
abacus
A counting frame that started out, several thousand years
ago, as rows of pebbles in the desert sands of the Middle
East. The word appears to come from the Hebrew âbâq
(dust) or the Phoenician abak (sand) via the Greek abax,
which refers to a small tray covered with sand to hold the
pebbles steady. The familiar frame-supporting rods or
wires, threaded with smoothly running beads, gradually
emerged in a variety of places and mathematical forms.

In Europe, there was a strange state of affairs for more
than 1,500 years. The Greeks and the Romans, and then
the medieval Europeans, calculated on devices with a
place-value system in which zero was represented by an
empty line or wire. Yet the written notations didn’t have
a symbol for zero until it was introduced in Europe in
1202 by Fibonacci, via the Arabs and the Hindus.

The Chinese suan pan differs from the European aba-
cus in that the board is split into two decks, with two
beads on each rod in the upper deck and five beads, rep-
resenting the digits 0 through 4, on each rod in the bot-
tom. When all five beads on a rod in the lower deck are
moved up, they’re reset to the original position, and one
bead in the top deck is moved down as a carry. When
both beads in the upper deck are moved down, they’re
reset and a bead on the adjacent rod on the left is moved
up as a carry. The result of the computation is read off
from the beads clustered near the separator beam
between the upper and lower decks. In a sense, the aba-
cus works as a 5-2-5-2-5-2 . . . –based number system in
which carries and shifts are similar to those in the deci-
mal system. Since each rod represents a digit in a deci-
mal number, the capacity of the abacus is limited only
by the number of rods on the abacus. When a user runs
out of rods, she simply adds another abacus to the left of
the row.

The Japanese soroban does away with the dual repre-
sentations of fives and tens by having only four counters
in the lower portion, known as “earth,” and only one
counter in the upper portion, known as “heaven.” The
world’s largest abacus is in the Science Museum in Lon-
don and measures 4.7 meters by 2.2 meters.

Abbott, Edwin Abbott (1838–1926)
An English clergyman and author who wrote several the-
ological works and a biography (1885) of Francis Bacon,
but is best known for his standard Shakespearian Grammar
(1870) and the pseudonymously written Flatland: A
Romance of Many Dimensions (by A Square, 1884).[1]

ABC conjecture
A remarkable conjecture, first put forward in 1980 by
Joseph Oesterle of the University of Paris and David
Masser of the Mathematics Institute of the University of
Basel in Switzerland, that is now considered one of the
most important unsolved problems in number theory. If
it were proved correct, the proofs of many other famous
conjectures and theorems would follow immediately—in
some cases in just a few lines. The vastly complex current
proof of Fermat’s last theorem, for example, would
reduce to less than a page of mathematical reasoning.
The ABC conjecture is disarmingly simple compared 
to most of the deep questions in number theory and,

A

3

abacus A special form of the Chinese abacus (c. 1958) consist-
ing of two abaci stacked one on top of the other. Luis Fernandes
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4 Abel, Niels Henrik

moreover, turns out to be equivalent to all the main
problems that involve Diophantine equations (equa-
tions with integer coefficients and integer solutions).

Only a couple of concepts need to be understood to
grasp the ABC conjecture. A square-free number is an inte-
ger that isn’t divisible by the square of any number. For
example, 15 and 17 are square-free, but 16 (divisible by
42) and 18 (divisible by 32) are not. The square-free part of
an integer n, denoted sqp(n), is the largest square-free
number that can be formed by multiplying the prime fac-
tors of n. For n = 15, the prime factors are 5 and 3, and 
3 × 5 = 15, a square-free number, so that sqp(15) = 15.
On the other hand, for n = 16, the prime factors are all 2,
which means that sqp(16) = 2. In general, if n is square-
free, the square-free part of n is just n; otherwise, sqp(n)
represents what is left over after all the factors that create
a square have been eliminated. In other words, sqp(n) is
the product of the distinct prime numbers that divide n.
For example, sqp(9) = sqp(3 × 3) = 3 and sqp(1,400) =
sqp(2 × 2 × 2 × 5 × 5 × 7) = 2 × 5 × 7 = 70.

The ABC conjecture deals with pairs of numbers that
have no common factors. Suppose A and B are two such
numbers that add to give C. For example, if A = 3 and 
B = 7, then C = 3 + 7 = 10. Now, consider the square-free
part of the product A × B × C: sqp(ABC ) = sqp(3 × 7 ×
10) = 210. For most values of A and B, sqp(ABC ) > C, as
in the prior example. In other words, sqp(ABC )/C > 1.
Occasionally, however, this isn’t true. For instance, 
if A = 1 and B = 8, then C = 1 + 8 = 9, sqp(ABC ) =
sqp(1 × 8 × 9) = sqp(1 × 2 × 2 × 2 × 3 × 3) = 1 × 2 × 3 = 6,
and sqp(ABC )/C = 6⁄9 = 2⁄3. Similarly, if A = 3 and 
B = 125, the ratio is 15⁄64.

David Masser proved that the ratio sqp(ABC )/C can
get arbitrarily small. In other words, given any number
greater than zero, no matter how small, it’s possible to find
integers A and B for which sqp(ABC )/C is smaller than 
this number. In contrast, the ABC conjecture says that
[sqp(ABC )]n/C reaches a minimum value if n is any num-
ber greater than 1—even a number such as 1.0000000001,
which is only barely larger than 1. The tiny change in the
expression results in a huge difference in its mathematical
behavior. The ABC conjecture in effect translates an infi-
nite number of Diophantine equations (including the
equation of Fermat’s last theorem) into a single mathe-
matical statement.[144]

Abel, Niels Henrik (1802–1829)

The divergent series are the invention of the devil,
and it is a shame to base on them any demonstra-
tion whatsoever. By using them, one may draw
any conclusion he pleases and that is why these

series have produced so many fallacies and so
many paradoxes.

A Norwegian mathematician who, independently of his
contemporary Évariste Galois, pioneered group theory
and proved that there are no algebraic solutions of the
general quintic equation. Both Abel and Galois died
tragically young—Abel of tuberculosis, Galois in a sword
fight.

While a student in Christiania (now Oslo), Abel
thought he had discovered how to solve the general quin-
tic algebraically, but soon corrected himself in a famous
pamphlet published in 1824. In this early paper, Abel
showed the impossibility of solving the general quintic by
means of radicals, thus laying to rest a problem that had
perplexed mathematicians since the mid-sixteenth cen-
tury. Abel, chronically poor throughout his life, was
granted a small stipend by the Norwegian government that
allowed him to go on a mathematical tour of Germany
and France. In Berlin he met Leopold Crelle (1780–1856)
and in 1826 helped him found the first journal in the
world devoted to mathematical research. Its first three vol-
umes contained 22 of Abel’s papers, ensuring lasting fame
for both Abel and Crelle. Abel revolutionized the impor-
tant area of elliptic integrals with his theory of elliptic
functions, contributed to the theory of infinite series, and
founded the theory of commutative groups, known today
as Abelian groups. Yet his work was never properly appre-
ciated during his life, and, impoverished and ill, he
returned to Norway unable to obtain a teaching position.
Two days after his death, a delayed letter was delivered in
which Abel was offered a post at the University of Berlin.

Abelian group
A group that is commutative, that is, in which the result
of multiplying one member of the group by another is
independent of the order of multiplication. Abelian
groups, named after Niels Abel, are of central impor-
tance in modern mathematics, most notably in algebraic
topology. Examples of Abelian groups include the real
numbers (with addition), the nonzero real numbers
(with multiplication), and all cyclic groups, such as the
integers (with addition).

abracadabra
A word famously used by magicians but which started
out as a cabalistic or mystical charm for curing various
ailments, including toothache and fever. It was first men-
tioned in a poem called “Praecepta de Medicina” by the
Gnostic physician Quintus Severus Sammonicus in the
second century A.D. Sammonicus instructed that the let-
ters be written on parchment in the form of a triangle:
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abstract algebra 5

A   B   R   A   C   A   D   A   B   R   A
A   B   R   A   C   A   D   A   B   R

A   B   R   A   C   A   D   A   B
A   B   R   A   C   A   D   A

A   B   R   A   C   A   D
A   B   R   A   C   A

A   B   R   A   C
A   B   R   A

A   B   R
A   B

A

This was to be folded into the shape of a cross, worn for
nine days suspended from the neck, and, before sunrise,
cast behind the patient into a stream running eastward. It
was also a popular remedy in the Middle Ages. During
the Great Plague, around 1665, large numbers of these
amulets were worn as safeguards against infection. The
origin of the word itself is uncertain. One theory is that it
is based on Abrasax, the name of an Egyptian deity.

PUZZLE
A well-known puzzle, proposed by George Polya
(1887–1985), asks how many different ways there are
to spell abracadabra in this diamond-shaped arrange-
ment of letters:

A
B   B

R   R   R
A   A   A   A

C   C   C   C   C
A   A   A   A   A   A
D   D   D   D   D

A   A   A   A
B   B   B

R   R
A

Solutions begin on page 369.

abscissa
The x-coordinate, or horizontal distance from the y-axis,
in a system of Cartesian coordinates. Compare with
ordinate.

absolute
Not limited by exceptions or conditions. The term is
used in many different ways in mathematics, physics,
philosophy, and everyday speech. Absolute space and
absolute time, which, in Newton’s universe, form a
unique, immutable frame of reference, blend and be-
come deformable in the space-time of Einstein. See also

absolute zero. In some philosophies, the absolute stands
behind the reality we see—independent, transcendent,
unconditional, and all-encompassing. The American phi-
losopher Josiah Royce (1855–1916) took the absolute to
be a spiritual entity whose self-consciousness is imper-
fectly reflected in the totality of human thought. Mathe-
matics, too, reaches beyond imagination with its absolute
infinity. See also absolute value.

absolute value
The value of a number without regard to its sign. The
absolute value, or modulus, of a real number, r, is the dis-
tance of the number from zero measured along the real
number line, and is denoted |r|. Being a distance, it can’t
be negative; so, for example, |3| = |−3| = 3. The same 
idea applies to the absolute value of a complex number
a + ib, except that, in this case, the complex number is
represented by a point on an Argand diagram. The
absolute value, |a + ib|, is the length of the line from the
origin to the given point, and is equal to �(a 2 + b�2)�.

absolute zero
The lowest possible temperature of a substance, equal to 0
Kelvin (K), −273.15°C, or −459.67°F. In classical physics,
it is the temperature at which all molecular motion ceases.
However, in the “real” world of quantum mechanics it
isn’t possible to stop all motion of the particles making up
a substance as this would violate the Heisenberg uncer-
tainty principle. So, at 0 K, particles would still vibrate
with a certain small but nonzero energy known as the zero-
point energy. Temperatures within a few billionths of a
degree of absolute zero have been achieved in the labora-
tory. At such low temperatures, substances have been seen
to enter a peculiar state, known as the Bose-Einstein con-
densate, in which their quantum wave functions merge
and particles lose their individual identities. Although it is
possible to approach ever closer to absolute zero, the
third law of thermodynamics asserts that it’s impossible to
ever attain it. In a deep sense, absolute zero lies at the
asymptotic limit of low energy just as the speed of light
lies, for particles with mass, at the asymptotic limit of high
energy. In both cases, energy of motion (kinetic energy) is
the key quantity involved. At the high energy end, as the
average speed of the particles of a substance approaches
the speed of light, the temperature rises without limit,
heading for an unreachable ∞ K.

abstract algebra

To a mathematician, real life is a special case.
—Anonymous

Algebra that is not confined to familiar number systems,
such as the real numbers, but seeks to solve equations
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6 Abu’l Wafa

that may involve many other kinds of systems. One of
its aims, in fact, is to ask: What other number systems
are there? The term abstract refers to the perspective
taken on the subject, which is very different from that of
high school algebra. Rather than looking for the solu-
tions to a particular problem, abstract algebra is inter-
ested in such questions as: When does a solution exist?
If a solution does exist, is it unique? What general prop-
erties does a solution possess? Among the structures it
deals with are groups, rings, and fields. Historically,
examples of such structures often arose first in some
other field of mathematics, were specified rigorously
(axiomatically), and were then studied in their own right
in abstract algebra.

Abu’l Wafa (A.D. 940–998)
A Persian mathematician and astronomer who was the
first to describe geometrical constructions (see con-
structible) possible only with a straightedge and a fixed
compass, later dubbed a “rusty compass,” that never al-
ters its radius. He pioneered the use of the tangent func-
tion (see trigonometric function), apparently discovered
the secant and cosecant functions, and compiled tables
of sines and tangents at 15′ intervals—work done as part
of an investigation into the orbit of the Moon.

abundant number
A number that is smaller than the sum of its aliquot parts
(proper divisors). Twelve is the smallest abundant num-
ber; the sum of its aliquot parts is 1 + 2 + 3 + 4 + 6 = 16,
followed by 18, 20, 24, and 30. A weird number is an abun-
dant number that is not semiperfect; in other words, n is
weird if the sum of its divisors is greater than n, but n is
not equal to the sum of any subset of its divisors. The
first few weird numbers are 70, 836, 4,030, 5,830, and
7,192. It isn’t known if there are any odd weird numbers.
A deficient number is one that is greater than the sum of its
aliquot parts. The first few deficient numbers are 1, 2, 3,
4, 5, 8, and 9. Any divisor of a deficient (or perfect)
number is deficient. A number that is not abundant or
deficient is known as a perfect number.

Achilles and the Tortoise paradox
See Zeno’s paradoxes.

Ackermann function
One of the most important functions in computer sci-
ence. Its most outstanding property is that it grows aston-
ishingly fast. In fact, it gives rise to large numbers so
quickly that these numbers, called Ackermann numbers,
are written in a special way known as Knuth’s up-arrow
notation. The Ackermann function was discovered and
studied by Wilhelm Ackermann (1896–1962) in 1928.

Ackermann worked as a high school teacher from 1927
to 1961 but was also a student of the great mathemati-
cian David Hilbert in Göttingen and, from 1953, served
as an honorary professor in the university there.
Together with Hilbert he published the first modern
textbook on mathematical logic. The function he dis-
covered, and that now bears his name, is the simplest
example of a well-defined and total function that is also
computable but not primitive recursive (PR). “Well-
defined and total” means that the function is internally
consistent and doesn’t break any of the rules laid down
to define it. “Computable” means that it can, in prin-
ciple, be evaluated for all possible input values of its
variables. “Primitive recursive” means that it can be
computed using only for loops—repeated application of a
single operation a predetermined number of times. The
recursion, or feedback loop, in the Ackermann function
overruns the capacity of any for loop because the number
of loop repetitions isn’t known in advance. Instead, this
number is itself part of the computation, and grows as
the calculation proceeds. The Ackermann function can
only be calculated using a while loop, which keeps repeat-
ing an action until an associated test returns false. Such
loops are essential when the programmer doesn’t know
at the outset how many times the loop will be traversed.
(It’s now known that everything computable can be pro-
grammed using while loops.)

The Ackermann function can be defined as follows:

A(0, n) = n + 1 for n = 0
A(m, 0) = A(m − 1, 1) for m = 1
A(m, n) = A(m − 1, A(m, n − 1)) for m, n = 1.

Two positive integers, m and n, are the input and A(m, n)
is the output in the form of another positive integer. The
function can be programmed easily in just a few lines of
code. The problem isn’t the complexity of the function
but the awesome rate at which it grows. For example, the
innocuous-looking A(4,2) already has 19,729 digits! The
use of a powerful large-number shorthand system, such
as the up-arrow notation, is indispensable as the follow-
ing examples show:

A(1, n) = 2 + (n + 3) − 3
A(2, n) = 2 × (n + 3) − 3
A(3, n) = 2↑(n + 3) − 3
A(4, n) = 2↑(2↑(2↑ ( . . . ↑2))) − 3 (n + 3 twos) 

= 2↑↑(n + 3) − 3
A(5, n) = 2↑↑↑(n + 3) − 3, etc.

Intuitively, the Ackermann function defines generaliza-
tions of multiplication by 2 (iterated additions) and
exponentiation with base 2 (iterated multiplications) to
iterated exponentiation, iteration of this operation, and
so on.[84]
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acre
An old unit of area, equal to 160 square rods, 4,840
square yards, 43,560 square feet, or 4,046.856 square
meters.

acute
From the Latin acus for “needle” (which also forms the
root for acid, acupuncture, and acumen). An acute angle is
less than 90°. An acute triangle is one in which all three
angles are acute. Compare with obtuse.

adjacent
Next to. Adjacent angles are next to each other, and thus
share one side. Adjacent sides of a polygon share a vertex.

affine geometry
The study of properties of geometric objects that remain
unchanged after parallel projection from one plane to
another. During such a projection, first studied by Leon-
hard Euler, each point (x, y) is mapped to a new point
(ax + cy + e, bx + dy + f ). Circles, angles, and distances are
altered by affine transformations and so are of no inter-
est in affine geometry. Affine transformations do, how-
ever, preserve collinearity of points: if three points
belong to the same straight line, their images (the points
that correspond to them) under affine transformations
also belong to the same line and, in addition, the middle
point remains between the other two points. Similarly,
under affine transformations, parallel lines remain par-
allel; concurrent lines remain concurrent (images of in-
tersecting lines intersect); the ratio of lengths of line
segments of a given line remains constant; the ratio of
areas of two triangles remains constant; and ellipses, par-
abolas, and hyperbolas continue to be ellipses, parabo-
las, and hyperbolas.

age puzzles and tricks
Problems that ask for a person’s age or, alternatively,
when a person was a certain age, given several round-
about facts. They go back at least 1,500 years to the time
of Metrodorus and Diophantus’s riddle. A number of
distinct types of age puzzles sprang up between the six-
teenth and early twentieth centuries, in most cases best
solved by a little algebra. One form asks: if X is now a
years old and Y is now b years old, when will X be c
times as old as Y? The single unknown, call it x, can be
found from the equation a + x = c(b + x). Another type
of problem takes the form: if X is now a times as old as
Y and after b years X will be c times as old as Y, how old
are X and Y now? In this case the trick is to set up and
solve two simultaneous equations: X = aY and X + b =
c(Y + b).

PUZZLES
Around 1900, two more variants on the age puzzle
became popular. Here is an example of each for the
reader to try.

1. Bob is 24. He is twice as old as Alice was when
Bob was as old as Alice is now. How old is Alice?

2. The combined ages of Mary and Ann are 44 years.
Mary is twice as old as Ann was when Mary was
half as old as Ann will be when Ann is three times
as old as Mary was when Mary was three times as
old as Ann. How old is Ann?”

Solutions begin on page 369.

Various mathematical sleights of hand can seem to
conjure up a person’s age as if by magic. For example, ask
a person to multiply the first number of his or her age by
5, add 3, double this figure, add the second number of
his or her age to the figure, and tell you the answer.
Deduct 6 from this and you will have their age.

Alternatively, ask the person to pick a number, multi-
ply this by 2, add 5, and multiply by 50. If the person
has already had a birthday this year and it’s the year
2004, she should add 1,754, otherwise she should add
1,753. Each year after 2004 these numbers need to be
increased by 1. Finally, the person should subtract the
year they were born. The first digits of the answer are the
original number, while the last two digits are the per-
son’s age.

Here is one more trick. Take your age, multiply it by 7,
then multiply again by 1,443. The result is your age
repeated three times. (What you have actually done is
multiplied by 10,101; if you multiply by 1,010,101, the
repetition is fourfold, and so on.)

Agnesi, Maria Gaetana (1718–1799)
An Italian mathematician and scholar whose name is
associated with the curve known as the Witch of Agnesi.
Born in Milan, Maria was one of 24 children of a pro-
fessor of mathematics at the University of Bologna. A
child prodigy, she could speak seven languages, includ-
ing Latin, Greek, and Hebrew, by the age of 11 and was
solving difficult problems in geometry and ballistics by
her early teens. Her father encouraged her studies and
her appearance at public debates. However, Maria de-
veloped a chronic illness, marked by convulsions and
headaches, and, from the age of about 20, withdrew
socially and devoted herself to mathematics. Her Insti-
tuzioni analitiche ad uso della gioventu italiana, published
in 1748, became a standard teaching manual, and in
1750, she was appointed to the chair of mathema-
tics and natural philosophy at Bologna. Yet she never
fulfilled her early promise in terms of making new
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8 Ahmes papyrus

breakthroughs. After the death of her father in 1752,
she moved into theology and, after serving for some
years as the directress of the Hospice Trivulzio for Blue
Nuns at Milan, joined the sisterhood herself and ended
her days in this austere order.

The famous curve that bears her name had been
studied earlier, in 1703, by Pierre de Fermat and the
Italian mathematician Guido Grandi (1671–1742).
Maria wrote about it in her teaching manual and re-
ferred to it as the aversiera, which simply means “to
turn.” But in translating this, the British mathema-
tician John Colson (1680–1760), the fifth Lucasian
professor of mathematics at Cambridge University,
confused aversiera with avversiere which means “witch,”
or “wife of the devil.” And so the name of the curve
came down to us as the Witch of Agnesi. To draw it,
start with a circle of diameter a, centered at the point
(0, a/2) on the y-axis. Choose a point A on the line
y = a and connect it to the origin with a line segment.
Call the point where the segment crosses the circle B.
Let P be the point where the vertical line through A
crosses the horizontal line through B. The Witch is the
curve traced by P as A moves along the line y = a. By a
happy coincidence, it does look a bit like a witch’s hat!
In Cartesian coordinates, its equation is

y = a3/(x 2 + a 2).

Ahmes papyrus
See Rhind papyrus.

Ahrens, Wilhelm Ernst Martin Georg (1872–1927)
A great German exponent of recreational mathematics

whose Mathematische Unterhaltungen und Spiele[6] is one of
the most scholarly of all books on the subject.

Alcuin (735–804)
A leading intellectual of his time and the probable 
compiler of Propositiones ad Acuendos Juvenes (Problems to
sharpen the young), one of the earliest collections of rec-
reational math problems. According to David Singmaster
and John Hadley: “The text contains 56 problems, includ-
ing 9 to 11 major types of problem which appear for the
first time, 2 major types which appear in the West for the
first time and 3 novel variations of known problems. . . .
It has recently been realized that the river-crossing prob-
lems and the crossing-a-desert problem, which appear
here for the first time, are probably the earliest known
combinatorial problems.”

Alcuin was born into a prominent family near the east
coast of England. He was sent to York, where he became a
pupil and, eventually, in 778, the headmaster, of Arch-
bishop Ecgberht’s School. (Ecgberht was the last person to
have known the Venerable Bede.) Alcuin built up a superb
library and made the school one of the chief centers of
learning in Europe. Its reputation became such that, in
781, Alcuin was invited to become master of Charle-
magne’s Palace School at Aachen and, effectively, minister
of education for Charlemagne’s empire. He accepted and
traveled to Aachen to a meeting of the leading scholars.
Subsequently, he was made head of Charlemagne’s Palace
School and there developed the Carolingian minuscule, a
clear, legible script that became the basis of how letters of
the present Roman alphabet are written.

Before leaving Aachen, Alcuin was responsible for the
most prized of the Carolingian codices, now called the

Agnesi, Maria Gaetana The Witch of Agnesi curve. John H. Lienhard
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algebraic fallacies 9

Golden Gospels: a series of illuminated masterpieces writ-
ten largely in gold, on white or purple vellum. The develop-
ment of Carolingian minuscule had, indirectly, a major
impact on the history of mathematics. Because it was a far
more easily readable script than the older unspaced capital,
it led to many mathematical works being newly copied into
this new style in the ninth century. Most of the works of the
ancient Greek mathematicians that have survived did so
because of this transcription. Alcuin lived in Aachen from
782 to 790 and again from 793 to 796. In 796, he retired
from Charlemagne’s Palace School and became abbot of
the Abbey of St. Martin at Tours, where he and his monks
continued to work with the Carolingian minuscule script.

aleph
The first letter of the Hebrew alphabet, ‡. It was first used
in mathematics by Georg Cantor to denote the various
orders, or sizes, of infinity: ‡0 (aleph-null), ‡1 (aleph-
one), etc. An earlier (and still used) symbol for infinity, ∞,
was introduced in 1655 by John Wallis in his Arithmetica
infinitorum but didn’t appear in print until the Ars con-
jectandi by Jakob Bernoulli, published posthumously in
1713 by his nephew Nikolaus Bernoulli (see Bernoulli
Family).

Alexander’s horned sphere
In topology, an example of what is called a “wild” struc-
ture; it is named after the Princeton mathematician James
Waddell Alexander (1888–1971) who first described it in
the early 1920s. The horned sphere is topologically equiv-
alent to the simply connected surface of an ordinary hol-
low sphere but bounds a region that is not simply
connected. The horns-within-horns consist of a recursive
set—a fractal—of interlocking pairs of orthogonal rings
(rings set at right angles) of decreasing radius. A rubber
band around the base of any horn couldn’t be removed
from the structure even after infinitely many steps. The
horned sphere can be embedded in the plane by reducing
the interlock angle between ring pairs from 90° to 0°, then
weaving the rings together in an over-under pattern. The
sculptor Gideon Weisz has modeled a number of approx-
imations to the structure, one of which is shown in the
photograph.

algebra
A major branch of mathematics that, at an elementary
level, involves applying the rules of arithmetic to num-
bers, and to letters that stand for unknown numbers, with
the main aim of solving equations. Beyond the algebra
learned in high school is the much vaster and more pro-
found subject of abstract algebra. The word itself comes
from the Arabic al-jebr, meaning “the reunion of broken
parts.” It first appeared in the title of a book, Al-jebr w’al-
mugabalah (The science of reduction and comparison), 
by the ninth-century Persian scholar al-Khowarizmi—
probably the greatest mathematician of his age, and as
famous among Arabs as Euclid and Aristotle are to the
Western world.

algebraic curve
A curve whose equation involves only algebraic functions.
These are functions that, in their most general form, can
be written as a sum of polynomials in x multiplied by
powers of y, equal to zero. Among the simplest examples
are straight lines and conic sections.

algebraic fallacies
Misuse of algebra can have some surprising and absurd
results. Here, for example, is a famous “proof” that 1 = 2:

Let a = b.
Then a 2 = ab

a2 + a 2 = a 2 + ab
2a 2 = a 2 + ab

2a 2 − 2ab = a2 + ab − 2ab
2a 2 − 2ab = a2 − ab
2(a 2 − ab) = 1(a 2 − ab).

Dividing both sides by a 2 − ab
2 = 1.

Alexander’s horned sphere A sculpture of a five-level
Alexander’s horned sphere. Gideon Weisz, www.gideonweisz.com

11194_Darling_c01_f.qxd  6/10/04  9:56 AM  Page 9



10 algebraic geometry

Where’s the mistake? The problem lies with the seem-
ingly innocuous final division. Since a = b, dividing by 
a 2 − ab is the same as dividing by zero—the great taboo of
mathematics.

Another false argument runs as follows:

(n + 1)2 = n 2 + 2n + 1
(n + 1)2 − (2n + 1) = n 2.

Subtracting n(2n + 1) from both sides and factorizing
gives

(n + 1)2 − (n + 1)(2n + 1) = n 2 − n(2n + 1).

Adding 1⁄4(2n + 1)2 to both sides yields

(n + 1)2 − (n + 1)(2n + 1) + 1⁄4(2n + 1)2

= n 2 − n(2n + 1) + 1⁄4(2n + 1)2.

This may be written:

[(n + 1) − 1⁄2(2n + 1)]2 = [(n − 1⁄2(2n + 1)]2.

Taking square roots of both sides,

n + 1 − 1⁄2(2n + 1) = n − 1⁄2(2n + 1).

Therefore,

n = n + 1.

The problem here is that there are two square roots for
any positive number, one positive and one negative: the
square roots of 4 are 2 and −2, which can be written as
�2. So the penultimate step should properly read:

�(n + 1 − 1⁄2(2n + 1)) = �(n − 1⁄2(2n + 1))

algebraic geometry
Originally, the geometry of complex number solutions
to polynomial equations. Modern algebraic geometry is
also concerned with algebraic varieties, which are a gen-
eralization of the solution sets found in the traditional
subject, as well as solutions in fields other than complex
numbers, for example finite fields.

algebraic number
A real number that is a root of a polynomial equation
with integer coefficients. For example, any rational num-
ber a/b, where a and b are nonzero integers, is an alge-
braic number of degree one, because it is a root of the
linear equation bx − a = 0. The square root of two is an
algebraic number of degree two because it is a root of the
quadratic equation x 2 − 2 = 0. If a real number is not alge-
braic, then it is a transcendental number. Almost all real
numbers are transcendental because, whereas the set of
algebraic numbers is countably infinite (see countable

set), the set of transcendental numbers is uncountably
infinite.

algebraic number theory
The branch of number theory that is studied without
using methods such as infinite series and convergence
taken from analysis. It contrasts with analytical number
theory.

algebraic topology
A branch of topology that deals with invariants of 
a topological space that are algebraic structures, often
groups.

algorithm
A systematic method for solving a problem. The word
comes from the name of the Persian mathematician, al-
Khowarizmi, and may have been first used by Gottfried
Liebniz in the late 1600s. It remained little known in
Western mathematics, however, until the Russian mathe-
matician Andrei Markov (1903–1987) reintroduced it.
The term became especially popular in the areas of math
focused on computing and computation.

algorithmic complexity
A measure of complexity developed by Gregory Chaitin
and others, based on Claude Shannon’s information
theory and earlier work by the Russian mathematicians
Andrei Kolmogorov and Ray Solomonoff. Algorithmic
complexity quantifies how complex a system is in terms
of the shortest computer program, or set of algorithms,
needed to completely describe the system. In other
words, it is the smallest model of a given system that is
necessary and sufficient to capture the essential patterns
of that system. Algorithmic complexity has to do with
the mixture of repetition and innovation in a complex
system. At one extreme, a highly regular system can be
described by a very short program or algorithm. For
example, the bit string 01010101010101010101 . . . fol-
lows from just three commands: print a zero, print a one,
and repeat the last two commands indefinitely. The com-
plexity of such a system is very low. At the other extreme,
a totally random system has a very high algorithmic
complexity since the random patterns can’t be con-
densed into a smaller set of algorithms: the program is
effectively as large as the system itself. See also com-
pressible.

Alhambra
The former palace and citadel of the Moorish kings of
Granada, and perhaps the greatest monument to Islamic
mathematical art on Earth. Because the Qur’an consid-

11194_Darling_c01_f.qxd  6/10/04  9:56 AM  Page 10



Allais paradox 11

ers the depiction of living beings in religious settings
blasphemous, Islamic artists created intricate patterns to
symbolize the wonders of creation: the repetitive nature
of these complex geometric designs suggests the limitless
power of God. The sprawling citadel, looming high
above the Andalusian plain, boasts a remarkable array of
mosaics with tiles arranged in intricate patterns. The
Alhambra tilings are periodic; in other words, they con-

sist of some basic unit that is repeated in all directions to
fill up the available space. All 17 different groups of
isometries—the possible ways of repeatedly tiling the
plane—are used at the palace. The designs left a deep
impression on Maurits Escher, who came here in 1936.
Subsequently, Escher’s art took on a much more mathe-
matical nature, and over the next six years he produced
43 colored drawings of periodic tilings with a wide vari-
ety of symmetry types.

aliquot part
Also known as a proper divisor, any divisor of a number
that isn’t equal to the number itself. For instance, the
aliquot parts of 12 are 1, 2, 3, 4, and 6. The word comes
from the Latin ali (“other”) and quot (“how many”). An
aliquot sequence is formed by taking the sum of the
aliquot parts of a number, adding them to form a new
number, then repeating this process on the next num-
ber and so on. For example, starting with 20, we get 
1 + 2 + 4 + 5 + 10 = 22, then 1 + 2 + 11 = 14, then 
1 + 2 + 7 = 10, then 1 + 2 + 5 = 8, then 1 + 2 + 4 = 7,
then 1, after which the sequence doesn’t change. For
some numbers, the result loops back immediately to
the original number; in such cases the two numbers are
called amicable numbers. In other cases, where a
sequence repeats a pattern after more than one step,
the result is known as an aliquot cycle or a sociable chain.
An example of this is the sequence 12496, 14288,
15472, 14536, 14264, . . . The aliquot parts of 14264
add to give 12496, so that the whole cycle begins again.
Do all aliquot sequences end either in 1 or in an
aliquot cycle (of which amicable numbers are a special
case)? In 1888, the Belgian mathematician Eugène
Catalan (1814–1894) conjectured that they do, but this
remains an open question.

al-Khowarizmi (c. 780–850)
An Arabic mathematician, born in Baghdad, who is
widely considered to be the founder of modern day alge-
bra. He believed that any math problem, no matter how
difficult, could be solved if broken down into a series of
smaller steps. The word algorithm may have derived from
his name.

Allais paradox
A paradox that stems from questions asked in 1951 by
the French economist Maurice Allais (1911–).[8] Which
of these would you choose: (A) an 89% chance of receiv-
ing an unknown amount and 11% chance of $1 million;
or (B) an 89% chance of an unknown amount (the same
amount as in A), a 10% chance of $2.5 million, and a 1%
chance of nothing? Would your choice be the same if the

Alhambra Computer-generated tilings based on Islamic tile
designs such as those found in the Alhambra. Xah Lee,
www.xahlee.org
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12 almost perfect number

unknown amount was $1 million? What if the unknown
amount was zero?

Most people don’t like risk and so prefer the better
chance of winning $1 million in option A. This choice
is firm when the unknown amount is $1 million, but
seems to waver as the amount falls to nothing. In the lat-
ter case, the risk-averse person favors B because there
isn’t much difference between 10% and 11%, but there’s
a big difference between $1 million and $2.5 million.
Thus the choice between A and B depends on the un-
known amount, even though it is the same unknown
amount independent of the choice. This flies in the face
of the so-called independence axiom, that rational choice
between two alternatives should depend only on how
those two alternatives differ. Yet, if the amounts involved
in the problem are reduced to tens of dollars instead of
millions of dollars, people’s behavior tends to fall back in
line with the axioms of rational choice. In this case, peo-
ple tend to choose option B regardless of the unknown
amount. Perhaps when presented with such huge num-
bers, people begin to calculate qualitatively. For example,
if the unknown amount is $1 million the options are
essentially (A) a fortune guaranteed or (B) a fortune
almost guaranteed with a small chance of a bigger for-
tune and a tiny chance of nothing. Choice A is then
rational. However, if the unknown amount is nothing,
the options are (A) a small chance of a fortune ($1 mil-
lion) and a large chance of nothing, and (B) a small
chance of a larger fortune ($2.5 million) and a large
chance of nothing. In this case, the choice of B is ratio-
nal. Thus, the Allais paradox stems from our limited abil-
ity to calculate rationally with such unusual quantities.

almost perfect number
A description sometimes applied to the powers of 2
because the aliquot parts (proper divisors) of 2n sum to 
2n − 1. So a power of 2 is a deficient number (one that is
less than the sum of its proper divisors), but only just. It
isn’t known whether there is an odd number n whose
divisors (excluding itself) sum to n − 1.

alphamagic square
A form of magic square, introduced by Lee Sallows,[278–280]

in which the number of letters in the word for each number,
in whatever language is being used, gives rise to another
magic square. In English, for example, the alphamagic
square:

5 (five) 22 (twenty-two) 18 (eighteen)
28 (twenty-eight) 15 (fifteen) 2 (two)
12 (twelve) 8 (eight) 25 (twenty-five)

generates the square:

4 9 8
11 7 3
6 5 10

A surprisingly large number of 3 × 3 alphamagic squares
exist—in English and in other languages. French allows just
one 3 × 3 alphamagic square involving numbers up to 200,
but a further 255 squares if the size of the entries is
increased to 300. For entries less than 100, none occurs in
Danish or in Latin, but there are 6 in Dutch, 13 in Finnish,
and an incredible 221 in German. Yet to be determined is
whether a 3 × 3 square exists from which a magic square
can be derived that, in turn, yields a third magic square—a
magic triplet. Also unknown is the number of 4 × 4 and 
5 × 5 language-dependent alphamagic squares. Here, for
example, is a four-by-four English alphamagic square:

26 37 48 59
49 58 27 36
57 46 39 28
38 29 56 47

alphametic
A type of cryptarithm in which a set of words is written
down in the form of a long addition sum or some other
mathematical problem. The object is to replace the let-
ters of the alphabet with decimal digits to make a valid
arithmetic sum. The word alphametic was coined in 1955
by James Hunter. However, the first modern alphametic,
published by Henry Dudeney in the July 1924 issue of
Strand Magazine, was “Send more money,” or, setting it
out in the form of a long addition:

SEND
MORE

——————
MONEY

and has the (unique) solution:

9567
1085

—————
10652

PUZZLES
The reader is invited to try to solve the following ele-
gant examples:

1. Earth, air, fire, water: nature. (Herman Nijon)
2. Saturn, Uranus, Neptune, Pluto: planets. (Peter J.

Martin)
3. Martin Gardner retires. (H. Everett Moore)

Solutions begin on page 369.
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Ames room 13

Two rules are obeyed by every alphametic. First, the
mapping of letters to numbers is one-to-one; that is, 
the same letter always stands for the same digit, and the
same digit is always represented by the same letter. Sec-
ond, the digit zero isn’t allowed as the left-most digit in
any of the numbers being added or in their sum. The
best alphametics are reckoned to be those with only one
correct answer.

Altekruse puzzle
A symmetrical 12-piece burr puzzle for which a patent
was granted to William Altekruse in 1890. The Alte-
kruse family is of Austrian-German origin and, curi-
ously, the name means “old cross” in German, which
has led some authors to incorrectly assume that it was a
pseudonym. William Altekruse came to the United
States as a young man in 1844 with his three brothers to
escape being drafted into the German army. The
Altekruse puzzle has an unusual mechanical action in
the first step of disassembly by which two halves move
in opposition to each other, unlike the more familiar
burr types that have a key piece or pieces. Depending
on how it is assembled, this action can take place along
one, two, or all three axes independently but not simul-
taneously.

alternate
A mathematical term with several different meanings: (1)
Alternate angles are angles on opposite sides and opposite
ends of a line that cuts two parallel lines. (2) A well-known
theorem called the alternate segment theorem involves the
segment on the opposite side of a given chord of a circle.
(3) An alternate hypothesis in statistics is the alternative
offered to the null hypothesis. (4) To alternate is to cycle
backward and forward between two different values, for
example, 0, 1, 0, 1, 0, 1, . . . .

altitude
A perpendicular line segment from one vertex of a figure
or solid to an edge or face opposite to that vertex. Also
the length of such a line segment.

ambiguous figure
An optical illusion in which the subject or the perspec-
tive of a picture or shape may suddenly switch in the
mind of the observer to another, equally valid possibil-
ity. Often the ambiguity stems from the fact that the
figure and ground can be reversed. An example of this is
the vase/profile illusion, made famous by the Danish
psychologist Edgar John Rubin (1886–1951) in 1915,
though earlier versions of the same illusion can be

found in many eighteenth-century French prints depict-
ing a variety of vases, usually in a naturalistic setting,
and profiles of particular people. The same effect can be
created in three dimensions with a suitably shaped solid
vase. In some ambiguous figures, the features of a per-
son or of an animal can suddenly be seen as different
features of another individual. Classic examples include
the old woman–young woman illusion and the duck–
rabbit illusion. Upside-down pictures involve a special
case of dual-purpose features in which the reversal is
accomplished not mentally, by suddenly “seeing” the
alternative, but physically, by turning the picture 180°.
Ambiguity can also occur, particularly in some geomet-
ric drawings, when there is confusion as to which are
the front and the back faces of a figure, as in the Necker
cube, the Thiery figure, and Schröder’s reversible
staircase.

ambiguous connectivity
See impossible figure.

Ames room
The famous distorted room illusion, named after the
American ophthalmologist Adelbert Ames Jr. (1880–
1955), who first constructed such a room in 1946 based
on a concept by the German physicist Hermann Helm-
holtz in the late nineteenth century. The Ames room
looks cubic when seen with one eye through a specially
positioned peephole; however, the room’s true shape is
trapezoidal. The floor, ceiling, some walls, and the far
windows are trapezoidal surfaces; the floor appears level
but is actually at an incline (one of the far corners being

ambiguous figure The Rubin vase illusion: one moment a
vase, the next two people face to face.
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14 amicable numbers

much lower than the other); and the walls are slanted
outward, though they seem perpendicular to the floor.
This shape makes it look as if people or objects grow or
shrink as they move from one corner of the room to
another. See also distortion illusion.[142, 178]

amicable numbers
A pair of numbers, also known as friendly numbers, each
of whose aliquot parts add to give the other number.
(An aliquot part is any divisor that doesn’t include the
number itself.) The smallest amicable numbers are 220
(aliquot parts 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110,
with a sum of 284) and 284 (aliquot parts 1, 2, 4, 71,
and 142, with a sum of 220). This pair was known to the
ancient Greeks, and the Arabs found several more. In
1636, Pierre de Fermat rediscovered the amicable pair
17,296 and 18,416; two years later René Descartes
rediscovered a third pair, 9,363,584 and 9,437,056. In
the eighteenth century, Leonhard Euler drew up a list
of more than 60. Then, in 1866, B. Nicolò Paganini
(not the violinist), a 16-year-old Italian, startled the
mathematical world by announcing that the numbers
1,184 and 1,210 were amicable. This second-lowest pair
of all had been completely overlooked! Today, the tally
of known amicable numbers has grown to about 2.5
million. No amicable pair is known in which one of the
two numbers is a square. An unusually high proportion
of the numbers in amicable pairs ends in either 0 or 5.
A happy amicable pair is an amicable pair in which both
numbers are happy numbers; an example is 10,572,550
and 10,854,650. See also Harshad number.

amplitude
Size or magnitude. The origin of the word is the same
Indo-European ple root that gives us plus and comple-
ment. The more immediate Latin source is amplus for
“wide.” Today, amplitude is used to describe, among
other things, the distance a periodic function varies
from its central value, and the magnitude of a complex
number.

anagram
The rearrangement of the letters of a word or phrase into
another word or phrase, using all the letters only once.
The best anagrams are meaningful and relate in some way
to the original subject; for example, “stone age” and
“stage one.” There are also many remarkable examples of
long anagrams. “ ‘That’s one small step for a man; one
giant leap for mankind.’ Neil Armstrong” becomes “An
‘Eagle’ lands on Earth’s Moon, making a first small per-
manent footprint.”

PUZZLES
The reader is invited to untangle the following ana-
grams that give clues to famous people:

1. A famous German waltz god.
2. Aha! Ions made volts!
3. I’ll make a wise phrase.

Solutions begin on page 369.

An antonymous anagram, or antigram, has a meaning
opposite to that of the subject text; for example, “within
earshot” and “I won’t hear this.” Transposed couplets, or
pairagrams, are single word anagrams that, when placed
together, create a short meaningful phrase, such as “best
bets” and “lovely volley.” A rare transposed triplet, or tri-
anagram, is “discounter introduces reductions.” See also
pangram.

anallagmatic curve
A curve that is invariant under inversion (see in-
verse). Examples include the cardioid, Cassinian ovals,
limaçon of Pascal, strophoid, and Maclaurin tri-
sectrix.

analysis
A major branch of mathematics that has to do with
approximating certain mathematical objects, such as
numbers or functions, in terms of other objects that are
easier to understand or to handle. A simple example of
analysis is the calculation of the first few decimal places

Ames room Misleading geometry makes these identical
twins appear totally different in size. Technische Universitat, 
Dresden
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of pi by writing it as the limit of an infinite series. The
origins of analysis go back to the seventeenth century,
when people such as Isaac Newton began investigating
how to approximate locally—in the neighborhood of a
point—the behavior of quantities that vary continuously.
This led to an intense study of limits, which form the
basis of understanding infinite series, differentiation,
and integration.

Modern analysis is subdivided into several areas: real
analysis (the study of derivatives and integrals of real-
valued functions); functional analysis (the study of spaces
of functions); harmonic analysis (the study of Fourier
series and their abstractions); complex analysis (the study
of functions from the complex plane to the complex plane
that are complex differentiable); and nonstandard analy-
sis (the study of hyperreal numbers and their functions,
which leads to a rigorous treatment of infinitesimals and of
infinitely large numbers).

analytical geometry
Also known as coordinate geometry or Cartesian geometry,
the type of geometry that describes points, lines, and
shapes in terms of coordinates, and that uses algebra to
prove things about these objects by considering their

coordinates. René Descartes laid down the foundations
for analytical geometry in 1637 in his Discourse on the
Method of Rightly Conducting the Reason in the Search for
Truth in the Sciences, commonly referred to as Discourse on
Method. This work provided the basis for calculus,
which was introduced later by Isaac Newton and Gott-
fried Leibniz.

analytical number theory
The branch of number theory that uses methods taken
from analysis, especially complex analysis. It contrasts
with algebraic number theory.

anamorphosis
The process of distorting the perspective of an image to
such an extent that its normal appearance can only be
restored by the observer completely changing the way he
looks at the image. In catoptric anamorphosis, a curved
mirror, usually of cylindrical or conical shape, is used to
restore an anamorphic picture to its undistorted form. In
other kinds of anamorphism, the observer has to change
her viewing position—for example, by looking at the pic-
ture almost along its surface. Some anamorphic art 
adds deception by concealing the distorted image in an

anamorphosis “Self-portrait with Albert” is a clever example of anamorphic art by the Hungarian artist Istvan Orosz. The artist’s
hands over his desk and a small round mirror in which the artist’s face is reflected can be seen in the etching. Istvan Orosz

(continued)
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16 anamorphosis

The mirror reveals a previously unsuspected aspect of the picture. The distorting effect of the curved mirror is to undistort a face
hidden amid the shapes on the desk: the face of Albert Einstein. Orosz created this etching for an exhibition in Princeton, where
the great scientist lived. Istvan Orosz

anamorphosis (continued) A cylindrical mirror is placed over the circle. Istvan Orosz
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otherwise normal looking picture. At one time, artists
who had the mathematical knowledge to create ana-
morphic pictures kept their calculations and grids well-
guarded secrets. Now it is relatively easy to create such
images by computer.

angle

My geometry teacher was sometimes acute, and
sometimes obtuse, but he was always right.

—Anonymous

The opening between two lines or two planes that meet;
the word comes from the Latin angulus for “sharp
bend.” Angles are measured in degrees. A right angle
has 90°, an acute angle less than 90°, and an obtuse
angle has between 90° and 180°. If an angle exceeds the
straight angle of 180°, it is said to be convex. Comple-
mentary angles add to 90°, and supplementary angles make
a total of 180°.

angle bisection
See bisecting an angle.

angle trisection
See trisecting an angle.

animals’ mathematical ability
Many different species, including rats, parrots, pigeons,
raccoons, and chimpanzees, are capable of doing simple
calculations. Tests on dogs have shown that they have a
basic grasp of cardinality—the number of things on offer.
If they’re shown a pile of treats and then shown the pile
again after it has been concealed and the number of
treats changed slightly, they will react differently than if
there’s been no change. However, not all purported ani-
mal math talents stand the test of time. At the turn of
the century, a horse named Clever Hans wowed audi-
ences with his counting skills. His trainer would pose a
problem, and the horse would tap out the answer. In the
end, though, it was found that Hans couldn’t really add
or subtract but was instead responding to subtle, unin-
tended clues from its trainer, who would visibly relax
when the horse reached the correct number.

annulus
The region between the smaller and the larger of two cir-
cles that share a common center.

antigravity houses and hills
The House of Mystery in the Oregon Vortex, Gold Hill,
Oregon, built during the Great Depression in the 1930s,
can claim to be the first “antigravity house.” It spawned

many imitators around the United States and in other
parts of the world. Such buildings give rise to some
spectacular visual effects, which seem bewildering until
the underlying cause is revealed. Of course, the visitor
guides are not forthcoming about what is really going
on and make fantastic claims about magnetic or gravita-
tional anomalies, UFOs, or other weird and wonderful
phenomena. The fact is that all the stunning effects
stem from clever construction and concealment that
make an incline seem like a horizontal in the mind of
the visitor. All antigravity houses are built on hills, with
a typical incline of about 25°. But unlike a normal
house on the side of a hill, an antigravity house is built
so that its walls are perpendicular to the (inclined)
ground. In addition, the area around the house is sur-
rounded by a tall fence that prevents the visitor from
establishing a true horizontal. Thus compelled to fall
back on experience, the visitor assumes that the floor of
the house is horizontal and that the walls are vertical
with respect to Earth’s gravity. All the stunning visual
shenanigans follow from this.

In addition to man-made antigravity illusions, there
are also a number of remarkable natural locations
around the world where gravity seems to be out of kilter.
One example is the “Electric Brae,” known locally as
Croy Brae, in Ayrshire, Scotland. This runs the quarter-
mile from the bend overlooking the Croy railway
viaduct in the west (86 meters above sea level) to the
wooded Craigencroy Glen (92 meters above sea level) to
the east. While there is actually a slope of 1 in 86 (a rise
of 1 meter for every 86 meters horizontally) upward
from the bend at the Glen, the configuration of the land
on either side of the road creates the illusion that the
slope runs the other way. The author is among countless
folk who have parked their cars with the brakes off on

antigravity houses and hills Visitors to a “house of mystery,”
believing that the floor of the house is horizontal, may be
astonished by the apparent gravity-defying effects (right). All
these effects are easily understood, however, when it is real-
ized that the entire house tilts at the same angle as a hill on
which it is built.
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this stretch of road and been amazed to see it roll appar-
ently uphill. See also distortion illusion.

antimagic square
An n × n square arrangement of the numbers 1 to n 2 such
that the totals of the n rows and n columns and two long
diagonals form a sequence of (2n + 2) consecutive integers.
There are no antimagic squares of size 2 × 2 and 3 × 3 but
plenty of them for larger sizes. Here is a 4 × 4 example:

1 13 3 12
15 9 4 10
7 2 16 8
14 6 11 5

See also magic square.

antiprism
A semi-regular polyhedron constructed from two n-sided
polygons and 2n triangles. An antiprism is like a prism in
that it contains two copies of any chosen regular polygon,
but is unlike a prism in that one of the copies is given a

slight twist relative to the other. The polygons are con-
nected by a band of triangles pointing alternately up and
down. At each vertex, three triangles and one of the chosen
polygons meet. By spacing the two polygons at the proper
distance, all the triangles become equilateral. Antiprisms
are named square antiprisms, pentagonal antiprisms, and
so on. The simplest, the triangular antiprism, is better
known as the octahedron.

aperiodic tiling
A tiling made from the same basic elements or tiles that
can cover an arbitrarily large surface without ever
exactly repeating itself. For a long time it was thought
that whenever tiles could be used to make an aperiodic
tiling, those same tiles could also be fitted together in a
different way to make a periodic tiling. Then, in the
1960s, mathematicians began finding sets of tiles that
were uniquely aperiodic. In 1966, Robert Berger pro-
duced the first set of 20,426 aperiodic tiles, and soon
lowered this number to 104. Over the next few years,
other mathematicians reduced the number still further.

antiprism A pentagonal antiprism. Robert Webb, www.software3d.com; created using Webb’s Stella program
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In 1971, Raphael Robinson found a set of six aperiodic
tiles based on notched squares; then, in 1974, Roger
Penrose found a set of two colored aperiodic tiles (see
Penrose tilings). The coloring can be dispensed with if
the pieces are notched. There is a set of three convex
(meaning no notches) aperiodic tiles, but it isn’t known
if there is a set of two such tiles or even a single tile (see
Einstein problem). In three dimensions, Robert Am-
mann found two aperiodic polyhedra, and Ludwig
Danzer found four aperiodic tetrahedra.

Apéry’s constant
The number defined by the formula ζ/(3) = �

∞
n = 1 1/n3,

where ζ is the Riemann zeta function: It has the value
1.202056 . . . and gives the odds (1 in 1.202056 . . .) of
any three positive integers, picked at random, having no
common divisor. In 1979, the French mathematician
Roger Apéry (1916–1994) stunned the mathematical
world with a proof that this number is irrational.[11]

Whether it is a transcendental number remains an open
question.

apex
The vertex of a cone or a pyramid.

apocalypse number
See beast number.

Apollonius of Perga (c. 255–170 B.C.)
A highly influential Greek mathematician (born in a
region of what is now Turkey), known as the “Great
Geometer,” whose eight-part work On Conics introduced
such terms as ellipse, parabola, and hyperbola. Euclid and
others had written earlier about the basic properties of
conic sections but Apollonius added many new results,
particularly related to normals and tangents to the vari-
ous conic curves. One of the most famous questions 
he raised is known as the Apollonius problem. He 
also wrote widely on other subjects including science,
medicine, and philosophy. In On the Burning Mirror he
showed that parallel rays of light are not brought to a
focus by a spherical mirror (as had been previously
thought), and he discussed the focal properties of a para-
bolic mirror. A few decades after his death, Emperor
Hadrian collected Apollonius’s works and ensured their
publication throughout his realm.

Apollonius problem
A problem first recorded in Tangencies, written around
200 B.C. by Apollonius of Perga. Given three objects in
the plane, each of which may be a circle C, a point P (a
degenerate circle), or a line L (part of a circle with infinite

radius), find another circle that is tangent to (just
touches) each of the three. There are ten cases: PPP, PPL,
PLL, LLL, PPC, PLC, LLC, LCC, PCC, CCC. The two
easiest involve three points or three straight lines and
were first solved by Euclid. Solutions to the eight other
cases, with the exception of the three-circle problem,
appeared in Tangencies; however, this work was lost. The
most difficult case, to find a tangent circle to any three
other circles, was first solved by the French mathemati-
cian François Viète (1540–1603) and involves the simul-
taneous solution of three quadratic equations, although,
in principle, a solution could be found using just a com-
pass and a straightedge. Any of the eight circles that is a
solution to the general three-circle problem is called an
Apollonius circle. If the three circles are mutually tangent
then the eight solutions collapse to just two, which are
known as Soddy circles. A fractal is produced by starting
with three mutually tangent circles and creating a
fourth—the inner Soddy circle—that is nested between the
original three. The process is repeated to yield three more
circles nested between sets of three of these, and then
repeated again indefinitely. The points that are never
inside a circle form a fractal set called the Apollonian gas-
ket, which has a fractional dimension of about 1.30568.

apothem
Also known as a short radius, the perpendicular distance
from the center of a regular polygon to one of its sides.
It is the same as the radius of a circle inscribed in the
polygon.

Apollonius problem The Apollonian gasket.
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apotome
One of Euclid’s categories of irrational numbers. An
apotome has the form �(√A −�√B)�. The corresponding
number with a “+” sign is called a binomial in Euclid’s
scheme.

applied mathematics
Mathematics for the sake of its use to science or society.

Arabic numeral
A numeral written with an Arabic digit alone: 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, or in combination: 10, 11, 12, . . . 594, . . . .

arbelos
A figure bounded by three semicircles AB, BC, and AC,
where ABC is a straight line. Archimedes (about 250 B.C.)
called it an arbelos—the Greek word for a knife of the same
shape used by shoemakers to cut and trim leather—and
wrote about it in his Liber assumptorum (Book of lemmas).
Among its properties are that the sum of the two smaller
arc lengths is equal to the larger; the area of the arbelos is
π/4 times the product of the two smaller diameters (AB
and BC ); and the area of the arbelos is equal to the area of
a circle whose diameter is the length of a perpendicular
segment drawn from the tangent point B of the two
smaller semicircles to the point D, where it meets the larger
semicircle. The circles inscribed on each half of BD of the
arbelos (called Archimedes’s circles) each have a diameter of
(AB)(BC )/(AC ). Furthermore, the smallest circumcircle
of these two circles has an area equal to that of the arbelos.
Pappus of Alexandria wrote on the relations of the chain
of circles, C1, C2, C3, . . . (called a Pappus chain or an arbelos
train) that are mutually tangent to the two largest semicir-
cles and to each other. The centers of these circles lie on an
ellipse and the diameter of the nth circle is (1/n) times the
base of the perpendicular distance to the base of the semi-
circle.

arc
Any part of a curved line or part of the circumference of
a circle; the word comes from the Latin arcus for a bow,
which also gives rise to arch. Arc length is the distance
along part of a curve.

arch
A strong, curved structure, traditionally made from
wedge-shaped elements, that may take many different
forms and that provides both an opening and a support
for overlying material. Two common forms are the semi-
circular arch, first used by the Romans, and the pointed
Gothic arch. The semicircular arch is the weaker of the
two because it supports all the weight on the top and
tends to flatten at its midpoint. It also requires massive
supporting walls since all the stress on the arch acts purely
downward. The pointed arch, by contrast, directs stresses
both vertically and horizontally, so that the walls can be
thinner, though buttressing may be required to prevent
the walls from collapsing sideways. See also Vesica Piscis.

Archimedean dual
See Catalan solid.

Archimedean solid
A convex semi-regular polyhedron; a solid made from
regular polygonal sides of two or more types that meet in
a uniform pattern around each corner. (A regular poly-
hedron, or Platonic solid, has only one type of polygo-
nal side.) There are 13 Archimedean solids (see table
“Archimedian Solids”). Although they are named after
their discoverer, the first surviving record of them is in
the fifth book of the Mathematical Collection of Pappus of
Alexandria. The duals of the Archimedean solids (made
by replacing each face with a vertex, and each vertex with
a face) are commonly known as Catalan solids. Apart
from the Platonic and Archimedean solids, the only
other convex uniform polyhedra with regular faces are
prisms and antiprisms. This was shown by Johannes
Kepler, who also gave the names generally used for the
Archimedean solids. See also Johnson solid.

Archimedean spiral
A spiral, like that of the groove in a phonograph record,
in which the distance between adjacent coils, measured
radially out from the center, is constant. Archimedes was
the first to study it and it was the main subject of his trea-
tise On Spirals. The Archimedean spiral has a very simple
equation in polar coordinates (r, θ):

r = a + b θ

where a and b can be any real numbers. Changing the
parameter a turns the spiral, while b controls the distance

arbelos A Pappus chain of circles, C1, C2, C3, . . . , inside an
arbelos (shaded region).
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Archimedean Solids

Number of

Name Vertices Faces Edges
Truncated tetrahedron 8 = 4 + 4 12 18

Truncated cube 14 = 8 + 6 24 36

Truncated octahedron 14 = 6 + 8 24 36

Truncated dodecahedron 32 = 20 + 12 60 90

Truncated icosahedron 32 = 12 + 20 60 90

Cuboctahedron 14 = 8 + 6 12 24

Icosidodecahedron 32 = 20 + 12 30 60

Snub dodecahedron 92 = 80 + 12 60 150

Rhombicuboctahedron 26 = 8 + 18 24 48

Great rhombicosidodecahedron 62 = 30 + 20 + 12 120 180

Rhombicosidodecahedron 62 = 20 + 30 + 12 60 120

Great rhombicuboctahedron 26 = 8 + 12 + 6 48 72

Snub cube 38 = 32 + 6 24 60

Archimedean solid The complete set of Archimedean solids, starting far left and going clockwise: truncated cube, small rhom-
bicuboctahedron, great rhombicuboctahedron, snub cube, snub dodecahedron, great rhombicosidodecahedron, small rhombi-
cosidodecahedron, truncated dodecahedron, truncated icosahedron (soccer ball), icosidodecahedron, truncated tetrahedron,
cuboctahedron, and truncated octahedron. Robert Webb, www.software3d.com; created using Webb’s Stella program
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22 Archimedean tessellation

between the arms. The Archimedean spiral is distin-
guished from the logarithmic spiral by the fact that suc-
cessive arms have a fixed distance (equal to 2πb if θ is
measured in radians), whereas in a logarithmic spiral
these distances form a geometric sequence. Note that
the Archimedean spiral has two possible arms that coil in
opposite directions, one for θ > 0 and the other for θ < 0.
Many examples of spirals in the man-made world, such
as a watch spring or the end of a rolled carpet, are either
Archimedean spirals or another curve that is very much
like it, the circle involute.

Archimedean tessellation
Also known as a semiregular tessellation, a tiling that uses
only regular polygons arranged so that two or more differ-
ent polygons are around each vertex and each vertex
involves the same pattern of polygons. There are eight
such tessellations, two involving triangles and squares, two
involving triangles and hexagons, and one each involving
squares and octagons; triangles and dodecagons; squares,
hexagons, and dodecagons; and triangles, squares, and
hexagons.

Archimedes of Syracuse (c. 287–212 B.C.)
One of the greatest mathematicians and scientists of all
time. He became a popular figure because of his involve-
ment in the defense of Syracuse against the Roman siege
in the first and second Punic Wars when his war ma-
chines helped keep the Romans at bay. He also devised a
scheme to move a full-size ship, complete with crew and
cargo, by pulling a single rope, and invented the irriga-
tion device known as the Archimedean screw. According
to one of many legends about him, he is said to have dis-
covered the principle of buoyancy while taking a bath
and then ran into the street naked shouting “eureka” (“I
found it!”).

In his book The Sand-Reckoner, he described a posi-
tional number system and used it to write the equiva-
lent of numbers up to 8 × 1064—the number of grains of
sand he thought it would take to fill the universe. He
devised a rule-of-thumb method to do private calcula-
tions that closely resembles integral calculus (2,000
years before its “discovery”), but then switched to geo-
metric proof for his results. He demonstrated that the
ratio of a circle’s perimeter to its diameter is the same as
the ratio of the circle’s area to the square of the radius.
Although he didn’t call this ratio “pi,” he showed how
to work it out to arbitrary accuracy and gave an approx-
imation of it as “exceeding 3 in less than 1⁄7 but more
than 10⁄71.”

Archimedes was the first, and possibly the only,
Greek mathematician to introduce mechanical curves

(those traced by a moving point) as legitimate objects
of study, and he used the Archimedean spiral to
square the circle. He proved that the area and volume
of the sphere are in the same ratio to the area and vol-
ume of a circumscribed straight cylinder, a result that
pleased him so much that he made it his epitaph.
Archimedes is probably also the first mathematical
physicist on record, and the best before Galileo and
Isaac Newton. He invented the field of statics, enunci-
ated the law of the lever, the law of equilibrium of flu-
ids, and the law of buoyancy, and was the first to
identify the concept of center of gravity. He is also,
perhaps erroneously, credited with the invention of
a square dissection puzzle known as the loculus of
Archimedes. Many of his original works were lost
when the library at Alexandria burned down and they
survive only in Latin or Arabic translations. Plutarch
wrote of him: “Being perpetually charmed by his famil-
iar siren, that is, by his geometry, he neglected to eat
and drink and took no care of his person; that he was
often carried by force to the baths, and when there he
would trace geometrical figures in the ashes of the fire,
and with his finger draws lines upon his body when it
was anointed with oil, being in a state of great ecstasy
and divinely possessed by his science.”

Archimedes’s cattle problem
A fiendishly hard problem involving very large num-
bers that Archimedes presented in a 44-line letter to
Eratosthenes, the chief librarian at Alexandria. It ran as
follows:

If thou art diligent and wise, O stranger, compute
the number of cattle of the Sun, who once upon a
time grazed on the fields of the Thrinacian isle of
Sicily, divided into four herds of different colors,
one milk white, another a glossy black, a third yel-
low and the last dappled. In each herd were bulls,
mighty in number according to these proportions:
Understand, stranger, that the white bulls were
equal to a half and a third of the black together
with the whole of the yellow, while the black were
equal to the fourth part of the dappled and a fifth,
together with, once more, the whole of the yellow.
Observe further that the remaining bulls, the dap-
pled, were equal to a sixth part of the white and a
seventh, together with all of the yellow. These were
the proportions of the cows: The white were pre-
cisely equal to the third part and a fourth of the
whole herd of the black; while the black were equal
to the fourth part once more of the dappled and
with it a fifth part, when all, including the bulls,
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went to pasture together. Now the dappled in four
parts were equal in number to a fifth part and a
sixth of the yellow herd. Finally the yellow were in
number equal to a sixth part and a seventh of
the white herd. If thou canst accurately tell, O
stranger, the number of cattle of the Sun, giving
separately the number of well-fed bulls and again
the number of females according to each color,
thou wouldst not be called unskilled or ignorant of
numbers, but not yet shalt thou be numbered
among the wise.

But come, understand also all these conditions
regarding the cattle of the Sun. When the white
bulls mingled their number with the black, they
stood firm, equal in depth and breadth, and the
plains of Thrinacia, stretching far in all ways, were
filled with their multitude. Again, when the yellow
and the dappled bulls were gathered into one herd
they stood in such a manner that their number,
beginning from one, grew slowly greater till it com-
pleted a triangular figure, there being no bulls of
other colors in their midst nor none of them lack-
ing. If thou art able, O stranger, to find out all these
things and gather them together in your mind, giv-
ing all the relations, thou shalt depart crowned with
glory and knowing that thou hast been adjudged
perfect in this species of wisdom.

The answer to the first part of the problem—the smallest
solution for the total number of cattle—turns out to be
50,389,082. But when the extra two constraints in the
second part are factored in, the solution is vastly larger.
The approximate answer of 7.76 × 10202544 was found in
1880 by A. Amthor, having reduced the problem to a
form called a Pell equation.[9] His calculations were con-
tinued by an ad hoc group called the Hillsboro Mathe-
matical Club, of Hillsboro, Illinois, between 1889 and
1893. The club’s three members (Edmund Fish, George
Richards, and A. H. Bell) calculated the first 31 digits
and the last 12 digits of the smallest total number of cat-
tle to be

7760271406486818269530232833209 . . . 719455081800

though the two digits in bold should be 13.[31] In 1931, a
correspondent to the New York Times wrote: “Since it has
been calculated that it would take the work of a thou-
sand men for a thousand years to determine the com-
plete [exact] number [of cattle], it is obvious that the
world will never have a complete solution.” But obvious
and never are words designed to make fools of prognosti-
cators. Enter the computer. In 1965, with the help of an
IBM 7040, H. C. Williams, R. A. German, and 

C. R. Zarnke reported a complete solution to the cattle
problem, though it was 1981 before all 202,545 digits
were published, by Harry Nelson, who used a Cray-1
supercomputer to generate the answer, which begins:
7.760271406486818269530232833213 . . . × 10202544.[341]

Archimedes’s square
See loculus of Archimedes.

area
A measure of surface extension in two-dimensional
space. Area is the Latin word for a vacant piece of level
ground and still carries this common meaning. The
French shortened form are denotes a square of land with
a side length of 10 meters, that is, an area of 100 square
meters. A hectare is a hundred are.

area codes
North American telephone area codes seem to have
been chosen at random. But there was a method to their
selection. In the mid-1950s when direct dialing of long-
distance calls first became possible, it made sense to
assign area codes that took the shortest time to dial to
the larger cities. Almost all calls were from rotary dials.
Area codes such as 212, 213, 312, and 313 took very lit-
tle time for the dial to return to its starting position
compared, for example, to numbers such as 809, 908,
709. The quickest-to-dial area codes were assigned to the
places expected to receive the most direct-dialed calls.
New York City got 212, Chicago 312, Los Angeles 213,
and Washington, D.C., 202, which is a little longer to
dial than 212, but much shorter than others. In order of
decreasing size and estimated amount of telephone traf-
fic, the numbers grew larger: San Francisco got 415,
Miami 305, and so on. At the other end of the spectrum
came places like Hawaii (the last state annexed in 1959)
with 808, Puerto Rico with 809, and Newfoundland with
709. The original plan (still in use until about 1993) was
that area codes had a certain construction to the num-
bers: the first digit is 2 through 9, the second digit is 0 or
1, and the third digit is 1 through 9. Three-digit numbers
with two zeros are special codes, that is, 700, 800, or 900.
Three-digit numbers with two ones are for special local
codes such as 411 for local directory assistance, 611 for
repairs, and so forth.

Argand diagram
A way of representing complex numbers as points on
a coordinate plane, also known as the Argand plane or
the complex plane, using the x-axis as the real axis and
the y-axis as the imaginary axis. It is named for the
French amateur mathematician Jean Robert Argand
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(1768–1822) who described it in a paper in 1806.[14]

John Wallis suggested a similar method 120 years ear-
lier and Casper Wessel extensively developed it. But
Wessel’s paper was published in Danish and wasn’t cir-
culated in the languages more common to mathemat-
ics at that time. In fact, it wasn’t until 1895 that his
paper came to the attention of the mathematical com-
munity—long after the name “Argand diagram” had
stuck.

argument
(1) The input for a function. (2) The angle between ZO,
where Z is the point representing a complex number on
an Argand diagram and O is the origin, and the real
axis. (3) A mathematical proof, possibly an informal
one.

Aristotle’s wheel
A paradox mentioned in the ancient Greek text Mechan-
ica, whose author is unknown but is suspected by some
to have been Aristotle. The paradox concerns two
concentric circles on a wheel, as shown in the diagram. A
one-to-one correspondence exists between points on the
larger circle and those on the smaller circle. Therefore,
the wheel should travel the same distance regardless of
whether it is rolled from left to right on the top straight
line or on the bottom one. This seems to imply that the
two circumferences of the different-sized circles are
equal, which is impossible. How can this apparent con-
tradiction be resolved? The key lies in the (false) assump-
tion that a one-to-one correspondence of points means
that two curves must have the same length. In fact, the
cardinalities of points in a line segment of any length 
(or even an infinitely long line or an infinitely large 
n-dimensional Euclidean space) are all the same. See also
infinity.

arithmetic
A branch of mathematics concerned with doing calcula-
tions with numbers using addition, subtraction, multipli-
cation, and division.

arithmetic mean
The sum of n given numbers divided by n. See also geo-
metric mean and harmonic mean.

arithmetic sequence
Also known as an arithmetic progression, a finite sequence
of at least three numbers, or an infinite sequence, whose
terms differ by a constant, known as the common differ-
ence. For example, starting with 1 and using a com-
mon difference of 4 we can get the finite arithmetic
sequence: 1, 5, 9, 13, 17, 21, and also the infinite
sequence 1, 5, 9, 13, 17, 21, 25, 29, . . . , 4n + 1, . . . . In
general, the terms of an arithmetic sequence with the
first term a0 and common difference d, have the form
an = dn + a0 (n = 1, 2, 3, . . . ). Does every increasing
sequence of integers have to contain an arithmetic pro-
gression? Surprisingly, the answer is no. To construct a
counterexample, start with 0. Then for the next term in
the sequence, take the smallest possible integer that doesn’t
cause an arithmetic progression to form in the sequence
constructed thus far. (There must be such an integer
because there are infinitely many integers beyond the
last term, and only finitely many possible progressions
that the new term could complete.) This gives the nonar-
ithmetic sequence 0, 1, 3, 4, 9, 10, 12, 13, 27, 28, . . . .

If the terms of an arithmetic sequence are added
together the result is an arithmetic series, a0 + (a0 + d ) + . . . +
(a0 + (n − 1)d ), the sum of which is given by:

Sn = n/2 (2a0 + (n − 1)d ) = n/2 (a0 + an).

See also geometric sequence.

around the world game
See Icosian game.

array
A set of numbers presented in a particular pattern, usu-
ally a grid. Matrices (see matrix) and vectors are exam-
ples of arrays.

Arrow paradox
The oldest and best-known paradox related to vot-
ing. The American economist Kenneth Arrow (1921–)
showed that it is impossible to devise a perfect demo-
cratic voting system. In his book Social Choice and Indi-
vidual Values,[16] Arrow identified five conditions that
are universally regarded as essential for any system in

Aristotle’s wheel The outer circle turns once when going
from A to B, as does the inner circle when going from C to D.
Yet AB is the same length as CD. How can this be, since the
circles are a different size?
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which social decisions are based on individual voting
preferences. The Arrow paradox is that these five condi-
tions are logically inconsistent: under certain condi-
tions, at least one of the essential conditions will be
violated.

arrowhead
See dart.

artificial intelligence (AI)
The subject of “making a machine behave in ways that
would be called intelligent if a human were so behaving,”
according John McCarthy, who coined the term in 1955.
How can we tell if a computer has acquired AI at a
human level? One way would be to apply the Turing
test, though not everyone agrees that this test is fool-
proof (see Chinese room). Certainly, AI has not devel-
oped at nearly the rate many of its pioneers expected
back in the 1950s and 1960s. Meanwhile, progress in
fields such as neural networks and fuzzy logic continues
to be made, and most computer scientists have no doubt
that it is only a matter of time before computers are out-
performing their biological masters in a wide variety of
tasks beyond those that call for mere number-crunching
ability.

artificial life
A lifelike pattern that may emerge from a cellular
automaton and appear organic in the way it moves,
grows, changes shape, reproduces, aggregates, and dies.
Artificial life was pioneered by the computer scientist
Chris Langton, and has been researched extensively at
the Santa Fe Institute. It is being used to model various
complex systems such as ecosystems, the economy,
societies and cultures, and the immune system. The
study of artificial life, though controversial, promises
insights into natural processes that lead to the buildup
of structure in self-organizing (see self-organization)
systems.

associative
Three numbers, x, y, and z, are said to be associative under
addition if

x + (y + z) = (x + y) + z,

and to be associative under multiplication if

x × (y × z) = (x × y) × z.

In general, three elements a, b, and c of a set S are asso-
ciative under the binary operation (an operation that
works on two elements at a time) ∗ if

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

The word incorporates the Greek root soci, from which
we also get social, and may have been first used in the
modern mathematical sense by William Hamilton
around 1850. Compare with distributive and commu-
tative.

astroid
A hypocycloid—the path of a point on a circle rolling
inside another circle—for which the radius of the inner cir-
cle is four times smaller than that of the larger circle; this
ratio results in the astroid having four cusps. The astroid
was first studied by the Danish astronomer Ole Römer in
1674, in his search for better shapes for gear teeth, and
later by Johann Bernoulli (1691) (see Bernoulli family),
Gottfried Leibniz (1715), and Jean d’Alembert (1748). Its
modern name comes from the Greek aster for “star” and
was introduced in a book by Karl Ludwig von Littrow
published in Vienna in 1836; before this, the curve had a
variety of names, including tetracuspid (still used), cubo-
cycloid, and paracycle. The astroid has the Cartesian
equation

x 2/3 + y 2/3 = r 2/3

where r is the radius of the fixed outer circle, and r/4 is
the radius of the rolling circle. Its area is 3πr 2/8, or 3⁄2
times that of the rolling circle, and its length is 6r. The
astroid is a sextic curve and also a special form of a
Lamé curve. It has a remarkable relationship with the
quadrifolium (see rose curve): the radial, pedal, and
orthoptic of the astroid are the quadrifolium, while 
the catacaustic of the quadrifolium is the astroid. The

astroid As a small circle rolls around the inside of a larger
one with exactly four times its circumference, a point on the
rim of the small circle traces out an astroid. © Jan Wassenaar,
www.2dcurves.com

11194_Darling_c01_f.qxd  6/10/04  9:56 AM  Page 25



26 asymptote

astroid is also the catacaustic of the deltoid and the
evolute of the ellipse.

asymptote
A curve that gets closer and closer to a fixed straight line
without ever actually touching it. Imagine facing along
the direction of a great wall that is just a meter to your
left. Every second, you walk forward a meter and at the
same time move sideways slightly so that you halve the
distance between you and the wall. The path you follow
is an asymptote. The word comes from the Greek roots a
(not), sum (together), and piptein (to fall), so that it liter-
ally means “not falling together” and was originally used
in a wider sense to describe any two curves that don’t
intersect. Proclus writes about both asymptotic lines and
symptotic lines (those that do cross). Nowadays, “symp-
totic” is almost never heard, and “asymptote” is used
mainly to denote lines that serve as a limiting barrier for
some curve as one of its parameters approaches plus or
minus infinity. The “∼” symbol is often used to show that
one function is asymptotic to another. For example, 
f(x) ∼ g(x) indicates that the ratio of the functions f (x) to
g(x) approaches 1 as x tends to infinity. Asymptotes are
not always parallel to the x- and y-axes, as shown by the
graph of x + 1/x, which is asymptotic to both the y-axis
and the diagonal line y = x.

Atiyah, Michael Francis (1929–)
An English mathematician who has contributed to 
many topics in mathematics, notably dealing with the
relationships between geometry and analysis. In topol-
ogy, he developed K-theory. He proved the index theorem
on the number of solutions of elliptic differential equa-
tions, linking differential geometry, topology, and
analysis—a theorem that has been usefully applied to
quantum theory. Atiyah was influential in initiating work
on gauge theories and applications to nonlinear differen-
tial equations, and in making links between topology and
quantum field theory. Theories of superspace and super-
gravity, and string theory, were all developed using ideas
introduced by him.

Atomium, the
A giant steel monument in Heysel Park, Brussels, Bel-
gium, consisting of 9 spheres that represent the body-
centered cubic structure of an iron crystal magnified 150
billion times. Designed by the architect André Waterkeyn
and built for the 1958 World’s Fair, the 103-meter-high
Atomium was originally meant to stand for only 6
months. It may be the world’s largest cube. Each of its
spheres have a diameter of 18 meters and are connected
by escalators. Three of the upper spheres have no vertical

support, and so for safety reasons are not open to the pub-
lic. However, the top sphere offers a panoramic view of
Brussels through its windows, and the lower spheres con-
tain various exhibitions.

attractor
A trajectory, or set of points in phase space, toward
which nearby orbits converge, and which is stable. Spe-
cific types of attractor include fixed-point attractor, peri-
odic attractor, and chaotic attractor.

Aubel’s theorem
Given a quadrilateral and a square drawn on each side of
it, the two lines connecting the centers of the squares on
opposite sides are perpendicular and of equal length.

autogram
See self-enumerating sentence.

automorphic number
Also known as an automorph, a number n whose square
ends in n. For instance 5 is automorphic, because 
52 = 25, which ends in 5. A number n is called trimorphic
if n 3 ends in n. For example 493 = 117,649, is trimor-
phic. Not all trimorphic numbers are automorphic. A
number n is called tri-automorphic if 3n 2 ends in n; for
example 6,667 is tri-automorphic because 3 × 6672 =
133,346,667 ends in 7.

automorphism
An isomorphism from a set onto itself. An automorphism
group of a group G is the group formed by the automor-
phisms of G (bijections from G to itself that preserve the
multiplication). Similarly, one can consider the auto-
morphism groups of other structures such as rings and
graphs, by looking at bijections that preserve their math-
ematical structure.

Avagadro constant
One of the best known examples of a large number in
science. It is named after the Italian physicist Amedio
Avagadro (1776–1856) and is defined as the number of
carbon atoms in 12 grams of pure carbon, or, more gen-
erally as the number of atoms of n grams in an element
with atomic weight n. It has the value 6.02214199 × 1023.

average
A vague term that usually refers to the arithmetic mean
but can also signify the median, mode, geometric mean,
or weighted mean. The word stems from a commercial
practice of the shipping age. The root aver means to
declare, and the shippers of goods would declare the
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value of their goods. When the goods were sold, a deduc-
tion was made from each person’s share, based on their
declared value, for a portion of the loss or “average.”

axiom
A statement that is considered to be true without need 
of proof. The term axiom comes from the Greek axios
meaning “worthy” and was used by many Greek philoso-
phers and mathematicians, including Aristotle. Curi-
ously, Euclid, whose axioms are best known of all, seems
to have favored a more general phrase meaning “com-
mon notion.”

axiom of choice
An axiom in set theory that is one of the most controver-
sial axioms in mathematics; it was formulated in 1904 by
the German mathematician Ernst Zermelo (1871–1953)
and, at first, seems obvious and trivial. Imagine there are
many—possibly an unlimited number of—boxes in front of
you, each of which has at least one thing in it. The axiom
of choice (AC) says simply that you can always choose one
item out of each box. More formally, if S is a collection of
nonempty sets, then there exists a set that has exactly one
element in common with every set S of S. Put another
way, there exists a function f with the property that, for
each set S in the collection, f (S) is a member of S. Bertrand
Russell summed it up neatly: “To choose one sock from
each of infinitely many pairs of socks requires the Axiom
of Choice, but for shoes the Axiom is not needed.” His
point is that the two socks in a pair are identical in
appearance, so, to pick one of them, we have to make an
arbitrary choice. For shoes, we can use an explicit rule,
such as “always choose the left shoe.” Russell specifically
mentions infinitely many pairs, because if the number is
finite then AC is superfluous: we can pick one member
of each pair using the definition of “nonempty” and then
repeat the operation finitely many times using the rules
of formal logic.

AC lies at the heart of a number of important mathe-
matical arguments and results. For example, it is equiv-

alent to the well-ordering principle, to the statement that
for any two cardinal numbers m and n, then m < n or 
m = n or m > n, and to Tychonoff ’s theorem (the product of
any collection of compact spaces in topology is com-
pact). Other results hinge upon it, such as the assertion
that every infinite set has a denumerable subset. Yet AC
was strongly attacked when it was first suggested, and
still makes some mathematicians uneasy. The central
issue is what it means to choose something from the sets
in question and what it means for the choosing func-
tion to exist. This problem is brought into sharp focus
when S happens to be the collection of all nonempty
subsets of the real numbers. No one has ever found a
suitable choosing function for this collection, and there
are good reasons to suspect that no one ever will. AC
just mandates that there is such function. Because AC
conjures up sets without offering workable procedures,
it is said to be nonconstructive, as are any theorems whose
proofs involve AC. Another reason that some mathe-
maticians aren’t greatly enamored with AC is that it
implies the existence of some bizarre counterintuitive
objects, the most famous and notorious example of
which is the Banach-Tarski paradox. The main reason
for accepting AC, as the majority of mathematicians do
(albeit often reluctantly), is that it is useful. However, as
a result of work by Kurt Gödel and, later, by Paul
Cohen, it has been proven to be independent of the
remaining axioms of set theory. Thus there are no con-
tradictions in choosing to reject it; among the alterna-
tives are to adopt a contradictory axiom or to use a
completely different framework for mathematics, such
as category theory.

axis
A line with respect to which a curve or figure is drawn,
measured, rotated, and so forth. The word comes from
the Greek root aks for a point of turning or rotation and
seems to have first been used in English by Thomas
Digges around 1570 in reference to the rotational axis of
a right circular cone.
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