
29

Windows Application is really inappropriate as a project title, considering that it
has the ability to be compiled to IL and ported to another operating system
where it can be natively compiled. We’ll use this term only because it’s the
name of the project type in .NET.

Rather than attempting to demonstrate every feature related to developing
Windows applications in Visual Basic .NET, we will use key features and tools
that will help you see the object-oriented nature of .NET as you work with the
standard design components in the Visual Studio .NET IDE. The main focus of
this chapter is to introduce you to some key concepts related to .NET develop-
ment using forms and controls, while looking at their underlying implementa-
tion in .NET. In Chapter 5, “Advanced .NET Windows Applications,” we will
build applications with a wider range of features.

Working with .NET Forms and Controls

The basic unit of development in a .NET Windows application is (still) a form.
Each form represents a single window in a running application. We add con-
trols from the Toolbox to enhance a form’s user interface.

The .NET version of a form has many new features. In .NET, all languages
create a form based on the System.Windows.Forms.Form class in the common
language runtime libraries. When I say “based on,” I am actually referring to

Building Visual Basic .NET
Windows Applications

C H A P T E R

2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 29

an OOP concept known as implementation inheritance, which allows one type to
establish a relationship to another type for the purpose of inheriting function-
ality. Look at it this way: Visual Basic has always had forms, but we have never
had to design into them the ability to be resized or minimized or to display a
blue title bar, and so on. All that functionality was inherited from a generic
Form object when we added the form to our project. Even in Visual Basic 6 we
could declare a variable of type Form, and a new object would be created in
memory that had its own Name, hwnd, caption, and so on. Even the first piece
of code you see in Visual Basic .NET requires that you have some understand-
ing of Inheritance, as you can see in the Visual Basic .NET code that follows.
This code shows the relationship between a form and its immediate base class:

Public Class Form1

Inherits System.Windows.Forms.Form

End Class

Forms Are Objects
Visual Basic has always created forms as objects, but until Visual Basic .NET
we had not seen any underlying code to prove that. Quite possibly the biggest
change in Visual Basic .NET is that all the underlying details of how things are
done are no longer abstracted away from us. Although classes are formally
discussed in Chapter 6, “Building Class Libraries in .NET,” for now you need
to understand two basic points. The first point is that all things in .NET are
objects. The second point is that all objects are based on a template that a pro-
grammer built using code. The most common template for an object is called a
class. The description for an object in this chapter will be limited to a self-
contained entity that has properties to describe it, methods that provide behav-
iors, and events that allow it to respond to messages.

Form1 is actually a class called Form1 and at runtime, any number of actual
Form1 objects can be created based on that class. This chapter focuses on many
aspects of designing Windows applications, but as we’re using different forms,
controls, and other objects, I need you to remember that all these things are
built using these object templates.

A Change of Events
Events in Visual Basic .NET are very different from what they were in Visual
Basic 6. Event names, the way they are used, and their sheer number have
understandably changed in .NET because all controls in .NET were built from
the ground up.

30 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 30

For example, the event for a Visual Basic 6 text box that occurred as the user
typed into that text box is called the Change event. In .NET, that event is now
implemented as the TextChanged event. Besides the name change, the next
major difference is that this event now takes sender and e arguments. In Visual
Basic we used control arrays when multiple controls needed to share code. In
Visual Basic .NET we map two events to the same event handler. Finally, the
keyword Handles is used to indicate that a subroutine is to handle the
TextChanged event for the text box txtFirstName. Although we might think
from our prior experience with Visual Basic that this isn’t necessary, keep in
mind that the things we’re using to build our applications in .NET are based
on the CLS and a solid object-oriented foundation. The more you learn about
the underlying foundation of .NET, the easier it will be to understand why
some things are so different from Visual Basic 6. The following examples con-
trast the difference between the Change and TextChanged events.

Here is an example in Visual Basic 6:

Private Sub Text1_Change()

End Sub

Here is an example in Visual Basic .NET:

Private Sub txtFirstName_TextChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles txtFirstName.TextChanged

End Sub

Classroom Q & A
Q: If the .NET version of this code says that it handles the TextChanged

event for txtFirstName, could I name this subroutine anything I
want?

A: In Visual Basic we just write the code in the event and don’t dif-
ferentiate between the event and event handler. Here, we have a
predefined set of events that can be raised in an object and we
need to write custom handlers to handle those events. We can
name it whatever we want.

Q: So, I take it that sender is kind of like the index parameter from
Visual Basic?

A: Well, in a way. It is used to identify which object received the event
that caused the event handler to execute. By accessing properties
of the sender object, we can find out exactly which control received
the event.

Building Visual Basic .NET Windows Applications 31

d425486 Ch02.qxd 7/1/03 8:44 AM Page 31

Q: How do we make it so that more than one control can use the
same event handler?

A: You just append more information to the Handles part of the
event handler declaration. Lab 2.1 demonstrates that process.

Lab 2.1: Working with Event Handlers

This lab demonstrates the association between events and event han-
dlers. We will create three text boxes. The first two contain the first and
last names of an individual. As either the first or last name is changed, the
third text box will dynamically display the resulting email address. To
start, we will use separate TextChanged events for capturing changes to
the first and last names but will quickly change our implementation to a
more efficient event handler.

Perform the following steps:

1. Start a new Visual Basic Windows application.

2. Drag three TextBox controls and three Labels to the form.

3. Change properties for controls by selecting them at design time and
entering a new value for the desired property in the Properties win-
dow. Change the following properties for the six controls you just
added to Form1.P: txtFirstName_TextChanged to txtLastName_
TextChanged and test the application again. This time the results
were correct, but the method we used to obtain those results used
redundant code.

4. Remove the entire txtLastName_TextChanged event handler.

5. Change the name of the txtFirstName_TextChanged event handler
to Names_TextChanged.

6. Add the following code to the end of the declaration for
Names_TextChanged so that the same event handler handles the
TextChanged events for both text boxes.

, txtLastName.TextChanged

What you should see is:
Private Sub Names_TextChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles txtFirstName.TextChanged, _

txtLastName.TextChanged

txtEmail.Text = txtFirstName.Text & “.” & txtLastName.Text &

_

“@somecompany.com”

End Sub

32 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 32

7. Run the application again. Functionally, it still works the same but
with half the code. This event-handling process uses a concept
known as delegation, discussed in Chapter 7, “Extending Visual
Basic .NET Classes.”

For now, let’s just view our Names_TextChanged event handler as a
method of the Form1 class that handles the TextChanged event for two
text boxes. The next step will be to get used to the different controls and
events used in building Windows forms.

The Controls Collection
Each form has a collection called Controls, which contains all the controls on
that form. The Contains method (not specific to a form) returns a boolean
value that indicates whether one control is contained in another.

Dim i As Integer

For i = 0 To Me.Controls.Count - 1

If Me.Controls(i).Contains(mycontrol) Then

MessageBox.Show(Me.Controls(i).Name)

End If

Next I

Most of the standard controls used on Windows forms are part of the
System.Windows.Forms assembly in System.Windows.Forms.dll.

Familiar Controls or Just Familiar Looking?
Many controls that look identical to their predecessors act quite differently in
.NET. Let’s take the scrollbar controls as an example. The first thing you’ll see
regarding scrollbars in .NET is that instead of having a single control with an
orientation property, the .NET Toolbar has separate vertical (VScrollBar) and
horizontal scrollbar (HScrollBar) controls. The scrollbars have Minimum and
Maximum properties that are typically mapped to the target range they are
used to scroll through. These properties used to be Min and Max in Visual Stu-
dio 6. The following exercise demonstrates much more than scrollbars. In Lab
2.2 you’re going to use HScrollBar controls to see how even the simplest of
tasks have changed for Visual Basic programmers.

Building Visual Basic .NET Windows Applications 33

d425486 Ch02.qxd 7/1/03 8:44 AM Page 33

Lab 2.2: Controls in .NET

.NET controls are smarter than their predecessors. They can adapt to their
surroundings. We’ll be using three HScrollBar controls to control the back-
ground color of the current form by individually setting the red, green,
and blue values (RGB) of a Color object.

Perform the following steps:

1. Start a new Visual Basic Windows application.

2. Drag a GroupBox (used to be called a Frame control) to Form1.

3. Drag three HScrollBar controls inside the GroupBox.

4. Because each of these HScrollBar controls will be setting the RGB
values, we need to set their Minimum and Maximum values to
match the possible values for RGB. For each control, set the Maxi-
mum property value to 255 and leave the Minimum property value
at 0. The HScrollBar1 control will change the red, HScrollBar2 will
change the green, and HScrollBar3 will change the blue value of a
Color object. Because RGB values are always in red, green, blue
order and have values ranging from 0 to 255, a value of 0,0,255
indicates pure blue.

5. Add the following event handler to handle the Scroll event for all
three HScrollBar controls:
Private Sub ScrollAll(ByVal sender As System.Object, ByVal e As

System.Windows.Forms.ScrollEventArgs) Handles HScrollBar1.Scroll,

HScrollBar2.Scroll, HScrollBar3.Scroll

Me.BackColor = Color.FromArgb(HScrollBar1.Value,

HScrollBar2.Value, HScrollBar3.Value)

End Sub

Color is a class defined in System.Drawing. If you look at the References
section in the Solution Explorer, you will see that our application has a
reference to the System.Drawing assembly. That is why we can use the
Color class.

6. Run the application. Use the scrollbars to change the BackColor of
Form1, but watch the GroupBox controls color! The GroupBox has
the inherent ability to change the color of its border in relation to its
immediate container, as shown in Figure 2.1. We deduce from this
that there is an event that notifies the GroupBox that such a change
was made. The System.Windows.Forms.Form and System.Windows
.Forms.Control classes have many events we’re not used to seeing

34 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 34

yet, such as ForeColorChanged and BackColorChanged that make
features like this possible. All of our controls and forms are based
on (inherited from) these two classes.

If you’re starting to believe that I’m trying to get you used to the
object-oriented nature of .NET, you’re right! If the objects, classes, and
inheritance are all still confusing, don’t be discouraged. We haven’t even
formally explored those concepts yet. By the time we get to a discussion
on classes and objects, you will have quite a few examples to fall back on.
For now, understand that we are in a pure object-oriented environment
and nothing is abstracted away from us as it was in Visual Basic 6. These
two truths will drive your application development in .NET more than
you may realize at this point, but be excited; with this environment comes
a developmental power and elegance previously lacking in Visual Basic.

Figure 2.1 The GroupBox control dynamically adjusts to its parent’s BackColor property
by changing the color of its own border.

Classroom Q & A
Q: I have used quite a lot of objects in the past, but I’m a little con-

fused by the syntax used with the Color object. I don’t see how we
have a copy, instance I think you called it, of the Color object and
yet we are calling a method on it.

A: First of all, FromARGB() is a static method in the base class Color.
You should remember that Form1 inherits many methods and
properties from the Form class and can redefine what those meth-
ods (like Load) do for each specific form we create. That makes
Form the base class for Form1. Well, Color is the base class for a
new Color object, but the Color base class has functionality that
doesn’t make much sense to be overwritten in each of the colors
created based on the Color class. FromARGB() is an example of
such a method and is referred to as a static method. Static methods
are not called as object.methodname, but rather, as baseclass
.methodname.

Building Visual Basic .NET Windows Applications 35

d425486 Ch02.qxd 7/1/03 8:44 AM Page 35

Q: Is this explained further in this book?
A: Yes, I talk about this more in Chapter 6. We just haven’t had to

learn a lot of these concepts in Visual Basic because it was focused
on being a very friendly, productive environment with a lot of the
detail abstracted away. Now we have the friendly environment
with all the power of an object-oriented language. Think of it as
changing your tools in your Toolbox. We just got rid of our Toolbox
and replaced it with a roomful of the latest power tools. By show-
ing you what’s new while I’m using a concept like scrollbars, text
boxes, and labels that have hardly changed at all, we can use what
is familiar to us as an anchor for our OOP learning process.

Locations and Size in .NET
In Visual Basic 6, we used the Move method or the Left, Top, Width, and
Height properties to move things to the desired location. In .NET we do things
(of course) a little differently.

The older Left and Top properties seem to have been replaced with the more
universally correct representation of an x- and y-axis value pair known in
.NET as the Location property. The Left and Top properties still exist, but they
are not in the Properties window. To move a control to the upper-left corner of
a form we could set the control’s Location property using the values of 0 and 0.

Button1.Location = New Point(0, 0)

Here, I’ve created a new Point object and initialized it by setting both its
x- and y-axis to zero. If you look at the IntelliSense in Figure 2.2, you will see
that the Location property is very clear about needing a Point object instead of
just two numbers.

Setting Width and Height

Setting the Width and Height properties also offers a small surprise. If you set
these two Integer values thinking about the twip unit of measurement from
Visual Basic, you’ll have some huge controls. The default unit of measurement
is expressed in pixels in .NET.

Button1.Width = 100 ‘pixels

Button1.Height = 40 ‘pixels

Double their size:

Button1.Width *= 2 ‘equivalent to Button1.Width = Button1.Width * 2

Button1.Height *= 2 ‘using C++-style shorthand

36 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 36

Figure 2.2 Pay attention to what IntelliSense is telling you in .NET. The IntelliSense here
indicates that the Location property requires a Point object.

Setting the Form Size Using the Size Property

Setting the Size property requires the assignment of a Size object. Restated,
that means that the Size property is a property of type Size. The following code
creates a new Size object to be used in the assignment:

Me.Size = New Size(100, 100)

Strangely enough, when the form is maximized, this code will apparently
do nothing, but when the form is back in Normal mode, it will have a width of
100 and a height of 100.

Controlling How Large or Small a Form Can Be

The Form object uses the MaximumSize and MinimumSize properties to limit
how small or large a form can be. These values have no effect on the ability to
maximize or minimize the form using the minimize and maximize buttons.
These values control how small or large the form can be by using the handles
to expand and contract the form’s borders.

The SystemInformation object can be used to determine not only the
minimum window size, but also things such as the user name, the domain
the user is logged into, whether the user has a network card, how many
buttons the user’s mouse has, and even the system boot mode.

Docking and Anchoring

Controls have a Dock property that enables them to be permanently fixed to
different sides of a container. The Anchor property for a control is used to
ensure that the anchored edges maintain a position relative to the edges of the
container. Figure 2.3 shows the result of setting the Dock property for Button1
to Top.

Affecting Visibility
Forms can be manipulated with the standard Visible property and the Hide and
Show methods from Visual Basic 6, but there are some new features to note.

Building Visual Basic .NET Windows Applications 37

d425486 Ch02.qxd 7/1/03 8:44 AM Page 37

Figure 2.3 Controls are anchored using the Dock property.

Keeping a Form on Top

The TopMost property of a form can be used to ensure than no matter what is
displayed, the TopMost form will always be on top of any other form. The fol-
lowing code creates a new form beneath the current form:

Me.TopMost = True

Dim myform As New Form()

myform.Show()

Changing a Form’s Opacity

A form can be made partially visible (or partially invisible for you pessimists)
by using the Opacity property. This property normally has a value of 1 to indi-
cate that it appears normal (that is, opaque not transparent). The Opacity value
of 0 indicates that the form is completely transparent. The following code
causes the current form to fade away and then return. Figure 2.4 shows a form
at 50 percent (.5) transparency.

Dim i As Double

For i = 1 To 0 Step -0.01

Me.Opacity = i

Next

Me.Opacity = 1

Figure 2.4 A form with an Opacity setting of .5. is exactly half visible.

38 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 38

The standard For loop used here iterates through its code between the pos-
sible values for opacity from 1 to 0, decrementing by –0.1 until the current form
is completely transparent. For loops have an incremental Step value of 1 when
not specified.

.NET Controls
This section is not intended to show you every control in .NET. Actually, my
only intention is to get you familiar with the environment and how different
things really are beneath the surface of controls that seem like old friends.
Now that we have some of the basic principles in our skill set, we can start
working with a few traditional controls, look at what’s new in them, and
progress to some of the controls that are unique to .NET. All the following code
applies to the ListBox, ComboBox, and other list-related controls in .NET.

The ListBox Control

Every Windows programmer has used a ListBox control before, but the
changes to the ListBox in .NET have a lot to do with what is underneath the
control. Many objects have collections of things such as images, buttons, con-
trols, or the Items collection in a ListBox. In .NET, collections aren’t created dif-
ferently for each object but rather inherited from a common collection interface.

The Items Collection

Any object that has a collection in .NET will most likely inherit its methods
from ICollection and IList. These two things are known as interfaces in the
common language runtime libraries. By having all collections inherit a defined
set of methods from these interfaces, we can expect any collection in .NET to
have an expected interface.

The interface for a car usually doesn’t vary from car to car for its basic,
expected functionality, although each car can have extended features. We
expect to enter all cars via a door, we expect to start all cars with an ignition
key, we press an accelerator to make the car go, and we press a brake pedal to
make the car stop. The point is that by having an expected interface for every
example of a given type, the user of each item (type) can use it intuitively.
Doing something unexpected in the design, such as putting the brake pedal on
the right, could mean that the user of the vehicle might never want to attempt
using that model again.

In .NET collections, this translates to every collection having an Add
method, a Remove method, a Count property, and an Item Property that we
instinctively look for as programmers using those objects. As a matter of fact,
after a very short while as a .NET programmer, you will quickly become agi-
tated by programmers who reinvent the wheel instead of supporting a stan-
dard interface.

Building Visual Basic .NET Windows Applications 39

d425486 Ch02.qxd 7/1/03 8:44 AM Page 39

Figure 2.5 ListBox.Items is actually based on the class ListBox.ObjectCollection that
implements the ICollection and IList interfaces.

Looking at the Object Browser in Visual Basic .NET, we can see on what
classes and interfaces each of our objects are based. Figure 2.5 shows the classes
and interfaces implemented by a ListBox. The right panel in Figure 2.5 shows
the methods and properties of the IList interface.

The Items collection represents the items stored in the ListBox. To add val-
ues to any collection that is based on these well-known interfaces, we use the
Add method as shown in the following code:

ListBox1.Items.Add(“Azure”)

ListBox1.Items.Add(“Crimson”)

ListBox1.Items.Add(“DarkOrchid”)

ListBox1.Items.Add(“DodgerBlue”) ‘yes that is actually a built-in color

Common Collection Methods and Properties

All Collections have at least the properties and methods listed in Table 2.1.

Changing the Selected Item in a ListBox

In earlier forms of Visual Basic we would use the Click event to write code to
capture the newly selected item. In .NET we write an event handler for the
SelectedIndexChanged event of the ListBox. The SelectedIndex property can
be used to pinpoint which item was selected. The following code shows an
example of a SelectedIndexChanged event handler:

Private Sub ListBox1_SelectedIndexChanged(ByVal sender

As System.Object, ByVal e As System.EventArgs) Handles

ListBox1.SelectedIndexChanged

Me.ListBox1.ForeColor =

Color.FromName(ListBox1.Items(ListBox1.SelectedIndex))

End Sub

40 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 40

Table 2.1 Collection Properties and Methods

PROPERTY OR METHOD DESCRIPTION

The Count property Represents the number of items in the collection

The Add method Add items to a collection

The Remove method Remove items from a list

The Item property Used to refer to a specific item in a collection

When an item is selected, the text value in the ListBox is used as the argu-
ment for the FromName method on the Color class to set the ForeColor on the
ListBox as shown in Figure 2.6.

Taking Advantage of the Collection Interfaces

Although showing you the underlying interfaces and classes of .NET may seem
premature, knowledge of the underlying common language runtime class
libraries will be the single most defining factor in your mastery of .NET. We can
already take advantage of the knowledge we have by looking at the AddRange
method of a ListBox. The AddRange method for a ListBox takes an ObjectCol-
lection as its only argument. Because we know that the Items Collection is an
example of an ObjectCollection, we should be able to add the contents of one
ListBox to another by passing the Items collection of one ListBox to the
AddRange method of another ListBox as shown here using Visual Basic .NET:

ListBox1.Items.Add(“Test Data1”)

ListBox1.Items.Add(“Test Data2”)

ListBox2.Items.AddRange(ListBox1.Items)

MessageBox.Show(ListBox2.Items(0).ToString())

Figure 2.6 Clicking on a ListBox item causes the SelectedIndexChanged event.

Building Visual Basic .NET Windows Applications 41

d425486 Ch02.qxd 7/1/03 8:44 AM Page 41

Classroom Q & A
Q: How many classes and interfaces are there in .NET?
A: I have no idea, but there are many. We end up using more and

more as we build broader applications. We are going to use more
than you will remember after reading these chapters, but you will
have learned a certain set of behaviors and patterns related to the
libraries that will make using them much easier and intuitive.
Don’t worry if it seems intimidating now; we haven’t even officially
introduced the concept of an interface yet.

Q: In your last example, why did you need to use ToString in the last
line of code?

A: You need to be sure what you are sending to a method is the right
type. MessageBox.Show needs a String, so make sure you treat the
value at Items(index) as a String using the ToString method.

Q: When I tried it without the ToString method, it still worked.
A: It’s good to experiment and you’re right; it does work without the

ToString() method, but Visual Basic doesn’t always do things for
you. My first two golden rules of programming are always be
explicit and never let a compiler do you a favor. It is considered a
better programming practice to indicate explicitly how values are
to be treated in an expression.

The CheckedListBox Control

The CheckedListBox control is new to .NET. Each item in the control appears
with a check box preceding it. Much of the code we use for other list-related
controls still applies. but we’ll need to look at a few new methods, events, and
properties to make use of this new control.

Adding Items to a CheckedListBox

Because the Items collection for this control also indirectly implements the
IList interface, it has an Add method for adding items. But implementing an
Add method is done differently for different objects. This particular Add
method has three versions we could use. Different versions of a member with
the same name are referred to as overloaded methods, which we will discuss
later. Figure 2.7 shows how the most common version of the Add method,
which takes an object followed by a boolean value, controls whether the new
item’s check box should be selected. That shouldn’t be too hard to code
because object is actually a reference to System.Object, which applies to every
type in .NET and a boolean value is just True or False.

42 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 42

Figure 2.7 Version 1 of 3 for the CheckListBox.Add() method.

In Visual Basic 6, any nonzero value was True. That is not the case in .NET.
Only True is True and only False is False.

The following code shows how items can be added to a CheckedListBox
control named clb1 with the first three values checked and the last value
unchecked:

clb1.Items.Add(“Architect”, True)

clb1.Items.Add(“Consultant”, True)

clb1.Items.Add(“Trainer”, True)

clb1.Items.Add(“PogoStick Champion”, False)

As with all collections in .NET, the first position (or index) is zero and the
collection has Count number of items.

Determining Which Items Are Checked

The CheckedItems property procedure returns an object of type CheckedItem-
Collection. We can iterate through unfamiliar collections in a very generic way
using an iterator of type Object (see Figure 2.8). It is always more efficient to
use an iterator of an appropriate type for the given collection, but an item is
actually a property that returns a generic object.

Private Sub btnGetCheckedItems_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnGetCheckedItems.Click

Dim o As Object

Dim msg As String

For Each o In clb1.CheckedItems

msg += o.ToString & Convert.ToChar(13) ‘chr(13), vbcrlf still work

Next o

MessageBox.Show(msg, “By Item:”)

End Sub

Private Sub btnGetCheckedIndices_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnGetCheckedIndices.Click

Dim o As Object

Dim msg As String

For Each o In clb1.CheckedIndices

msg += o.ToString & Convert.ToChar(13)

Next o

MessageBox.Show(msg, “By Index:”)

End Sub

Building Visual Basic .NET Windows Applications 43

d425486 Ch02.qxd 7/1/03 8:44 AM Page 43

Figure 2.8 Items in a CheckedListBox can be interrogated for their checked status by Index
or by Item.

Changing the Click/Checked Behavior

I was pleasantly surprised to find that I could cause the items to be checked by
a single click instead of the default. The following Visual Basic .NET code
causes an item to be checked on a single click:

checkedListBox1.CheckOnClick = True

Sorting

Even though a property seems to be similar to a property we might have
become used to in Visual Basic 6, take nothing for granted. Some things are
more flexible and some are more restricted. The Sorted property of the ListBox
type of controls in Visual Basic 6 was read only at runtime, but the same prop-
erty can be set at design or runtime in .NET as shown here:

checkedListBox1.Sorted = True

Other Useful Properties and Methods

Many properties for the ListBox line of controls simply didn’t exist as features
before .NET. The properties and methods in Table 2.2 are particularly useful.

Table 2.2 ListBox Controls in .NET

PROPERTY OR METHOD DESCRIPTION

The ClearSelected method Clears selection without affecting checked
status.

The Contains method Determines if a control is in this container.

44 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 44

Table 2.2 (continued)

PROPERTY OR METHOD DESCRIPTION

The FindString method Searches for partial match to Item data;
second overload for this method allows
searching to start at a specific index.
FindString(“Train”) would return the index
of “Trainer” in our example.

The FindStringExact method Searches for exact match of item data.
FindStringExact(“trainer”) would return the
index of “Trainer,” but FindStringExact(“Train”)
would return a value of –1.

The SelectedIndex property Returns the index of the selected item.

Dialog Controls

In Visual Studio 6 we typically used a single Common Dialog control to han-
dle all our dialog needs. This created a control that had far too many methods
and properties that weren’t related to the task we were performing at the time.
In .NET we have separate controls for each of the standard dialogs. Table 2.3
shows examples of the separate dialog controls in Visual Studio .NET.

Using the Dialog Controls

The ColorDialog control is activated for display by using the ShowDialog()
method. The ColorDialog window is shown in Figure 2.9.

Table 2.3 Dialog Controls in Visual Studio .NET

DIALOG ALLOWS THE USER TO

ColorDialog Pick a color from a color palette

FontDialog Choose a font and apply formatting

OpenFileDialog Locate a file to be opened

PageSetupDialog Display page formatting dialog box

PrintDialog Control and start printing

PrintPreviewDialog Preview print jobs

SaveFileDialog Indicate a file and path for saving

Building Visual Basic .NET Windows Applications 45

d425486 Ch02.qxd 7/1/03 8:44 AM Page 45

Figure 2.9 The ColorDialog control’s Color property is set when the dialog box closes.

After the user selects a color and closes the ColorDialog window, the con-
trol’s Color property holds a valid Color object. Printing this Color object with
ToString()reveals that some colors have proper names such as Chartreuse,
whereas others have ARGB values:

Color[A=255, R=255, G=0, B=128].

The Color property can be used as expected:

ColorDialog1.ShowDialog()

Me.BackColor = ColorDialog1.Color

Each dialog control sets different values when they are closed. For the Save-
FileDialog control, the FileName property is set to the file indicated by the user
inside the Save dialog window.

The DataGrid Control

The DataGrid control allows us to view and modify records from a database.
Chapter 5, “Advanced .NET Windows Applications,” expands on data access
in .NET; here we will focus on the DataGrid control and some controls that
support its use. Lab 2.3 demonstrates the use of this control.

Lab 2.3: Using Data Access Controls in .NET

This lab demonstrates the use of the DataGrid control and several under-
lying objects associated to data access. This lab requires a database from
the .NET QuickStart samples to be installed. The objective of this lab is to
introduce you to the DataGrid control and expose you to the concepts of
the Data Adapter, DataSet, and Connection objects.

46 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 46

Perform the following steps:

1. Start a new Visual Basic Windows application.

2. Add a DataGrid control from your Toolbox to Form1. This control is
used to display records from a database.

3. On the Toolbox, you should see several tabs: Windows Forms, Com-
ponents, General, and Data. Select the Data tab on your Toolbox.

The Data tab contains objects that represent objects in the
System.Data and System.Data.SqlClient assemblies. These controls
make data access easy by abstracting the details of data access.

If you cannot see the tabs I described in step 3, change your current view
to Designer view by selecting Designer from the View menu.

4. Add an OleDbDataAdapter control from the Data tab of the Toolbox
to Form1. The control appears in the Control Tray underneath the
current form. Unlike Visual Basic 6, controls that are not visible at
runtime don’t reside on the form surface at design time in .NET.

5. In the Welcome to the Data Adapter Configuration Wizard screen,
click Next.

6. When confronted with the Choose Your Data Connection screen,
click the New Connection button to display the Data Link Properties
window. We are using the Microsoft Jet provider to indicate that we
are working with a Microsoft Access database (see Figure 2.10).

Figure 2.10 Select the Microsoft Jet provider when working with Microsoft Access
databases.

Building Visual Basic .NET Windows Applications 47

d425486 Ch02.qxd 7/1/03 8:44 AM Page 47

7. From the Provider tab of the Data Link Properties window, select
Microsoft Jet 4.0 OLEDB Provider.

8. Click Next to move to the Connection tab or just select the Connec-
tion tab on the Data Link Properties window.

9. Assuming you have installed the Quickstart samples, use the button
to the right of the Select or Enter a Database Name text box to
browse for and select the grocertogo.mdb database. This database
will be buried quite a few levels deep, so use the search tool in win-
dows to find the database.

10. Click OK to return to the Choose Your Data Connection window.

11. Click Next to advance to the Choose a Query Type window.

12. Click Next to accept the default of Use SQL Statements and to
advance to the Generate the SQL Statements window.

13. Type Select * From Products into the only text box on the Generate
the SQL Statements window.

The Query Builder button can be used to experiment with the Structured
Query Language (SQL) and to build more complex queries. SQL has
become the standard language for communicating with relational
databases.

14. Click Finish to end this Wizard. A new object should have appeared
in your control tray beneath Form1. OleDbConnection1 is an object
that represents a connection to a database.

15. Select the OleDbConnection1 object and view its ConnectionString
property using the Properties window. This property has most of
the information needed to locate and connect to your database.

16. Be sure you are in Designer view (as opposed to code view).
Use the View menu to change between the two views if necessary.
Switching to Designer view causes the Data menu to appear in
Visual Studio .NET.

17. Choose Generate DataSet from the Data menu.

18. Nothing needs to be changed on the Generate DataSet window, so
click OK. This creates yet a third type of control in the control tray
that represents a DataSet.

48 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 48

The underlying objects we’re using are as follows:

Connection object. Represents a database connection.

Data Adapter object. Uses a connection and a command to fill a
DataSet with Records.

DataSet. Represents a set of records that were requested using a
command. Our command was Select * from Products, which asks
for all records (*) from the Products table.

To associate the set of records returned from our SQL query with the
DataGrid control we have to set the DataSource property. Establish-
ing an association between a control and a database is referred to as
binding a control to data.

Continue on and bind the DataGrid control to the DataSet.

19. Select the DataGrid control and set its DataSource property to
DataSet11.Products as shown in Figure 2.11.

20. Double-click Form1 to open the Code Editor window, focused
on the Form1_Load event handler. Enter the following code for
form’s Load:

OleDbDataAdapter1.Fill(Me.DataSet11)

21. Run the application, and your DataGrid control should display all
the records from the Products table (see Figure 2.12).

Navigation, modification, addition, and deletion of records are possi-
ble with this control. You’ll be sadly disappointed if you attempt to code
the Click, Navigate, or KeyDown event to respond to the user clicking on
different fields or using the arrow keys to move from one record to the
next. Theses events don’t do a very good job of detecting user interaction.
Chapter 5, “Advanced .NET Windows Applications,” introduces you to
the underlying concepts surrounding data access in .NET.

Figure 2.11 Use the arrow next to the DataSource property to select from valid data
sources on the current form.

Building Visual Basic .NET Windows Applications 49

d425486 Ch02.qxd 7/1/03 8:44 AM Page 49

Figure 2.12 The DataGrid control displays records based on its DataSource.

The Panel Control

The Panel controls are dockable containers in .NET. They work like frames in
HTML development. These panels are used as viewing panels (or panes if you
like) to separate sections of our user interface. Figure 2.13 shows a form with a
single panel whose BorderStyle property has been set to Fixed3D and whose
Dock property has been set to Left. Panels are invisible, by default, at runtime.

The DateTimePicker and MonthlyCalendar Controls

The DateTimePicker is possibly the simplest of the controls. To use it, just place
it on a form. Users are presented with a drop-down calendar from which they
can choose a date. The MinDate and MaxDate values can be used to define a
valid range of dates. After a date has been chosen, the Value property of the
control will contain that date. The Format property can be set to Long, Short,
Time, or Custom to change the format in which the date or time is stored and
displayed. The MonthlyCalendar control displays a calendar page for the cur-
rent month with the current day circled and special dates in boldface type. The
DateTimePicker control is used to select a date, whereas the MonthlyCalendar
control is used to display the date via a calendar page.

Figure 2.13 Panel controls allow you to separate or even hide sections of a user interface.

50 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 50

Dynamically Adding Controls
Adding controls at runtime (dynamically) is a little different than it was in
Visual Basic 6. The following code creates a control, but it never appears:

Dim mybtn As New Button()

mybtn.Location = New Point(10, 10)

mybtn.Show() ‘DOES NOTHING

mybtn.Visible = True ‘DOES NOTHING

Me.Controls.Add(mybtn) ‘This is what we want!

Controls must be associated with a container and added to the container’s
control collection. To add a control dynamically to a panel named Panel1 on
Form1, use the following code:

Me.Panel1.Controls.Add(mybtn) ‘bingo!

That method works for all controls that have a Controls collection. In the
first example, the attempts to use the Show method and the Visible property
do nothing and should be omitted.

Scrollable Forms
If we keep running the code in the previous example and add a little code to
make each successive button appear underneath its predecessor, eventually
we will have controls that cannot be displayed on the form. That was always a
point of contention many people have had with Visual Basic forms. In .NET,
however, we have only to set the AutoScroll property for a form to resolve that
issue. I wanted to see just how far the form would scroll if I kept creating
controls.

First I changed the AutoScroll property for the form to True. Then I created
a private variable inside Form1 to keep track of the next control’s y-value:

Private y As Integer = 10

Next, I added a button with the following code:

Private Sub Button1_Click_1(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click

Dim mybtn As New Button() ‘create a new button object

mybtn.Location = New Point(10, y) ‘create 10 pixels down from last

mybtn.Text = Me.Controls.Count – 1 ‘number the buttons

Me.Controls.Add(mybtn) ‘display the new button

y += 30 ‘set next button’s y value

End Sub

Building Visual Basic .NET Windows Applications 51

d425486 Ch02.qxd 7/1/03 8:44 AM Page 51

Somewhere near 1,000 buttons, things went haywire, the controls stopped
displaying, and the scrollbars didn’t work as expected. I would recommend
keeping your form within some respectable limitations on its size.

As shown in Figure 2.14, if even a portion of a control is off the viewable
portion of the form, the appropriate scrollbars appear.

Multiple Forms
In applications such as Word, Excel, and even Visual Studio, we have a con-
tainer environment that holds our documents in Word, our workbooks in
Excel, and our design components in Visual Studio. These container environ-
ments are actually forms themselves. They are a parent form in which all other
forms reside. Yes, what you know to be Microsoft Word is simply a parent
form that contains children you know as documents. This type of application
is referred to as an Multiple Document Interface (MDI) application. What we
are using in this chapter are referred to as Single Document Interface (SDI)
applications. We will implement MDI applications in Chapter 5.

Adding New Forms

Adding new forms is similar to Visual Basic 6: Just select Add Windows Form
from the Project menu, select Windows form, and click Open. The difference is
where to go to set the startup form. One minute you’ll see Properties appear as
the last menu item in the Project menu, and the next minute it disappears.
The trick is that you either have to right-click the project in the Solution
Explorer or select the project name and choose Properties from the Project
menu. Once in the properties page for the project, set the startup object to the
appropriate form.

Properties only appear under the Project menu when a project is selected
in the Solution Explorer.

Figure 2.14 AutoScroll adds scrollbars to forms when any control’s dimensions are not
completely contained in the form’s viewable area.

52 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 52

The Anatomy of a Form
By now, I’m sure you’ve noticed there are things in a form beyond what we’ve
talked about. Most of the information that used to be hidden away in .frm files
in Visual Basic 6 appears in our code in Visual Basic .NET. The plus and minus
signs allow us to display or hide any section of code. The section, Windows
Form Designer generated code, contains all the behind-the-scenes code that
controls the creation of our form and the controls on it and is hidden by
default.

Public Class Form1

Inherits System.Windows.Forms.Form

+ Windows Form Designer generated code

End Class

New()

The first piece of code within that section is a method New. New is a special
method for a class called a constructor. In Visual Basic 6, we would think of this
as the initialize event for a class. A constructor controls how a class is created.

Dispose()

For those of you who have heard enough about interfaces, Dispose() is used to
clean up memory used by the form. For those who want to know more, this
method will most likely exist in every class you ever create. Dispose() is part of
the IDisposable interface. Objects made from classes that support the IDispos-
able interface have a much better chance of avoiding delayed recovery or loss
of resources.

InitializeComponent()

InitializeComponent represents all the code to define, default, and create your
controls on the form. The code here and in the other methods in this section
should not be modified directly unless you are very comfortable with what
you’re doing.

Classroom Q & A
Q: Okay, so you said that Dispose() was a method that was part of

the IDisposable interface, but I don’t see any reference to this
form inheriting that interface.

A: I think proving it will require jumping into the Object Browser, as
you might discern from Figure 2.15. You’ll notice that the declara-
tion of the Dispose method in Form1 uses the Overrides keyword.
That means that the Form class that Form1 inherits from also has
a Dispose method, and we are overriding that functionality locally.

Building Visual Basic .NET Windows Applications 53

d425486 Ch02.qxd 7/1/03 8:44 AM Page 53

Figure 2.15 The Form class inherits and overrides a Dispose method from a class that is
five levels up an object hierarchy.

This is expected in that each object needs to dispose of its own
resources in memory accordingly. Figure 2.15 shows how far up
the class hierarchy you have to go to see exactly where IDispos-
able was first inherited.

Summary

This chapter introduced you to more than a few controls and new form tricks.
The fundamentals of the relationships between the objects we use in .NET
were a strong underlying theme. We will use many more objects and eventu-
ally create not only our own controls but also our own libraries of classes. As
we progress, use the Object Browser and ILDASM to explore and discover
information about the objects you are using.

54 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 54

Review Questions

1. Where does a new form get its default functionality on creation?

2. What keyword is used to map an event handler to a control’s event?

3. What happened to the Caption property we used in Visual Basic 6?

4. What is a text box’s Change event now called?

5. What method did we use to determine if one control is a parent to another control?

6. Where is the Button class defined?

7. Where is the Color class defined?

8. What property allows you to set an object’s x and y positions?

9. A form’s Width and Height can be modified using the Size property. What must be
passed to the Size property?

10. How can you set a form to 50-percent transparent?

11. How do you change the startup form in a project?

12. What property can be used to make a Panel visible at runtime?

13. Which of these methods causes a dynamically created control named Button1 to
appear on a form?

a. Me.Container.Add(Button1)

b. Me.Controls.Add(Button1)

c. Me.Add(Button1)

d. Me.Container.Controls.Add(Button1)

14. When will scrollbars appear on a form?

15. What is the purpose of the New() method declared in the Windows Form Designer
generated code section of a form?

16. Location is a property of what type?

17. How do you populate a data set with records?

18. What is the property for a control to cause it to be bound to data?

19. Where can you find the OleDbDataAdapter control?

20. What does Select * From Employees return when it is used as the command sent to a
relational database?

Building Visual Basic .NET Windows Applications 55

d425486 Ch02.qxd 7/1/03 8:44 AM Page 55

Answers to Review Questions

1. New forms inherit from the System.Windows.Forms.Form class.

2. The Handles keyword is used to map an event handler to one or more events.

3. Visual Basic .NET uses only the Text property, whereas Visual Basic 6 used Caption for
some controls and Text for others.

4. Text boxes in .NET have a TextChanged event to replace the older Change event.

5. The Contains method can be used to determine if a control is a child (contained in)
of another control.

6. The Button class is defined in System.Windows.Forms.Button.

7. The Color class is defined in System.Drawing.Color.

8. The Location property allows you to set an object’s x and y positions on the screen.

9. A form’s Width and Height can be modified using the Size property by assigning a
Size object.

10. A form can be made 50-percent transparent by setting the form’s Opacity property
to .5.

11. You can change the startup form in a project by right-clicking on the project name in
the Solution Explorer, selecting Properties, and changing the startup object to the
desired startup form.

12. BorderStyle is one property that can be used to make a Panel visible at runtime.

13. b. Me.Controls.Add(button1) will cause Button1 to appear.

14. Scrollbars appear on a form when the form’s AutoSize property has been set to True
and at least one control is partially outside of the viewable portion of the form.

15. The New() method declared in the Windows Form Designer generated code section of
a form is the constructor of the class defining that form. A constructor for a class acts
like an initialize event in a sense but is primarily responsible for the actual creation of
objects based on that class.

16. Location is a property of type System.Drawing.Point.

17. A DataSet is populated with records by using the Fill method on a data adapter.
Although different data adapters can be used, we used the OleDbDataAdapter.

18. The DataSource property is the property we used to cause a DataGrid control to be
bound to data. Other properties might be required for different controls we use later.

19. The OleDbDataAdapter control is located on the Data tab of the Toolbox.

20. Select * From Employees returns all fields of all records in the Employees table.

56 Chapter 2

d425486 Ch02.qxd 7/1/03 8:44 AM Page 56

