
CHAPTER 1

BASIC ELECTRIC
AND MAGNETIC CIRCUITS

1.1 INTRODUCTION TO ELECTRIC CIRCUITS

In elementary physics classes you undoubtedly have been introduced to the fun-
damental concepts of electricity and how real components can be put together
to form an electrical circuit. A very simple circuit, for example, might consist
of a battery, some wire, a switch, and an incandescent lightbulb as shown in
Fig. 1.1. The battery supplies the energy required to force electrons around the
loop, heating the filament of the bulb and causing the bulb to radiate a lot of heat
and some light. Energy is transferred from a source, the battery, to a load, the
bulb. You probably already know that the voltage of the battery and the electrical
resistance of the bulb have something to do with the amount of current that will
flow in the circuit. From your own practical experience you also know that no
current will flow until the switch is closed. That is, for a circuit to do anything,
the loop has to be completed so that electrons can flow from the battery to the
bulb and then back again to the battery. And finally, you probably realize that it
doesn’t much matter whether there is one foot or two feet of wire connecting the
battery to the bulb, but that it probably would matter if there is a mile of wire
between it and the bulb.

Also shown in Fig. 1.1 is a model made up of idealized components. The
battery is modeled as an ideal source that puts out a constant voltage, VB , no
matter what amount of current, i, is drawn. The wires are considered to be perfect
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Figure 1.1 (a) A simple circuit. (b) An idealized representation of the circuit.

conductors that offer no resistance to current flow. The switch is assumed to be
open or closed. There is no arcing of current across the gap when the switch is
opened, nor is there any bounce to the switch as it makes contact on closure.
The lightbulb is modeled as a simple resistor, R, that never changes its value,
no matter how hot it becomes or how much current is flowing through it.

For most purposes, the idealized model shown in Fig. 1.1b is an adequate
representation of the circuit; that is, our prediction of the current that will flow
through the bulb whenever the switch is closed will be sufficiently accurate
that we can consider the problem solved. There may be times, however, when
the model is inadequate. The battery voltage, for example, may drop as more
and more current is drawn, or as the battery ages. The lightbulb’s resistance
may change as it heats up, and the filament may have a bit of inductance and
capacitance associated with it as well as resistance so that when the switch is
closed, the current may not jump instantaneously from zero to some final, steady-
state value. The wires may be undersized, and some of the power delivered by
the battery may be lost in the wires before it reaches the load. These subtle effects
may or may not be important, depending on what we are trying to find out and
how accurately we must be able to predict the performance of the circuit. If we
decide they are important, we can always change the model as necessary and
then proceed with the analysis.

The point here is simple. The combinations of resistors, capacitors, inductors,
voltage sources, current sources, and so forth, that you see in a circuit diagram
are merely models of real components that comprise a real circuit, and a certain
amount of judgment is required to decide how complicated the model must be
before sufficiently accurate results can be obtained. For our purposes, we will be
using very simple models in general, leaving many of the complications to more
advanced textbooks.

1.2 DEFINITIONS OF KEY ELECTRICAL QUANTITIES

We shall begin by introducing the fundamental electrical quantities that form the
basis for the study of electric circuits.

1.2.1 Charge

An atom consists of a positively charged nucleus surrounded by a swarm of nega-
tively charged electrons. The charge associated with one electron has been found
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to be 1.602 × 10−19 coulombs; or, stated the other way around, one coulomb can
be defined as the charge on 6.242 × 1018 electrons. While most of the electrons
associated with an atom are tightly bound to the nucleus, good conductors, like
copper, have free electrons that are sufficiently distant from their nuclei that their
attraction to any particular nucleus is easily overcome. These conduction elec-
trons are free to wander from atom to atom, and their movement constitutes an
electric current.

1.2.2 Current

In a wire, when one coulomb’s worth of charge passes a given spot in one
second, the current is defined to be one ampere (abbreviated A), named after the
nineteenth-century physicist André Marie Ampère. That is, current i is the net
rate of flow of charge q past a point, or through an area:

i = dq

dt
(1.1)

In general, charges can be negative or positive. For example, in a neon light,
positive ions move in one direction and negative electrons move in the other.
Each contributes to current, and the total current is their sum. By convention, the
direction of current flow is taken to be the direction that positive charges would
move, whether or not positive charges happen to be in the picture. Thus, in a
wire, electrons moving to the right constitute a current that flows to the left, as
shown in Fig. 1.2.

When charge flows at a steady rate in one direction only, the current is said
to be direct current, or dc. A battery, for example, supplies direct current. When
charge flows back and forth sinusoidally, it is said to be alternating current, or
ac. In the United States the ac electricity delivered by the power company has
a frequency of 60 cycles per second, or 60 hertz (abbreviated Hz). Examples of
ac and dc are shown in Fig. 1.3.

1.2.3 Kirchhoff’s Current Law

Two of the most fundamental properties of circuits were established experimen-
tally a century and a half ago by a German professor, Gustav Robert Kirchhoff
(1824–1887). The first property, known as Kirchhoff’s current law (abbreviated

e−

i =
dq

dt

Figure 1.2 By convention, negative charges moving in one direction constitute a positive
current flow in the opposite direction.
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Figure 1.3 (a) Steady-state direct current (dc). (b) Alternating current (ac).

KCL), states that at every instant of time the sum of the currents flowing into any
node of a circuit must equal the sum of the currents leaving the node, where a
node is any spot where two or more wires are joined. This is a very simple, but
powerful concept. It is intuitively obvious once you assert that current is the flow
of charge, and that charge is conservative—neither being created nor destroyed
as it enters a node. Unless charge somehow builds up at a node, which it does
not, then the rate at which charge enters a node must equal the rate at which
charge leaves the node.

There are several alternative ways to state Kirchhoff’s current law. The most
commonly used statement says that the sum of the currents into a node is zero
as shown in Fig. 1.4a, in which case some of those currents must have negative
values while some have positive values. Equally valid would be the statement
that the sum of the currents leaving a node must be zero as shown in Fig. 1.4b
(again some of these currents need to have positive values and some negative).
Finally, we could say that the sum of the currents entering a node equals the sum
of the currents leaving a node (Fig. 1.4c). These are all equivalent as long as we
understand what is meant about the direction of current flow when we indicate
it with an arrow on a circuit diagram. Current that actually flows in the direction
shown by the arrow is given a positive sign. Currents that actually flow in the
opposite direction have negative values.

(b) i1 + i2 + i3 = 0

node

i3i2

i1

(c) i1 = i2 + i3

node

i3i2

i1

(a) i1 + i2 + i3 = 0

node

i3i2

i1

Figure 1.4 Illustrating various ways that Kirchhoff’s current law can be stated. (a) The
sum of the currents into a node equals zero. (b) The sum of the currents leaving the node
is zero. (c) The sum of the currents entering a node equals the sum of the currents leaving
the node.
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Note that you can draw current arrows in any direction that you want—that
much is arbitrary—but once having drawn the arrows, you must then write Kirch-
hoff’s current law in a manner that is consistent with your arrows, as has been
done in Fig. 1.4. The algebraic solution to the circuit problem will automati-
cally determine whether or not your arbitrarily determined directions for currents
were correct.

Example 1.1 Using Kirchhoff’s Current Law. A node of a circuit is shown
with current direction arrows chosen arbitrarily. Having picked those directions,
i1 = −5 A, i2 = 3 A, and i3 = −1 A. Write an expression for Kirchhoff’s current
law and solve for i4.

i 1 i2

i3

i4

Solution. By Kirchhoff’s current law,

i1 + i2 = i3 + i4

−5 + 3 = −1 + i4

so that
i4 = −1 A

That is, i4 is actually 1 A flowing into the node. Note that i2, i3, and i4 are all
entering the node, and i1 is the only current that is leaving the node.

1.2.4 Voltage

Electrons won’t flow through a circuit unless they are given some energy to
help send them on their way. That “push” is measured in volts, where voltage is
defined to be the amount of energy (w, joules) given to a unit of charge,

v = dw

dq
(1.2)
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A 12-V battery therefore gives 12 joules of energy to each coulomb of charge
that it stores. Note that the charge does not actually have to move for voltage to
have meaning. Voltage describes the potential for charge to do work.

While currents are measured through a circuit component, voltages are mea-
sured across components. Thus, for example, it is correct to say that current
through a battery is 10 A, while the voltage across that battery is 12 V. Other
ways to describe the voltage across a component include whether the voltage
rises across the component or drops. Thus, for example, for the simple circuit
in Fig. 1.1, there is a voltage rise across the battery and voltage drop across
the lightbulb.

Voltages are always measured with respect to something. That is, the voltage
of the positive terminal of the battery is “so many volts” with respect to the
negative terminal; or, the voltage at a point in a circuit is some amount with
respect to some other point. In Fig. 1.5, current through a resistor results in a
voltage drop from point A to point B of VAB volts. VA and VB are the voltages
at each end of the resistor, measured with respect to some other point.

The reference point for voltages in a circuit is usually designated with a
ground symbol. While many circuits are actually grounded—that is, there is a
path for current to flow directly into the earth—some are not (such as the battery,
wires, switch, and bulb in a flashlight). When a ground symbol is shown on a
circuit diagram, you should consider it to be merely a reference point at which
the voltage is defined to be zero. Figure 1.6 points out how changing the node
labeled as ground changes the voltages at each node in the circuit, but does not
change the voltage drop across each component.

VA

VAB

VB

I

+ −

Figure 1.5 The voltage drop from point A to point B is VAB, where VAB = VA − VB.
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Figure 1.6 Moving the reference node around (ground) changes the voltages at each
node, but doesn’t change the voltage drop across each component.
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1.2.5 Kirchhoff’s Voltage Law

The second of Kirchhoff’s fundamental laws states that the sum of the voltages
around any loop of a circuit at any instant is zero. This is known as Kirchhoff’s
voltage law (KVL). Just as was the case for Kirchhoff’s current law, there are
alternative, but equivalent, ways of stating KVL. We can, for example, say that
the sum of the voltage rises in any loop equals the sum of the voltage drops
around the loop. Thus in Fig. 1.6, there is a voltage rise of 12 V across the
battery and a voltage drop of 3 V across R1 and a drop of 9 V across R2. Notice
that it doesn’t matter which node was labeled ground for this to be true. Just as
was the case with Kirchhoff’s current law, we must be careful about labeling and
interpreting the signs of voltages in a circuit diagram in order to write the proper
version of KVL. A plus (+) sign on a circuit component indicates a reference
direction under the assumption that the potential at that end of the component
is higher than the voltage at the other end. Again, as long as we are consistent
in writing Kirchhoff’s voltage law, the algebraic solution for the circuit will
automatically take care of signs.

Kirchhoff’s voltage law has a simple mechanical analog in which weight is
analogous to charge and elevation is analogous to voltage. If a weight is raised
from one elevation to another, it acquires potential energy equal to the change
in elevation times the weight. Similarly, the potential energy given to charge is
equal to the amount of charge times the voltage to which it is raised. If you
decide to take a day hike, in which you start and finish the hike at the same spot,
you know that no matter what path was taken, when you finish the hike the sum
of the increases in elevation has to have been equal to the sum of the decreases in
elevation. Similarly, in an electrical circuit, no matter what path is taken, as long
as you return to the same node at which you started, KVL provides assurance
that the sum of voltage rises in that loop will equal the sum of the voltage drops
in the loop.

1.2.6 Power

Power and energy are two terms that are often misused. Energy can be thought
of as the ability to do work, and it has units such as joules or Btu. Power, on
the other hand, is the rate at which energy is generated or used, and therefore it
has rate units such as joules/s or Btu/h. There is often confusion about the units
for electrical power and energy. Electrical power is measured in watts, which
is a rate (1 J/s = 1 watt), so electrical energy is watts multiplied by time—for
example, watt-hours. Be careful not to say “watts per hour,” which is incorrect
(even though you will see this all too often in newspapers or magazines).

When a battery delivers current to a load, power is generated by the battery and
is dissipated by the load. We can combine (1.1) and (1.2) to find an expression
for instantaneous power supplied, or consumed, by a component of a circuit:

p = dw

dt
= dw

dq
· dq

dt
= vi (1.3)
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Equation (1.3) tells us that the power supplied at any instant by a source, or
consumed by a load, is given by the current through the component times the
voltage across the component. When current is given in amperes, and voltage in
volts, the units of power are watts (W). Thus, a 12-V battery delivering 10 A to
a load is supplying 120 W of power.

1.2.7 Energy

Since power is the rate at which work is being done, and energy is the total
amount of work done, energy is just the integral of power:

w =
∫

p dt (1.4)

In an electrical circuit, energy can be expressed in terms of joules (J), where 1
watt-second = 1 joule. In the electric power industry the units of electrical energy
are more often given in watt-hours, or for larger quantities kilowatt-hours (kWh)
or megawatt-hours (MWh). Thus, for example, a 100-W computer that is operated
for 10 hours will consume 1000 Wh, or 1 kWh of energy. A typical household
in the United States uses approximately 750 kWh per month.

1.2.8 Summary of Principal Electrical Quantities

The key electrical quantities already introduced and the relevant relationships
between these quantities are summarized in Table 1.1.

Since electrical quantities vary over such a large range of magnitudes, you will
often find yourself working with very small quantities or very large quantities. For
example, the voltage created by your TV antenna may be measured in millionths
of a volt (microvolts, µV), while the power generated by a large power station
may be measured in billions of watts, or gigawatts (GW). To describe quantities
that may take on such extreme values, it is useful to have a system of prefixes that
accompany the units. The most commonly used prefixes in electrical engineering
are given in Table 1.2.

TABLE 1.1 Key Electrical Quantities and Relationships

Electrical Quantity Symbol Unit Abbreviation Relationship

Charge q coulomb C q = ∫ i dt

Current i ampere A i = dq/dt

Voltage v volt V v = dw/dq

Power p joule/second J/s p = dw/dt

or watt W
Energy w joule J w = ∫ p dt

or watt-hour Wh
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TABLE 1.2 Common Prefixes

Small Quantities Large Quantities

Quantity Prefix Symbol Quantity Prefix Symbol

10−3 milli m 103 kilo k
10−6 micro µ 106 mega M
10−9 nano n 109 giga G
10−12 pico p 1012 tera T

1.3 IDEALIZED VOLTAGE AND CURRENT SOURCES

Electric circuits are made up of a relatively small number of different kinds of
circuit elements, or components, which can be interconnected in an extraordinarily
large number of ways. At this point in our discussion, we will concentrate on
idealized characteristics of these circuit elements, realizing that real components
resemble, but do not exactly duplicate, the characteristics that we describe here.

1.3.1 Ideal Voltage Source

An ideal voltage source is one that provides a given, known voltage vs , no matter
what sort of load it is connected to. That is, regardless of the current drawn from
the ideal voltage source, it will always provide the same voltage. Note that an
ideal voltage source does not have to deliver a constant voltage; for example, it
may produce a sinusoidally varying voltage—the key is that that voltage is not
a function of the amount of current drawn. A symbol for an ideal voltage source
is shown in Fig. 1.7.

A special case of an ideal voltage source is an ideal battery that provides a
constant dc output, as shown in Fig. 1.8. A real battery approximates the ideal
source; but as current increases, the output drops somewhat. To account for that
drop, quite often the model used for a real battery is an ideal voltage source in
series with the internal resistance of the battery.

i

Load

v = vs

vs
vs

+ +

+

Figure 1.7 A constant voltage source delivers vs no matter what current the load draws.
The quantity vs can vary with time and still be ideal.
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i

i

v

0

Figure 1.8 An ideal dc voltage.

i
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0 iis

isis

v
v

+

Figure 1.9 The current produced by an ideal current source does not depend on the
voltage across the source.

1.3.2 Ideal Current Source

An ideal current source produces a given amount of current is no matter what
load it sees. As shown in Fig. 1.9, a commonly used symbol for such a device is
circle with an arrow indicating the direction of current flow. While a battery is a
good approximation to an ideal voltage source, there is nothing quite so familiar
that approximates an ideal current source. Some transistor circuits come close to
this ideal and are often modeled with idealized current sources.

1.4 ELECTRICAL RESISTANCE

For an ideal resistance element the current through it is directly proportional to
the voltage drop across it, as shown in Fig. 1.10.

1.4.1 Ohm’s Law

The equation for an ideal resistor is given in (1.5) in which v is in volts, i is in
amps, and the constant of proportionality is resistance R measured in ohms (�).
This simple formula is known as Ohm’s law in honor of the German physi-
cist, Georg Ohm, whose original experiments led to this incredibly useful and
important relationship.

v = Ri (1.5)
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(a) (b)
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Figure 1.10 (a) An ideal resistor symbol. (b) voltage–current relationship.

Notice that voltage v is measured across the resistor. That is, it is the voltage at
point A with respect to the voltage at point B. When current is in the direction
shown, the voltage at A with respect to B is positive, so it is quite common to
say that there is a voltage drop across the resistor.

An equivalent relationship for a resistor is given in (1.6), where current is
given in terms of voltage and the proportionality constant is conductance G with
units of siemens (S). In older literature, the unit of conductance was mhos.

i = Gv (1.6)

By combining Eqs. (1.3) and (1.5), we can easily derive the following equiv-
alent relationships for power dissipated by the resistor:

p = vi = i2R = v2

R
(1.7)

Example 1.2 Power to an Incandescent Lamp. The current–voltage rela-
tionship for an incandescent lamp is nearly linear, so it can quite reasonably be
modeled as a simple resistor. Suppose such a lamp has been designed to consume
60 W when it is connected to a 12-V power source. What is the resistance of
the filament, and what amount of current will flow? If the actual voltage is only
11 V, how much energy would it consume over a 100-h period?

Solution. From Eq. (1.7),

R = v2

p
= 122

60
= 2.4 �

and from Ohm’s law,
i = v/R = 12/2.4 = 5 A
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Connected to an 11-V source, the power consumed would be

p = v2

R
= 112

2.4
= 50.4 W

Over a 100-h period, it would consume

w = pt = 50.4 W × 100 h = 5040 Wh = 5.04 kWh

1.4.2 Resistors in Series

We can use Ohm’s law and Kirchhoff’s voltage law to determine the equivalent
resistance of resistors wired in series (so the same current flows through each
one) as shown in Fig. 1.11.

For Rs to be equivalent to the two series resistors, R1 and R2, the volt-
age–current relationships must be the same. That is, for the circuit in Fig. 1.11a,

v = v1 + v2 (1.8)

and from Ohm’s law,
v = iR1 + iR2 (1.9)

For the circuit in Fig. 1.11b to be equivalent, the voltage and current must be
the same:

v = iRs (1.10)

By equating Eqs. (1.9) and (1.10), we conclude that

Rs = R1 + R2 (1.11)

And, in general, for n-resistances in series the equivalent resistance is

Rs = R1 + R2 + · · · + Rn (1.12)

(a) (b)

−

+v

ii

Rs = R1 + R2

−

+ +

+R2 v2

v v1R1

Figure 1.11 Rs is equivalent to resistors R1 and R2 in series.
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(a) (b)

v+

R1 R2 i2i1

i
v+

i

Rp =
R1 + R2

 R1R2

Figure 1.12 Equivalent resistance of resistors wired in parallel.

1.4.3 Resistors in Parallel

When circuit elements are wired together as in Fig. 1.12, so that the same voltage
appears across each of them, they are said to be in parallel.

To find the equivalent resistance of two resistors in parallel, we can first
incorporate Kirchhoff’s current law followed by Ohm’s law:

i = i1 + i2 = v

R1
+ v

R2
= v

Rp

(1.13)

so that
1

R1
+ 1

R2
= 1

Rp

or G1 + G2 = Gp (1.14)

Notice that one reason for introducing the concept of conductance is that the con-
ductance of a parallel combination of n resistors is just the sum of the individual
conductances.

For two resistors in parallel, the equivalent resistance can be found from
Eq. (1.14) to be

Rp = R1R2

R1 + R2
(1.15)

Notice that when R1 and R2 are of equal value, the resistance of the parallel
combination is just one-half that of either one. Also, you might notice that the
parallel combination of two resistors always has a lower resistance than either
one of those resistors.

Example 1.3 Analyzing a Resistive Circuit. Find the equivalent resistance of
the following network.
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800 Ω400 Ω

800 Ω

800 Ω 800 Ω2 kΩ

800 Ω

Solution. While this circuit may look complicated, you can actually work it out
in your head. The parallel combination of the two 800-� resistors on the right
end is 400 �, leaving the following equivalent:

400 Ω

400 Ω 800 Ω

800 Ω800 Ω

2 kΩ

The three resistors on the right end are in series so they are equivalent to a
single resistor of 2 k� (=800 � + 400 � + 800 �). The network now looks
like the following:

400 Ω

800 Ω

2 kΩ 2 kΩ

The two 2-kW resistors combine to 1 k�, which is in series with the 800-�
and 400-� resistors. The total resistance of the network is thus 800 � + 1 k� +
400 � = 2.2 k�.
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1.4.4 The Voltage Divider

A voltage divider is a deceptively simple, but surprisingly useful and important
circuit. It is our first example of a two-port network. Two-port networks have a
pair of input wires and a pair of output wires, as shown in Fig. 1.13.

The analysis of a voltage divider is a straightforward extension of Ohm’s law
and what we have learned about resistors in series.

As shown in Fig. 1.14, when a voltage source is connected to the voltage
divider, an amount of current flows equal to

i = vin

R1 + R2
(1.16)

Since vout = iR2, we can write the following voltage-divider equation:

vout = vin

(
R2

R1 + R2

)
(1.17)

Equation (1.17) is so useful that it is well worth committing to memory.

+

−

vin vout
vin vout R2

Two-port
network

R1

Figure 1.13 A voltage divider is an example of a two-port network.

ivin vout

R2

R1

+

+

−

Figure 1.14 A voltage divider connected to an ideal voltage source.

Example 1.4 Analyzing a Battery as a Voltage Divider. Suppose an auto-
mobile battery is modeled as an ideal 12-V source in series with a 0.1-� inter-
nal resistance.
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a. What would the battery output voltage drop to when 10 A is delivered?
b. What would be the output voltage when the battery is connected to a

1-� load?

Battery

LoadBattery

+ −

=

Load12 V

Vout

+ +

Ri = 0.1 Ω

10 A

Solution

a. With the battery delivering 10 A, the output voltage drops to

Vout = VB − IRi = 12 − 10 × 0.1 = 11 V

b. Connected to a 1-� load, the circuit can be modeled as shown below:

Vout

+

0.1 Ω

1 Ω12 V

We can find Vout from the voltage divider relationship, (1.17):

vout = vin

(
R2

R1 + R2

)
= 12

(
1.0

0.1 + 1.0

)
= 10.91 V

1.4.5 Wire Resistance

In many circumstances connecting wire is treated as if it were perfect—that is,
as if it had no resistance—so there is no voltage drop in those wires. In circuits
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delivering a fair amount of power, however, that assumption may lead to serious
errors. Stated another way, an important part of the design of power circuits is
choosing heavy enough wire to transmit that power without excessive losses. If
connecting wire is too small, power is wasted and, in extreme cases, conductors
can get hot enough to cause a fire hazard.

The resistance of wire depends primarily on its length, diameter, and the mate-
rial of which it is made. Equation (1.18) describes the fundamental relationship
for resistance (�):

R = ρ
l

A
(1.18)

where ρ is the resistivity of the material, l is the wire length, and A is the wire
cross-sectional area.

With l in meters (m) and A in m2, units for resistivity ρ in the SI system are
�-m (in these units copper has ρ = 1.724 × 10−8 �-m). The units often used in
the United States, however, are tricky (as usual) and are based on areas expressed
in circular mils. One circular mil is the area of a circle with diameter 0.001 in.
(1 mil = 0.001 in.). So how can we determine the cross-sectional area of a wire
(in circular mils) with diameter d (mils)? That is the same as asking how many
1-mil-diameter circles can fit into a circle of diameter d mils.

A =
π

4
d2 sq mil

π

4
· 12 sq mil/cmil

= d2 cmil (1.19)

Example 1.5 From mils to Ohms. The resistivity of annealed copper at 20◦C
is 10.37 ohm-circular-mils/foot. What is the resistance of 100 ft of wire with
diameter 80.8 mils (0.0808 in.)?

Solution

R = ρ
l

A
= 10.37 � − cmil/ft · 100 ft

(80.8)2cmil
= 0.1588 �

Electrical resistance of wire also depends somewhat on temperature (as tem-
perature increases, greater molecular activity interferes with the smooth flow of
electrons, thereby increasing resistance). There is also a phenomenon, called the
skin effect, which causes wire resistance to increase with frequency. At higher
frequencies, the inherent inductance at the core of the conductor causes current
to flow less easily in the center of the wire than at the outer edge of conductor,
thereby increasing the average resistance of the entire conductor. At 60 Hz, for
modest loads (not utility power), the skin effect is insignificant. As to materials,
copper is preferred, but aluminum, being cheaper, is sometimes used by pro-
fessionals, but never in home wiring systems. Aluminum under pressure slowly



18 BASIC ELECTRIC AND MAGNETIC CIRCUITS

TABLE 1.3 Characteristics of Copper Wire

Wire Gage
(AWG No.)

Diameter
(inches)

Area
cmils

Ohms per
100 fta

Max Current
(amps)

000 0.4096 168,000 0.0062 195
00 0.3648 133,000 0.0078 165
0 0.3249 106,000 0.0098 125
2 0.2576 66,400 0.0156 95
4 0.2043 41,700 0.0249 70
6 0.1620 26,300 0.0395 55
8 0.1285 16,500 0.0628 40

10 0.1019 10,400 0.0999 30
12 0.0808 6,530 0.1588 20
14 0.0641 4,110 0.2525 15

a dc, at 68◦F.

deforms, which eventually loosens connections. That, coupled with the high-
resistivity oxide that forms over exposed aluminum, can cause high enough I 2R

losses to pose a fire hazard.
Wire size in the United States with diameter less than about 0.5 in. is specified

by its American Wire Gage (AWG) number. The AWG numbers are based on
wire resistance, which means that larger AWG numbers have higher resistance
and hence smaller diameter. Conversely, smaller gage wire has larger diameter
and, consequently, lower resistance. Ordinary house wiring is usually No. 12
AWG, which is roughly the diameter of the lead in an ordinary pencil. The
largest wire designated with an AWG number is 0000, which is usually written
4/0, with a diameter of 0.460 in. For heavier wire, which is usually stranded
(made up of many individual wires bundled together), the size is specified in the
United States in thousands of circular mills (kcmil). For example, 1000-kcmil
stranded copper wire for utility transmission lines is 1.15 in. in diameter and
has a resistance of 0.076 ohms per mile. In countries using the metric system,
wire size is simply specified by its diameter in millimeters. Table 1.3 gives some
values of wire resistance, in ohms per 100 feet, for various gages of copper wire
at 68◦F. Also given is the maximum allowable current for copper wire clad in
the most common insulation.

Example 1.6 Wire Losses. Suppose an ideal 12-V battery is delivering current
to a 12-V, 100-W incandescent lightbulb. The battery is 50 ft from the bulb, and
No. 14 copper wire is used. Find the power lost in the wires and the power
delivered to the bulb.
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Solution. The resistance, Rb, of a bulb designed to use 100 W when it is supplied
with 12 V can be found from (1.7):

P = v2

R
so Rb = v2

P
= 122

100
= 1.44 �

From Table 1.3, 50 ft of 14 ga. wire has 0.2525 �/100 ft, so since we have 50 ft
of wire to the bulb and 50 ft back again, the wire resistance is Rw = 0.2525 �.
The circuit is as follows:

12 V

50 ft

14 ga.
12 V

Rw /2 = 0.12625 Ω

Rb = 1.44 Ω

Rw /2 = 0.12625 Ω

i

From Ohm’s law, the current flowing in the circuit is

i = v

Rtot
= 12 V

(0.12625 + 0.12625 + 1.44) �
= 7.09 A

So, the power delivered to the lightbulb is

Pb = i2Rb = (7.09)2 · 1.44 = 72.4 W

and the power lost in the wires is

Pw = i2Rw = (7.09)2 · 0.2525 = 12.7 W

Notice that our bulb is receiving only 72.4 W instead of 100 W, so it will not
be nearly as bright. Also note that the battery is delivering

Pbattery = 72.4 + 12.7 = 85.1 W

of which, quite a bit, about 15%, is lost in the wires (12.7/85.1 = 0.15).

Alternate Solution: Let us apply the concept of a voltage divider to solve this
problem. We can combine the wire resistance going to the load with the wire
resistance coming back, resulting in the simplified circuit model shown below:
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Rw = 0.2525 Ω

Rb = 1.44 Ω
i

Vb

12 V

Using (1.17), the voltage delivered to the load (the lightbulb) is

vout = vin

(
R2

R1 + R2

)
= 12

(
1.44

0.2525 + 1.44

)
= 10.21 V

The 1.79-V difference between the 12 V supplied by the battery and the 10.21 V
that actually appears across the load is referred to as the voltage sag.

Power lost in the wires is thus

Pw = V 2
w

Rw

= (1.79)2

0.2525
= 12.7 W

Example 1.6 illustrates the importance of the resistance of the connecting
wires. We would probably consider 15% wire loss to be unacceptable, in which
case we might want to increase the wire size (but larger wire is more expensive
and harder to work with). If feasible, we could take the alternative approach to
wire losses, which is to increase the supply voltage. Higher voltages require less
current to deliver a given amount of power. Less current means less i2R power
losses in the wires as the following example demonstrates.

Example 1.7 Raising Voltage to Reduce Wire Losses Suppose a load that
requires 120 W of power is located 50 ft from a generator. The load can be
designed to operate at 12 V or 120 V. Using No. 14 wire, find the voltage sag
and power losses in the connecting wire for each voltage.

(a) 12-V system (b) 120-V system

Vs

0.25 Ω

12 V

10 A

+ 120-W
Load

Vs

0.25 Ω

120 V

1 A

+ 120-W
Load
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Solution. There are 100 ft of No. 14 wire (to the load and back) with total
resistance of 0.2525 � (Table 1.3).

At 12 V : To deliver 120 W at 12 V requires a current of 10 A, so the voltage
sag in the 0.2525-� wire carrying 10 A is

Vsag = iR = 10 A × 0.2525 � = 2.525 V

The power loss in the wire is

P = i2R = (10)2 × 0.2525 = 25.25 W

That means the generator must provide 25.25 + 120 = 145.25 W at a voltage of
12 + 2.525 = 14.525 V. Wire losses are 25.25/145.25 = 0.174 = 17.4% of the
power generated. Such high losses are generally unacceptable.

At 120 V : The current required to deliver 120 W is only 1 A, which means
the voltage drop in the connecting wire is only

Voltage sag = iR = 1 A × 0.2525 � = 0.2525 V

The power loss in the wire is

Pw = i2R = (1)2 × 0.2525 = 0.2525 W (1/100th that of the 12-V system)

The source must provide 120 W + 0.2525 W = 120.2525 W, of which the wires
will lose only 0.21%.

Notice that i2R power losses in the wires are 100 times larger in the 12-V
circuit, which carries 10 A, than they are in the 120-V circuit carrying only 1 A.
That is, increasing the voltage by a factor of 10 causes line losses to decrease
by a factor of 100, which is why electric power companies transmit their power
at such high voltages.

1.5 CAPACITANCE

Capacitance is a parameter in electrical circuits that describes the ability of a
circuit component to store energy in an electrical field. Capacitors are discrete
components that can be purchased at the local electronics store, but the capaci-
tance effect can occur whenever conductors are in the vicinity of each other. A
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capacitor can be as simple as two parallel conducting plates (Fig. 1.15), separated
by a nonconducting dielectric such as air or even a thin sheet of paper.

If the surface area of the plates is large compared to their separation, the
capacitance is given by

C = ε
A

d
farads (1.20)

where C is capacitance (farads, F), ε is permittivity (F/m), A is area of one
plate (m2), and d is separation distance (m).

Example 1.8 Capacitance of Two Parallel Plates. Find the capacitance of two
0.5-m2 parallel conducting plates separated by 0.001 m of air with permittivity
8.8 × 10−12 F/m.

Solution

C = 8.8 × 10−12 F/m · 0.5 m2

0.001 m
= 4.4 × 10−9 F = 0.0044 µF = 4400 pF

Notice even with the quite large plate area in the example, the capacitance is
a very small number. In practice, to achieve large surface area in a small volume,
many capacitors are assembled using two flexible sheets of conductor, separated
by a dielectric, rolled into a cylindrical shape with connecting leads attached to
each plate.

Capacitance values in electronic circuits are typically in the microfarad
(10−6 F = µF) to picofarad (10−12 = pF) range. Capacitors used in utility power
systems are much larger, and are typically in the millifarad range. Later, we will
see how a different unit of measure, the kVAR, will be used to characterize the
size of large, power-system capacitors.

While Eq. (1.20) can be used to determine the capacitance from physical
characteristics, of greater importance is the relationship between voltage, current,
and capacitance. As suggested in Fig. 1.15, when charge q builds up on the

A

+
+

+
+

− −
−

−
−

d

+q

−q
V

+

−

Figure 1.15 A capacitor can consist of two parallel, charged plates separated by a
dielectric.
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i
+ −

V

C

(a)  Common

i = C
dv
dt

i
+

V

C

−

(b) Alternative

Figure 1.16 Two symbols for capacitors.

plates of a capacitor, a voltage v is created across the capacitor. This leads
to the fundamental definition of capacitance, which is that capacitance is equal
to the amount of charge required to create a 1-V potential difference between the
plates:

C(farads) = q(coulombs)

v(volts)
(1.21)

Since current is the rate at which charge is added to the plates, we can rear-
range (1.21) and then take the derivative to get

i = dq

dt
= C

dv

dt
(1.22)

The circuit symbol for a capacitor is usually drawn as two parallel lines, as
shown in Fig. 1.16a, but you may also encounter the symbol shown in Fig. 1.16b.
Sometimes, the term condenser is used for capacitors, as is the case in automobile
ignition systems.

From the defining relationship between current and voltage (1.22), it can be
seen that if voltage is not changing, then current into the capacitor has to be zero.
That is, under dc conditions, the capacitor appears to be an open circuit, through
which no current flows.

dc: dv
dt

= 0,   i = 0, = (1.23)

Kirchhoff’s current and voltage laws can be used to determine that the capac-
itance of two capacitors in parallel is the sum of their capacitances and that the
capacitance of two capacitors in series is equal to the product of the two over
the sum, as shown in Fig. 1.17.

Another important characteristic of capacitors is their ability to store energy
in the form of an electric field created between the plates. Since power is the
rate of change of energy, we can write that energy is the integral of power:

Wc =
∫

P dt =
∫

vi dt =
∫

vC
dv

dt
dt = C

∫
v dv
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=
C1

C2

Cs= Cs =
C1 C2

C1 + C2

C1 C2

Cp

Cp = C1 + C2

Figure 1.17 Capacitors in series and capacitors in parallel.

So, we can write that the energy stored in the electric field of a capacitor is

Wc = 1
2Cv2 (1.24)

One final property of capacitors is that the voltage across a capacitor cannot
be changed instantaneously. To change voltage instantaneously, charge would
have to move from one plate, around the circuit, and back to the other plate
in zero time. To see this conclusion mathematically, write power as the rate of
change of energy,

P = dW

dt
= d

dt

(
1

2
Cv2

)
= Cv

dv

dt
(1.25)

and then note that if voltage could change instantaneously, dv/dt would be
infinite, and it would therefore take infinite power to cause that change, which is
impossible—hence, the conclusion that voltage cannot change instantaneously.
An important practical application of this property will be seen when we look at
rectifiers that convert ac to dc. Capacitors resist rapid changes in voltages and
are used to smooth the dc voltage produced from such dc power supplies. In
power systems, capacitors have a number of other uses that will be explored in
the next chapter.

1.6 MAGNETIC CIRCUITS

Before we can introduce inductors and transformers, we need to understand the
basic concept of electromagnetism. The simple notions introduced here will be
expanded in later chapters when electric power quality (especially harmonic dis-
tortion), motors and generators, and fluorescent ballasts are covered.

1.6.1 Electromagnetism

Electromagnetic phenomena were first observed and quantified in the early nine-
teenth century—most notably, by three European scientists: Hans Christian Oer-
sted, André Marie Ampère, and Michael Faraday. Oersted observed that a wire
carrying current could cause a magnet suspended nearby to move. Ampère, in
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1825, demonstrated that a wire carrying current could exert a force on another
wire carrying current in the opposite direction. And Faraday, in 1831, discovered
that current could be made to flow in a coil of wire by passing a magnet close
to the circuit. These experiments provided the fundamental basis for the devel-
opment of all electromechanical devices, including, most importantly, motors
and generators.

What those early experiments established was that electrical current flowing
along a wire creates a magnetic field around the wire, as shown in Fig. 1.18a. That
magnetic field can be visualized by showing lines of magnetic flux, which are
represented with the symbol φ. The direction of that field that can be determined
using the “right hand rule” in which you imagine wrapping your right hand
around a wire, with your thumb pointing in the direction of current flow. Your
fingers then show the direction of the magnetic field. The field created by a coil
of wire is suggested in Fig. 1.18b.

Consider an iron core wrapped with N turns of wire carrying current i as
shown in Fig. 1.19. The magnetic field formed by the coil will take the path of
least resistance—which is through the iron—in much the same way that electric
current stays within a copper conductor. In essence, the iron is to a magnetic
field what a wire is to current.

What Faraday discovered is that current flowing through the coil not only
creates a magnetic field in the iron, it also creates a voltage across the coil that
is proportional to the rate of change of magnetic flux φ in the iron. That voltage
is called an electromotive force, or emf, and is designated by the symbol e.

(a) (b)

i

f

i

f

Figure 1.18 A magnetic field is formed around a conductor carrying current.

i Iron core 
mean circumference,

Cross-sectional area A 

e N f

Figure 1.19 Current in the N-turn winding around an iron core creates a magnetic flux
φ. An electromotive force (voltage) e is induced in the coil proportional to the rate of
change of flux.
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Assuming that all of the magnetic flux φ links all of the turns of the coil, we can
write the following important relationship, which is known as Faraday’s law of
electromagnetic induction:

e = N
dφ

dt
(1.26)

The sign of the induced emf is always in a direction that opposes the current that
created it, a phenomenon referred to as Lenz’s law.

1.6.2 Magnetic Circuits

Magnetic phenomena are described using a fairly large number of terms that are
often, at first, somewhat difficult to keep track of. One approach that may help is
to describe analogies between electrical circuits, which are usually more familiar,
and corresponding magnetic circuits. Consider the electrical circuit shown in
Fig. 1.20a and the analogous magnetic circuit shown in Fig 1.20b. The electrical
circuit consists of a voltage source, v, sending current i through an electrical
load with resistance R. The electrical load consists of a long wire of length l,
cross-sectional area A, and conductance ρ.

The resistance of the electrical load is given by (1.18):

R = ρ
l

A
(1.18)

The current flowing in the electrical circuit is given by Ohm’s law:

i = v

R
(1.5)

In the magnetic circuit of Fig. 1.20b, the driving force, analogous to voltage,
is called the magnetomotive force (mmf), designated by F. The magnetomotive
force is created by wrapping N turns of wire, carrying current i, around a toroidal

Cross-sectional area  A
Length
Conductance  r

v
+

i
i i

Cross-sectional area  A
Length
Permeability  m

f
N

(a) Electrical Circuit (b) Magnetic Circuit

Figure 1.20 Analogous electrical and magnetic circuits.
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core. By definition, the magnetomotive force is the product of current × turns ,
and has units of ampere-turns.

Magnetomotive force (mmf )F = Ni (ampere − turns) (1.27)

The response to that mmf (analogous to current in the electrical circuit) is
creation of magnetic flux φ, which has SI units of webers (Wb). The magnetic
flux is proportional to the mmf driving force and inversely proportional to a
quantity called reluctance R, which is analogous to electrical resistance, resulting
in the “Ohm’s law” of magnetic circuits given by

F = R φ (1.28)

From (1.28), we can ascribe units for reluctance R as amp-turns per weber
(A-t/Wb).

Reluctance depends on the dimensions of the core as well as its materials:

reluctance = R = l

µA
(A-t/Wb) (1.29)

Notice the similarity between (1.29) and the equation for resistance given in (1.18).
The parameter in (1.29) that indicates how readily the core material accepts

magnetic flux is the material’s permeability µ. There are three categories of
magnetic materials: diamagnetic, in which the material tends to exclude mag-
netic fields; paramagnetic, in which the material is slightly magnetized by a
magnetic field; and ferromagnetic, which are materials that very easily become
magnetized. The vast majority of materials do not respond to magnetic fields,
and their permeability is very close to that of free space. The materials that read-
ily accept magnetic flux—that is, ferromagnetic materials—are principally iron,
cobalt, and nickel and various alloys that include these elements. The units of
permeability are webers per amp-turn-meter (Wb/A-t-m).

The permeability of free space is given by

Permeability of free space µ0 = 4π × 10−7 Wb/A-t-m (1.30)

Oftentimes, materials are characterized by their relative permeability, µr, which
for ferromagnetic materials may be in the range of hundreds to hundreds of thou-
sands. As will be noted later, however, the relative permeability is not a constant
for a given material: It varies with the magnetic field intensity. In this regard, the
magnetic analogy deviates from its electrical counterpart and so must be used
with some caution.

Relative permeability = µr = µ

µ0
(1.31)
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Another important quantity of interest in magnetic circuits is the magnetic flux
density, B. As the name suggests, it is simply the “density” of flux given by
the following:

Magnetic flux density B = φ

A
webers/m2 or teslas (T) (1.32)

When flux is given in webers (Wb) and area A is given in m2, units for B are
teslas (T). The analogous quantity in an electrical circuit would be the current
density, given by

Electric current density J = i

A
(1.33)

The final magnetic quantity that we need to introduce is the magnetic field
intensity, H . Referring back to the simple magnetic circuit shown in Fig. 1.20b,
the magnetic field intensity is defined as the magnetomotive force (mmf) per unit
of length around the magnetic loop. With N turns of wire carrying current i, the
mmf created in the circuit is Ni ampere-turns. With l representing the mean path
length for the magnetic flux, the magnetic field intensity is therefore

Magnetic field intensity H = Ni

l
ampere-turns/meter (1.34)

An analogous concept in electric circuits is the electric field strength, which is
voltage drop per unit of length. In a capacitor, for example, the intensity of the
electric field formed between the plates is equal to the voltage across the plates
divided by the spacing between the plates.

Finally, if we combine (1.27), (1.28), (1.29), (1.32), and (1.34), we arrive at
the following relationship between magnetic flux density B and magnetic field
intensity H:

B = µH (1.35)

Returning to the analogies between the simple electrical circuit and magnetic
circuit shown in Fig. 1.20, we can now identify equivalent circuits, as shown in
Fig. 1.21, along with the analogs shown in Table 1.4.

TABLE 1.4 Analogous Electrical and Magnetic Circuit Quantities

Electrical Magnetic Magnetic Units

Voltage v Magnetomotive force F = Ni Amp-turns
Current i Magnetic flux φ Webers Wb
Resistance R Reluctance R Amp-turns/Wb
Conductivity 1/ρ Permeability µ Wb/A-t-m
Current density J Magnetic flux density B Wb/m2 = teslas T
Electric field E Magnetic field intensity H Amp-turn/m
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CIRCUIT DIAGRAMS

EQUIVALENT CIRCUITS

Electrical

i

i
i

i

f

f

N

+

Magnetic

R

v

v

Figure 1.21 Equivalent circuits for the electrical and magnetic circuits shown.

1.7 INDUCTANCE

Having introduced the necessary electromagnetic background, we can now
address inductance. Inductance is, in some sense, a mirror image of capacitance.
While capacitors store energy in an electric field, inductors store energy in a
magnetic field. While capacitors prevent voltage from changing instantaneously,
inductors, as we shall see, prevent current from changing instantaneously.

1.7.1 Physics of Inductors

Consider a coil of wire carrying some current creating a magnetic field within the
coil. As shown in Fig 1.22, if the coil has an air core, the flux can pretty much
go where it wants to, which leads to the possibility that much of the flux will not
link all of the turns of the coil. To help guide the flux through the coil, so that
flux leakage is minimized, the coil might be wrapped around a ferromagnetic bar
or ferromagnetic core as shown in Fig. 1.23. The lower reluctance path provided
by the ferromagnetic material also greatly increases the flux φ.

We can easily analyze the magnetic circuit in which the coil is wrapped around
the ferromagnetic core in Fig. 1.23a. Assume that all of the flux stays within the
low-reluctance pathway provided by the core, and apply (1.28):

φ = F

R
= Ni

R
(1.36)
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Leakage flux

Air core

Figure 1.22 A coil with an air core will have considerable leakage flux.

(a) (b)

i f

Nev
+ +

−−

i + −

f

N

e

Figure 1.23 Flux can be increased and leakage reduced by wrapping the coils around
a ferromagnetic material that provides a lower reluctance path. The flux will be much
higher using the core (a) rather than the rod (b).

From Faraday’s law (1.26), changes in magnetic flux create a voltage e, called
the electromotive force (emf), across the coil equal to

e = N
dφ

dt
(1.26)

Substituting (1.36) into (1.26) gives

e = N
d

dt

(
Ni

R

)
= N2

R

di

dt
= L

di

dt
(1.37)

where inductance L has been introduced and defined as

Inductance L = N2

R
henries (1.38)

Notice in Fig. 1.23a that a distinction has been made between e, the emf
voltage induced across the coil, and v, a voltage that may have been applied
to the circuit to cause the flux in the first place. If there are no losses in the
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connecting wires between the source voltage and the coil, then e = v and we
have the final defining relationship for an inductor:

v = L
di

dt
(1.39)

As given in (1.38), inductance is inversely proportional to reluctance R. Recall
that the reluctance of a flux path through air is much greater than the reluc-
tance if it passes through a ferromagnetic material. That tells us if we want a
large inductance, the flux needs to pass through materials with high permeability
(not air).

Example 1.9 Inductance of a Core-and-Coil. Find the inductance of a core
with effective length l = 0.1 m, cross-sectional area A = 0.001 m2, and relative
permeability µr somewhere between 15,000 and 25,000. It is wrapped with N =
10 turns of wire. What is the range of inductance for the core?

Solution. When the core’s permeability is 15,000 times that of free space, it is

µcore = µrµ0 = 15,000 × 4π × 10−7 = 0.01885 Wb/A-t-m

so its reluctance is

Rcore = l

µcoreA
= 0.1 m

0.01885 (Wb/A-t-m) × 0.001 m2
= 5305 A-t/Wb

and its inductance is

L = N2

R
= 102

5305
= 0.0188 henries = 18.8 mH

Similarly, when the relative permeability is 25,000 the inductance is

L = N2

R
= N2µrµ0A

l
= 102 × 25,000 × 4π × 10−7 × 0.001

0.1
= 0.0314 H = 31.4 mH

The point of Example 1.9 is that the inductance of a coil of wire wrapped
around a solid core can be quite variable given the imprecise value of the core’s
permeability. Its permeability depends on how hard the coil is driven by mmf
so you can’t just pick up an off-the-shelf inductor like this and know what its
inductance is likely to be. The trick to getting a more precise value of inductance
given the uncertainty in permeability is to sacrifice some amount of inductance by
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building into the core a small air gap. Another approach is to get the equivalent
of an air gap by using a powdered ferromagnetic material in which the spaces
between particles of material act as the air gap. The air gap reluctance, which is
determined strictly by geometry, is large compared to the core reluctance so the
impact of core permeability changes is minimized.

The following example illustrates the advantage of using an air gap to
minimize the uncertainty in inductance. It also demonstrates something called
Ampère’s circuital law, which is the magnetic analogy to Kirchhoff’s voltage
law. That is, the rise in magnetomotive force (mmf) provided by N turns of
wire carrying current i is equal to the sum of the mmf drops R φ around the
magnetic loop.

Example 1.10 An Air Gap to Minimize Inductance Uncertainty. Suppose
the core of Example 1.9 is built with a 0.001-m air gap. Find the range of induc-
tances when the core’s relative permeability varies between 15,000 and 25,000.

1-mm air
gap

core = 0.099 m

N = 10 turns

mr from 15,000 to 25,000

Solution. The reluctance of the ferromagnetic portion of the core when its rela-
tive permeability is 15,000 is

Rcore = lcore

µcoreA
= 0.099

15,000 × 4π × 10−7 × 0.001
= 5252 A-t/Wb

And the air gap reluctance is

Rair gap = lair gap

µ0A
= 0.001

4π × 10−7 × 0.001
= 795,775 A-t/Wb

So the total reluctance of the series path consisting or core and air gap is

RTotal = 5252 + 795,775 = 801,027 A-t/Wb

And the inductance is

L = N2

R
= 102

801,027
= 0.0001248 H = 0.1248 mH
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When the core’s relative permeability is 25,000, its reluctance is

Rcore = lcore

µcoreA
= 0.099

25,000 × 4π × 10−7 × 0.001
= 3151 A-t/Wb

And the new total inductance is

L = N2

R
= 102

3151 + 795,775
= 0.0001251 H = 0.1251 mH

This is an insignificant change in inductance. A very precise inductance has been
achieved at the expense of a sizable decrease in inductance compared to the core
without an air gap.

1.7.2 Circuit Relationships for Inductors

From the defining relationship between voltage and current for an inductor (1.39),
we can note that when current is not changing with time, the voltage across the
inductor is zero. That is, for dc conditions an inductor looks the same as a
short-circuit, zero-resistance wire:

dc:  v = L = L · 0 = 0 =
di
dt

(1.40)

When inductors are wired in series, the same current flows through each one
so the voltage drop across the pair is simply:

vseries = L1
di

dt
+ L2

di

dt
= (L1 + L2)

di

dt
= Lseries

di

dt
(1.41)

where Lseries is the equivalent inductance of the two series inductors. That is,

Lseries = L1 + L2 (1.42)

Consider Fig. 1.24 for two inductors in parallel.

i

i1 i2

v +

L1 L2

i

Lparallel  ==
L1 L2

L1 + L2

Figure 1.24 Two inductors in parallel.
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The total current flowing is the sum of the currents:

iparallel = i1 + i2 (1.43)

The voltages are the same across each inductor, so we can use the integral form
of (1.39) to get

1

Lparallel

∫
v dt = 1

L1

∫
v dt + 1

L2

∫
v dt (1.44)

Dividing out the integral gives us the equation for inductors in parallel:

Lparallel = L1 L2

L1 + L2
(1.45)

Just as capacitors store energy in their electric fields, inductors also store
energy, but this time it is in their magnetic fields. Since energy W is the integral
of power P , we can easily set up the equation for energy stored:

WL =
∫

P dt =
∫

vi dt =
∫ (

L
di

dt

)
i dt = L

∫
i di (1.46)

This leads to the following equation for energy stored in an inductor’s mag-
netic field:

WL = 1
2L i2 (1.47)

If we use (1.47) to learn something about the power dissipated in an inductor,
we get

P = dW

dt
= d

dt

(
1

2
Li2

)
= Li

di

dt
(1.48)

From (1.48) we can deduce another important property of inductors: The cur-
rent through an inductor cannot be changed instantaneously. For current to change
instantaneously, di/dt would be infinite, which (1.48) tells us would require infi-
nite power, which is impossible. It takes time for the magnetic field, which is
storing energy, to collapse. Inductors, in other words, make current act like it
has inertia.

Now wait a minute. If current is flowing in the simple circuit containing an
inductor, resistor, and switch shown in Fig 1.25, why can’t you just open the
switch and cause the current to stop instantaneously? Surely, it doesn’t take
infinite power to open a switch. The answer is that the current has to keep
going for at least a short interval just after opening the switch. To do so, current
momentarily must jump the gap between the contact points as the switch is
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i

switch

+
−

R

LVB

VL
+

−

Figure 1.25 A simple R–L circuit with a switch.

opened. That is, the switch “arcs” and you get a little spark. Too much arc and
the switch can be burned out.

We can develop an equation that describes what happens when an open switch
in the R–L circuit of Fig. 1.25 is suddenly closed. Doing so gives us a little
practice with Kirchhoff’s voltage law. With the switch closed, the voltage rise due
to the battery must equal the voltage drop across the resistance plus inductance:

VB = iR + L
di

dt
(1.49)

Without going through the details the solution to (1.49), subject to the initial
condition that i = 0 at t = 0, is

i = VB

R

(
1 − e

− R
L

t

)
(1.50)

Does this solution look right? At t = 0, i = 0, so that’s OK. At t = ∞, i =
VB/R. That seems alright too since eventually the current reaches a steady-
state, dc value, which means the voltage drop across the inductor is zero (vL =
L di/dt = 0). At that point, all of the voltage drop is across the resistor, so
current is i = VB/R. The quantity L/R in the exponent of (1.50) is called the
time constant, τ .

We can sketch out the current flowing in the circuit of Fig. 1.25 along with
the voltage across the inductor as we go about opening and closing the switch
(Fig 1.26). If we start with the switch open at t = 0− (where the minus suggests
just before t = 0), the current will be zero and the voltage across the inductor,
VL will be 0 (since VL = L di/dt and di/dt = 0).

At t = 0, the switch is closed. At t = 0+ (just after the switch closes) the
current is still zero since it cannot change instantaneously. With zero current, there
is no voltage drop across the resistor (vR = i R), which means the entire battery
voltage appears across the inductor (vL = VB). Notice that there is no restriction
on how rapidly voltage can change across an inductor, so an instantaneous jump
is allowed. Current climbs after the switch is closed until dc conditions are
reached, at which point di/dt = 0 so vL = 0 and the entire battery voltage is
dropped across the resistor. Current i asymptotically approaches VB/R.
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0

i

0

VL

Open
switch

Close
switch

0 Tt

0 Tt

BIG SPIKE !!

VB

R

VB

Figure 1.26 Opening a switch at t = T produces a large spike of voltage across
the inductor.

Now, at time t = T , open the switch. Current quickly, but not instantaneously,
drops to zero (by arcing). Since the voltage across the inductor is vL = Ldi/dt ,
and di/dt (the slope of current) is a very large negative quantity, vL shows a
precipitous, downward spike as shown in Fig. 1.26. This large spike of voltage
can be much, much higher than the little voltage provided by the battery. In other
words, with just an inductor, a battery, and a switch, we can create a very large
voltage spike as we open the switch. This peculiar property of inductors is used
to advantage in automobile ignition systems to cause spark plugs to ignite the
gasoline in the cylinders of your engine. In your ignition system a switch opens
(it used to be the points inside your distributor, now it is a transistorized switch),
thereby creating a spike of voltage that is further amplified by a transformer coil
to create a voltage of tens of thousands of volts—enough to cause an arc across
the gap in your car’s spark plugs. Another important application of this voltage
spike is to use it to start the arc between electrodes of a fluorescent lamp.

1.8 TRANSFORMERS

When Thomas Edison created the first electric utility in 1882, he used dc to
transmit power from generator to load. Unfortunately, at the time it was not
possible to change dc voltages easily from one level to another, which meant
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transmission was at the relatively low voltages of the dc generators. As we have
seen, transmitting significant amounts of power at low voltage means that high
currents must flow, resulting in large i2R power losses in the wires as well as
high voltage drops between power plant and loads. The result was that power
plants had to be located very close to loads. In those early days, it was not
uncommon for power plants in cities to be located only a few blocks apart.

In a famous battle between two giants of the time, George Westinghouse
solved the transmission problem by introducing ac generation using a transformer
to boost the voltage entering transmission lines and other transformers to reduce
the voltage back down to safe levels at the customer’s site. Edison lost the battle
but never abandoned dc—a decision that soon led to the collapse of his electric
utility company.

It would be hard to overstate the importance of transformers in modern electric
power systems. Transmission line power losses are proportional to the square of
current and are inversely proportional to the square of voltage. Raising voltages
by a factor of 10, for example, lowers line losses by a factor of 100. Modern
systems generate voltages in the range of 12 to 25 kV. Transformers boost that
voltage to hundreds of thousands of volts for long-distance transmission. At the
receiving end, transformers drop the transmission line voltage to perhaps 4 to
25 kV at electrical substations for local distribution. Other transformers then
drop the voltage to safe levels for home, office and factory use.

1.8.1 Ideal Transformers

A simple transformer configuration is shown in Fig. 1.27. Two coils of wire are
wound around a magnetic core. As shown, the primary side of the transformer
has N1 turns of wire carrying current i1, while the secondary side has N2 turns
carrying i2.

If we assume an ideal core with no flux leakage, then the magnetic flux φ

linking the primary windings is the same as the flux linking the secondary. From
Faraday’s law we can write

e1 = N1
dφ

dt
(1.51)

e1

i1

i2

v1 e2 v2N2N1

+
+

−
−

f

f

Figure 1.27 An idealized two-winding transformer.
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and

e2 = N2
dφ

dt
(1.52)

Continuing the idealization of the transformer, if there are no wire losses, then
the voltage on the incoming wires, v1, is equal to the emf e1, and the voltage on
the output wires, v2, equals e2. Dividing (1.52) by (1.51) gives

v2

v1
= e2

e1
= N2(dφ/dt)

N1(dφ/dt)
(1.53)

Before canceling out the dφ/dt , note that we can only do so if dφ/dt is not
equal to zero. That is, the following fundamental relationship for transformers
(1.53) is not valid for dc conditions:

v2 =
(

N2

N1

)
v1 = (turns ratio) · v1 (1.54)

The quantity in the parentheses is called the turns ratio. If voltages are to be
raised, then the turns ratio needs to be greater than 1; to lower voltages it needs
to be less than 1.

Does (1.54), which says that we can easily increase the voltage from primary
to secondary, suggest that we are getting something for nothing? The answer is,
as might be expected, no. While (1.54) suggests an easy way to raise ac voltages,
energy still must be conserved. If we assume that our transformer is perfect; that
is, it has no energy losses of its own, then power going into the transformer on
the primary side, must equal power delivered to the load on the secondary side.
That is,

v1 i1 = v2 i2 (1.55)

Substituting (1.54) into (1.55) gives

i2 =
(

v1

v2

)
i1 =

(
N1

N2

)
i1 (1.56)

What (1.56) shows is that if we increase the voltage on the secondary side
of the transformer (to the load), we correspondingly reduce the current to the
load. For example, bumping the voltage up by a factor of 10 reduces the current
delivered by a factor of 10. On the other hand, decreasing the voltage by a factor
of 10 increases the current 10-fold on the secondary side.

Another important consideration in transformer analysis is what a voltage
source “sees” when it sends current into a transformer that is driving a load.
For example, in Fig. 1.28 a voltage source, transformer, and resistive load are
shown. The symbol for a transformer shows a couple of parallel bars between
the windings, which is meant to signify that the coil is wound around a metal
(steel) core (not an air core). The dots above the windings indicate the polarity
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i1

N1 N2 R

i2
v2

+

−

+

−

v1

Figure 1.28 A resistance load being driven by a voltage source through a transformer.

of the windings. When both dots are on the same side (as in Fig. 1.28) a positive
voltage on the primary produces a positive voltage on the secondary.

Back to the question of the equivalent load seen by the input voltage source
for the circuit of Fig. 1.28. If we call that load Rin, then we have

v1 = Rini1 (1.57)

Rearranging (1.57) and substituting in (1.55) and (1.56) gives

Rin =
(

v1

i1

)
= (N1/N2)v2

(N2/N1)i2
=

(
N1

N2

)2

· v2

i2
=

(
N1

N2

)2

R (1.58)

where v2/i2 = R is the resistance of the transformer load.
As far as the input voltage source is concerned, the load it sees is the resistance

on the secondary side of the transformer divided by the square of the turns ratio.
This is referred to as a resistance transformation (or more generally an impedance
transformation).

Example 1.11 Some Transformer Calculations. A 120- to 240-V step-up
transformer is connected to a 100-� load.

a. What is the turns ratio?

b. What resistance does the 120-V source see?

c. What is the current on the primary side and on the secondary side?

Solution

a. The turns ratio is the ratio of the secondary voltage to the primary voltage,

Turns ratio = N2

N1
= v2

v1
= 240 V

120 V
= 2



40 BASIC ELECTRIC AND MAGNETIC CIRCUITS

b. The resistance seen by the 120 V source is given by (1.58):

Rin =
(

N1

N2

)2

R =
(

1

2

)2

100 = 25 �

c. The primary side current will be

iprimary = v1

Rin
= 120 V

25 �
= 4.8 A

On the secondary side, current will be

isecondary = v2

Rload
= 240 V

100 �
= 2.4 A

Notice that power is conserved:

v1 · i1 = 120 V · 4.8 A = 576 W

v2 · i2 = 240 V · 2.4 A = 576 W

1.8.2 Magnetization Losses

Up to this point, we have considered a transformer to have no losses of any
sort associated with its performance. We know, however, that real windings have
inherent resistance so that when current flows there will be voltage and power
losses there. There are also losses associated with the magnetization of the core,
which will be explored now.

The orientation of atoms in ferromagnetic materials (principally iron, nickel,
and cobalt as well as some rare earth elements) are affected by magnetic fields.
This phenomenon is described in terms of unbalanced spins of electrons, which
causes the atoms to experience a torque, called a magnetic moment, when exposed
to a magnetic field.

Ferromagnetic metals exist in a crystalline structure with all of the atoms
within a particular portion of the material arranged in a well-organized lattice.
The regions in which the atoms are all perfectly arranged is called a subcrystalline
domain. Within each magnetic domain, all of the atoms have their spin axes
aligned with each other. Adjacent domains, however, may have their spin axes
aligned differently. The net effect of the random orientation of domains in an
unmagnetized ferromagnetic material is that all of the magnetic moments cancel
each other and there is no net magnetization. This is illustrated in Fig. 1.29a.

When a strong magnetic field H is imposed on the domains, their spin axes
begin to align with the imposed field, eventually reaching saturation as shown in
Fig. 1.29b. After saturation is reached, increasing the magnetizing force causes no
increase in flux density, B. This suggests that the relationship between magnetic
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(a) (b)

Figure 1.29 Representation of the domains in (a) an unmagnetized ferromagnetic mate-
rial and (b) one that is fully magnetized.

a

d
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b H increasing

H decreasing

Remanent flux Br

Coercive flux −Hc

Start from
B = 0
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−Br

−Bsat

Bsat

e

Hc

Figure 1.30 Cycling an imposed mmf on a ferromagnetic material produces a hystere-
sis loop.

field H and flux density B will not be linear, as was implied in (1.35), and
in fact will exhibit some sort of s-shaped behavior. That is, permeability µ is
not constant.

Figure 1.30 illustrates the impact that the imposition of a magnetic field H on
a ferromagnetic material has on the resulting magnetic flux density B. The field
causes the magnetic moments in each of the domains to begin to align. When the
magnetizing force H is eliminated, the domains relax, but don’t return to their
original random orientation, leaving a remanent flux Br ; that is, the material
becomes a “permanent magnet.” One way to demagnetize the material is to heat
it to a high enough temperature (called the Curie temperature) that the domains
once again take on their random orientation. For iron, the Curie temperature is
770◦C.
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in fact will exhibit some sort of s-shaped behavior. That is, permeability µ is
not constant.

Figure 1.30 illustrates the impact that the imposition of a magnetic field H on
a ferromagnetic material has on the resulting magnetic flux density B. The field
causes the magnetic moments in each of the domains to begin to align. When the
magnetizing force H is eliminated, the domains relax, but don’t return to their
original random orientation, leaving a remanent flux Br ; that is, the material
becomes a “permanent magnet.” One way to demagnetize the material is to heat
it to a high enough temperature (called the Curie temperature) that the domains
once again take on their random orientation. For iron, the Curie temperature is
770◦C.
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Consider what happens to the B –H curve as the magnetic domains are cycled
back and forth by an imposed ac magnetomagnetic force. On the B –H curve
of Fig 1.30, the cycling is represented by the path o–a followed by the path
a–b. If the field is driven somewhat negative, the flux density can be brought
back to zero (point c) by imposing a coercive force, Hc; forcing the applied mmf
even more negative brings us to point d. Driving the mmf back in the positive
direction takes us along path d–e–a.

The phenomenon illustrated in the B –H curve is called hysteresis. Cycling
a magnetic material causes the material to heat up; in other words, energy is
being wasted. It can be shown that the energy dissipated as heat in each cycle is
proportional to the area contained within the hysteresis loop. Each cycle through
the loop creates an energy loss; therefore the rate at which energy is lost, which
is power, is proportional to the frequency of cycling and the area within the
hysteresis loop. That is, we can write an equation of the sort

Power loss due to hysteresis = k1f (1.59)

where k1 is just a constant of proportionality and f is the frequency.
Another source of core losses is caused by small currents, called eddy currents,

that are formed within the ferromagnetic material as it is cycled. Consider a cross
section of core with magnetic flux φ aligned along its axis as shown in Fig. 1.31a.
We know from Faraday’s law that anytime a loop of electrical conductor has
varying magnetic flux passing through it, there will be a voltage (emf) created
in that loop proportional to the rate of change of φ. That emf can create its own
current in the loop. In the case of our core, the ferromagnetic material is the
conductor, which we can think of as forming loops of conductor wrapped around
flux creating the eddy currents shown in the figure.

To analyze the losses associated with eddy currents, imagine the flux as a
sinusoidal, time-varying function

φ = sin(ωt) (1.60)

Eddy currents

Flux f Flux f

Laminations
(a) (b)

Core windings

i

Figure 1.31 Eddy currents in a ferromagnetic core result from changes in flux link-
ages: (a) A solid core produces large eddy current losses. (b) Laminating the core yields
smaller losses.
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The emf created by changing flux is proportional to dφ/dt

e = k2
dφ

dt
= k2ω cos(ωt) (1.61)

where k2 is just a constant of proportionality. The power loss in a conduct-
ing “loop” around this changing flux is proportional to voltage squared over
loop resistance:

Eddy current power loss = e2

R
= 1

R
[k2ω cos(ωt)]2 (1.62)

Equation (1.62) suggests that power loss due to eddy currents is inversely pro-
portional to the resistance of the “loop” through which the current is flowing. To
control power losses, therefore, there are two approaches: (1) Increase the elec-
trical resistance of the core material, and (2) make the loops smaller and tighter.
Tighter loops have more resistance (since resistance is inversely proportional to
cross-sectional area through which current flows) and they contain less flux φ

(emf is proportional to the rate of change of flux, not flux density).
Real transformer cores are designed to control both causes of eddy current

losses. Steel cores, for example, are alloyed with silicon to increase resistance;
otherwise, high-resistance magnetic ceramics, called ferrites, are used instead of
conventional alloys. To make the loops smaller, cores are usually made up of
many thin, insulated, lamination layers as shown in Fig. 1.31b.

The second, very important conclusion from Eq. (1.62) is that eddy current
losses are proportional to frequency squared:

Power loss due to eddy currents = k3f
2 (1.63)

Later, when we consider harmonics in power circuits, we will see that some
loads cause currents consisting of multiples of the fundamental 60-Hz frequency.
The higher-frequency harmonics can lead to transformer core burnouts due to the
eddy current dependence on frequency squared.

Transformer hysteresis losses are controlled by using materials with minimal
B –H hysteresis loop area. Eddy current losses are controlled by picking core
materials that have high resistivity and then laminating the core with thin, insu-
lated sheets of material. Leakage flux losses are minimized not only by picking
materials with high permeability but also by winding the primary and secondary
windings right on top of each other. A common core configuration designed
for overlapping windings is shown in Fig. 1.32. The two windings are wrapped
around the center section of core while the outer two sections carry the flux in
closed loops. The top of a laminated slice of this core is a separate piece in
order to facilitate wrapping the windings around core material. With the top off,
a mechanical winder can easily wrap the core, after which the top bar is attached.

A real transformer can be modeled using a circuit consisting of an idealized
transformer with added idealized resistances and inductors as shown in Fig. 1.33.
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Both windings
wrapped around
central core

Laminated core to
reduce eddy
currents

Flux
lines 

Removable
top pieces
to facilitate
winding 

Figure 1.32 A type “E-1” laminated core for a transformer showing the laminations and
the removable top pieces to enable machine winding. Windings are wound on top of each
other on the central portion of the core.

Ideal transformer

R1 N1 N2
L1 L2 R2

V1 V2Lm

Figure 1.33 A model of a real transformer accounts for winding resistances, leakage
fluxes, and magnetizing inductance.

Resistors R1 and R2 represent the resistances of the primary and secondary wind-
ings. L1 and L2 represent the inductances associated with primary and secondary
leakage fluxes that pass through air instead of core material. Inductance Lm,
the magnetizing inductance, allows the model to show current in the primary
windings even if the secondary is an open circuit with no current flowing.

PROBLEMS

1.1. Either a resistor, capacitor or inductor is connected through a switch to a
current source. At t = 0, the switch is closed and the following applied
current results in the voltage shown. What is the circuit element and what
is its magnitude?
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Figure P1.1

1.2. A voltage source produces the square wave shown below. The load, which
is either an ideal resistor, capacitor or inductor, draws current current as
shown below.

t

t0

1

−1

1

Load

+

−

i (t )
v(t )

i (t )

v(t )

Figure P1.2

a. Is the “Load” a resistor, capacitor or inductor?
b. Sketch the power delivered to the load versus time.
c. What is the average power delivered to the load?

1.3. A single conductor in a transmission line dissipates 6,000 kWh of energy
over a 24-hour period during which time the current in the conductor was
100 amps. What is the resistance of the conductor?

1.4. A core-and-coil inductor has a mean cross-sectional area of 0.004 m2 and
a mean circumference of 0.24 m. The iron core has a relative permeability
of 20,000. It is wrapped with 100 turns carrying 1 amp of current.

1 A

100
turns

v
+ +

−−
0.004 m2

0.24 m

e

f

Figure P1.4

a. What is the reluctance of the core R (A-t/Wb)?
b. What is the inductance of the core and coil L (henries)?
c. What is the magnetic field intensity H (A-t/m)?
d. What is the magnetic flux density B (Wb/m2)
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1.5. The resistance of copper wire increases with temperature in an approxi-
mately linear manner that can be expressed as

RT 2 = RT 1[1 + α(T2 − T1)]

where α = 0.00393/◦C. Assuming the temperature of a copper transmission
line is the same as the ambient temperature, how hot does the weather have
to get to cause the resistance of a transmission line to increase by 10%
over its value at 20◦C?

1.6. A 52-gallon electric water heater is designed to deliver 4800 W to an
electric-resistance heating element in the tank when it is supplied with
240 V (it doesn’t matter if this is ac or dc).

240 V
4800 W

52
gal

Figure P1.5

a. What is the resistance of the heating element?
b. How many watts would be delivered if the element is supplied with

208 V instead of 240 V?
c. Neglecting any losses from the tank, how long would it take for 4800 W

to heat the 52 gallons of water from 60◦F to 120◦F? The conver-
sion between kilowatts of electricity and Btu/hr of heat is given by
3412 Btu/hr = 1 kW. Also, one Btu heats 1 lb of water by 1◦F and 1
gallon of water weighs 8.34 lbs.

1.7. Suppose an automobile battery is modeled as an ideal 12-V battery in series
with an internal resistance of 0.01 � as shown in (a) below.

(a) Battery model (b) Driving a 0.03 Ω starter motor (c) Being charged

+

0.01 Ω

12 V 0.03 Ω

Vb

+

0.01 Ω

12 V

20 A

Vb

12 V
+

0.01 Ω
Vb

Figure P1.7

a. What current will be delivered when the battery powers a 0.03 � starter
motor, as in (b)? What will the battery output voltage be?

b. What voltage must be applied to the battery in order to deliver a 20-A
charging current as in (c)?
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1.8. Consider the problem of using a low-voltage system to power a small
cabin. Suppose a 12-V system powers a pair of 100-W lightbulbs (wired
in parallel).
a. What would be the (filament) resistance of a bulb designed to use 100 W

when it receives 12 V?
b. What would be the current drawn by two such bulbs if each receives a

full 12 V?
c. What gage wire should be used if it is the minimum size that will carry

the current.
d. Suppose a 12-V battery located 80-ft away supplies current to the pair

of bulbs through the wire you picked in (c). Find:
1. The equivalent resistance of the two bulbs plus the wire resistance

to and from the battery.
2. Current delivered by the battery
3. The actual voltage across the bulbs
4. The power lost in the wires
5. The power delivered to the bulbs
6. The fraction of the power delivered by the battery that is lost in

the wires.

1.9. Repeat Problem 1.8 using a 60-V system using the same 12 gage wire.

1.10. Suppose the lighting system in a building draws 20 A and the lamps are,
on the average, 100 ft from the electrical panel. Table 1.3 suggests that
12 ga wire meets code, but you want to consider the financial merits of
wiring the circuit with bigger 10 ga wire. Suppose the lights are on 2500
hours per year and electricity costs $0.10 per kWh.

20 A
Lights

100 ft
+

−

n

100 ft

Romex

Figure P1.10

a. Find the energy savings per year (kWhr/yr) that would result from using
10 ga instead of 12 ga wire.

b. Suppose 12 ga wire costs $25 per 100 ft of “Romex” (2 conductors, each
100-ft long, plus a ground wire in a tough insulating sheath) and 10 ga
costs $35 per 100 ft. What would be the “simple payback” period (sim-
ple payback = extra 1st cost/annual $ savings) when utility electricity
costs $0.10/kWh?

c. An effective way to evaluate energy efficiency projects is by calculat-
ing the annual cost associated with conservation and dividing it by the
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annual energy saved. This is the cost of conserved energy (CCE) and is
described more carefully in Section 5.4. CCE is defined as follows

CCE = annual cost of saved electricity($/yr)

annual electricity saved (kWhr/yr)
= �P · CRF(i, n)

kWhr/yr

where �P is the extra cost of the conservation feature (heavier duty
wire in this case), and CRF is the capital recovery factor (which means
your annual loan payment on $1 borrowed for n years at interest rate i.

What would be the “cost of conserved energy” CCE (cents/kWhr) if
the building (and wiring) is being paid for with a 7-%, 20-yr loan with
CRF = 0.0944/yr. How does that compare with the cost of electricity
that you don’t have to purchase from the utility at 10¢ /kWhr?

1.11. Suppose a photovoltaic (PV) module consists of 40 individual cells wired
in series, (a). In some circumstances, when all cells are exposed to the sun
it can be modeled as a series combination of forty 0.5-V ideal batteries, (b).
The resulting graph of current versus voltage would be a straight, vertical
20-V line as shown in (c).

(a) 40-cell PV module

I

V
+

+

+

+

0.5 V

0.5 V

0.5 V

40 cells

V
I

(b) 40 cells in sun
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V
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(c) full-sun I-V curve

Figure P1.11

a. When an individual cell is shaded, it looks like a 5-� resistor instead
of a 0.5-V battery, as shown in (d). Draw the I-V curve for the PV
module with one cell shaded.

(d)  one cell shaded
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(e)  two cells shaded
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b. With two cells shaded, as in (e), draw the I-V curve for the PV module
on the same axes as you have drawn the full-sun and 1-cell shaded
I-V lines.

1.12. If the photovoltaic (PV) module in Problem 1.11 is connected to a 5-�
load, find the current, voltage, and power that will be delivered to the load
under the following conditions:

PV module

IV

5 Ω
Load

+

−

Figure P1.12

a. Every cell in the PV module is in the sun.
b. One cell is shaded.
c. Two cells are shaded.
Use the fact that the same current and voltage flows through both the PV
module and the load so solve for I, V, and P.

1.13. When circuits involve a source and a load, the same current flows through
each one and the same voltage appears across both. A graphical solution
can therefore be obtained by simply plotting the current-voltage (I-V) rela-
tionship for the source onto the same axes that the I-V relationship for the
load is plotted, and then finding the crossover point where both are sat-
isfied simultaneously. This is an especially powerful technique when the
relationships are nonlinear.

For the photovoltaic module supplying power to the 5-W resistive load
in Problem 1.12, solve for the resulting current and voltage using the
graphical approach:
a. For all cells in the sun.
b. For one cell shaded
c. For two cells shaded




