values, outliers, which do not seem to be

consistent with the rest of the observations. Each outlier should be checked to see whether

or not it is due to a recording error. If it is an error, it should be corrected. If it cannot

be corrected, it should be discarded. If an outlier is not an error, it should be given

special attention when the data are analyzed. For further discussion, see Barnett and Lewis

(2002).

Finally, the investigator should keep a complete, legible record of the results of the

investigation. All original data should be kept until the analysis is completed and the final

report written. Summaries of the data are often not sufficient for a proper statistical analysis.

STEP 5. INTERPRET THE DATA. The general statistical procedure was illustrated in

Example 1.6, in which the Salk vaccine experiment was discussed. To interpret the data, we

set up the null hypothesis and then decide whether the experimental results are a rare outcome

if the null hypothesis is true. That is, we decide whether the difference between the

experimental outcome and the null hypothesis is due to more than chance; if so, this indicates

that the null hypothesis should be rejected.

If the results of the experiment are unlikely when the null hypothesis is true, we reject the

null hypothesis; if they are expected, we accept the null hypothesis. We must remember,

however, that statistics does not prove anything. Even Dr. Salk’s result, with a probability of

less than 1 in 10,000,000 that chance was causing the difference between the experimental

outcome and the null hypothesis, does not prove that the null hypothesis is false. An extremely

small probability, however, does make the scientist believe that the difference is not due to

chance alone and that some additional mechanism is operating.

Two slightly different approaches are used to evaluate the null hypothesis. In practice,

they are often intermingled. Some researchers compute the probability that the
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experimental results, or more extreme values, could occur if the null hypothesis is true;

then they use that probability to make a judgment about the null hypothesis. In research

articles this is often reported as the observed significance level, or the significance level, or

the P value. If the P value is large, they conclude that the data are consistent with the null

hypothesis. If the P value is small, then either the null hypothesis is false or the null

hypothesis is true and a rare event has occurred. (This was the approach used in the Salk

vaccine example.)

Other researchers prefer a second, more decisive approach. Before the experiment they

decide on a rejection level, the probability of an unlikely event (sometimes this is also called

the significance level). An experimental outcome, or a more extreme one, that has a

probability below this level is considered to be evidence that the null hypothesis is false. Some

research articles are written with this approach. It has the advantage that only a limited

number of probability tables are necessary. Without a computer, it is often difficult to

determine the exact P value needed for the first approach. For this reason the second approach

became popular in the early days of statistics. It is still frequently used.

The sequence in this second procedure is:

(a) Assume H0 is true and determine the probability P that the experimental outcome or a

more extreme one would occur.

(b) Compare the probability to a preset rejection level symbolized by a (the Greek letter

alpha).

(c) If P � a, reject H0. If P . a, accept H0.

If P . a, we say, “Accept the null hypothesis.” Some statisticians prefer not to use that

expression, since in the absence of evidence to reject the null hypothesis, they choose simply

to withhold judgment about it. This group would say, “The null hypothesis may be true” or

“There is no evidence that the null hypothesis is false.”

If the probability associated with the null hypothesis is very close to a, more extensive

testing may be desired. Notice that this is a blend of the two approaches.

An example of the total procedure follows.

Example 1.7. Using a Statistical Procedure to Interpret Data

A manufacturer of baby food gives samples of two types of baby cereal, A and B, to a random

sample of four mothers. Type A is the manufacturer’s brand, type B a competitor’s. The

mothers are asked to report which type they prefer. The manufacturer wants to detect any

preference for their cereal if it exists.

The null hypothesis, or the hypothesis of no difference, is H0: p ¼ 1=2, in which p is the

proportion of mothers in the general population who prefer type A. The experimental

hypothesis, which often corresponds to a second statistical hypothesis called the alternative

hypothesis, is that there is a preference for cereal A, Ha: p . 1=2.
Suppose that four mothers are asked to choose between the two cereals. If there is no

preference, the following 16 outcomes are possible with equal probability:

AAAA AAAB ABBA BBAB

BAAA BBAA ABAB BABB

ABAA BABA AABB ABBB

AABA BAAB BBBA BBBB
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The manufacturer feels that only 1 of these 16 cases, AAAA, is very different from what

would be expected to occur under random sampling, when the null hypothesis of no

preference is true. Since the unusual case would appear only 1 time out of 16 times when the

null hypothesis is true, a (the rejection level) is set equal to 1/16 ¼ 0.0625.

If the outcome of the experiment is in fact four choices of type A, then P ¼ P(AAAA) ¼

1/16, and the manufacturer can say that the results are in the region of rejection, or the results

are significant, and the null hypothesis is rejected. If the outcome is three choices of type

A, however, then P ¼ P(3 or more A’s) ¼ P(AAAB or AABA or ABAA or BAAA or

AAAA) ¼ 5/16 . 1/16, and he does not reject the null hypothesis. (Notice that P is the

probability of this type of outcome or a more extreme one in the direction of the alternative

hypothesis, so AAAA must be included.)

The way in which we set the rejection level a depends on the field of research, on the

seriousness of an error, on cost, and to a great degree on tradition. In the example above, the

sample size is 4, so an a smaller than 1/16 is impossible. Later (in Section 3.2), we discuss

using the seriousness of errors to determine a reasonable a. If the possible errors are not

serious and cost is not a consideration, traditional values are often used.

Experimental statistics began about 1920 and was not used much until 1940, but it is

already tradition bound. In the early part of the twentieth century Karl Pearson had his

students at University College, London, compute tables of probabilities for reasonably rare

events. Now computers are programmed to produce these tables, but the traditional levels

used by Pearson persist for the most part. Tables are usually calculated for a equal to 0.10,

0.05, and 0.01. Many times there is no justification for the use of one of these values except

tradition and the availability of tables. If an a close to but less than or equal to 0.05 were

desired in the example above, a sample size of at least 5 would be necessary, then a ¼

1=32 ¼ 0:03125 if the only extreme case is AAAAA.

STEP 6. DRAW CONCLUSIONS. If the procedure just outlined is followed, then our

decisions will be based solely on probability and will be consistent with the data from the

experiment. If our experimental results are not unusual for the null hypothesis, P . a, then

the null hypothesis seems to be right and we should not reject it. If they are unusual,

P � a, then the null hypothesis seems to be wrong and we should reject it. We repeat

that our decision could be incorrect, since there is a small probability a that we will reject

a null hypothesis when in fact that null hypothesis is true; there is also a possibility

that a false null hypothesis will be accepted. (These possible errors are discussed in

Section 3.2.)

In some instances, the conclusion of the study and the statistical decision about the null

hypothesis are the same. The conclusion merely states the statistical decision in specific

terms. In many situations, the conclusion goes further than the statistical decision. For

example, suppose that an orthodontist makes a study of malocclusion due to crowding of

the adult lower front teeth. The orthodontist hypothesizes that the incidence is as common

in males as in females, H0: pM ¼ pF. (Note that in this example the experimental

hypothesis coincides with the null hypothesis.) In the data gathered, however, there is a

preponderance of males and P � a. The statistical decision is to reject the null hypothesis,

but this is not the final statement. Having rejected the null hypothesis, the orthodontist

concludes the report by stating that this condition occurs more frequently in males than in

females and advises family dentists of the need to watch more closely for tendencies of

this condition in boys than in girls.
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EXERCISES

1.2.1. Put the example of the cereals in the framework of the scientific method, elaborating on

each of the six steps.

1.2.2. State a null and alternative hypotheses for the example of the file cards in Section 1.1,

Example 1.5.

1.2.3. In the Salk experiment described in Example 1.6 of Section 1.1:

a. Why should Salk not be content just to reject the null hypothesis?

b. What conclusion could be drawn from the experiment?

1.2.4. Two college roommates decide to perform an experiment in extrasensory perception

(ESP). Each produces a snapshot of his home-town girl friend, and one snapshot is

placed in each of two identical brown envelopes. One of the roommates leaves the

room and the other places the two envelopes side by side on the desk. The first

roommate returns to the room and tries to pick the envelope that contains his girl

friend’s picture. The experiment is repeated 10 times. If the one who places the

envelopes on the desk tosses a coin to decide which picture will go to the left and which

to the right, the probabilities for correct decisions are listed below.

Number of

Correct Decisions Probability

Number of

Correct Decisions Probability

0 1/1024 6 210/1024
1 10/1024 7 120/1024
2 45/1024 8 45/1024
3 120/1024 9 10/1024
4 210/1024 10 1/1024
5 252/1024

a. State the null hypothesis based on chance as the determining factor in a correct

decision. (Make the statement in words and symbols.)

b. State an alternative hypothesis based on the power of love.

c. If a is set as near 0.05 as possible, what is the region of rejection, that is, what

numbers of correct decisions would provide evidence for ESP?

d. What is the region of acceptance, that is, those numbers of correct decisions that

would not provide evidence of ESP?

e. Suppose the first roommate is able to pick the envelope containing his girl friend’s

picture 10 times out of 10; which of the following statements are true?

i. The null hypothesis should be rejected.

ii. He has demonstrated ESP.

iii. Chance is not likely to produce such a result.

iv. Love is more powerful than chance.

v. There is sufficient evidence to suspect that something other than chance was

guiding his selections.

vi. With his luck he should raise some money and go to Las Vegas.
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1.2.5. The mortality rate of a certain disease is 50% during the first year after diagnosis. The

chance probabilities for the number of deaths within a year from a group of six persons

with the disease are:

Number of deaths: 0 1 2 3 4 5 6

Probability: 1/64 6/64 15/64 20/64 15/64 6/64 1/64

A new drug has been found that is helpful in cases of this disease, and it is hoped that it

will lower the death rate. The drug is given to 6 persons who have been diagnosed as

having the disease. After a year, a statistical test is performed on the outcome in order

to make a decision about the effectiveness of the drug.

a. What is the null hypothesis, in words and symbols?

b. What is the alternative hypothesis, based on the prior evidence that the drug is of

some help?

c. What is the region of rejection if a is set as close to 0.10 as possible?

d. What is the region of acceptance?

e. Suppose that 4 of the 6 persons die within one year. What decision should be made

about the drug?

1.2.6. A company produces a new kind of decaffeinated coffee which is thought to have a

taste superior to the three currently most popular brands. In a preliminary random

sample, 20 consumers are presented with all 4 kinds of coffee (in unmarked containers

and in random order), and they are asked to report which one tastes best. If all 4 taste

equally good, there is a 1-in-4 chance that a consumer will report that the new product

tastes best. If there is no difference, the probabilities for various numbers of consumers

indicating by chance that the new product is best are:

Number picking new product: 0 1 2 3 4

Probability: 0.003 0.021 0.067 0.134 0.190

Number picking new product: 5 6 7 8 9

Probability: 0.202 0.169 0.112 0.061 0.027

Number picking new product: 10 11 12 13–20

Probability: 0.010 0.003 0.001 ,0.001

a. State the null and alternative hypotheses, in words and symbols.

b. If a is set as near 0.05 as possible, what is the region of rejection?What is the region

of acceptance?

c. Suppose that 6 of the 20 consumers indicate that they prefer the new product. Which

of the following statements is correct?

i. The null hypothesis should be rejected.

ii. The new product has a superior taste.
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iii. The new product is probably inferior because fewer than half of the people

selected it.

iv. There is insufficient evidence to support the claim that the new product has a

superior taste.

1.3. EXPERIMENTAL DATA AND SURVEY DATA

An experiment involves the collection of measurements or observations about populations

that are treated or controlled by the experimenter. A survey, in contrast to an experiment, is an

examination of a system in operation in which the investigator does not have an opportunity to

assign different conditions to the objects of the study. Both of these methods of data collection

may be the subject of statistical analysis; however, in the case of surveys some cautions are in

order.

We might use a survey to compare two countries with different types of economic

systems. If there is a significant difference in some economic measure, such as per-capita

income, it does not mean that the economic system of one country is superior to the other.

The survey takes conditions as they are and cannot control other variables that may affect

the economic measure, such as comparative richness of natural resources, population

health, or level of literacy. All that can be concluded is that at this particular time a

significant difference exists in the economic measure. Unfortunately, surveys of this type

are frequently misinterpreted.

A similar mistake could have been made in a survey of the life expectancy of men and

women. The life expectancy was found to be 74.1 years for men and 79.5 years for women.

Without control for risk factors—smoking, drinking, physical inactivity, stressful occupation,

obesity, poor sleeping patterns, and poor life satisfaction—these results would be of little

value. Fortunately, the investigators gathered information on these factors and found that

women have more high-risk characteristics than men but still live longer. Because this was a

carefully planned survey, the investigators were able to conclude that women biologically

have greater longevity.

Surveys in general do not give answers that are as clear-cut as those of experiments. If an

experiment is possible, it is preferred. For example, in order to determine which of two

methods of teaching reading is more effective, we might conduct a survey of two schools that

are each using a different one of the methods. But the results would be more reliable if we

could conduct an experiment and set up two balanced groups within one school, teaching each

group by a different method.

From this brief discussion it should not be inferred that surveys are not trustworthy. Most

of the data presented as evidence for an association between heavy smoking and lung cancer

come from surveys. Surveys of voter preference cause certain people to seek the presidency

and others to decide not to enter the campaign. Quantitative research in many areas of social,

biological, and behavioral science would be impossible without surveys. However, in surveys

we must be alert to the possibility that our measurements may be affected by variables that are

not of primary concern. Since we do not have as much control over these variables as we have

in an experiment, we should record all concomitant information of pertinence for each

observation. We can then study the effects of these other variables on the variable of interest

and possibly adjust for their effects.

1.3. EXPERIMENTAL DATA AND SURVEY DATA 19



EXERCISES

1.3.1. In each of the research situations described below, determine whether the researcher is

conducting an experiment or a survey.

a. Traps are set out in a grain field to determine whether rabbits or raccoons are the

more frequently found pests.

b. A graduate student in English literature uses random 500-word passages from the

writings of Shakespeare and Marlowe to determine which author uses the

conditional tense more frequently.

c. A random sample of hens is divided into 2 groups at random. The first group is

given minute quantities of an insecticide containing an organic phosphorus

compound; the second group acts as a control group. The average difference in

eggshell thickness between the 2 groups is then determined.

d. To determine whether honeybees have a color preference in flowers, an apiarist

mixes a sugar-and-water solution and puts equal amounts in 2 equal-sized sets of

vials of different colors. Bees are introduced into a cage containing the vials, and the

frequency with which bees visit vials of each color is recorded.

1.3.2. In each of the following surveys, what besides the mechanism under study could have

contributed to the result?

a. An estimation of per-capita wealth for a city is made from a random sample of

people listed in the city’s telephone directory.

b. Political preference is determined by an interviewer taking a random sample of

Monday morning bank customers.

c. The average length of fish in a lake is estimated by:

i. The average length of fish caught, reported by anglers

ii. The average length of dead fish found floating in the water

d. The average number of words in the working vocabulary of first-grade children in a

given county is estimated by a vocabulary test given to a random sample of first-

grade children in the largest school in the country.

e. The proportion of people who can distinguish between two similar tones is

estimated on the basis of a test given to a random sample of university students in a

music appreciation class.

1.3.3. Time magazine once reported that El Paso’s water was heavily laced with lithium, a

tranquilizing chemical, whereas Dallas had a low lithium level. Time also reported that

FBI statistics showed that El Paso had 2889 known crimes per 100,000 population and

Dallas had 5970 known crimes per 100,000 population. The article reported that a

University of Texas biochemist felt that the reason for the lower crime rate in El Paso

lay in El Paso’s water. Comment on the biochemist’s conjecture.

1.4. COMPUTER USAGE

The practice of statistics has been radically changed now that computers and high-quality

statistical software are readily available and relatively inexpensive. It is no longer necessary to

spend large amounts of time doing the numerous calculations that are part of a statistical

analysis. We need only enter the data correctly, choose the appropriate procedure, and then

have the computer take care of the computational details.
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Because the computer can do so much for us, it might seem that it is now unnecessary to

study statistics. Nothing could be further from the truth. Now more than ever the researcher

needs a solid understanding of statistical analysis. The computer does not choose the

statistical procedure or make the final interpretation of the results; these steps are still in the

hands of the investigator.

Statistical software can quickly produce a large variety of analyses on data regardless of

whether these analyses correspond to the way in which the data were collected. An

inappropriate analysis yields results that are meaningless. Therefore, the researcher must learn

the conditions under which it is valid to use the various analyses so that the selection can be

made correctly.

The computer program will produce a numerical output. It will not indicate what the

numbers mean. The researcher must draw the statistical conclusion and then translate it into

the concrete terms of the investigation. Statistical analysis can best be described as a search

for evidence. What the evidence means and how much weight to give to it must be decided by

the researcher.

In this text we have included some computer output to illustrate how the output could be

used to perform some of the analyses that are discussed. Several exercises have computer

output to assist the user with analyzing the data. Additional output illustrating nearly all the

procedures discussed is available on an Internet website.

Many different comprehensive statistical software packages are available and the outputs

are very similar. A researcher familiar with the output of one package will probably find it

easy to understand the output of a different package. We have used two particular packages,

the SAS system and JMP, for the illustrations in the text. The SAS system was designed

originally for batch use on the large mainframe computers of the 1970’s. JMP was originally

designed for interactive use on the personal computers of the 1980’s. SAS made it possible to

analyze very large sets of data simply and efficiently. JMP made it easy to visualize smaller

sets of data. Because the distinction between large and small is frequently unclear, it is useful

to know about both programs.

The computer could be used to do many of the exercises in the text; however, some

calculations by the reader are still necessary in order to keep the computer from becoming a

magic box. It is easier for the investigator to select the right procedure and to make a proper

interpretation if the method of computation is understood.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.

1.1. To say that the null hypothesis is rejected does not necessarily mean it is false.

1.2. In a practical situation, the null hypothesis, alternative hypothesis, and level of rejection

should be specified before the experimentation.

1.3. The probability of choosing a random sample of 3 persons in which the first 2 say “yes”

and the last person says “no” from a population in which P(yes) ¼ 0.7 is (0.7)(0.7)(0.3).

1.4. If the experimental hypothesis is true, chance does not enter into the outcome of the

experiment.

1.5. The alternative hypothesis is often the experimental hypothesis.
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1.6. A decision made on the basis of a statistical procedure will always be correct.

1.7. The probability of choosing a random sample of 3 persons in which exactly 2 say “yes”

from a population with P(yes) ¼ 0.6 is (0.6)(0.6)(0.4).

1.8. In the total process of investigating a question, the very first thing a scientist does is

state the problem.

1.9. A scientist completes an experiment and then forms a hypothesis on the basis of the

results of the experiment.

1.10. In an experiment, the scientist should always collect as large an amount of data as is

humanly possible.

1.11. Even a specialist in a field may not be capable of picking a sample that is truly

representative, so it is better to choose a random sample.

1.12. If in an experiment P(success) ¼ 1/3, then the odds against success are 3 to 1.

1.13. One of the main reasons for using random sampling is to find the probability that an

experiment could yield a particular outcome by chance if the null hypothesis is true.

1.14. The a level in a statistical procedure depends on the field of investigation, the cost, and

the seriousness of error; however, traditional levels are often used.

1.15. A conclusion reached on the basis of a correctly applied statistical procedure is based

solely on probability.

1.16. The null hypothesis may be the same as the experimental hypothesis.

1.17. The “a level” and the “region of rejection” are two expressions for the same thing.

1.18. If a correct statistical procedure is used, it is possible to reject a true null hypothesis.

1.19. The probability of rolling two 6’s on two dice is 1/6 þ 1/6 ¼ 1/3.

1.20. A weakness of many surveys is that there is little control of secondary variables.
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