
1 Introduction

The objective of this book is simple: to enable the reader to construct successful

real-world fuzzy expert systems for problem solving. Accomplishing this objective,

however, is not simple. We must not only transmit a good deal of knowledge in

several different fields, but must also transmit the skills necessary to use this

diverse knowledge fruitfully. To do this, we have concentrated on techniques that

are simple in themselves, and that embody considerable power in problem

solving. The examples we have chosen to illustrate these techniques are also must

often quite simple. But do not be misled; there is a vast difference between

“simple” and “trivial”.

Our scope will be, of necessity, somewhat larger than the preceding paragraph

might indicate. In real life, we solve problems by thinking about them; we must

therefore deal with the emulation of human thought by a computer program. In

real life, we do not often think about problems as conventional computers do; we

deal constantly with uncertainties, ambiguities, and contradictions. We sometimes

use deductive logic, but more often we think intuitively, assembling information

relevant to a problem, scanning it and coming to a conclusion. Besides this, we

can often learn from our experience.

Expert systems tend to be viewed as retarded children by conventional artificial

intelligence practitioners. Indeed, a conventional expert system may not have suffi-

cient capabilities for meaningful emulation of thought. There may be two reasons for

this: insufficient capability for emulating complex thought patterns; and lack of

capability for understanding natural language. FLOPS addresses the first of these

problems; it does not address the second, and still relies on a formal language.

The FLOPS language does, however, permit emulating thought patterns of consider-

able complexity, including two different types of learning.

This book will have far fewer references than would normally be expected in a

book of this type. There is a reason for this. Fuzzy systems theory has had a

major impact on the field of process control, and in this field there are many refer-

ences to be found. But this book reports theory and methods for general purpose

reasoning, a much more difficult task than process control, and a field in which

there has been very little research and very few meaningful papers published.

There are books by Kandel (1991) and Kasabov (1998) that deal with fuzzy

expert systems, but not in the detail necessary to actually construct one other than

A hair perhaps divides the false from true.

—The Rubaiyat of Omar Khayam, translated by Edward Fitzgerald.

1

Fuzzy Expert Systems and Fuzzy Reasoning, By William Siler and James J. Buckley
ISBN 0-471-38859-9 Copyright # 2005 John Wiley & Sons, Inc.

for control, nor in the requirements that the emulation of though places on general-

purpose fuzzy reasoning systems.

Computer programming of rule-based fuzzy expert systems can be difficult for

those trained in Western dichotomous thinking. There are three novel concepts

involved: fuzzy systems theory; nonprocedural data-driven programming; and

parallel programming. Fuzzy systems theory permits handling uncertainties,

ambiguities, and contradictions. Nonprocedural data-driven programming means

that when FLOPS is in run mode and firing (executing) rules, the order in which

rules are fired has nothing to do with the order in which they appear in the

program, but only on the available data and on which rules or blocks of rules are

enabled or disabled for firing. (Conventional procedural languages execute their

statements sequentially in the order in which they are written, except for explicit

transfers of control.) Parallel programming language means that all fireable rules

are executed effectively at once instead of some predefined order.

In Chapters 1 and 2, we treat the basic programming problems. Chapters 3–5 deal

with the requisite fuzzy mathematics involved; Chapters 6 and 7 treat methods of

fuzzy reasoning, that is, inferring new truths. Chapter 8 deals with fuzzy expert

system shells, the integrated development environments for constructing fuzzy

expert systems. Chapters 9–12 handle increasingly sophisticated problem-solving

techniques. Finally, Chapter 13 considers real-time on-line expert systems in

which the data are automatically acquired from an external source. Because of the

number of concepts and techniques that are unfamiliar to many readers, we have

occasionally covered a topic more than once in different contexts to avoid flipping

back and forth in the book.

1.1 CHARACTERISTICS OF EXPERT SYSTEMS

Expert systems are computer programs, designed to make available some of the

skills of an expert to nonexperts. Since such programs attempt to emulate the think-

ing patterns of an expert, it is natural that the first work was done in Artificial

Intelligence (AI) circles. Among the first expert systems were the 1965 Dendral

programs (Feigenbaum and Buchanan, 1993), which determined molecular struc-

ture from mass spectrometer data; R1 (McDermott, 1980) used to configure

computer systems; and MYCIN (Shortliffe, 1976) for medical diagnosis. Since

the mid-1960s there have been many, many expert systems created for fields

ranging from space shuttle operations through hospital intensive-care-unit patient

monitoring to financial decision making. To create expert systems, it is usual to

supply a development environment and possibly a run-time module; these are

called expert system shells, of which a number are available. We can view human

knowledge as declarative (facts we have in stored in memory), and procedural,

skills in utilizing declarative knowledge to some purpose.

Most AI practitioners do not consider expert systems as deserving the name of

Artificial Intelligence. For example, Schank (1984, p. 34) states: “Real intelligence

demands the ability to learn, to reason from experience, to shoot from the hip,

2 INTRODUCTION

to use general knowledge, to make inferences using gut-level intuition. Expert

systems can do none of these. They do not improve as a result of experience.

They just move on to the next if/then rule”. The Random House unabridged

dictionary gives one definition of learning as “the act or process of acquiring

knowledge or skill”; certainly an expert system, by adding to its database of

facts, acquires knowledge, and by adding new rules acquires skill. FLOPS

permits both of the learning techniques. While we agree with Schank’s categoriz-

ation of “Real intelligence”, we cannot agree that “Expert systems can do none of

these”. FLOPS can construct new rules and add to its existing database of factual

knowledge, and in parallel mode can scan a database quickly without the inordi-

nate systems overhead required by sequential systems. These capabilities deny

Schank’s blanket statement that expert systems are incapable of any of the charac-

teristics of real intelligence.

There is a variety of ways in which the problem of creating computer programs to

act like an expert has been approached (Jackson, 1999). The earliest employs

rule-based systems, which use If-Then rules to represent the expert’s reasoning

process (if the data meet certain specified conditions, then take appropriate

actions). There is a respectable body of opinion among cognitive scientists that

a very significant part of human reasoning can be expressed by rules (Anderson,

1993); this view lends additional interest to rule-based systems. Other app-

roaches include semantic or associative nets (Quillian, 1968), frames (Minsky,

1975) and neural nets, currently very popular in a wide variety of fields. Of these,

clearly dominant are the complementary rule-based systems and neural net

approaches.

We are concerned in this book with representing procedural knowledge by

rules; IF the available facts meet certain criteria THEN do whatever the rule speci-

fies. Declarative (factual) knowledge may be represented by stored data.

Whatever type of expert system is employed, we must consider what the

prerequisites are for constructing a successful system. The two primary sources

of knowledge are the skills of an expert in the field, and available historical

data. Rule-based expert systems rely considerably on incorporating the skills of

an expert in the problem domain, but relatively little on historical data; neural net-

works rely heavily on an extensive historical database, and relatively little on a

domain expert.

1.1.1 Production Systems

We distinguish between two types of expert systems; procedural systems, written in

conventional procedural languages such as Cþþ, and production systems, that

employ rules of the type “IF (the data meet certain specified conditions) THEN

(perform the specified actions)”. The “IF” part of the rule is called the antecedent;

the “THEN” part is the consequent.

The “Tower of Hanoi” is a typical AI toy problem. We have three vertical spin-

dles; on one spindle we have a number of disks of decreasing diameter from the

bottom up. The problem is to move the disks from one spindle to another, one

1.1 CHARACTERISTICS OF EXPERT SYSTEMS 3

disk at a time, never placing a disk on top of one of smaller diameter. A production

rule from this problem might be

rule (goal Fires if only one disk to move)
IF (in Spindles n = 1 AND source = <S> AND destination = <D>)
THEN

write "*** move <S> to <D> ***\n",
delete 1;

In the antecedent of this rule, Spindles is a data structure containing items n
(number of disks on the spindle), source (name of the spindle from which we

are moving a disk) and destination (name of the spindle to which we are

moving a disk). If there exists an instance of Spindles in which n is 1, source
has some value <S> (whatever it is) and destination has some value <D>,

then we write a message to the screen and delete the instance of Spindles. A pro-

duction system may contain dozens, hundreds, or even thousands of rules.

1.1.2 Data-Driven Systems

Of especial interest are data-driven production systems. Such languages are quite

different from the common procedural languages like C, Pascal, Fortran, or Basic.

In a procedural language, the statements that comprise a major part of the language

are executed in the order in which they appear (unless a specific transfer of control is

encountered); in a data-driven language, the rules that comprise a major part of the

language are candidates for execution whenever the data satisfy the data specifica-

tions in the “IF” part of the rule.

If the data satisfy more than one rule at once, common rule-based languages such

as the well-known OPS languages fire their rules sequentially, one at a time. First,

we determine which rules are made fireable by the data. Next, a rule-conflict

algorithm decides which of these should be executed (fired). The fireable rules

that were not picked for firing are usually placed on a stack for firing later on in

case no rules are newly fireable (backtracking). The selected rule is fired, that is

the THEN part of the rule is executed, and we go back to looking for newly fireable

rules.

1.1.3 Special Features of Fuzzy Systems

Most fuzzy expert systems provide for parallel firing of concurrently fireable rules;

that is, all fireable rules are fired effectively at one time, emulating a parallel

computer. Parallel operation has several advantages for fuzzy systems. A parallel

language is especially appropriate when working with fuzzy sets: It makes program-

ming easier and runs considerably faster than an equivalent sequential system. But

sequential programming has advantages too in some cases; it is appropriate for

eliciting information from a user when each question to be asked depends on the

answer to the previous question. Accordingly, a fuzzy expert system language

4 INTRODUCTION

should provide both sequential and parallel rule-firing mode. These features of a

fuzzy expert system language, unfamiliar to most programmers, creates a steep

learning curve. The budding fuzzy expert system builder has to learn:

. Working with IF-THEN rules as the primary element of the language.

. Learning the basics of fuzzy systems theory: fuzzy sets, fuzzy logic, and fuzzy

numbers.

. Learning a data-driven non-procedural language.

. Working with both sequential and parallel language execution.

To ease the entry into such novel languages, it is extremely important that the inte-

grated program development environment (IDE) provide a solid base of help files to

the user, as well as a variety of both simple tutorial and simplified real-world

programs.

1.1.4 Expert Systems for Fuzzy Control and for Fuzzy Reasoning

There are two general types of fuzzy expert systems: fuzzy control and fuzzy reason-

ing. Although both make use of fuzzy sets, they differ qualitatively in methodology.

Fuzzy process control was first successfully achieved by Mamdani (1976) with a

fuzzy system for controlling a cement plant. Since then, fuzzy control has been

widely accepted, first in Japan and then throughout the world. A basic simple

fuzzy control system is simply characterized. It accepts numbers as input, then

translates the input numbers into linguistic terms such as Slow, Medium, and Fast

(fuzzification). Rules then map the input linguistic terms onto similar linguistic

terms describing the output. Finally, the output linguistic terms are translated into

an output number (defuzzification). The syntax of the rules is convenient for

control purposes, but much too restrictive for fuzzy reasoning; defuzzification and

defuzzification are automatic and inescapable. There are several development

environments available for constructing fuzzy control systems. A typical fuzzy

control rule might be

. IF input1 is High AND input2 is Low THEN output is Zero.

Rules for fuzzy reasoning cannot be described so compactly. The application

domain of fuzzy control systems is well defined; they work very satisfactorily

with input and output restricted to numbers. But the domain of fuzzy reasoning

systems is not well defined; by definition, fuzzy reasoning systems attempt to

emulate human thought, with no a priori restrictions on that thought. Fuzzy

control systems deal with numbers; fuzzy reasoning systems can deal with both

numeric and non-numeric data. Inputs might be temperature and pulse, where temp-

erature might 38.58C and pulse might be 110 and “thready”, where “thready” is

clearly non-numeric. Output might be “CBC” and “Admit” and “transfer MICU”

(not very realistic, but illustrates non-numeric data input and output). Accordingly,

1.1 CHARACTERISTICS OF EXPERT SYSTEMS 5

rules for fuzzy reasoning do not make fuzzification and defuzzification automatic

and inescapable; they may be broken out as separate operations that may or may

not be performed as the problem requires.

The syntax of fuzzy reasoning rules accepts a wide variety of rule types. Here are

two.

1. IF symptom is Depressive and duration is �. about 6) THEN diagnosis is

Major_depression;

This rule resembles a fuzzy control rule, but it is actually quite different. In a
fuzzy control rule, “symptom” would be a scalar number; in the fuzzy reason-
ing rule, “symptom is a (fuzzy) set of linguistic terms of which “depressive” is
a member. Similarly, in a fuzzy control rule “diagnosis” would be a scalar
number; in the fuzzy reasoning rules, “diagnosis” is a (fuzzy) set of diagnoses
of which “depressive” is a member.

2. Rule block 8 (goal Generates rule for response to conditioned stimuli)

IF (in Count id1 = <ID2> AND id2 = <ID1> AND N . 2)
(in Wired-in id = <ID2> AND response = <R>)

THEN
rule block 3 (goal Conditions stimulus <ID1> to
stimulus <ID2>)
IF (in NewStimulus id = "<ID2>")
THEN

message ’<ID1> - LOOK OUT - <ID2> coming\, <R>!\n’;

A rule for learning, this rule has no counterpart at all in fuzzy control. Under

specified circumstances, a new rule is created associating previously unassociated

stimulus so that (e.g.) the burnt child learns to dread the fire.

1.2 NEURAL NETS

Neural nets (Haykin, 1994) do not require that the thinking patterns of an expert be

explicitly specified. Instead, two sets of data are required from the real world. These

data include all the inputs to the system, and the correct outputs corresponding to

these input values. The first data set or training set is used to train the neural

network so that, as nearly as possible, the correct outputs are produced for each

set of input values. The second data set or validation set is used after the neural

net has been trained to make sure that correct answers are produced on different

input data. An advantage of neural nets is that it is not necessary to extract the think-

ing patterns of an expert and to render these explicit. Disadvantages are that a

substantial training set is required, and that while the neural net may produce reason-

ably correct answers, in general we have little or no idea how it does this. Consider-

able work has been done on extracting rules from a trained neural net, but this work

is not yet advanced to a very satisfactory state. A rough comparison between neural

nets and expert systems is shown in Table 1.1.

6 INTRODUCTION

Conditions under which neural nets may be the best approach include the

following:

. There are ample data to form a training set of actual inputs and correct outputs

corresponding to the inputs.

. No one has a good idea how outputs are related to inputs.

. We are not particularly interested in how inputs and outputs are related, so long

as the system works.

The first of these conditions must be met; the second militates strongly in favor of a

neural net; and the third helps incline us toward a neural net.

Conditions under which a fuzzy expert system is likely to be better than a

neural net:

. We have a domain expert who knows fairly well how inputs and outputs are

related.

. We do not have sufficient data to form a training set, possibly because the poss-

ible combinations of inputs and outputs are too numerous, or because collecting

a training set would be prohibitively expensive.

. We are quite interested in the way in which outputs can be derived from inputs.

The first condition is almost essential, although a very skilled knowledge engineer

may be able to become a domain expert with the dedicated help of persons less

than fully expert in the understanding the task to be performed.

1.3 SYMBOLIC REASONING

Key to expert systems (and to AI generally, for that matter) is the concept of reason-

ing with symbols. (Ordinary procedural computer languages such as C and Fortran

use symbols, but in a more restricted context.) In procedural languages such as C,

symbols can represent numerical or character string data, or a collection of such

data in data structures. Symbols can also represent logical propositions (simple

Boolean comparisons between simple data items), program flow control by such

constructs as “if . . .”, “for . . .”, and “while . . .”, and smaller subprograms

(functions). In object-oriented programs, symbols can represent objects, collections

of both data items and functions. However, for the symbolic reasoning required by

AI, symbols can represent almost anything, and languages more appropriate than

TABLE 1.1 Comparison of Fuzzy Rule-Based Systems and Neural Nets

Property Fuzzy Expert System Neural Net

Data required to construct system Minimal Considerable

Expert knowledge required to construct system Considerable Minimal

1.3 SYMBOLIC REASONING 7

C or FORTRAN for symbol manipulation are used, such as LISP and PROLOG. For

expert systems, specialized AI-based languages for rule-based reasoning such as the

OPS family, Prolog, and CLIPS can be used.

For fuzzy expert systems, using familiar words as symbols to represent such con-

cepts as fuzzy sets, fuzzy numbers, uncertainties, and modifying words (adjectives

and adverbs) called hedges, special languages are available such as METUS (Cox,

1999); FLOPS, a fuzzy superset of OPS5, described in this book; and FRIL, a fuzzy

superset of PROLOG (Baldwin et al., 1995). There are also special languages for

fuzzy process control, but while very good for that purpose they lack the generality

usually expected of an expert system language.

The buzz-word phrase “Computing with Words” has been very popular with

fuzzy systems people for some years now. However, their use of words has been

largely confined to words that describe numbers. This severe and very unfortunate

limitation has greatly handicapped developing the enormous potential power of

fuzzy systems theory. FLOPS is intended to permit emulation of human thought,

although it has a long way to go to complete its objective; consequently, we must

be concerned with words in a much more general sense than fuzzy control programs.

At a minimum, we must think of words as parts of speech: nouns (e.g., age), simple

verbs (equals), adverbs (approximately), conjunctions (“and”) and adjectives

(about), and define these appropriately (in the semantic sense) and precisely (say

in Backus-Nauer Form) for our computer language.

1.4 DEVELOPING A RULE-BASED EXPERT SYSTEM

Rule-based systems require that the expert’s knowledge and thinking patterns be

explicitly specified. Usually, two persons (or groups) develop a system together.

These are the domain expert, who knows how to solve the problem at hand but who

is seldom acquainted with computer programming; and the knowledge engineer,

who is thoroughly familiar with the computer technology involved and expert

systems, but who usually has little or no knowledge of the problem at hand. Obtain-

ing this knowledge and writing proper rules is called the knowledge acquisition

phase (Scott et al., 1991). After the system has been written, it must be tuned for

accuracy using a tuning data set similar to the training set of a neural net, but

usually much smaller. After tuning, a rule-based system must be validated in the

same way as a neural net. Rule-based systems have two advantages. A large training

set is usually not required, and since the expert’s thinking is explicitly spelled out,

we now know how he thinks about the problem. They have the disadvantage that the

knowledge acquisition phase may be difficult. A great advantage of fuzzy expert

systems is that the rules can be written in language that the expert can directly under-

stand, such as “if age is about 40” or “if patient is very old”, rather than in computer

jargon. Communication between domain expert and knowledge engineer is thus

greatly eased.

Another advantage of rule-based expert systems is their ability to learn by

creation of new rules. Probably the first example of a rule-based expert system to

8 INTRODUCTION

rival human experts was DENDRAL, which deduced the molecular structure of

organic compounds from knowledge about fragments into which the compound

had been broken (Jackson, 1999, pp. 383 ff). One set of DENDRAL’s programs

worked directly with the data to produce candidate structures. An additional pro-

gram, Meta-DENDRAL, worked directly with the DENDRAL rules to improve

them and discover new rules, thus discovering new concepts about the data.

Meta-DENDRAL was not itself written as a rule-based expert system, but the

ability of a rule to generate new rules and new expert factual knowledge opens

the possibility for writing an expert system that can create new rules and store

new expert factual knowledge. This exciting possibility has not as yet been well

explored, perhaps due to the general (and, we think, incorrect) assumption that

expert systems are no longer to be considered as artificial intelligence.

Many years ago the British scientist Alan Turing proposed a test for machine

intelligence. In one room, we have a computer terminal with a human operator.

This master terminal is linked to two other rooms. In one of these rooms we have

a computer; in the other, a terminal with a human operator. If the operator at the

master terminal cannot detect which of the other two rooms has the computer,

then the computer’s program can be called intelligent. There is no restriction on

how the computer program does what it does; its performance is all the Turing

test considers.

Our interest is not in passing the Turing test. Instead, we are interested in the

nature of a computer program; we would like it to be constructed so as to emulate

the thought processes of a human and particularly those thought patterns that can

be verbally expressed. If a computer program acts as if it were intelligent, but

does so through symbol manipulations that have little or no connection to normal

thought, we are not especially interested.

As we have mentioned, a substantial body of thought, stemming largely from the

work of Artificial Intelligence pioneer Allen Newell, contends that much verbal

reasoning can be successfully expressed in production rules, called here simply

rules (Anderson, 1993). We subscribe to this line of thought. Rules take the form

“IF the data available meet certain specified conditions THEN take these specified

actions”, in which “actions” should be viewed in a very broad context, including

drawing conclusions, firm or tentative. A sample simple rule might be “IF the car

engine will not turn over when attempting to start THEN check if the battery is

discharged”. A more complex fuzzy rule might be “IF the pulmonary artery systolic

pressure is considerably reduced AND the diastolic pressure is at least normal

THEN the pressure reading might be damped”.

1.5 FUZZY RULE-BASED SYSTEMS

Fuzzy rule-based systems, in addition to providing convenient handling of uncer-

tainties of values (which can be done in other ways), furnish several additional

capabilities. Approximate numerical values can be specified as fuzzy numbers.

Numerical input values can be easily translated into descriptive words such as

1.5 FUZZY RULE-BASED SYSTEMS 9

“Fast” or “Large”. Ambiguities and contradictions are easily handled by discrete

fuzzy sets. Modifying words such as “very” and “slightly” are easily incorporated

into the rule syntax. The approximate versions of the full range of Boolean numeri-

cal comparisons such as “�,¼” or “approximately less than or equal to” are easily

implemented. Most of our experience with fuzzy rule-based systems has been gained

over the past 15 years using the fuzzy expert system shell FLOPS (Siler et al., 1987),

and this book will rely heavily on that language. We have shared experiences and

ideas with Earl Cox (1999, 2000), who developed the fuzzy expert system shell

Metus, and who has deployed many expert systems using that language. We are

also aware of the important PROLOG-based shell FRIL by Baldwin et al. (1995).

The FLOPS language is still under development, but it does provide most of the

features discussed here.

Fuzzy rule-based systems capable of both sequential and parallel rule processing

add additional features to conventional expert system languages: convenient hand-

ling of uncertainties, ambiguities and contradictions, and modifying words such as

“very” and “somewhat”. Thus fuzzy systems increase our ability to emulate the non-

rigid thinking patterns of (say) physicians and biologists as well as the relatively

rigid patterns of (say) computer scientists. It is very unfortunate that most fuzzy

expert systems have been devoted to control applications, and hence have concen-

trated almost exclusively on symbols that represent numerical quantities. While

the enormous success of fuzzy control systems makes this understandable, it

means that the ability of fuzzy rule-based systems to emulate reasoning with both

numeric and non-numeric quantities remains to a large extent unexplored. We

hope that this book will help illustrate the capabilities and potentialities of fuzzy

rule-based systems for the emulation of thought in a much more general sense.

Most if not all human thinking is initially nonverbal. However, we have become

reasonably successful in translating some thought into words (How can I say this?);

knowledge engineers spend a great deal of time with domain experts converting

their thought patterns into words, an hence to rules. Some nonverbal thought can

be expressed in mathematical terms (e.g., feature extraction from images). A

decent expert system language should enable writing a computer program using

both words and mathematical transformations.

1.6 PROBLEMS IN LEARNING HOW TO CONSTRUCT
FUZZY EXPERT SYSTEMS

The first problem for the knowledge engineer is to become adept at a different kind

of computer language. Next is the problem of acquiring relevant knowledge from the

domain expert. Finally, there are the problems of writing, debugging, calibrating,

and validating the expert system itself.

Rule-based expert systems, and especially fuzzy expert systems, pose some

learning problems for the programmer used to procedural languages such as C,

Fortran, or Basic. Rules are basically IF statements: IF (this is true) THEN (execute

the following instructions.) The IF part of a rule is called the antecedent, and the

10 INTRODUCTION

THEN part is called the consequent. At this level, there does not seem to be any sub-

stantial difference between a rule-based expert system and a conventional C or Fortran

program. However, the most powerful expert systems are not executed in a step-by-

step procedural fashion, in which statements are executed in the order in which they

appear, unless a specific transfer-of-control instruction is encountered. Instead, many

expert system programs are data-driven; that is, rule are executed (fired) whenever the

data sufficiently satisfy the antecedent, regardless of the sequence in which the rules

appear in the program. This immediately creates the first problem—what do we do if

the data satisfy the antecedents of two or more rules simultaneously? If we select one

of these rules for firing next, what do we do with the fireable but unfired rules? Alter-

natively, wemight elect to fire all the concurrently fireable rules effectively in parallel.

Very few programmers have any experiencewith parallel languages—most of us have

experience only with languages in which the instructions are executed sequentially.

Another problem involves running time—if we change a piece of data, must we

then examine all the rules over again to see which ones are now newly fireable?

Charles Forgy’s RETE algorithm goes a long way to solving that problem, but

running time for a data-driven expert system is still long compared to procedural

language programs, a price paid for the flexibility of data-driven systems and their

inherent similarity to human thought patterns.

Another learning problem involves the use of multivalued logic. In a fuzzy expert

system, things may be completely true, completely false, or anything in between.

Ambiguities abound in fuzzy systems, and contradictions are frequently encoun-

tered; fuzzy systems provide structured ways of handling uncertainties, ambiguities,

and contradictions, none of which are ordinarily encountered in conventional com-

puter programming. Fuzzy systems also employ some special terms and concepts:

fuzzy sets, fuzzy numbers, and membership functions. Monotonic and non-

monotonic reasoning become routine concepts and acquire special meaning.

All this means that a fair amount of effort is required to become fluent in a fuzzy

expert system language. There are, however, some bright points. You will be able to

write rules using common words such as “very slow”, “somewhat”, and “roughly

60”, making communication between knowledge engineer and domain expert

much easier.

1.7 TOOLS FOR LEARNING HOW TO CONSTRUCT
FUZZY EXPERT SYSTEMS

While this book aims to provide the reader with some theoretical and practical

knowledge about fuzzy expert systems (which might be useful in passing an exam-

ination), we also aim to teach the reader a skill in constructing these systems in the

real world. It is impossible to teach a skill without practice; if the reader does not

actually run and write programs, he will no more learn this skill than a person

who tries to learn to play tennis by reading books and listening to classroom lectures.

TheCDRom that accompanies this book has important tools to aid the reader. First,

there are the two major programs: FLOPS itself, the inference engine and run-time

1.7 TOOLS FOR LEARNING HOW TO CONSTRUCT FUZZY EXPERT SYSTEMS 11

environment for executing and debugging FLOPS programs; and TFLOPS, the IDE

for writing and testing FLOPS programs. Extensive help files are available in both

FLOPS and TFLOPS, including an on-line manual and basic fuzzy math tutorial.

Second, there is a fairly large number of example FLOPS programs, both tutorial

and simplified versions of working expert systems. Third, there are simple specialized

programs to illustrate some theoretical points made in this book. The reader is urged to

make full use of these tools, especially TFLOPS for editing and running FLOPS

programs. A typical TFLOPS screen is shown in Figure 1.1.

1.8 AUXILIARY READING

While this book is designed to be self-sufficient for our major purpose, we also

recommend some auxiliary reading for readers with special interests. Jackson

(1999) gives excellent coverage of non-fuzzy expert systems, although his treatment

of fuzzy expert systems leaves very much to be desired. Klir and Yuan (1996) give

in-depth coverage of modern fuzzy mathematics. Scott et al. (1991) cover issues of

knowledge acquisition by the knowledge engineer. Anderson (1993) discusses rules

from the viewpoint of a cognitive scientist interested in how the mind functions.

Figure 1.1 Typical TFLOPS screen, with two FLOPS programs being edited and an. . . error

log from a FLOPS run.

12 INTRODUCTION

Finally, Cox (1999) presents much information on fuzzy expert systems from the

viewpoint of finance and management; his discussion of modifying words used in

rules, such as “somewhat”, “very”, and so on (called hedges) is unsurpassed, and

his experience in constructing real-world fuzzy expert systems is extensive.

1.9 SUMMARY

Expert systems are computer programs designed to bring an expert’s skill to solving

a particular problem. The most common types of expert systems are rule-based pro-

grams and neural networks. These differ considerably in the availability of expert

knowledge and data required to construct the system, although there is little differ-

ence in the data required to validate the system once constructed.

Production systems are rule-based systems whose rule syntax is “IF (the data

satisfy these specified conditions) THEN (perform these specified actions”. The

“IF” part of the rule is the antecedent; the “THEN” part is the consequent. Pro-

duction systems are most often data driven; that is, the eligibility of a rule for

firing depends solely on the data, and is independent of the rule’s placement in

the program. During a program run, the truth value of a rule’s antecedent is calcu-

lated; if the antecedent is sufficiently true, the rule is eligible for firing. If sequential

rule-firing has been chosen, one of the rules whose antecedents are sufficiently true is

chosen for firing by a rule-conflict algorithm; if parallel rule-firing has been chosen,

all fireable rules are fired, effectively in parallel. Because of the features of a fuzzy

expert system language which are unfamiliar to most programmers, it is especially

important to have a good IDE, which makes available good help files on a number of

topics. Special debugging tools should be available.

Two types of persons usually develop rule-based expert systems: domain expert

and knowledge engineer. Ideally, the domain expert is thoroughly familiar with the

problem domain and how to solve problems that arise in that domain, but who may

be completely ignorant of computer programming and expert systems. The knowl-

edge engineer, in contrast, is thoroughly familiar with expert system tools and with

the construction of expert systems, but may be completely ignorant of the problem

domain. These two work together on the expert system’s construction, sharing

knowledge and skills.

1.10 QUESTIONS

1.1 In what three respects does FLOPS differ from conventional programming

languages?

1.2 How does a data-driven non-procedural language differ from conventional

procedural languages?

1.3 What can a language using fuzzy mathematics do that conventional program-

ming languages cannot?

1.10 QUESTIONS 13

1.4 What is the difference between a parallel and a sequential program?

1.5 In what major respect can FLOPS programs conform to Roger Schank’s

definition of intelligence?

1.6 In what fundamental respects do expert systems differ from neural networks?

1.7 How do expert systems for fuzzy control differ from those for fuzzy reason-

ing?

1.8 What two kinds of people are usually involved in the construction of an

expert system?

1.9 In what major respects do fuzzy expert systems differ from nonfuzzy

systems?

1.10 What problems are encountered when first constructing a fuzzy expert

system?

1.11 What important tool should be available for constructing a fuzzy expert

system?

14 INTRODUCTION

