
63

The last chapter covered the setup and configuration of the development envi-
ronment. The development environment is an important necessity and will
make the rest of your development more enjoyable.

This chapter explores Web Forms. Web Forms bring the structure and fun
back to Web development. This chapter starts by looking at the two program-
ming models for ASP.NET. It then looks at how ASP.NET uses server controls
and at the HTML (HyperText Markup Language) and Web server controls. It
finishes by looking at view state and post back.

Web Forms

Web Forms are an exciting part of the ASP.NET platform. Web Forms give the
developer the ability to drag and drop ASP.NET server controls onto the form
and easily program the events that are raised by the control. Web Forms have
the following benefits:

Rendering. Web Forms are automatically rendered in any browser. In
addition, Web Forms can be tweaked to work on a specific browser to
take advantage of its features.

Exploring ASP.NET
and Web Forms

C H A P T E R

3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 63

Programming. Web Forms can be programmed using any .NET lan-
guage, and Win32 API calls can be made directly from ASP.NET code.

.NET Framework. Web Forms are part of the .NET Framework, therefore
Web Forms provide the benefits of the .NET Framework, such as perfor-
mance, inheritance, type safety, structured error handling, automatic
garbage collection, and xcopy deployment.

Extensibility. User controls, mobile controls, and other third-party con-
trols can be added to extend Web Forms.

WYSIWYG. Visual Studio .NET provides the WYSIWYG (what you see
is what you get) editor for creating Web Forms by dragging and drop-
ping controls onto the Web Form.

Code Separation. Web Forms provide a code-behind page to allow the
separation of HTML content from program code.

State Management. Provides the ability to maintain the view state of
controls across Web calls.

Classroom Q & A
Q: I am currently developing my entire Web page by typing the HTML

and client-side script into an ASCII editor. Are standard HTML tags
with client-side script still available? Also, can I still use JavaScript
for client-side code?

A: Yes. ASP.NET is focused around the added functionality of server
controls, but you can still use standard HTML tags with client-side
script as you have done in the past. As you become more familiar
with the Visual Studio .NET environment, you may choose to
change some of your controls to server controls to take advantage
of the benefits that server controls provide.

Q: Can I use ASP and ASP.NET pages on the same Web site? Can I use
Session and Application variables to share data between the ASP
and ASP.NET pages?

A: Yes and no. You can run ASP and ASP.NET Web pages on the same
Web site; in order words, the pages can coexist. You cannot share
application and session data between the ASP and ASP.NET pages,
because the ASP and ASP.NET run under separate contexts. What
you will find is that you will have one set of Session and Applica-
tion variables for the ASP pages and a different set of Session and
Application variables for the ASP.NET pages.

64 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 64

Q: It’s my understanding that there are two types of server controls.
Can both types of server controls be used on the same Web page?

A: Yes. Visual Studio .NET provides HTML and Web server controls.
You can provide a mixture of these controls on the same page.
These controls will be covered in this chapter.

Q: I currently use VBScript and JavaScript to write my server-side
code. Basically, if I am writing the ASP page and a function is eas-
ier to accomplish in JavaScript, I write it in JavaScript. For all other
programming, on the page, I use VBScript. Can I continue to mix
Visual Basic .NET and JavaScript on the same page?

A: No. ASP.NET requires server-side script to be written in the same
language on a page-by-page basis. In addition, Visual Studio .NET
requires a project to be written in a single server-side language.

Two ASP.NET Programming Models

People who are familiar with traditional ASP are accustomed to creating a single
file for each Web page. ASP.NET supports the single-file programming model.
Using the single-page programming model, the server code and the client-side
tags and code are placed in the same file with an .aspx file extension. This
doesn’t do anything to help clean up spaghetti code, but the single-file model
can be especially useful to ease the pain of migrating ASP code to ASP.NET.

The two-page model provides a separation of the server-side code and
client-side HTML and code. The model offers the ability to use an .aspx page
for the client-side presentation logic and a Visual Basic code-behind file with a
.vb file extension for the server-side code.

This chapter starts by using the single-page model due to its simplicity.
After most of the basic concepts are covered, the chapter switches to the two-
page model. The two-page, or code-behind, model is used exclusively
throughout the balance of the book due to the benefits it provides.

Simple ASP.NET Page

Using the single-page programming model, a simple Hello World page using
ASP.NET can be written and saved to a file called vb.aspx containing the
following:

<%@ Page Language=”vb” %>

<HTML>

<HEAD><title>Hello World Web Page</title></HEAD>

Exploring ASP.NET and Web Forms 65

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 65

<body>

<form id=”Form1” method=”post” runat=”server”>

<asp:TextBox id=”Hi” runat=”server”>

Hello World

</asp:TextBox>

<asp:Button id=”Button1” runat=”server” Text=”Say Hi”>

</asp:Button>

</form>

</body>

</HTML>

The first line of code contains the page directive, which contains the com-
piler language attribute. The compiler language attribute can only be used
once on a page. If additional language attributes are on the page, they are
ignored. Some language identifiers are shown in Table 3.1. If no language
identifier is specified, the default is vb. The page directive has many other
attributes, which will be covered throughout this book.

The language identifiers that are configured on your machine may be
found by looking in the machine.config file, which is located in the
%systemroot%\\Microsoft.NET\Framework\version\CONFIG folder. The
machine.config file is an xml configuration file, which contains settings
that are global to your machine. A search for compilers will expose all of
the language identifiers that are configured on your computer. Always
back up the machine.config file before making changes, as this file affects
all .NET applications on the machine.

The rest of the page looks like standard HTML, except that this page con-
tains three server controls: the form, the asp:TextBox, and the asp:Button.
Server controls have the run=”server” attribute. Server controls automatically
maintain client-entered values across round trips to the server. ASP.NET auto-
matically takes care of the code that is necessary to maintain state by placing
the client-entered value in an attribute. In some cases, no acceptable attribute
is available to hold the client-entered values. In those situations, the client-
entered values are placed into a <input type=”hidden”> tag.

Table 3.1 ASP.NET Language Identifiers

LANGUAGE ACCEPTABLE IDENTIFIERS

Visual Basic .NET vb; vbs; visualbasic; vbscript

Visual C# c#; cs; csharp

Visual J# VJ#; VJS; VJSharp

Visual JavaScript js; jscript; javascript

66 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 66

When the page is displayed in the browser, the text box displays the initial
Hello World message. A look at the client-side source reveals the following:

<HTML>

<HEAD><title>Hello World Web Page</title></HEAD>

<body>

<form name=”Form1” method=”post” action=”vb.aspx” id=”Form1”>

<input type=”hidden”

name=”__VIEWSTATE”

value=”dDwtMTc2MjYxNDA2NTs7Pp6EUc0BOodWTOrpqefKJJjg3yEt”/>

<input type=”text”

name=”Hi”

value=”Hello World” id=”Hi” />

<input type=”submit”

name=”Button1”

value=”Say Hi” id=”Button1” />

</form>

</body>

</HTML>

The form server control was rendered as a standard HTML form tag with
the action (the location that the data is posted to) set to the current page. A new
control has been added automatically, called the __VIEWSTATE control. (More
on the __VIEWSTATE control is provided in this chapter.) The asp:TextBox
Web server control was rendered as an HTML text box and has its value set to
“Hello World.” The asp:button Web server control was rendered as an HTML
Submit button.

If Hi Universe is typed into the text box and the button is clicked, the button
will submit the form data to the server and return a response. The response
simply redisplays the page, but Hi Universe is still in the text box, thereby
maintaining the state of the text box automatically.

A glimpse at the client-side source reveals the following:

<HTML>

<HEAD><title>Hello World Web Page</title></HEAD>

<body>

<form name=”Form1” method=”post” action=”vb.aspx” id=”Form1”>

<input type=”hidden”

name=”__VIEWSTATE”

value=”dDwtMTc2MjYxNDA2NTs7Pp6EUc0BOodWTOrpqefKJJjg3yEt”/>

<input type=”text”

name=”Hi”

value=”Hi Universe” id=”Hi” />

<input type=”submit”

name=”Button1”

value=”Say Hi” id=”Button1” />

</form>

</body>

</HTML>

Exploring ASP.NET and Web Forms 67

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 67

Table 3.2 ASP.NET Server Tags

SERVER TAG MEANING

<%@ Directive %> Directives no longer need to be the first line in the
code, and many new directives may be used in a
single ASP.NET file.

<tag runat=”server” > Tags that have the runat=”server” attribute are server
controls.

<script runat=”server” > ASP.NET subs and functions must be placed inside
the server-side script tag and cannot be placed
inside the <% %> tags.

<%# DataBinding %> This is a new tag in ASP.NET. It is used to connect, or
bind, to data. This will be covered in more detail in
Chapter 8, “Data Access with ADO.NET.”

<%-- Server Comment --%> Allows a server-side comment to be created.

<!-- #include --> Allow a server-side file to be included in a
document.

<%= Render code %> Used as in-line code sections, primarily for rendering
and <% %> a snippet of code at the proper location in the

document. Note that no functions are permitted
inside <% %> tags.

The only change is that the text box now has a value of Hi Universe. With tra-
ditional ASP, additional code was required to get this functionality that is built
into ASP.NET server controls.

Many changes have been made in the transition from ASP to ASP.NET. Table
3.2 shows server tags that are either new or have a different meaning in
ASP.NET. Understanding these changes will make an ASP to ASP.NET migra-
tion more palatable.

Server Controls

A server control is a control that is programmable by writing server-side
code. Server controls automatically maintain their state between calls to the
server. Server controls can be easily identified by their runat=”server” attribute.
A server control must have an ID attribute to be referenced in code. ASP.NET
provides two types of server controls; HTML and Web. This section looks at
these controls.

68 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 68

HTML Server Controls
HTML server controls resemble the traditional HTML controls, except they
have a runat=”server” attribute. There is typically a one-to-one mapping of an
HTML server control and the HTML tag that it renders. HTML server controls
are primarily used when migrating older ASP pages to ASP.NET. For example,
the following ASP page needs to be converted to ASP.NET:

<HTML>

<HEAD><title>Employee Page</title></HEAD>

<body>

<form name=”Form1” method=”post” action=”vb.asp” id=”Form1”>

<input type=”text”

name=”EmployeeName”

id=” EmployeeName “ >

<input type=”submit”

name=”SubmitButton”

value=”Submit” id=” SubmitButton” >

</form>

</body>

</HTML>

This sample page can be converted by adding the runat=”server” attribute to
the form and input tags, and removing the action=”vb.asp” attribute on the
form. The filename needs an .aspx extension. The modified Web page looks
like this:

<HTML>

<HEAD><title>Employee Page</title></HEAD>

<body>

<form name=”Form1” method=”post” id=”Form1” runat=”server”>

<input type=”text”

name=”EmployeeName”

id=”EmployeeName” runat=”server” >

<input type=”submit”

name=”SubmitButton”

value=”Submit” id=”SubmitButton” runat=”server”>

</form>

</body>

</HTML>

This example shows how the use of HTML controls can ease a conversion
process. If the existing tags had JavaScript events attached, those client-side
events would continue to operate.

This ease of migration benefit can also be a drawback. Being HTML-centric,
the object model for these controls is not consistent with other .NET controls.
This is where Web server controls provide value.

Exploring ASP.NET and Web Forms 69

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 69

Web Server Controls
Web server controls offer more functionality than HTML controls, their object
model is more consistent, and more elaborate controls are available. Web
server controls are designed to provide an object model that is heavily focused
on the purpose of the object rather that the HTML that is generated. In fact, the
Web server control’s source code will typically be substantially different from
the HTML it generates. Some Web server controls, such as the Calendar and
DataGrid, produce complex tables with JavaScript client-side code.

Web server controls have the ability to detect the browser capabilities and
generate HTML that uses the browser to its fullest potential.

During design, a typical Web server control’s source code will look like the
following:

<asp:button attributes runat=”server”/>

The attributes of the Web server control are properties of that control, and
may or may not be attributes in the generated HTML.

Server Control Recommendations
Consider using HTML server controls when:

■■ Migrating existing ASP pages to ASP.NET.

■■ The control needs to have custom client-side script attached to the
control’s events.

■■ The Web page requires a great amount of client-side code, where
client-side events need to be programmed extensively.

In all other situations, it’s preferable to use Web server controls.

Server Control Event Programming
An important feature of server controls is the ability to write code that exe-
cutes at the server in response to an event from the control.

ViewState

When a Web Form is rendered to the browser, a hidden HTML input tag is
dynamically created, called __VIEWSTATE (ViewState). This input contains
base64-encoded data that can be used by any object that inherits from
System.Web.UI.Control, which represents all of the Web controls and the

70 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 70

Web Page object itself. ViewState is a property tag that is optimized to hold
primitive type, strings, HashTables, and ArrayLists, but can also hold any
object that is serializable or data types that provide a custom TypeConverter.

An object may use ViewState to persist information across calls to the server
when that information cannot easily be persisted via traditional HTML attrib-
utes. In some instances, ViewState is not necessary, because the content of a
control may automatically be persisted across calls to the server. For example,
a TextBox automatically sends its contents back to the server via its value prop-
erty, and the server can repopulate the value property when rendering it back
to the browser. If, however, additional information is needed that cannot eas-
ily be represented with traditional HTML attributes, ViewState comes to the
rescue.

One example of using ViewState would be a scenario where a ListBox is
populated by querying a database. It may not be desirable to requery the data-
base everytime the page is posted to the server. The ListBox uses ViewState to
hold the complete list of items that are placed in the ListBox. ViewState stores
the list of items that were programmatically placed into the ListBox. By plac-
ing the list of items in ViewState, the ListBox will be repopulated automati-
cally. The server will not need to requery the database to repopulate the
ListBox, because the ListBox is maintaining its own state. In the following code
sample, an asp:ListBox server control has been added, as has been a subrou-
tine to simulate loading the ListBox programmatically from a database.

<HTML>

<script runat=”server”>

sub Form_Load(sender as object, e as System.EventArgs) _

handles MyBase.Load

‘simulate loading the ListBox from a database

ListBox1.Items.Add(New ListItem(“apple”))

ListBox1.Items.Add(New ListItem(“orange”))

end sub

</script>

<HEAD><title>Hello World Web Page</title></HEAD>

<body>

<form id=”Form1” method=”post” runat=”server”>

<asp:TextBox id=”Hi” runat=”server”>

Hello World

</asp:TextBox>

<asp:Button id=”Button1” runat=”server” Text=”Nothing”>

</asp:Button>

<asp:ListBox id=”ListBox1” runat=”server”>

</asp:ListBox>

</form>

</body>

</HTML>

Exploring ASP.NET and Web Forms 71

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 71

After the ListBox and code have been added, browsing to this sample page
will show the ListBox, which will contain the Apple and Orange items that
were added by the form load procedure. Viewing the source reveals a much
larger ViewState as shown next.

<input type=”hidden” name=”__VIEWSTATE”

value=”dDwtMzE3ODYxNTUzO3Q8O2w8aTwyPjs+O2w8dDw7bDxpPDU+Oz47bDx

0PHQ8O3A8bDxpPDA+O2k8MT47PjtsPHA8YXBwbGU7YXBwbGU+O3A8b3JhbmdlO2

9yYW5nZT47Pj47Pjs7Pjs+Pjs+Pjs+Gyn1i+uQFP6LoUl4/8djhigkR4Q=” />

Correcting Multiple Entries
This page contains a button, which has not been programmed to do anything,
but will cause all of the form data to be posted back to the server. If the button
is clicked, the ListBox will contain Apple, Orange, Apple, and Orange. What
happened?

ASP.NET will automatically rebuild the ListBox using the items that are in
ViewState. Also, the form load subroutine contains code that simulates load-
ing the ListBox from a query to a database. The result is that we end up with
repeated entries in the ListBox. One of the following solutions can be applied.

Use the IsPostBack Property

ASP.NET provides the IsPostBack property of the Page object to see if the page
is being requested for the first time. The first time that a page is requested, its
IsPostBack property will be false. When data is being sent back to the server,
the IsPostBack property will be true (see Figure 3.1).

Figure 3.1 The first time that a page is requested, the IsPostBack property of the page is
equal to false. When the page data is submitted back to the server, the IsPostBack property
will be true.

First
Request for

myPage

User fills in
form and
submits

data

Browser

IsPostBack = false
Http "Get" myPage.aspx (no data)

Response = myPage.aspx

Http "Post" myPage.aspx (data)

Response = myPage.aspx
IsPostBack = true

Web Server

72 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 72

Change the form load subroutine by adding a condition that checks to see if
the page is being loaded for the first time, and if so, load the TextBox from the
database. If not, use the ViewState to populate the ListBox. Here is a sample:

sub Form_Load(sender as object, e as System.EventArgs) _

handles MyBase.Load

‘simulate loading the ListBox from a database

If not IsPostBack then

ListBox1.Items.Add(New ListItem(“apple”))

ListBox1.Items.Add(New ListItem(“orange”))

End if

end sub

This routine uses the IsPostBack method to see if the page is being posted
back. If true, then there is no need to load the information from the database.

Turn off ViewState

It may more desirable to requery the database, especially if the data changes
regularly. In this example, instead of turning off the query to the database, the
ViewState can be turned off. Here is a sample:

<asp:ListBox id=”ListBox1” EnableViewState=”False”>

</asp:ListBox>

Turning off ViewState for this control reduces the size of the data that View-
State passes to and from the server.

Post Back

In the previous examples, all ASP.NET server controls were encapsulated in a
form that has the runat=”server” attribute. This is a requirement. Also notice
that the original form tag in the source code is:

<form id=”Form1” method=”post” runat=”server”>

A view of the client source reveals that the form tag was transformed to:

<form name=”Form1” method=”post” action=”vb.aspx” id=”Form1”>

Notice that the action attribute is not valid in the original source, but
ASP.NET adds the action=”vb.aspx” attribute, where vb.aspx is the name of the
current page. In essence, the page will always post back to itself.

Exploring ASP.NET and Web Forms 73

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 73

Each server control has the ability to be configured to submit, or post, the
form data back to the server. For the TextBox, AutoPostBack is set to false by
default, which means that the text is not sent back to the server until a differ-
ent control posts the data back to the server. If AutoPostBack is set to true and
the text is changed, then the text box will automatically post the form data
back to the server when the text box loses focus. The following line shows how
to turn on the AutoPostBack feature for the text box.

<asp:TextBox id=”Hi” runat=”server” AutoPostBack=”True”>

In many cases, the default behavior for the TextBox is appropriate. The List-
Box and DropDownList also have their AutoPostBack set to false. But it may
be desirable to change AutoPostBack to true. When set to true, the ListBox and
DropDownList will post back to the server when a selection is made.

Responding to Events

AutoPostBack is great, but usually something needs to be accomplished with
the data that is posted back to the server. This is where events come in. Using
the single-page model, event-handling code can be added into the .aspx page
to respond to an event such as the click of a button or the changing of a selec-
tion in a ListBox. The following syntax is used:

<control id=”myctl” runat=”server” event=”ProcName”>

The event=”ProcName” attribute defines the name of a procedure that will be
executed with the event is raised. The attribute creates a link, or Event Han-
dler, to connect the control to the procedure that will be executed.

In the following example, the lblDateTime label control is populated with
the current date and time when btnSelect is clicked.

<HTML>

<HEAD>

<title>Hello World Web Page</title>

<script runat=”server”>

sub ShowDateTime(sender as object, e as System.EventArgs)

lblDateTime.Text = DateTime.Now

end sub

</script>

</HEAD>

<body>

<form id=”Form1” method=”post” runat=”server”>

<asp:label id=”lblDateTime”

runat=”server”>

</asp:label>

74 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 74

<asp:button id=”btnSelect” Text=”Select”

Runat=”server”

OnClick=”ShowDateTime”>

</asp:button>

</form>

</body>

</HTML>

The previous example works exactly as expected, because AutoPostBack
defaults to true for buttons. Controls that do not have their AutoPostBack
attribute set to true will not execute their event handler code until a control
posts back to the server. In the following example, lstFruit has been pro-
grammed to populate txtSelectedFruit when SelectedIndexChanged has
occurred.

<HTML>

<HEAD>

<title>Hello World Web Page</title>

<script runat=”server”>

sub ShowDateTime(sender as object, e as System.EventArgs)

lblDateTime.Text = DateTime.Now

end sub

sub FruitSelected(sender as object,

e as System.EventArgs)

txtSelectedFruit.Text = lstFruit.SelectedItem.Value

end sub

sub Form_Load(sender as object, e as System.EventArgs) _

handles MyBase.Load

if not IsPostBack then

‘simulate loading the ListBox from a database

lstFruit.Items.Add(New ListItem(“apple”))

lstFruit.Items.Add(New ListItem(“orange”))

end if

end sub

</script>

</HEAD>

<body>

<form id=”Form1” method=”post” runat=”server”>

<asp:label id=”lblDateTime”

runat=”server”>

</asp:label>

<asp:textbox id=”txtSelectedFruit”

runat=”server”>Hello World

</asp:textbox>

<asp:listbox id=”lstFruit” Runat=”server”

OnSelectedIndexChanged=”FruitSelected”>

</asp:listbox>

<asp:button id=”btnSelect” Text=”Select”

Runat=”server”

Exploring ASP.NET and Web Forms 75

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 75

OnClick=”ShowDateTime”>

</asp:button>

</form>

</body>

</HTML>

In the previous example, selecting a fruit did not update the txtSelectedFruit
TextBox. If the button is clicked, the txtSelectedFruit TextBox will be updated,
because the button will post all of the Web Form’s data back to the server, and
the server will detect that the selected index has changed on the lstFruit ListBox.

Although this behavior may be okay in some solutions, in other solutions it
may be more desirable to update the txtSelectedFruit TextBox immediately
upon change of the lstFruit selection. This can be done by adding AutoPost-
Back=”true” to the lstFruit control.

Event Handler Procedure Arguments

All events in the Web Forms environment have been standardized to have two
arguments. The first argument, sender as object, represents the object that trig-
gered, or raised, the event. The second argument, e as EventArgs, represents an
EventArgs object or an object that derives from EventArgs. By itself, the Event-
Args object is used when there are no additional arguments to be passed to the
event handler. In essence, if EventArgs is used as the second argument, then
there is no additional data being sent to the event handler. If custom argu-
ments need to be passed to the event handler, a new class is created that inher-
its the EventArgs class and adds the appropriate data.

Examples of some of the custom argument classes that already exist are
ImageClickEventArgs, which contains the x and y coordinates of a click on an
ImageButton control, and DataGridItemEventArgs, which contains all of the
information related to the row of data in a DataGrid control. Events will be
looked at more closely in Chapter 4, “The .NET Framework and Visual Basic
.NET Object Programming.”

Code-Behind Page

The two page model for designing Web Forms uses a Web Forms page (with an
.aspx extension) for visual elements that will be displayed at the browser, and
a code-behind page (with the .vb extension for Visual Basic .NET) for the code
that will execute at the server. When a new WebForm is added to an ASP.NET
project using Visual Studio .NET, it will always be the two-page model type.

76 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 76

With the two-page model, all of the code-behind pages must be compiled
into a single .dll file for the project. Each code-behind page contains a class that
derives from System.Web.UI.Page. The System.Web.UI.Page class contains the
functionality to provide context and rendering of the page.

The Web Form page is not compiled until a user requests the page from a
browser (see Figure 3.2).

The Web Form page is then converted to a class that inherits from the code-
behind class. Then, the class is compiled, stored to disk, and executed. Once the
Web Form page has been compiled, additional requests for the same Web Form
page will execute the page’s .dll code without requiring another compile. If the
.aspx file has been changed, the .aspx file will be reparsed and recompiled.

The connection of the Web Form page and the code-behind page is accom-
plished by adding additional attributes to the Web Form page’s Page directive,
as in the following:

<%@ Page Language=”vb” Codebehind=”myPage.aspx.vb”

Inherits=”ch3.myPage”%>

The Codebehind attribute identities the filename of the code-behind page.
The Inherits attribute identifies the class that the Web Form page will inherit
from, which is in the code-behind page.

Figure 3.2 A Web page is dynamically compiled, as shown in this diagram, when a user
navigates to the page for the first time.

optional
code-behind

Base.vb

optional
compiled

code-behind
pages

myProject.dll

generate
.vb class file *

myPage.aspx

execute
.dll *

* Files created within the following folder structure:
%SystemRoot%\Microsoft.NET\Framework\version\Temporary ASP.NET Files\

compiled?

Aspx Engine

parse
myPage.aspx

Request
from

Browser

Response
to

Browser

No

No

Yes

Yes

.aspx file
changed?

Language Compiler

create
.dll file *

Exploring ASP.NET and Web Forms 77

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 77

In Visual Studio .NET, when a Web Form is created, Visual Studio .NET
automatically creates the Web Form page, which has the .aspx extension, and
the code-behind page, which has the aspx.vb extension. The code-behind page
will not be visible until the Show All Files button is clicked in the Solution
Explorer.

Accessing Controls and Events on the Code-Behind Page
In Visual Studio .NET, when a control is dragged and dropped onto the Web
Form page, a matching control variable is defined inside the code-behind
class. This control contains all of the properties, methods, and events that
belong to the control that is rendered on to the Web Form page (see Figure 3.3).

The following code is created in the Web Form page when a new page is cre-
ated in Visual Studio .NET called myPage. A TextBox and Button are added,
and code is added that displays the current date and time in the TextBox when
the button is clicked.

<%@ Page Language=”vb” AutoEventWireup=”false”

Codebehind=”myPage.aspx.vb”

Inherits=”ch3.myPage”%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD>

<title>myPage</title>

<meta name=”GENERATOR”

content=”Microsoft Visual Studio .NET 7.0”>

<meta name=”CODE_LANGUAGE” content=”Visual Basic 7.0”>

<meta name=”vs_defaultClientScript” content=”JavaScript”>

<meta name=”vs_targetSchema”

content=”http://schemas.microsoft.com/intellisense/ie5”>

</HEAD>

<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>

‘positioning style elements removed for clarity

<asp:TextBox id=”TextBox1”

runat=”server”>

</asp:TextBox>

<asp:Button id=”Button1”

runat=”server” Text=”Button”>

</asp:Button>

</form>

</body>

</HTML>

78 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 78

Notice that there is no server-side code in this page. All server-side code is
packed into the code-behind page. The following is a code listing of the code-
behind class.

Public Class myPage

Inherits System.Web.UI.Page

Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

#Region “ Web Form Designer Generated Code “

‘This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

End Sub

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

‘CODEGEN: This method call is required by the

‘Web Form Designer

‘Do not modify it using the Code Editor.

InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here.

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click

TextBox1.Text = DateTime.Now

End Sub

End Class

Figure 3.3 The code-behind page contains matching objects, which gives the code the
ability to access the control from within the code-behind page.

Web Form Page: myPage.aspx
<% Page language="vb" Codebehind="myPage.aspx.vb" Inherits="ch3.myPage"
%>
. . .

<asp:Button id="txtName" Text="MyName" />
<asp:Button id="btnSelect" Text="Select" />

. . .

Code-Behind Page: myPage.aspx.vb
. . .
Public Class myPage

. . .
Protected WithEvents btnSelect As System.Web.UI.WebControls.Button
Protected WithEvents txtName as System.Web.UI.WebControls.TextBox
. . .

Exploring ASP.NET and Web Forms 79

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 79

Button1’s event handler code is connected to Button1’s click event by the
Handles Button1.Click tag at the end of the Button1_Click subprocedure. The
Button1_Click subprocedure can be renamed without losing the connection
between the Web Form page and the code-behind page. For example, if two
buttons are programmed to execute the subprocedure, it may be more benefi-
cial to rename the subprocedure to something that is more generic. Additional
events can be added to the Handles keyword, separated by commas. The fol-
lowing code snippet shows how Button2’s click event can execute the same
procedure.

Private Sub Clicked(ByVal sender As System.Object,

ByVal e As System.EventArgs) _

Handles Button1.Click, Button2.Click

Visual Studio .NET also exposes all events that are available for a given con-
trol. Figure 3.4 shows the code window, which has a class selection drop-down
list and an event method drop-down list. Selecting an event will generate tem-
plate code inside the code-behind page for the event.

Web Form Designer Generated Code
The code-behind page contains a region called Web Form Designer Generated
Code. This region is controlled by the Web Form Designer, which can be
opened to reveal the code that the Web Form Designer generates. Exploring
and understanding this region can be beneficial. If changes to the code that is
in the region are required, it is best to make the changes through the Web Form
Designer.

Figure 3.4 The class and event method selection lists are shown. First select an item from
the class list and then select an event method. This will add template code for the method,
if it doesn’t exist.

80 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 80

Life Cycle of a Web Form and Its Controls

It’s important to understand the life cycle of a Web Form and its controls.
Every time a browser hits a Web site, the browser is requesting a page. The
Web server constructs the page, sends the page to the browser, and destroys
the page. Pages are destroyed to free up resources. This allows the Web server
to scale nicely, but poses problems with maintaining state between calls to the
server. The use of ViewState allows the state to be sent to the browser. Posting
the entire Web Form’s data, including ViewState, back to the server allows the
previous state to be reconstructed to recognize data that has changed between
calls to the server.

All server controls have a series of methods and events that execute as the
page is being created and destroyed. The Web page derives from the Control
class as well, so the page also executes the same methods and events as it is
being created and destroyed. Table 3.3 contains a description of the events that
take place when a page is requested, paying particular attention to ViewState
and its availability.

Table 3.3 Page/Control Life Cycle Method and Events

PAGE/CONTROL
METHOD AND (EVENT) DESCRIPTION

OnInit (Init) Each control is initialized.

LoadViewState Loads the ViewState of the control.

LoadPostData Retrieves the incoming form data and updates the
control’s properties accordingly.

Load (OnLoad) Actions that are common to every request can be
place here.

RaisePostDataChangedEvent Raises change events in response to the postback
data changing between the current postback and
the previous postback. For example, if a TextBox
has a TextChanged event and AutoPostBack is
turned off, clicking a Button causes the
TextChanged event to execute in this stage before
handling the click event of the button (next stage).

RaisePostBackEvent Handles the client-side event that caused the
postback to occur.

PreRender (OnPreRender) Allows last minute changes to the control. This
event takes place after all regular postback events
have taken place. Since this event takes place
before saving ViewState, any changes made here
will be saved.

(continued)

Exploring ASP.NET and Web Forms 81

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 81

Table 3.3 (continued)

PAGE/CONTROL
METHOD AND (EVENT) DESCRIPTION

SaveViewState Saves the current state of the control to ViewState.
After this stage, any changes to the control will be
lost.

Render Generates the client-side HTML, DHTML, and script
that are necessary to properly display this control
at the browser. In this stage, any changes to the
control are not persisted into ViewState.

Dispose Cleanup code goes here. Releases any unmanaged
resources in this stage. Unmanaged resources are
resources that are not handled by the .NET
common language runtime, such as file handles
and database connections.

UnLoad Cleanup code goes here. Releases any managed
resources in this stage. Managed resources are
resources that are handled by the runtime, such as
instances of classes created by the .NET common
language runtime.

Page Layout

Each Web Form has a pageLayout property, which can be set to GridLayout or
FlowLayout. These layouts have different control positioning behaviors. This
setting can be set at the project level, which will affect new pages that are
added. The setting can also be set on each Web Form.

FlowLayout
FlowLayout behavior is similar to traditional ASP/HTML behavior. The con-
trols on the page do not have dynamic positioning. When a control is added to
a Web Form, it is placed in the upper-left corner. Pressing the Spacebar or Enter
can push the control to the right, or downward, but this model usually uses
tables to control the positioning of controls on the page.

GridLayout
GridLayout behavior uses dynamic positioning to set the location of a control
on the page. A control can be placed anywhere on the page. This mode also

82 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 82

allows controls to be snapped to a grid. Behind the scenes, GridLayout is
accomplished by adding the attribute ms_positioning=”GridLayout” to the body
tag of a Web Form.

Selecting the Proper Layout
GridLayout can save lots of development time, since positioning of controls
does not require an underlying table structure. GridLayout is usually a good
choice for a fixed-size form.

Since FlowLayout does not use absolute positioning, it can be an effective
choice when working with pages that are resizable. In many cases, it is desir-
able to hide a control and let the controls that follow shift to move into the hole
that was created.

The benefits of both layout types can be implemented on the same page by
using panel controls. The panel control acts as a container for other controls.
Setting the visibility of the panel to false turns off all rendered output of the
panel and its contained controls. If the panel is on a page where FlowLayout is
selected, any controls that follow the panel are shifted to fill in the hole that
was created by the absence of the panel.

Figure 3.5 shows an example of a FlowLayout page that has two HTML Grid
Layout Panels that are configured to run as HTML server controls. Web server
controls were added for the Button, Labels, and TextBoxes. The Page_Load
method is programmed to display the top Grid Layout Panel if this is the first
request for the page. If data is being posted to this page, the lower Grid Layout
Panel is displayed. The .aspx page contains the following HTML code:

Figure 3.5 This Web page is configured for FlowLayout and contains two HTML Grid
Layout Panels.

Exploring ASP.NET and Web Forms 83

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 83

<%@ Page

Language=”vb”

AutoEventWireup=”false”

Codebehind=”WebForm1.aspx.vb”

Inherits=”chapter3.WebForm1”%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<html>

<head>

<title>WebForm1</title>

<meta name=”GENERATOR”

content=”Microsoft Visual Studio .NET 7.0”>

<meta name=”CODE_LANGUAGE”

content=”Visual Basic 7.0”>

<meta name=vs_defaultClientScript

content=”JavaScript”>

<meta name=vs_targetSchema

content=”http://schemas.microsoft.com/intellisense/ie5”>

</head>

<body>

<form id=”Form1” method=”post” runat=”server”>

<div style=”WIDTH: 450px;

POSITION: relative;

HEIGHT: 100px”

ms_positioning=”GridLayout”

id=TopPanel

runat=”server”>

<asp:TextBox

id=txtName

style=”Z-INDEX: 101;

LEFT: 98px;

POSITION: absolute;

TOP: 13px”

runat=”server”

Width=”228”

height=”24”>

</asp:TextBox>

<asp:TextBox

id=txtEmail

style=”Z-INDEX: 102;

LEFT: 98px;

POSITION: absolute;

TOP: 57px”

runat=”server”

Width=”228”

height=”24”>

</asp:TextBox>

<asp:Label

id=Label1

style=”Z-INDEX: 103;

LEFT: 25px;

84 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 84

POSITION: absolute;

TOP: 21px”

runat=”server”>

Name:

</asp:Label>

<asp:Label

id=Label2

style=”Z-INDEX: 104;

LEFT: 26px;

POSITION: absolute;

TOP: 59px”

runat=”server”>

Email:

</asp:Label>

<asp:Button

id=btnSubmit

style=”Z-INDEX: 105;

LEFT: 367px;

POSITION: absolute;

TOP: 63px”

runat=”server”

Text=”Submit”>

</asp:Button>

</div>

<div

style=”WIDTH: 450px;

POSITION: relative;

HEIGHT: 100px”

ms_positioning=”GridLayout”

id=BottomPanel

runat=”server”>

<asp:Label

id=lblConfirmation

style=”Z-INDEX: 101;

LEFT: 105px;

POSITION: absolute;

TOP: 10px”

runat=”server”

Width=”249px”

Height=”66px”>

Confimarion goes here...

</asp:Label>

<asp:Label

id=Label3

style=”Z-INDEX: 102;

LEFT: 12px;

POSITION: absolute;

TOP: 10px”

runat=”server”

Width=”76px”>

Exploring ASP.NET and Web Forms 85

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 85

Confirmation

</asp:Label>

</div>

</form>

</body>

</html>

Notice that the HTML Grid Layout Panels are nothing more that DIV tags
with the ms_positioning=”GridLayout” attribute. The other controls are con-
tained in the DIV tags.

The code-behind page contains the following code:

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents Label1 As _

System.Web.UI.WebControls.Label

Protected WithEvents Label2 As _

System.Web.UI.WebControls.Label

Protected WithEvents lblConfirmation As _

System.Web.UI.WebControls.Label

Protected WithEvents txtName As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtEmail As _

System.Web.UI.WebControls.TextBox

Protected WithEvents Label3 As _

System.Web.UI.WebControls.Label

Protected WithEvents TopPanel As _

System.Web.UI.HtmlControls.HtmlGenericControl

Protected WithEvents BottomPanel As _

System.Web.UI.HtmlControls.HtmlGenericControl

Protected WithEvents btnSubmit As _

System.Web.UI.WebControls.Button

#Region “ Web Form Designer Generated Code “

‘This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

End Sub

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

‘CODEGEN: This method call is required by the Web Form Designer

‘Do not modify it using the code editor.

InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

86 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 86

If Page.IsPostBack Then

TopPanel.Visible = False

BottomPanel.Visible = True

Else

TopPanel.Visible = True

BottomPanel.Visible = False

End If

End Sub

Private Sub btnSubmit_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnSubmit.Click

lblConfirmation.Text = “Hello “ & txtName.Text & “
”

lblConfirmation.Text &= “Your email address is “ & txtEmail.Text

End Sub

End Class

When the page is viewed for the first time (see Figure 3.6), only the top panel
is displayed. When data is entered and submitted, the top panel is hidden and
the bottom panel is displayed. Since the page layout is set to FlowLayout, the
bottom panel will shift to the top of the page to fill in the hole that was created
by setting the top panel’s visible property to false.

Figure 3.6 Only one panel is displayed at a time. When the first panel is hidden, the
second panel moves into the space that was originally occupied by the first panel.

Exploring ASP.NET and Web Forms 87

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 87

Lab 3.1: Web Forms

In this lab, you will create a Web Form using Visual Studio .NET and then
explore the life cycle of the Web Form and its controls.

Create the Web Form
In this section, you will create a Web Form called NewCustomer.aspx,
which allows you to collect customer information. Later, you will store
this information in a database.

1. To start this lab, open the OrderEntrySolution from Lab 2.1 or Lab 2.2.

2. Right-click the Customer project, click Add, Add Web Form, and
type NewCustomer.aspx for the name of the new Web Form. When
prompted to check out the project, click the Check Out button.

3. Add the Web server controls in Table 3.4 to the Web Form. Figure 3.7
shows the completed page. Save your work.

Table 3.4 NewCustomer.aspx Web Server Controls

ID TYPE PROPERTIES

lblCustomer asp:Label Text=Customer Name

txtCustomerName asp:TextBox Text=

lblAddress asp:Label Text=Address

txtAddress1 asp:TextBox Text=

txtAddress2 asp:TextBox Text=

lblCity asp:Label Text=City

txtCity asp:TextBox Text=

lblState asp:Label Text=State

drpState asp:DropDownList Items = Enter the states below
plus an empty entry as the default.
Text= Value=
Text=FL Value=FL
Text=MA Value=MA
Text=OH Value=OH
Text=TX Value=TX

lblZipCode asp:Label Text=Zip

txtZipCode asp:TextBox Text=

btnAddCustomer asp:Button Text=Add Customer

lblConfirmation asp:Label Text=

88 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 88

Figure 3.7 The completed Web page after entering the Web server controls in Table 3.4.

Test Your Work
Test your work by performing the following steps:

1. Compile your project. Click Build, Build Solution. You should see an
indication in the output window that all three projects compiled
successfully.

2. Select a startup page for the Visual Studio .NET Debugger. Locate
the NewCustomer.aspx page in the Solution Explorer. Right-click
NewCustomer.aspx, and then click Set As Start Page.

3. Press F5 to launch the Visual Studio .NET debugger, which will dis-
play your page in your browser.

4. Test ASP.NET’s ability to maintain state. Type some text into each
TextBox, select a state from the DropDownList, and click the Add
Customer button.

What happened? When the button was clicked, the data was posted
back to the server. If your page functioned properly, the server received
the data that was entered into the Web Form. No code has been assigned
to the Add Customer button’s click event, so the server simply returns
the page to the browser.

What is most interesting is that the data is still on the form; the
TextBoxes still have the data that you typed in, and the DropDownList
still has the selected state. This demonstrates ASP.NET’s ability to main-
tain state.

Exploring ASP.NET and Web Forms 89

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 89

Adding Code to Process the Data
In this section, you will add some code to the Add Customer’s click
event. The code simply displays a summary message on the current page.
This data will be put into a database in a later lab.

Double-click the Add Customer button. This opens the code-behind
page and adds template code for the button’s click event. Add code to the
button’s click event procedure so that it looks like this:

Private Sub btnAddCustomer_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnAddCustomer.Click

Dim s As String

s = “Confirmation Info:” & “
”

s += txtCustomerName.Text & “
”

s += txtAddress1.Text & “
”

If txtAddress2.Text.Length > 0 Then

s += txtAddress2.Text & “
”

End If

s += txtCity.Text & “, “

s += drpState.SelectedItem.Text & “ “

s += txtZipCode.Text & “
”

lblConfirmation.Text = s

End Sub

Test Your Work

1. Save your work.

2. Press F5 to launch the Visual Studio .NET debugger, which will dis-
play your page in your browser.

3. Test ASP.NET’s ability to process the data on the Web Form by
entering data and then clicking the Add Customer button.

4. When the Add Customer button is clicked, the confirmation label
will be populated with data from the Web Form.

Exploring ViewState
In this section, you will explore the ViewState to appreciate the need for
this hidden object.

1. Add a Web server control button to the NewCustomer.aspx page.
Change its ID to “btnViewState” and its Text to “ViewState Test.”
Don’t add any code to this button’s click event.

2. Press F5 to view the page.

3. View the size of the ViewState hidden object. When the page is dis-
played, click View, Source. Note the size of the ViewState, which
should be approximately 50 characters.

90 Chapter 3

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 90

4. Enter data into the Web Form, and click the Add Customer button.
Note the change in the ViewState, which should be significantly
larger, depending on the amount of data that was entered on the
Web Form.

5. Click the ViewState Test button. Notice that the data is posted back
to the server, and the information that is in the Confirmation label
has not been not lost.

6. View the size of the ViewState hidden object. When the page is dis-
played, click View, Source. Note the size of the ViewState, which is
much larger that before. ASP.NET stores the value of the Confirma-
tion label in ViewState.

Identifying ViewState Contributors
As ViewState grows, you will need to identify the controls that are plac-
ing data into ViewState. This section will use the ASP.NET trace function
to identify the objects that are using ViewState.

1. Open the Web.Config file. This is an XML file that contains settings
for the Web site.

2. Locate the following trace element:
<trace

enabled=”false”

requestLimit=”10”

pageOutput=”false”

traceMode=”SortByTime”

localOnly=”true”

/>

3. Make the following changes:
<trace

enabled=”true”

requestLimit=”100”

pageOutput=”false”

traceMode=”SortByTime”

localOnly=”true”

/>

4. Save the Web.Config file.

5. Press F5 to view the page.

6. Enter data into the Web Form, and click the Add Customer button.
Note the change in the ViewState, which should be significantly
larger, depending on the amount of data that was entered on the
Web Form.

Exploring ASP.NET and Web Forms 91

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 91

7. Click the ViewState Test button. Notice that the data is posted back
to the server, and the information that is in the Confirmation label
has not been not lost.

8. Change the URL from http://localhost/Customer/NewCustomer
.aspx to http://localhost/Customer/trace.axd and press Enter. The
trace page is displayed. The trace page has an entry for each time
you requested the NewCustomer.aspx page. Notice that the first
time the page was requested, a GET was performed. Each additional
page request resulted in a POST of data back to the page.

9. Click the View Details link of the first page request. This page con-
tains lots of information. Locate the Control Tree section, which
shows all of the controls that are on the page and the quantity of
bytes that each control has placed into ViewState. On the first
request for the page, only the page itself has contributed to View-
State (typically 20 bytes). The page automatically stores globaliza-
tion information in ViewState.

10. Click the Back button in the browser, and then click the View Details
link of the second request. Locate the Control Tree section. Notice
that the page still contributes the same quantity of bytes to View-
State, and the lblConfirmation (Confirmation Label) contributes
many bytes of data to ViewState, depending on the size of the data
that needed to be remembered (see Figure 3.8).

Figure 3.8 Use Trace to identify ViewState contributors. Notice that the page always
contributes approximately 20 bytes, and that the confirmation label contributes many bytes
to ViewState, depending on the amount of data that is in the label.

92 Chapter 3

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 92

Understanding the Page Life Cycle (Optional)
This section will help you understand the page’s life cycle by adding
code to some of the page’s significant events.

1. Close all open files.

2. Open the WebForm1.aspx file that is located in the Customer project.

3. Add a TextBox and a Button to the page from the Web Forms tab of
the ToolBox. When prompted to check out files from Visual Source-
Safe, click the Check Out button.

4. Double-click the button to go to the code-behind page.

5. Add the following code to the Button1_Click event method.

Response.Write(“Button Clicked
”)

6. The upper part of the code window contains two drop-down boxes.
The first drop-down box is used to select a class, and the second
drop-down box is used is to select an event method. Select TextBox1
from the class drop-down list, and select TextChanged from the
event method drop-down list.

7. Add the following code to the TextBox1_TextChanged event
method.

Response.Write(“Text Changed
”)

8. In the Page_Load subroutine, add the following code:

Response.Write(“Page_Load”)

9. With WebForm1 selected from the class drop-down list, select the
Page_Init event method. Add a Response.Write method as you did
in the previous steps.

10. Select Base Class Events from the class drop-down list and select the
PreRender event method. Add Response.Write code as you did in
the previous steps.

11. In the Solution Explorer, right-click WebForm1.aspx and click Set as
Start Page. Press F5 to see the page. The page will display a message
indicating that the Page Init, Page Load, and PreRender events took
place.

12. Enter some information into the TextBox, and click the Button. The
page will display a message indicating that the Page Init, Page Load,
Text Changed, Button Clicked, and PreRender events took place.
Although AutoPostBack is set to false on the TextBox, the
TextChanged still executes, but not until a posting control, such as
the Button, caused the data to be posted back to the server.

Exploring ASP.NET and Web Forms 93

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 93

Summary

■■ ASP.NET supports the traditional single-page programming model. It
also provides the two-page coding model, which utilizes the code-
behind page for the separation of client-side and server-side code.

■■ ASP.NET provides two types of server controls: HTML server controls
and Web server controls.

■■ HTML server controls are used when migrating existing ASP pages to
ASP.NET because a runat=”server” attribute can be easily added to an
HTML tag to convert it to an HTML server control.

■■ Web server controls are the preferred controls for new projects because
of their consistent programming model and their ability to provide
browser-specific code. ASP.Net provides Web server controls that can
produce many lines of complex HTML output to accomplish a task
rather that the one-to-one mapping that exists when using Web server
controls.

■■ Use the Page.IsPostBack property to see if this is the first time that the
page has been requested.

■■ Controls such as the DropDownList and the ListBox have their Auto-
PostBack property set to false. This setting can be changed to true to
post back to the server each time a new item is selected.

■■ Events in ASP.NET pass two arguments: the sender and the EventArgs.
The sender is the object that raised the event and the EventArgs may
contain extra data, such as the x and y coordinates of the mouse.

94 Chapter 3

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 94

Review Questions

1. What are the two types of controls that ASP.NET provides?

2. What would be the best controls to use when migrating an existing ASP page to
ASP.NET?

3. What is the best control to use when client-side JavaScript code will be executing from
a control’s events?

4. Name some benefits to using Web server controls.

5. A user complains that each time a button is pressed on the Web page, another copy of
the data in a ListBox is being added to the ListBox. What is the problem? How can it be
corrected?

6. You added a DropDownList to a Web page. You programmed the DropDownList to do
a database lookup as soon as a new item is selected from the list. Although you wrote
the code to do the lookup, selecting a new item from the list doesn’t appear to work.
After investigating further, you find that the lookup works, but not until a button on
the form is clicked. What is the most likely problem?

7. What is the key benefit to using code-behind pages?

Exploring ASP.NET and Web Forms 95

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 95

Answers to Review Questions

1. HTML server controls and Web server controls.

2. HTML server controls, because existing HTML tags can be converted to HTML server
controls by adding the runat=”server” attribute.

3. HTML server contols, because it is simple to attach client-side code to these controls
using traditional HTML and DHTML methods.

4. Web server controls have the following benefits:

a. A more consistent programming model.

b. A single control can create complex HTML output.

c. They produce browser-specific HTML code, taking advantage of the browser’s
capabilities.

5. The data is being programmatically added to the ListBox, using code that is in the
Page_Load event method. Since the ListBox remembers its data (via ViewState)
between calls to the server, each time the page is requested, another copy of the data
is added to existing data. To solve the problem, check to see if the page is being posted
back to the server using the Page.IsPostBack property. If so, there is no need to repop-
ulate the ListBox.

6. The default setting of AutoPostBack is set to false on the DropDownList control.

7. Code-behind pages provide the ability to separate client-side and server-side code.

96 Chapter 3

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 96

