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Iterative Methods

Some things are simple but hard to do.

—A. Einstein

Most of the problems in this book are simple. Many of the methods used have been

known for decades or for centuries. At the machine level, individual steps in the

procedures are at the grade school level of sophistication, like adding two numbers

or comparing two numbers to see which is larger. What makes them hard is that

there are very many steps, perhaps many millions. The computer, even the once

‘‘lowly’’ microcomputer, provides an entry into a new scientific world because of

its incredible speed. We are now in the enviable position of being able to arrive at

practical solutions to problems that we could once only imagine.

Iterative Methods

One of the most important methods of modern computation is solution by iteration.

The method has been known for a very long time but has come into widespread use

only with the modern computer. Normally, one uses iterative methods when

ordinary analytical mathematical methods fail or are too time-consuming to be
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practical. Even relatively simple mathematical procedures may be time-consuming

because of extensive algebraic manipulation.

A common iterative procedure is to solve the problem of interest by repeated

calculations that do not initially give the correct answer but get closer to it as the

calculation is repeated, perhaps many times. The approximate solution is said to

converge on the correct solution. Although no human would be willing to repeat an

iterative calculation thousands of times to converge on the right answer, the

computer does, and, because of its speed, it often arrives at the answer in a

reasonable amount of time.

An Iterative Algorithm

The first illustrative problem comes from quantum mechanics. An equation in

radiation density can be set up but not solved by conventional means. We shall

guess a solution, substitute it into the equation, and apply a test to see whether

the guess was right. Of course it isn’t on the first try, but a second guess can be

made and tested to see whether it is closer to the solution than the first. An iterative

routine can be set up to carry out very many guesses in a methodical way

until the test indicates that the solution has been approximated within some narrow

limit.

Several questions present themselves immediately: How good does the initial

guess have to be? How do we know that the procedure leads to better guesses, not

worse? How many steps (how long) will the procedure take? How do we know

when to stop? These questions and others like them will play an important role in

this book. You will not be surprised to learn that answers to questions like these

vary from one problem to another and cannot be set down once and for all. Let us

start with a famous problem in quantum mechanics: blackbody radiation.

Blackbody Radiation

We can sample the energy density of radiation rðn; TÞ within a chamber at a fixed

temperature T (essentially an oven or furnace) by opening a tiny transparent

window in the chamber wall so as to let a little radiation out. The amount of

radiation sampled must be very small so as not to disturb the equilibrium condition

inside the chamber. When this is done at many different frequencies n, the

blackbody spectrum is obtained. When the temperature is changed, the area under

the spectral curve is greater or smaller and the curve is displaced on the frequency

axis but its shape remains essentially the same. The chamber is called a blackbody

because, from the point of view of an observer within the chamber, radiation lost

through the aperture to the universe is perfectly absorbed; the probability of a

photon finding its way from the universe back through the aperture into the chamber

is zero.
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Radiation Density

If we think in terms of the particulate nature of light (wave-particle duality), the

number of particles of light or other electromagnetic radiation (photons) in a unit of

frequency space constitutes a number density. The blackbody radiation curve in

Fig. 1-1, a plot of radiation energy density r on the vertical axis as a function of

frequency n on the horizontal axis, is essentially a plot of the number densities of

light particles in small intervals of frequency space.

We are using the term space as defined by one or more coordinates that are not

necessarily the x, y, z Cartesian coordinates of space as it is ordinarily defined. We

shall refer to 1-space, 2-space, etc. where the number of dimensions of the space is

the number of coordinates, possibly an n-space for a many dimensional space.

The r and n axes are the coordinates of the density–frequency space, which is a

2-space.

Radiation energy density is a function of both frequency and temperature r(n,T)

so that the single curve in Fig. 1-1 implies one and only one temperature. Because

frequency n times wavelength l is the velocity of light c ¼ nl ¼ 2:998 � 108 m s�1

(a constant), an equivalent functional relationship exists between energy density

and wavelength. The energy density function can be graphed in a different but

equivalent form r(l,T). The intensity I of electromagnetic radiation within any

narrow frequency (or wavelength) interval is directly proportional to the number

density of photons. It is also directly proportional to the power output of a light

sensor or photomultiplier; hence both I and r are measurable quantities. Whenever

one plots some function of radiation intensity I vs. n or l, the resulting curve is

called a spectrum.
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Figure 1-1 The Blackbody Radiation Spectrum. The short curve on the left is a Rayleigh

function of frequency.
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Wien’s Law

In the late nineteenth century, Wien analyzed experimental data on blackbody

radiation and found that the maximum of the blackbody radiation spectrum lmax

shifts with the temperature according to the equation

lmaxT ¼ 2:90 � 10�3 m K ð1-1Þ

where l is in meters and T is the temperature in kelvins.

The Planck Radiation Law

As Lord Rayleigh pointed out, the classical expression for radiation

rðn; TÞdn ¼ 8pkBT=c3
� �

n2dn ð1-2Þ

where kB is Boltzmann’s constant and c is the speed of light, must fail to express the

blackbody radiation spectrum because r ¼ const: � n2 is a segment of a parabola

open upward (the short curve to the left in Fig. 1-1) and does not have a relative

maximum as required by the experimental data. In late 1900, Max Planck presented

the equation

rðn; TÞdn ¼ 8phn=c3
� �

n2 dn
ehn=kBT � 1

ð1-3Þ

where the units of rðn; TÞ are joules per cubic meter, as appropriate to an energy in

joules per unit volume and h ¼ 6:626 � 10�34 J s (joule seconds) is a new constant,

now called Planck’s constant. This equation expressed in terms of wavelength l is

rðl; TÞ dl ¼ 8phc=l5
� � dl

ehc=lkBT � 1
ð1-4Þ

By setting dr=dl ¼ 0, one can differentiate Eq. (1-4) and show that the equation

e�x þ x

5
¼ 1 ð1-5Þ

holds at the maximum of Fig. 1-1 where

x ¼ hc

lkBT
ð1-6Þ

Exercise 1-1

Given that c ¼ nl, show that Eqs. (1-3) and 1-4) are equivalent.

Exercise 1-2

Obtain Eq. (1-5) from Eq. (1-4).
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COMPUTER PROJECT 1-1
�� Wien’s Law

The first computer project is devoted to solving Eq. (1-5) for x iteratively. When

x has been determined, the remaining constants can be substituted into

lT ¼ hc

kBx
ð1-7Þ

where h is Planck’s constant, c is the velocity of light in a vacuum, 2:998�
108 m s�1, and kB ¼ 1:381 � 10�23 J K�1 is the Boltzmann constant. The result is a

test of agreement between Planck’s theoretical quantum law and Wien’s displace-

ment law [Eq. 1-1], which comes from experimental data.

Procedure. One approach to the problem is to select a value for x that is obviously

too small and to increment it iteratively until the equation is satisfied. This is the

method of program WIEN, where the initial value of x is taken as 1 (clearly,

e�1 þ 1
5
< 1 as you can show with a hand calculator).

Program

PRINT ‘‘Program QWIEN’’

x = 1

10 x = xþ.1
a = EXP(-x)þ (x / 5)

IF (a �1) < 0 THEN 10

PRINT a, x

END

In Program QWIEN (written in QBASIC, Appendix A), x is initialized at 1 and

incremented by 0.1 in line 3, which is given the statement number 10 for future

reference. Be careful to differentiate between a statement number like 10 x ¼ x þ .1

and the product 10 times x which is 10*x. A number a is calculated for x ¼ 1:1 that

is obviously too small so (a � 1) is less than 0 and the IF statement in line 5 sends

control back to the statement numbered 10, which increments x by 0.1 again. This

continues until (a � 1) � 0, whereupon control exits from the loop and prints the

result for a and x.

There are, of course, many variations that can be written in place of Program

QWIEN. You are urged to try as many as you can. Some suggestions are as follows:

a. Vary the size of the increment in x in program statement 10. Tabulate the

increment size, the computed result for x, and the calculated Wien constant.

Comment on the relationship among the quantities tabulated.

b. Change Program QWIEN so that the second term on the right of the line below

statement 10 is x instead of x=5. Solve for this new equation. Change the line

below statement 10 so that the second term on the left is x=2. Repeat with x=3,

x=4, etc. Tabulate the values of x and the values of the denominator. Is x a

sensitive function of the denominator in the second term of Program WIEN?
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c. Devise and discuss a scheme for more efficient convergence. For example,

some scheme that uses large increments for x when x is far away from

convergence and small values for the increment in x when x is near its true

value would be more efficient than the preceding schemes. How, in more detail,

could this be done? Try coding and running your scheme.

d. Another coding scheme can be used in True BASIC (Appendix A)

Program

PRINT ‘‘Program TWIEN’’

let X¼ 1

do

let X¼ Xþ .1

let A¼ exp(-X)þ X / 5

loop until (A� 1) > 0

PRINT A, X

END

The program contains a ‘‘do loop’’ that iterates the statements within the loop until

the condition (A � 1)< 0 is true. Try moving the ‘‘do’’ statement around in the

program to see what changes in the output. Explain. If you encounter an ‘‘infinite

loop,’’ True BASIC has a STOP statement to get you out.

It is good practice to translate programs in one BASIC (QBASIC or True
BASIC) to programs in the other if you have both interpreters. Note that the

statement X ¼ X þ .1 in both programs makes no sense algebraically, but in BASIC

it means, ‘‘take the number in memory register X, add 0.1 to it and store the result

back in register X.’’ If you are not familiar with coding in BASIC, an hour or so

with an instruction manual should suffice for the simple programs used in the first

half of this book. By all means, look at the programs on the Wiley website.

COMPUTER PROJECT 1-2
�� Roots of the Secular Determinant

Later in this book, we shall need to find the roots of the secular matrix

210 � 42x 42 � 9x

42 � 9x 12 � 2x

� �
ð1-8Þ

One way of obtaining the roots is to expand the determinantal equation

210 � 42x 42 � 9x

42 � 9x 12 � 2x

����
���� ¼ 0 ð1-9Þ

To do this, multiply the binomials at the top left and bottom right (the principal

diagonal) and then, from this product, subtract the product of the remaining two

elements, the off-diagonal elements ð42 � 9xÞ. The difference is set equal to zero:

ð210 � 42xÞð12 � 2xÞ � ð42 � 9xÞ2 ¼ 0 ð1-10Þ
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This equation is a quadratic and has two roots. For quantum mechanical reasons, we

are interested only in the lower root. By inspection, x ¼ 0 leads to a large number

on the left of Eq. (1-10). Letting x ¼ 1 leads to a smaller number on the left of

Eq. (1-10), but it is still greater than zero. Evidently, increasing x approaches

a solution of Eq. (1-10), that is, a value of x for which both sides are equal. By

systematically increasing x beyond 1, we will approach one of the roots of the

secular matrix. Negative values of x cause the left side of Eq. (1-10) to increase

without limit; hence the root we are approaching must be the lower root.

Program

PRINT ‘‘Program QROOT’’

x¼ 0

20 x¼ xþ 1

a¼ (210 - 42 * x) * (12 - 2 * x) - (42 - 9 * x)^2

IF a > 0 GOTO 20

PRINT x: END

Program QROOT increments x by 1 on each iteration. It prints out 5 when the

polynomial on the right of line 4 is greater than 0. We have gone past the root

because x is too large. The program did not exit from the loop on x ¼ 4, but it did

on x ¼ 5, so x is between 4 and 5. By letting x ¼ 4 in the second line and changing

the third line to increment x by 0.1, we get 5 again so x is between 4.9 and 5.0.

Letting x ¼ 4:9 with an increment of 0.01 yields 4.94 and so on, until the increment

0.00001 yields the lower root x ¼ 4:93488.

Although we will not need it for our later quantum mechanical calculation, we

may be curious to evaluate the second root and we shall certainly want to check to

be sure that the root we have found is the smaller of the two. Write a program to

evaluate the left side of Eq. (1-10) at integral values between 1 and 100 to make an

approximate location of the second root. Write a second program to locate the

second root of matrix Eq. (1-10) to a precision of six digits. Combine the programs

to obtain both roots from one program run.

The Newton--Raphson Method

The root-finding method used up to this point was chosen to illustrate iterative

solution, not as an efficient method of solving the problem at hand. Actually, a more

efficient method of root finding has been known for centuries and can be traced

back to Isaac Newton (1642–1727) (Fig. 1-2).

Suppose a function of x, f(x), has a first derivative f 0(x) at some arbitrary value of

x, x0. The slope of f(x) is

f 0ðxÞ ¼ f ðx0Þ
ðx0 � x1Þ

ð1-11Þ
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whence

x1 ¼ x0 �
f ðx0Þ
f 0ðxÞ ð1-12Þ

The intersection of the slope and the x axis at x1 is closer to the root f(x) ¼ 0 than

x0 was. By repeating this process, one can arrive at a point xn arbitrarily close to the

root.

Exercise 1-3

Carry out the first two iterations of the Newton–Raphson solution of the polynomial

Eq. (1-10).

Solution 1-3

The polynomial (1-10) can be written

x2 � 56x þ 252 ¼ 0 ð1-13Þ

The first derivative is

2x � 56 ¼ 0

Starting at x0 ¼ 0

x1 ¼ x0 � � 252

56

� �
¼ 4:5

and the second step yields

x2 ¼ 4:5 � � 20:25

47

� �
¼ 4:93085 ð1-14Þ

x

f(
x)

f(x0)

x1 x0

Figure 1-2 The First Step in the Newton–Raphson Method.
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This approximates the root x ¼ 4:93488 from Program QROOT in only two steps.

Solution by the quadratic equation yields x ¼ 4:93487.

PROBLEMS

1. Show that Eq. (1-12) is the same as Eq. (1-11).

2. The energy of radiation at a given temperature is the integral of radiation

density over all frequencies

E ¼
ðn

0

rðn; TÞdn

Find E from the known integralð1
0

x3

ex � 1
dx ¼ p4

15

and compare the result with the Stefan–Boltzmann law

E ¼ 4s
c

� �
T4

where c is the velocity of light and s is an empirical constant equal to

5:67 � 10�8 J m�2 s�1. Just in case the value of the ‘‘known integral’’ is not

obvious to you (it isn’t to me, either), we shall determine it numerically in

another problem.

3. Analysis of the electromagnetic radiation spectrum emanating from the star

Sirius shows that lmax ¼ 260 nm. Estimate the surface temperature of Sirius.

Numerical Integration

The term ‘‘quadrature’’ was used by early mathematicians to mean finding a square

with an area equal to the area of some geometric figure other than a square. It is

used in numerical integration to indicate the process of summing the areas of some

number of simple geometric figures to approximate the area under some curve, that

is, to approximate the integral of a function. We include numerical integration

among the iterative methods because the integration program we shall use, fol-

lowing Simpson’s rule (Kreyszig, 1988), iteratively calculates small subareas under

a curve f (x) and then sums the subareas to obtain the total area under the curve.

This discussion will be limited to functions of one variable that can be plotted in

2-space over the interval considered and that constitute the upper boundary of a

well-defined area. The functions selected for illustration are simple and well-

behaved; they are smooth, single valued, and have no discontinuities. When

discontinuities or singularities do occur (for example the cusp point of the 1s

hydrogen orbital at the nucleus), we shall integrate up to the singularity but not

include it.
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Contrary to the impression that one might have from a traditional course in

introductory calculus, well-behaved functions that cannot be integrated in closed

form are not rare mathematical curiosities. Examples are the Gaussian or standard

error function and the related function that gives the distribution of molecular or

atomic speeds in spherical polar coordinates. The famous blackbody radiation

curve, which inspired Planck’s quantum hypothesis, is not integrable in closed form

over an arbitrary interval.

Heretofore, the integral of a function of this kind was usually approximated by

expressing it as an infinite series and evaluating some arbitrarily limited number of

terms of the series. This always leads to a truncation error that depends on the

number of terms retained in the sum before it is cut off (truncated). Numerical

integration may be used instead of series solution when the analytical form of the

function is known but not integrable or when the analytical form of the function is

not known because the functional relationship exists as an instrument plot or a

collection of paired measurements. This is the common case for data that have been

obtained in an experimental setting. An example is the function describing a

chromatographic peak, which may or may not approximate a Gaussian function.

We shall use the term analytical form to indicate a closed algebraic expression

such as

y ¼ x2 ð1-15Þ

as contrasted to functions that are expressed as an infinite series, for example,

CP ¼ a þ bT þ cT2 þ dT3 þ � � � ð1-16Þ

Equation (1-15) is an analytical form that has a closed integral. The Gaussian

function

f ðxÞ ¼ ð2pÞ�1=2
ez2=2 ð1-17Þ

is a closed analytical form but it has no closed integral. (Try to integrate it!)

Several related ‘‘rules’’ or algorithms for numerical integration (rectangular rule,

trapezoidal rule, etc.) are described in applied mathematics books, but we shall rely

on Simpson’s rule. This method can be shown to be superior to the simpler rules for

well-behaved functions that occur commonly in chemistry, both functions for which

the analytical form is not known and those that exist in analytical form but are not

integrable.

Simpson’s Rule

In applying Simpson’s rule, over the interval [a, b] of the independent variable, the

interval is partitioned into an even number of subintervals and three consecutive

points are used to determine the unique parabola that ‘‘covers’’ the area of the first
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subinterval pair (see Fig. 1-3). The area under this parabolic arc is 1
3
wð f ðxiÞþ

4f ðxiþ1Þ þ f ðxiþ2ÞÞ. Summing for successive subinterval pairs over the entire

interval constitutes the method known as Simpson’s rule. Looking at the formula

below, one anticipates that an iterative loop will implement it on a microcomputerðb

a

f ðxÞdx ¼ 1
3

wð f ðx0Þ þ 4f ðx1Þ þ 2f ðx2Þ þ 4f ðx3Þ þ � � �

þ 2f ðxn�2Þ þ 4f ðxn�1Þ þ f ðxnÞÞ ð1-18Þ

Exercise 1-14

Show that the area under a parabolic arc that is convex upward is 1
3
wð f ðxiÞ þ 4f ðxiþ1Þþ

f ðxiþ2ÞÞ, where w is the width of the subinterval xiþ1 � xi.

Solution 1-4

The area under a parabolic arc concave upward is 1
3
bh, where b is the base of the figure

and h is its height. The area of a parabolic arc concave downward is 2
3
bh. The areas of

parts of the figure diagrammed for Simpson’s rule integration are shown in Fig. 1-3.

The area A under the parabolic arc in Fig. 1-3 is given by the sum of four terms:

A ¼ 2
3

wð f ðxiþ1Þ � f ðxiÞÞ þ wf ðxiÞ þ wð f ðxiþ2Þ þ 2
3

wð f ðxiþ1Þ � f ðxiþ2ÞÞ
¼ wð2

3
f ðxiþ1Þ þ 1

3
f ðxiÞ þ 2

3
f ðxiþ1Þ þ 1

3
f ðxiþ2ÞÞ

¼ 1
3

wð f ðxiÞ þ 4f ðxiþ1Þ þ f ðxiþ2ÞÞ

which was to be proven.

1

2

3

4

xi xi+1 xi+2

w

F(x)

x

Figure 1-3 Areas Under a Parabolic Arc Covering Two Subintervals of a Simpson’s Rule

Integration.
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Our Simpson’s rule program is written in QBASIC (Appendix A). Today’s

computer world is full of complicated and expensive software, some of which we

shall use in later chapters. Unfortunately, it is not hard to find software that is

overpriced and overwritten (which we shall not use). Although it is not appropriate

to recommend software in a book of this kind, the simple software used here has

been used for several years in both a teaching and a research setting. It works.

More complicated and expensive programs are not necessarily better programs.

One author recently described BASIC as a ‘‘primitive’’ language. Be that as it may,

BASIC is ideal for solving simple problems. A hammer is a primitive tool. I wonder

what our author friend would use to drive a nail.

Program QSIM is more general than any of the programs we have used to this

point. By changing the define function statement DEF fna in line 8 of Program

QSIM, one can obtain the integral of any well-behaved function between the limits

a and b, which are specified in the interactive input to line 5. The term

‘‘interactive’’ is used here to denote interaction between the system and the

operator (you). Line 6 is part of an INPUT statement requiring a response from

you. The program will not run until you have specified the limits of integration, a

and b along with n, the number of subintervals you wish to break the interval into.

(The input numbers are separated by commas.) Note that statement 7 takes the

subintervals in pairs so n must be an even number for the system to produce the

correct integral. We are using the term ‘‘system’’ to denote both the hardware and

software (hardware þ software ¼ system).

As an interesting beginning integration, let us determine the integral

ðb

a

f ðxÞdx ¼
ð10

0

100 � x2 dx

over the interval [0, 10] We can solve this integral by conventional means as a

check on the result of numerical integration.

ð10

0

100 � x2 dx ¼ 100x � x3

3

����
10

0

¼ 1000 � 1000

3
¼ 666:667

Program

CLS

PRINT ‘‘Program QSIM’’

PRINT ‘‘Simpson’s Rule integration of the area under y¼ f(x)’’

DEF fna (x)¼ 100 - x ^ 2 0***DEF fna lets you put any function you like here.

PRINT ‘‘input limits a, and b, and the number of iterations

desired n’’

INPUT a, b, n

d¼ (b - a) / n

FOR x¼ aþ d TO b STEP 2 * d
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sum¼ sumþ 4 * fna(x) þ 2 * fna(x - d): NEXT x

PRINT: PRINT: PRINT ‘‘RESULTS’’: PRINT

PRINT: PRINT ‘‘The interval is’’ ; a; ‘‘to’’; b; ‘‘’’

PRINT: PRINT ‘‘The number of iterations is ¼’’; n; ‘‘’’

a¼ d / 3 * (fna(a)þ sum - fna(b))

PRINT: PRINT ‘‘Numerical integration yields’’, a: END

Names of programs written in QBASIC begin with Q. Programs written in True
BASIC begin with T. Program QSIM differs from Programs QWIEN and QROOT

in having more documentation. Documentation is used to make the program and the

output easier for the operator to read. It is useful when a program is passed along to

a colleague who was not in on the writing and may have difficulty understanding the

logic of it. The CLS statement clears the screen, followed by a number of PRINT

statements that should be obvious from context. Note that a full colon : is equivalent

to a new line. Nothing enclosed in full quotes ‘‘ influences the functioning of the

numerical part of the program. The prime or apostrophe ’ in line 4 instructs the

system to ignore anything following it on the same line.

Efficiency and Machine Considerations

We selected a simple test function for integration. The function f ðxÞ ¼ 100 � x2 is a

smooth, monotonically decreasing parabolic curve over the interval [0, 10]. It has a

closed definite integral over this interval of 666.667 units. The function is well-

behaved, and integration is easy over the first half of the interval but not so easy

over the second half of the interval owing to its increasing steepness. (Note that

steep functions can be integrated by an algorithm that sums horizontal slices of the

area under the curve rather than vertical ones.)

The approximation to the closed integral improves as the number of iterations

increases up to a point. The actual values in Table 1-1 may be system specific, that

is, different hardware and software combinations may give slightly different results

because of different ways of storing numbers. One is tempted to think of

approximations as getting better without limit, the sum approaching the integral

Table 1-1 Approach of the Area Sum of Program QSIM to 666.667

Iterations (Subintervals)*

10 100 1000 10000 100000 1000000

Area sum**

733.73 673.33 667.33 666.75 666.84 665.82

* Large numbers may be input as exponentials, for example, 1e6 ¼ 1 � 106.

** May be system specific.
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as Achilles approached the tortoise. This does not occur, however, because of

machine rounding error. (Only so many digits can be stored on a chip.) The last few

entries in Table 1-1 show that for very many iterations, the area sum begins to

diverge from, rather than approach, the integral it is supposed to represent (see also

Norris, 1981). Keep rounding error in mind when writing programs with many

iterations.

Elements of Single-Variable Statistics

When we report the result of a measurement x, there are two things a person reading

the report wants to know: the magnitude (size) of the measurement and the

reliability of the measurement (its ‘‘scatter’’). If measuring errors are random, as

they very frequently are, the magnitude is best expressed as the arithmetic mean m
of N repeated trials xi

m ¼
P

xi

N
ð1-19Þ

and the reliability is best expressed as the standard deviation

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � mÞ2

N

s
ð1-20Þ

These equations apply when an entire population is available for measurement.

The most common situation in practical problems is one in which the number of

measurements is smaller than the entire population. A group of selected measure-

ments smaller than the population is called a sample. Sample statistics are slightly

different from population statistics but, for large samples, the equations of sample

statistics approach those of population statistics.

If very many measurements are made of the same variable x, they will not all

give the same result; indeed, if the measuring device is sufficiently sensitive, the

surprising fact emerges that no two measurements are exactly the same. Many

measurements of the same variable give a distribution of results xi clustered about

their arithmetic mean m. In practical work, the assumption is almost always made

that the distribution is random and that the distribution is Gaussian (see below).

Decision Making

A simple decision-making problem is: I measure variable x of a population A and

the same variable x of a population B. I get (slightly) different results. Is there a real

difference between populations A and B based on the difference in measurements,

or am I only seeing different parts of the distributions of identical populations?

A similar decision-making problem consists of very many measurements of

variable x on a large sample from population A, followed by a single measurement

of the same property x of an individual. The single measurement will not be
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precisely at the arithmetic mean of the large population. The question is whether the

difference between m for the large population and measurement x indicates that

the individual is not from the test population (is abnormal) or whether the deviation

can be ascribed to a normal statistical fluctuation.

The second decision-making situation is very close to the problem presented in

medical diagnosis in which we wish to know whether a patient is a member of the

healthy general population or not. We shall apply Gaussian statistics to a diagnostic

problem involving risk to a patient of atherosclerosis, given the blood cholesterol

analysis of very many normal patients to which we compare the blood cholesterol

analysis of the individual patient. In Computer Project 1-3, the patient is known to

have a high blood cholesterol level but the problem is whether the measured level is

sufficiently far from the mean of the normal population to be dangerous or whether

it is only the random fluctuation we expect to see in some normal patients.

The Gaussian Distribution

The Gaussian distribution for the probability of random events is

pðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s

exp �ðxi � mÞ2

2s2

 !
ð1-21Þ

It is widely used in experimental chemistry, most commonly in statistical treatment

of experimental uncertainty (Young, 1962). For convenience, it is common to make

the substitution

z ¼ xi � m
s

ð1-22Þ

With this substitution, distributions having different m and s can be compared by

using the same curve, frequently called the normal curve (Fig. 1-4).

z0

p 
(z

)

Figure 1-4 The Gaussian Normal Distribution.
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The integral of the Gaussian function over the interval [a, b] in a one-

dimensional probability space z is

pðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
ðb

a

e�z2=2dz ð1-23Þ

Equation (1-23) gives the probability of an event occurring within an arbitrary

interval [a, b] (Fig. 1-5). Equation (1-23) has been ‘‘normalized’’ by choosing

the right premultiplying constant 1ffiffiffiffi
2p

p to make the integral over all space [�1; 1]

come out to 1.00 . . . . (see Problems) so the probability over any smaller interval [a,

b] has a value not less than zero and not more than one.

The integral of the Gaussian distribution function does not exist in closed form

over an arbitrary interval, but it is a simple matter to calculate the value of p(z) for

any value of z, hence numerical integration is appropriate. Like the test function,

f ðxÞ ¼ 100 � x2, the accepted value (Young, 1962) of the definite integral (1-23) is

approached rapidly by Simpson’s rule. We have obtained four-place accuracy or

better at millisecond run time. For many applications in applied probability and

statistics, four significant figures are more than can be supported by the data.

The iterative loop for approximating an area can be nested in an outer loop that

prints the area under the Gaussian distribution curve for each of many increments in

z. If the output is arranged in appropriate rows and columns, a table of areas under

one half of the Gaussian curve can be generated, for example, from 0.0 to 3.0 z,

resulting in printed values of the area at intervals of 0.01 z. This is suggested to the

interested reader as an exercise. We generated a 400-entry table in a negligible run

time. The Gaussian function is symmetrical, so knowing one half of the curve

z0

p 
(z

)

a b

Figure 1-5 An Interval [a, b] on the Gaussian Normal Distribution.

16 COMPUTATIONAL CHEMISTRY USING THE PC



means that we know the other half as well. The practical value of generating a table

of Gaussian areas is small because many such tables are available in statistics

books. The method, however, can be applied to derivative functions of the Gaussian

function with only minor modifications, resulting in generation of tables of

considerable practical importance (see below).

COMPUTER PROJECT 1-3 j Medical Statistics

The first application of the Gaussian distribution is in medical decision making or

diagnosis. We wish to determine whether a patient is at risk because of the high

cholesterol content of his blood. We need several pieces of input information: an

expected or normal blood cholesterol, the standard deviation associated with the

normal blood cholesterol count, and the blood cholesterol count of the patient.

When we apply our analysis, we shall arrive at a diagnosis, either yes or no, the

patient is at risk or is not at risk.

But decision making in the real world isn’t that simple. Statistical decisions are

not absolute. No matter which choice we make, there is a probability of being

wrong. The converse probability, that we are right, is called the confidence level.

If the probability for error is expressed as a percentage, 100 � (% probability for

error) ¼ % confidence level.

The Problem. Suppose that the total serum cholesterol level in normal adults has

been established as 200 mg/100 mL (mg%) with a standard deviation of 25 mg%,

that is, m ¼ 200 and s ¼ 25. (Please distinguish between mg% and % probability.)

A patient’s serum is analyzed for cholesterol and found to contain 265 mg% total

cholesterol.

a. May we say at the 0.95 (95%) confidence level that the patient’s cholesterol is

abnormally elevated, or is this just a chance fluctuation in a normal patient? To

do this, we must first calculate z and then show that the patient’s cholesterol

level is greater than or less than that of 95% of normal patients. For the reading

to be abnormally elevated with 95% confidence, the z-value must be in an area

above the 95% limit of the z-curve. The 95% limit of the z-curve is that point

on the z-axis with 95% of normal cholesterol measurements below it and 5% of

the measurements above it (Fig. 1-6).

b. May we reach the same conclusion at the 0.99% confidence level?

c. If the patient’s cholesterol level is just at the 95% level, there is a 5%

probability that his cholesterol is randomly high and not indicative of

pathology. What is the probability that the cholesterol reading obtained for

this patient (265 mg%) resulted from chance factors and does not indicate a

genuine atherosclerosis risk factor?

d. The relative consequences of predictive errors cannot be ignored. In alerting

the patient to risk, recommending reduction in eggs, meat, and fats, the

diagnostician may be wrong, and this will certainly annoy the patient.

Conversely, an erroneous failure to issue a warning carries the risk of the
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patient’s death. Relative severity of outcome error should be a factor in

evaluating the statistical results once they are known.

e. What is the 95% limiting cholesterol level (in mg%) in normal patients?

Procedure. Calculate z for the patient, his ‘‘z-score,’’ numerically from the

integral in Eq. (1-23). Compare this with the % probability of finding the same

z-score in a normal patient. Once knowing the probability of the patient’s z-score,

one knows the probability that his cholesterol reading is due to chance factors and

not indicative of risk. Note that the integral over the interval [�1; 0] on the z-axis

is 0.5000, so we know everything we need to know by calculating our integrals

from 0 to some upper limit. We are not worried about whether the patient’s

cholesterol level is low; we already know that it is well above the arithmetic mean.

The probability that xi will fall in the normal interval is the same as the probability

of a random z in the normal interval. We can then arrive at decisions a through e

with their relative confidence levels (and risk levels).

Determine the probability of a random z using Program QSIM by substituting

the two lines

m¼ 1 / (SQR(2 * 3.14159))

DEF FNA (X)¼ EXP(-X * X / 2) 0**** define function

in place of the single DEF fna line of Program QSIM. Notice the convenience

substitution of X for z. Multiply a by m in the final line

PRINT: PRINT ‘‘Numerical integration yields,’’ m * a: END

Use the results of your integrations to answer questions a–e. Turn in the results of

this experiment with a short discussion.

z0

p 
(z

)

95% 5%

Figure 1-6 The Gaussian Distribution with the 95% Limit Indicated.
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Molecular Speeds

The Maxwell–Boltzmann distribution function (Levine, 1983; Kauzmann, 1966)

for atoms or molecules (particles) of a gaseous sample is

FðvxÞ ¼
m

2p kBT

� �1=2

eð�mv2
x=2kBTÞ ð1-24Þ

for molecular velocity vectors vx about their arithmetic mean vx ¼ 0 along an

arbitrarily selected x-axis. The temperature is T, the mass of the particles (assumed

identical to one another) is m, and kB is the Boltzmann constant, 1:381 � 10�23

J K�1.

The Maxwell–Boltzmann velocity distribution function resembles the Gaussian

distribution function because molecular and atomic velocities are randomly

distributed about their mean. For a hypothetical particle constrained to move on

the x-axis, or for the x-component of velocities of a real collection of particles

moving freely in 3-space, the peak in the velocity distribution is at the mean,

vx ¼ 0. This leads to an apparent contradiction. As we know from the kinetic theory

of gases, at T > 0 all molecules are in motion. How can all particles be moving

when the most probable velocity is vx ¼ 0?

The answer lies in the meaning of the probability curve. The maximum at vx ¼ 0

arises not because we have maximized our probability of guessing the right velocity

but because we have minimized the square of our probable error. (Using the square

of the error makes its sign irrelevant.) If we guess a velocity at some value of vx

other than zero, say a positive value, we will be right some of the time but the

square of our error will be large for all negative velocities (half of them). If we

guess vx ¼ 0, we will be wrong all of the time but the sum of squares of our errors

(positive and negative) will be least. In essence, the maximum of the velocity

probability curve is at zero because we are completely ignorant of the direction of

motion, and we had best make the guess that specifies no direction at all, namely,

zero. This is an application of the principle of least squares.

The distribution function for molecular speeds v is

GðvÞ ¼ m

2p kBT

� �3=2

eð�mv2=2kBTÞ4pv2 ð1-25Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y þ v2

z

q
. These lead to the familiar speed distribution curves like

those in Fig. 1-7. Unlike the velocity vector, which can be negative, speed v is a

scalar and is always positive. The probability of finding vx between the limits [a, b]

is

pðvxÞ ¼
ðb

a

FðvxÞdvx ð1-26Þ
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and the probability of finding v in the interval [a, b] is

pðvÞ ¼
ðb

a

GðvÞdv ð1-27Þ

The most probable value of the speed vmp can be obtained by differentiation of

the distribution function and setting dGðvÞ=dv ¼ 0 (Kauzmann, 1966; Atkins 1990)

to obtain

vmp ¼ 2kBT

m

� �1=2

ð1-28Þ

which is the particle speed at the peak of the curve in Fig. 1-7.

COMPUTER PROJECT 1- 4 j Maxwell–Boltzmann Distribution Laws

In chemical kinetics, it is often important to know the proportion of particles with a

velocity that exceeds a selected velocity v0. According to collision theories of

chemical kinetics, particles with a speed in excess of v0 are energetic enough to

react and those with a speed less than v0 are not. The probability of finding a particle

with a speed from 0 to v0 is the integral of the distribution function over that interval

ðv0

0

GðvÞdv ¼ m

2pkBT

� �3=2ðv0

0

eð�mv2=2kBTÞ4pv2dv ð1-29Þ

Speed

P
ro

ba
bi

lit
y 
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en
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ty

T = 200 K

T = 500 K

Figure 1-7 A Molecular Speed Distribution. The probability density is the expected number

of speeds within an infinitesimal speed interval dv.
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The probability of finding a particle with a molecular speed somewhere between 0

and 1 is 1.0 because negative molecular speeds are impossible; hence, the relative

frequency of speeds in excess of v0 is 1:0 �
Ð v0

0
GðvÞdv.

It is convenient to reason in terms of the fraction of particles having a velocity in

excess of vmp. The most probable velocity works as a normalizing factor, permitting

us to generate one curve that pertains to all gases rather than having a different

curve for each molecular weight and temperature. The integral of GðvÞdv over an

arbitrary interval, however, cannot be obtained in closed form. It is usually

integrated by parts (Levine, 1989) with the use of a scaling factor, to yield a

three-term equation that is evaluated to give the fraction f ðvÞ of particles with

speeds in excess of v0=vmp as a function of v0=vmp. This technique does not really

escape the problem of nonintegrable functions because the second term in the

evaluation for the frequency factor is a nonintegrable Gaussian.

It is also possible to integrate Eq. (1-29) directly by numerical means and to

subtract the result from 1.0 to obtain the proportion of particles with speeds

in excess of v0=vmp. In this project we shall use numerical integration of GðvÞdv

over various intervals to obtain f ðvÞ as a function of v0=vmp. Because vmp ¼
2kBT=mð Þ1=2

[Eq. (1-28)],
Ð v0

0
GðvÞdv can be writtenðv0

0

GðvÞdv ¼ 4ffiffiffi
p

p X2e�X2

dX ¼ 2:25626X2e�X2

dX ð1-30Þ

where X ¼ v0=vmp. This is the function we shall integrate in this project.

Procedure. Modify Program QSIM by substituting

DEF fna (X)¼ X * X * EXP(-X * X) * 2.25626

in place of the DEF fna line of Program QSIM and put

(1-a)

in place of

a

in the last line.

a. Using Program QSIM, generate the fraction of particles f(v) with a speed in

excess of v0=vmp as a function of v0=vmp by numerical evaluation of the integral

for intervals from 0 to 0.2, 0.4, etc. up to 2.0. Compare your plot of f(v) vs.

v0=vmp with the literature (Kauzmann, 1966, Rogers and Gratzer, 1984).

b. Find the speed below which 75% of N2 molecules move at 500 K. On average,

one in four N2 molecules is moving faster than the calculated value of v0 at

500 K. Why is f(v) near but not equal to 0.5000 when v0 ¼ vmp? The median

speed is that speed at which half the particles in a collection are gong faster

than vmed and half are going slower. Use Program QSIM to determine the ratio

of vmed to vmp.

Because the computer cannot store an infinite number of bits, computations

leading to very small and very large numbers are often inaccurate unless special
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precautions are taken. Results of the present calculation are poor at high velocities

because of limitations imposed on handling very small exponential numbers.

Fortunately, an approximation formula for v0

vmp
� 1:0 is known (Kauzmann, 1966)

f ðvÞ ¼ 1ffiffiffi
p

p
� �

e�v2

2v þ 1

v

� �
ð1-31Þ

for the fraction of molecular velocities that are substantially in excess of vmp.

Particles moving with these extreme velocities are rare but important because, in

many reactions, only very fast-moving molecules react. The proportion of very

energetic molecules relative to ordinary molecules, say those with speeds in excess

of 4vmp, increases rapidly with temperature. This is the cause of an exponential rise

of reaction rate with temperature observed in many reactions (Arrhenius’ rate law).

Atomic Orbitals

Once a numerical integration scheme that permits easy insertion of defined

functions and convenient setting of the limits of integration has been set up and

debugged, we may wish to use numerical integration for convenience rather than

necessity. For example, establishing that hydrogenic wave functions have been

correctly normalized and distinguishing between normalized and nonnormalized

wave functions are common exercises in introductory quantum mechanic courses

and can be mathematically difficult for all but the lowest atomic orbitals. Because

the square of the wave function c2 at r is proportional to the probability of finding

an electron within an infinitesimal interval r þ dr, the integral over the entire range

0 < r < 1 must be a certainty, pðrÞ ¼ 1:0.

Normalization is the process of finding a multiplicative constant for the wave

function such that the integral of c2 over all space is 1.0. ‘‘All space’’ in this

calculation is nonnegative because r cannot be less than 0.

The 1s orbital c1s ¼ e�r is correct but not normalized. The normalized function

governing the probability of finding an electron at some distance r along a fixed axis

measured from the nucleus in units of the Bohr radius a0 ¼ 5:292 � 10�11 m is

c1s ¼
1ffiffiffi
p

p 1

a0

� �
e�r=a0 ð1-32Þ

The probability function (1-33 below) governs the probability of finding the

electron at some distance r from the nucleus in any direction. Owing to the factor

r2, this function gives us the probability of finding the electron anywhere within

the interval r þ dr on the surface of a sphere of radius r. The radial function (1-32)

is monotonically decreasing, but the function in spherical polar coordinates

[Eq. (1-33)] goes through a maximum similar to that of the Maxwell–Boltzmann

function of the last computer project.

Spherically symmetric (radial) wave functions depend only on the radial

distance r between the nucleus and the electron. They are the 1s, 2s, 3s . . . orbitals
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of atomic hydrogen. For spherically symmetric wave functions, simply typing

FNA(X) as the wave function in question and integrating its square over the interval

[0;1] approximates 1.0 for normalized wave functions and something else for

nonnormalized functions. We cannot really integrate to an upper limit of infinity, so

we select an upper limit that is large relative to electronic excursions. If the upper

limit is not self-evident, it can be systematically incremented until a self-consistent

integral is found. When the integral no longer increases for a small increase in the

upper limit of integration, the limit is, for all practical purposes, ‘‘infinite.’’

Evaluation of the integral
Ð r2

r1
c2ðrÞdr, where cðrÞ is a normalized radial wave

function, yields the probability density for finding an electron within a finite

interval r1 < r < r2 from the nucleus. A common assigned problem in elementary

quantum chemistry (McQuarrie, 1983; Hanna, 1981) is to determine the probability

of finding an electron in the 1s orbital of a hydrogen atom at a radial distance of one

Bohr radius or less from the nucleus. This problem is usually solved by integration

in closed form (ans. pðrÞ ¼ 0:323Þ, but the wave function can easily be introduced

into an iterative procedure, such as a Simpson’s rule integration program, that

calculates the probability between any stipulated limits on r

pðrÞ ¼ 4

a3
0

ðr

0

r2e
�2r
a0 dr ¼ 4

ðx

0

x2e�2xdx ð1-33Þ

where x ¼ r=a0 and a0 is the Bohr radius. The value p in the normalization constant

of Eq. (1-33) cancels with the p in 4pr2 as the surface of a sphere. Check the

algebra to see that this is true.

COMPUTER PROJECT 1-5 j Elementary Quantum Mechanics

Procedure. Modify Program QSIM to perform the integration in Eq. (1-33) so as

to generate the probability of finding the electron within radial distances of 0.1, 0.2,

0.3, . . . 5.0 Bohr radii from the nucleus of the hydrogen atom. Check the function

(1-33) to verify that the program is working and that the function is normalized. (It

is.) Note that a correctly modified program run between limits of 0 and 1 at, say

n ¼ 1000 subintervals, gives the probability of finding the electron anywhere within

a sphere having a radius of 1.0 bohr with the nucleus at its center. This is a double

check on the program. You should get 0.323 in agreement with the analytical

integration mentioned above. In what radius interval of 0.10 bohr is the probability

of finding the electron greatest? What is the probability within that interval?

Draw a cumulative probability curve p(x) vs. x for finding an electron within any

given radius. The curve resembles an ogive or S-shaped curve common in chemical

applications, but it is flattened at the top owing to the non-Gaussian nature of the

square of the 1s wave function. An extension of this project is to set up probability

limits so that critical radii can be generated that contain the electron with a

probability of 0.1, 0.2, . . . 0.9. When these radii are known, probability contour

maps can be drawn (Gerhold, 1972). Draw the appropriate contour map for the

hydrogen atom. What is the probability of finding an electron between a and 2a,
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where a is the Bohr radius? As a further extension of this project, repeat the

procedure for the 2s and 3s orbitals of the hydrogen atom available in most physical

chemistry and quantum chemistry textbooks (e.g., House, 1998).

Entropy

The subject of entropy is introduced here to illustrate treatment of experimental

data sets as distinct from continuous theoretical functions like Eq. (1-33). Thermo-

dynamics and physical chemistry texts develop the equation

S2 ¼ S1 þ
ðT2

T1

CP

T
dT ð1-34Þ

where CP is the heat capacity at constant pressure, as the fundamental equation for

determining the enthalpy change S2 � S1 of a substance that is heated from T1 to T2

but does not suffer a phase change over that temperature interval. The alternative

form

S2 ¼ S1 þ
ðln T2

ln T1

CPdðln TÞ ð1-35Þ

is also used. Armed with the third law of thermodynamics, heat capacities, and

thermal data that permit calculation of accurate entropies of intervening phase

changes, these integrations permit one to determine absolute entropies.

Several examples have been given (Norris, 1981) in which the entropy change of

a diatomic gas at 500 K is determined from a knowledge of its entropy at 298.15 K

by numerical integration of accurate heat capacity data from 298 to 500 K. Several

other chemical applications of numerical integration are given, including determi-

nation of the equilibrium constant at an arbitrary temperature T2 from the integrated

van’t Hoff equation (Cox and Pilcher, 1970) and a knowledge of K1 at T1.

Supporting algorithms, data tables, references, and commentaries on the calcula-

tions are given.

In the first part of this project, the analytical form of the functional relationship

is not used because it is not known. Integration is carried out directly on the

experimental data themselves, necessitating a rather different approach to

the programming of Simpson’s method. In the second part of the project, a curve

fitting program (TableCurve, Appendix A) is introduced. TableCurve presents the

area under the fitted curve along with the curve itself.

COMPUTER PROJECT 1-6 j Numerical Integration of

Experimental Data Sets

For the first part of this project, we suppose that we are presented with the following

experimental data on the heat capacity at constant pressure CP of solid lead at

various temperatures up to and including 298 K (Table 1-2).

We shall assume that CP ¼ 0 at T ¼ 0 K. We wish to obtain the absolute entropy

of solid lead at 298 K. Each entry in Table 1-2 leads to a value of CP=T . The
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experimental data set can be entered into a Simpson’s rule integration program in

the form of a DATA statement consisting of 14 number pairs, T first and CP=T

second, in each pair. Note that spaces are not used in the data statement. There must

be an even number of data pairs for Simpson’s rule integration because the

subintervals are chosen in pairs.

A Shortcut. The spreadsheet Excel (Appendix A) is available on many micro-

computer systems. It is designed for business applications, not science, but it can be

useful for handling large data sets. In this problem, we have a set of 14 CP values at

corresponding T values and we would like to enter CP=T and T values into the

program. Carrying out the repeated divisions by hand calculator is not very time-

consuming or error-prone for this small problem, but it would be in a research

project generating hundreds of data points.

Once entered into a spreadsheet, data can be manipulated column at a time. For

example, let us take the ‘‘top cells’’ in Table 1-3 as cells A3 and B3 (columns A and

B, line 3 in Table 1-3) containing 5 and 0.305 to avoid dividing 0 by 0. Using the

easycalc option of the tools menu in Excel, divide the contents of B3 by A3 and

place the results in cell C3. Now select C3 and the remaining 12 unfilled cells in the

column, C3 to C15, and fill down using the mouse. The results of the calculation of

CP=T appear for all remaining cells in the C column.

Table 1-2 Experimental Heat Capacities at Constant Pressure for Lead

T, K 0 5 10 15 20 25 30 50 70

CP; J K�1 mol�1 0 0.305 2.80 7.00 10.8 14.1 16.5 21.4 23.3

100 150 200 250 298

24.5 25.4 25.8 26.2 26.5

Table 1-3 Excel Output for Entropy Calculations

T CP CP=T

A1 B1

0 0

5 0.305 0.061

10 2.8 0.28

15 7 0.46667

20 10.8 0.54

25 14.1 0.564

30 16.5 0.55

50 21.4 0.428

70 23.3 0.33286

100 24.5 0.245

150 25.4 0.16933

200 25.8 0.129

250 26.2 0.1048

298 26.5 0.08893
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Note that different spreadsheets and different versions of the same spreadsheet

vary in the details of the calculation but that the basic idea for all is to carry out the

calculation for the top cell and ‘‘fill in’’ the remaining cells in the same column with

the mouse—a very convenient technique for simple calculations on large data sets.

Consult the Help section of your spreadsheet for specific details.

Program

Program QENTROPY

DIM X(100), Y(100)

DATA 0,0,5,.061,10,.28,15,.4666,20,.54,25,.564,30,.55,50,

.428, 70,.333,100,.245

DATA 150,.169,200,.129,250,.105,298,.089

N¼ 14

FOR I¼ 1 TO N: READ X(I), Y(I) 0this module reads the data set

PRINT X(I), Y(I)

NEXT I

FOR I¼ 0 TO N � 2 STEP 2 0this module calculates the

S¼ Sþ (X(Iþ 1) � X(I)) * (Y(I)) 0area of the rectangular

S¼ Sþ (X(Iþ 2) � X(Iþ 1)) * Y(Iþ 2) 0blocks

NEXT I

FOR I¼ 0 TO N � 2 STEP 2 0this module calculates the area under

S¼ Sþ (X(Iþ 1) � X(I)) * 0the parabolas 1, 4 in Fig. 1-3.

(Y(Iþ 1) � Y(I)) *.6667

S¼ Sþ (X(Iþ 2) � X(Iþ 1)) * (Y(Iþ 1) � Y(Iþ 2)) *.6667

NEXT I: PRINT

PRINT ‘‘THE ENTROPY (CHANGE) IS:’’: PRINT S: END

The DIM statement in Program QENTROPY sets aside 100 memory locations

for the experimental data points. It is necessary for any data set having more than

12 data pairs. What is the entropy of Pb at 100 and 200 K? Make a rough sketch of

the curve of Cp vs. T for lead. Sketch the curve of Cp=T vs. T for lead.

Sigmaplot and Tablecurve

Jandel Scientific produces two programs that have many features useful in data

processing. Both are rather complicated, intended for professional rather than

student use, consequently some learning time must be invested to become

proficient. This time is amply repaid later and the learning curve is not steep, so

one can put these programs to practical use on relatively simple problems while

learning how to handle more difficult ones. We shall give two examples here: curve

plotting using SigmaPlot and curve fitting with numerical integration using

TableCurve.

On entering SigmaPlot (we use version 5.0), one is presented with a data table

that is essentially a spreadsheet. Enter T as the independent or x-variable into

the first column of the SigmaPlot data table and CP=T as the dependent or y-

variable into the second column. The SigmaPlot data table should resemble columns

1 and 3 of Table 1-3. Rounding to three significant figures is permissible.
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After the data set has been entered and saved, one has several plotting options

represented by icons in square boxes at the left of the data table. Click on the icon

with a single zig-zag line to select a single plot on rectangular coordinates. After

selection of the single plot option, one is presented with several suboptions. Select

the option represented by the wavy line for a spline fit (similar to Simpson’s rule) to

give a single continuous curve through the points. After selection of the spline fit,

one is presented with a ‘‘plotting wizard’’ that asks if you want an x-y plot. Click

yes. Now specify the x variable as column 1 and the y variable as column 2. The

wizard will present you with the option Finish. Click on Finish to obtain a plot that

is in all essential respects Fig. 1-8 except for some cosmetic changes that you can

make according to the instructions in the SigmaPlot manual or the Help file.

Different systems may require different protocols to obtain one of many possible

graphs, and several protocols in one system often achieve the same result. At entry

level, all this may seem a bit bewildering, but to anyone who has struggled with

mechanical drawing tools to make a simple line drawing like Fig. 1-8, SigmaPlot
seems a miracle.

To anyone who has carried out curve-fitting calculations with a mechanical

calculator (yes, they once existed) TableCurve (Appendix A) is equally miraculous.

TableCurve fits dozens, hundreds, or thousands of equations to a set of experi-

mental data points and ranks them according to how well they fit the points,

enabling the researcher to select from among them. Many will fit poorly, but usually

several fit well.

We shall find the equation that best fits the points in columns 1 and 3 of Table

1-3 with TableCurve. On opening TableCurve, one is presented with a blank

desktop with several commands at the top. The command to enter data is not Enter

but Edit. Two formats are available, the TableCurve editor and the ASCII editor.

The TableCurve format is probably a little simpler than the ASCII format, but they

are both fairly self-evident and either should yield a data file resembling the data
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Figure 1-8 CP=T vs. T for Lead.
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file for SigmaPlot. Each x-variable should be entered as an entry in the first column,

followed by the y-variable as an entry in the second column. The statistical weight

of each data point is 1, which is automatically entered in the TableCurve format.

Click on Process ) Fit all equations and wait a moment while the curve fitting

takes place. The formula of the best fit will appear with a graph showing the curve

of the equation and the data points for comparison. In this case, the fit of the first

ranked equation is very good. The first ranked equation turns out to be a quotient of

polynomials

y0:5 ¼ ða þ cx þ ex2Þ=ð1 þ bx þ dx2 þ fx3Þ ð1-36aÞ

that is,

Cp

T
¼ ða þ cT þ eT2Þ2

ð1 þ bT þ dT2 þ f T3Þ2
ð1-36bÞ

where constants a through f are empirical fitting constants given by the program.

Equations fitting the curve with a lower ranking according to closeness of fit are

also given.

Along with the curve fitting process, TableCurve also calculates the area under

the curve. According to the previous discussion, this is the entropy of the test

substance, lead. To find the integral, click on the numeric at the left of the desktop

and find 65.06 as the area under the curve over the range of x. The literature value

depends slightly on the source; one value (CRC Handbook of Chemistry and

Physics) is 64.8 J K�1 mol�1.

Mathcad

Before posing the problem for this computer project, we shall introduce another

very useful piece of microcomputer software by repeating the integration of

Eq. (1-36a) with Mathcad (Appendix A). Like other software of this kind, there

is a short learning process before mathcad can be used with ease. Once one has

entered the equation of interest, mathcad solves it with a click on the ¼ sign. In the

present example, the constants of (Eq. 1-36a) are entered followed by the desired

integral

a :¼ 0:013003 b :¼ 0:017052 c :¼ 0:068394 d :¼ 0:002334 e :¼ 0:000745

f :¼ 0:000002912ð298

0

ða þ c � x þ e � x2Þ2

ð1 þ b � x þ d � x2 þ f � x3Þ2
dx ¼ 65:061

Note that the constants must be defined equal to their numerical values (defined ¼
is ; on the keyboard). These definitions must be above the integral you wish to

solve. Mathcad operates top down. Mathcad produces the same value for the

integral that we obtained from TableCurve. This calculation is redundant with the

calculations already performed in this section to introduce new software by solving

a problem for which we already know the answer.
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The Problem (at last).

A lustrous metal has the heat capacities as a function of temperature shown in

Table 1-4 where the integers are temperatures and the floating point numbers

(numbers with decimal points) are heat capacities. Print the curve of CP vs. T and

CP=T vs. T and determine the entropy of the metal at 298 K assuming no phase

changes over the interval [0, 298]. Use as many of the methods described above as

feasible. If you do not have a plotting program, draw the curves by hand. Scan a

table of standard entropy values and decide what the metal might be.

PROBLEMS

1. Show that the area under a parabolic arc similar to Fig. 1-3 but that is concave

upward is 1
3

wð f ðxiÞ þ 4f ðxiþ1Þ þ f ðxiþ2ÞÞ.
2. Compute the probability of finding a randomly selected experimental measure-

ment between the limits of �0.5 standard deviations from the mean.

3. Given experimental measurements with m ¼ 123:4 and s ¼ 12:9, draw the

entire probability distribution curve for the population of all experimental

measurements in the class studied.

4. Write a program in BASIC to generate the area under the normal curve over the

interval [0, 4] at intervals of 0.01z.

5. The program in Problem 4 gives final values for the integral under the normal

curve that are obviously too large. The last entry is 0.5002, whereas, from the

nature of the problem, we know that the integral cannot exceed 0.5000. Suggest

a reason for this.

6. If Eq. (1-22) is normalized to 1.0, then

f ðzÞ ¼
ðb

a

e�z2=2dz

should be
ffiffiffiffiffiffi
2p

p
for [�1; 1]. Find out if this is true by numerical integration

using limits on the integral that are wide enough that the area under the curve

doesn’t change by more than a part per thousand or so for a small change in the

limits of integration.

7. (a) Is the atomic wave function

� ¼ 1ffiffiffi
p

p e�r

normalized to 1?

Table 1-4 Experimental Heat Capacities at Constant Pressure for an

Unknown Metal

0,0,5,0.24,10,0.64,15,1.36,20,2.31,25,3.14,30,4.48,50,9.64,70,15.7,100,20.1,150,22.0,

200,23.4,250,24.3,298,25.5
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(b) The probability that the electron in the H atom will be found at a radial

distance r from the nucleus is

pðrÞ ¼
ðr

0

4r2e�2rdr

where r is measured in units of bohr (1 bohr¼ 52.92 pm). What is the

probability that the electron will be found within 2 bohr radii?

(c) At approximately what radial distance is the probability of finding the H

atom electron less than 1%?

8. What is the probability of finding an electron between 0.6 and 1.2 Bohr radii of

the nucleus. Assume the electron to be in the 1s orbital of hydrogen.

9. The 2s orbital of hydrogen can be written

� ¼ ð2 � rÞe�r

Plot this orbital with appropriate scale factors to determine the behavior of � in

rectangular coordinates. Describe its behavior in spherical polar coordinates.

10. Plot the probability density obtained from � in Problem 9 as a function of r,

that is, simply square the function above with an appropriate scale factor as

determined by trial and error. Comment on the relationship between your plot

and the shell structure of the atom.

11. Sketch the probability of finding an electron in the 2s orbital of hydrogen at

distance r from a hydrogen nucleus as a function of r as a contour map with

heavy lines at high probability and light lines at low probability. How does this

distribution differ from the 1s orbital?

12. Draw the curve of CP vs. T and CP=T vs. T from the following heat capacity

data for solid chlorine and determine the absolute entropy of solid chlorine at

70.0 K
T 5 10 15 20 25 30 35 40 50 60 70

CP 0.14 1.10 3.72 7.74 12.09 16.69 20.79 23.97 29.25 33.47 36.32

13. Which of the following two integrals is wrong?

1:

ð1
0

x3e�ax2

dx ¼ 1

2a2

2:

ð1
�1

x3e�ax2

dx ¼ 1

2a

14. A function for which f ðxÞ ¼ �f ð�xÞ over a specific intereval is called an odd

function over that interval. If f ðxÞ ¼ f ð�xÞ, the function is even. For example,

y ¼ x, is an odd function over ½�2; 2�. The interval ½�2; 2� is symmetrical about

x ¼ 0. Write some odd functions. Write some even functions. Find a general

rule for the integrals of odd functions over a symmetrical interval. Find a

general rule for the integral of the product of an odd function and an even

function over an interval that is symmetrical for both.
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