
CHAPTER 1

The Mesoscale

The prefix meso- comes from the Greek mesos, meaning ‘‘intermediate’’ or ‘‘in the

middle.’’ Materials scientists and engineers describe the structure of a substance at

four different length scales: macroscopic > mesocopic > microscopic > molecular/

nano level. Sometimes the labels for the two intermediate levels are interchanged.

To avoid confusion in this textbook, we group these two levels into one ‘‘meso’’

length scale between the nano- and macroscopic levels.

Before the advent of X-ray diffractometry, mineralogists could only visually

examine crystals. An entire classification scheme was developed and still in use

today for describing a single crystal’s external morphology, or macroscopic

appearance. One or more of 47 possible forms are usually apparent in the mor-

phology. A form is a collection of symmetry-equivalent faces. The crystal habit,

which depends on the relative sizes of the faces of the various forms present, may

be described as cubic, octahedral, fibrous, acicular, prismatic, dendritic (tree-like),

platy, or blade-like, among others. If a crystal is grown in a symmetrical

environment, for example, freely suspended in a liquid, its morphological sym-

metry is exactly that of the point group isogonal (same angular relation) with its

space group. It will depart from true point group symmetry under nonsymmetrical

growth conditions.

With conventionally processed polycrystals, the smallest particles that are

discernible with a high-quality optical microscope are the individual crystallites,

or grains, that make up the sample. The term microstructure refers to the grain

morphology, or grain size, shape, and orientation. Different techniques may be used

to examine specific structural features. For example, high-resolution imaging with a

scanning electron microscope (SEM) enables observation of dislocations. Informa-

tion about preferred orientation can be obtained with an X-ray diffractometer equipped

with a texture goniometer or by electron backscattered diffraction (EBSD).

Given the penetration depths in Table 1.1, it is obvious that electron diffraction

and microscopy only probe the surfaces of solids (the topmost atomic layers),

whereas neutron and X-ray diffraction provide information about the bulk. It is well

known that the surface crystalline structure of a solid may differ from that of the

bulk. The surfaces of most samples, however, are usually subjected to some sort of
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chemical–mechanical polishing prior to microstructural analysis to ensure that bulk

grain morphology is apparent.

Inorganic materials are commonly grouped into one of two structure categories:

crystalline or amorphous (glassy). Amorphous materials possess no long-range

structural order, or periodicity. By contrast, crystalline solids are composed of

arrays of atoms or molecules, whose positions may be referenced to a translation-

ally invariant lattice. All crystals possess one or more of the basic symmetry

elements. Some authors also classify fractals as a distinct structural class. In this

case, the structure is self-similar, or scale-invariant, looking identical at all length

scales (e.g., cauliflowers and silica aerogels). Crystal structure, however, is the topic

of the next chapter. In this chapter, we focus on the microstructures of polycrystal-

line solids. The majority of solid materials of technological interest are used in

polycrystalline form.

Microstructure is determined by the conditions used during the material

processing. Hence, our objective is to clarify that a major goal of inorganic

materials engineering is the systematic generation of specific grain morphologies

in order to vary and adapt the properties of polycrystalline materials to given

applications. We focus on describing the microstructures of solidification products

(metals), formed powder aggregates (ceramics), and thin films. Microstructure/

property correlation is also discussed. Mechanical, chemical, and transport proper-

ties are markedly influenced by microstructure.

1.1 INTERFACES IN POLYCRYSTALS

The regions separating different grains, or crystallites, within a polycrystalline solid

are called grain boundaries. Although grain boundaries are often regarded as

regions of structural disorder, it is now well established that many have a periodic

structure. True incoherency, in which there is little correlation between atomic

positions across the boundary, only sets in when the mismatch between adjacent

crystals is very high (Bhadeshia, 1987). This is primarily determined by the relative

orientations of the adjoining grains. In a polycrystalline sample, both the grain

orientation distribution, or texture, and the structure of the grain boundary itself can

be crucial to the bulk materials properties. Therefore, it is appropriate to begin with

orientation relationships.

TABLE 1.1 Some Probes Used in Materials Characterization

Penetration

Source Wavelengtha (Å) Depth

Light 4 � 103–7 � 103 0

Neutrons 1–2.5 cm–dm

X-rays 0.1–10 mm–mm

Electrons 0.04 nm

a For elementary particles, l¼ hc/
p

(2mc2E); for light and X-rays, l¼ hc/E.
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1.1.1 Orientation Relationships in Bicrystals

The orientation relationship between a pair of grains of the same substance (the only

kind we will consider here), a bicrystal, is often expressed by an axis-angle

description, since one crystal always can be generated from the other by a rigid-

body rotation about a suitable axis. More precisely, the lattices can be made

to coincide by turning one of the crystals about a suitable rotation axis. Rotation

axes are commonly denoted as unit vectors, in terms of three indices of

direction written in square brackets, [uvw], while the misorientation angle is

expressed in degrees about this axis. The [uvw] indices are obtained by taking

the projections of the vector on the x, y, and z-axes, respectively, of a Cartesian

coordinate system and dividing these three numbers by their highest common

denominator.

It is always possible to describe the orientation relationship between a pair of

grains in terms of more than one axis-angle pair. Consider a pair of adjacent

identical cubic crystals of different orientation, A and B. Suppose further that B can

be generated from A by a right-hand rotation of 60� counterclockwise about the A

crystal’s body-diagonal axis, or the [111]A direction. This particular orientation

relationship is called a twin, since the two domains are related by a symmetry

element (a twin operation) that is not part of the space group symmetry of a single

crystal of the material. The extra symmetry element may be a reflection plane (twin

plane) or a rotation axis (twin axis). The high symmetry of the cubic lattice allows

us to find numerous equivalent axis-angle pairs for any orientation relationship.

Using this twin boundary as an example, we now show how other axis-angle pairs,

which are equivalent to a 60� right-hand rotation about the [111]A axis, can be

obtained.

Indices are convenient for describing directions (vectors or axes) in crystals.

However, direction cosines are much more useful for calculations. Therefore, one

must first convert the direction indices, [uvw], designating the rotation axis into

direction cosines. In our present example, the body diagonal of a cube of unit length

has direction indices [111]. This is seen by using a Cartesian coordinate system,

where the origin of the cube is taken to be one of its corners and which is designated

as (x1, y1, z1) ¼ (0, 0, 0). The body diagonal is obtained by drawing a line segment

of length jrj from the origin and terminating at the coordinates (x2, y2, z2) ¼ (1, 1, 1).

The direction cosines are given by the equations:

cos a ¼ r1 ¼ ðx2 � x1Þ= j r j

cos b ¼ r2 ¼ ðy2 � y1Þ= j r j

cos g ¼ r3 ¼ ðz2 � z1Þ= j r j

ð1:1Þ

where jrj is given by ½r2
1 þ r2

2 þ r2
3 �

1=2 ¼ ½ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2�1=2
.

Hence, in the cubic crystal, we get cos a ¼ cos b ¼ cos g ¼ 0:5773, satisfying the

requirement that cos2 aþ cos2 bþ cos2 g ¼ 1.
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A (3 � 3) square rotation matrix, R, may now be obtained, which has the

following elements:

r1r1ð1�cos yÞþcos yÞ r1r2ð1�cos yÞþr3 sin yÞ r1r3ð1�cos yÞ�r2 sin yÞ
r1r2ð1�cos yÞ�r3 sin yÞ r2r2ð1�cos yÞþcos yÞ r2r3ð1�cos yÞþr1 sin yÞ
r1r3ð1�cos yÞþr2 sin yÞ r2r3ð1�cos yÞ�r1 sin yÞ r3r3ð1�cos yÞþcos yÞ

0
@

1
A

ð1:2Þ

In this book, we follow the standard convention for all matrices, that the elements

ai1, ai2; . . . ; ain are the elements of the ith row, and the elements a1j; a2j; . . . ; amj

are the elements of the jth column. That is, the first subscript for an element denotes

the column and the second subscript gives the row. Equation 1.2 transforms the

components of a vector referred to one basis to those referred to the other basis as:

a1 ¼ R11b1 þ R21b2 þ R31b3

a2 ¼ R12b1 þ R22b2 þ R32b3

a3 ¼ R13b1 þ R23b2 þ R33b3

ð1:3Þ

In Eq. 1.3, R23, for example, is the second element in the third row (or, equivalently,

the third element of the second column) of Eq. 1.2. For r1 ¼ r2 ¼ r3 ¼ 0:5773 and

y ¼ 60�, Eq. 1.2 gives:

R ¼
0:6667 0:6667 0:3333

�0:3333 0:6667 0:6667

0:6667 0:3333 0:6667

0
@

1
A ð1:4Þ

In order to obtain the equivalent axis-angle pairs, R must be multiplied by the

matrices representing the 24 rotation operations of the cubic lattice. The rotational

degeneracy of all crystal lattices can be obtained from the character tables for their

respective point groups: cubic, Oh (24), hexagonal, D6h (12), hexagonal close

packed, D3d (6), tetragonal, D4h (8), trigonal, D3d (6), orthorhombic, D2h (4),

monoclinic, C2h (2), and triclinic, Ci (1).

Continuing with the present example, we can operate on Eq. 1.4 with the (3 � 3)

square matrix representing, say, a 90� right-hand rotation about [100], which is

obtained from Eq. 1.2 with r1 ¼ 1, r2 ¼ r3 ¼ 0 and y ¼ 90�. The result is a product

matrix, which we call J:

J ¼
1 0 0

0 0 1

0 �1 0

0
B@

1
CA

0:6667 0:6667 �0:3333

�0:3333 0:6667 0:6667

0:6667 �0:3333 0:6667

0
B@

1
CA

¼
0:6667 0:6667 �0:3333

0:6667 �0:3333 0:6667

0:3333 �0:6667 �0:6667

0
B@

1
CA

ð1:5Þ
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Note that J is not the product of two symmetry operations, because the first rotation

took crystal A into crystal B, rather than back into itself. The A and B orientations

are distinguishable. We can now use J to extract an equivalent axis-angle pair. The

new rotation angle, y, is given by

j11 þ j22 þ j33 ¼ 1 þ 2 cos y ð1:6Þ

where the terms on the left-hand side are the diagonal elements of J. The equivalent

rotation axis for y 6¼ p or, for nonsymmetric matrices (when tJ 6¼ J), is obtained

from the relations:

r1 ¼ ½ j23 � j32�=2 sin y; r2 ¼ ½ j31 � j13�=2 sin y; r3 ¼ ½ j12 � j21�=2 sin y

ð1:7Þ

where r2
1 þ r2

2 þ r2
3 ¼ 1. When the product matrix is symmetric (tJ ¼ J), for

example, if y ¼ 180�, Eq. 1.6 does not apply. In this case, the following equation

is needed to determine the rotation matrix:

j11 ¼ 1 � 2ðr2
2 þ r2

3Þ j12 ¼ 2 r1r2 j13 ¼ 2 r1r3

j21 ¼ 2 r1r2 j22 ¼ 1 � 2ðr2
1 þ r2

3Þ j23 ¼ 2 r2r3

j31 ¼ 2 r1r3 j32 ¼ 2 r2r3 j33 ¼ 1 � 2ðr2
1 þ r2

2Þ
ð1:8Þ

where r2
1 þ r2

2 þ r2
3 ¼ 1. When using Eq. 1.8, the idea is to extract the maximum

component from the diagonal elements of the matrix. If j11 is of maximum

magnitude, compute:

r1 ¼ ½ j11 � j22 � j33 þ 1�1=2=2 r2 ¼ j13=2r1 r3 ¼ j13=2r1

If j22 is the maximum, compute:

r2 ¼ ½ j22 � j11 � j33 þ 1�1=2=2 r1 ¼ j12=2u2 r3 ¼ j23=2r2

If j33 is the maximum, compute:

r3 ¼ ½ j33 � j11 � j22 þ 1�1=2=2 r1 ¼ j13=2r3 r2 ¼ j23=2r3

Example 1.1 Calculate the axis-angle pair from the product matrix in Eq. 1.5 that

is equivalent to a 60� rotation about [111]A.

Solution The rotation angle, using Eq. 1.6, is

cos�1ð½0:6667 � 0:3333 � 0:6667 � 1�=2Þ ¼ y ¼ 2:300 rad

2:3000 � 180=p ¼ 131:8�
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We see by inspection that J is a nonsymmetric matrix (jij 6¼ jjiÞ. Therefore, we can

use Eq. 1.7 to compute the components of the rotation axis:

r1 ¼ ½0:6667 � ð�0:6667Þ�=2 sinð131:8Þ ¼ 0:8943

r2 ¼ ½0:3333 � ð�0:3333Þ�=2 sinð131:8Þ ¼ 0:4470

r3 ¼ ½0:6667 � 0:6667�=2 sinð131:8Þ ¼ 0

From vector algebra, we know that any ordered set of three numbers that can be

obtained from [r1 r2 r3] by multiplying all of them by the same positive constant k is

also a set of direction numbers for the vector r, in that they define the direction of

the vector. Hence choosing k to be (1/0.4470) gives: [0.8943/0.4470, 0.4470/0.4470,

0] or [210]. Therefore, the equivalent axis-angle pair is rotated by 131.8� about

[210]A.

Using the procedure just outlined with other symmetry operations of the cubic

lattice, we can calculate other axis-angle pairs that, for the purposes of expressing

the orientation relationship in a cubic bicrystal, are equivalent to a 60� rotation

about h111iA. The results are given in Table 1.2

Obviously, a completely unambiguous description of the relative orientation

between two identical crystals must contain the axis-angle pair (rather than an angle

alone). As we have just seen, however, a rotation matrix can also be used to specify

the orientation relation within a bicrystal. We have just gone to great lengths to

show how these matrix elements are computed. The advantage of expressing the

orientation relationship in this manner will be apparent in Section 1.1.3 where we

quantify the ‘‘goodness of fit’’ at the interface between grains.

1.1.2 Grain Boundary Orientations

We have been discussing orientation relationships between pairs of grains. This is

not the same as the orientation of the grain boundary. For example, Figure 1.1

shows a twinned bicrystal like that discussed earlier. As illustrated in the figure, the

grain boundary plane between two crystals with this orientation relationship need

not coincide with the twin plane. The orientation relationship between the grains

TABLE 1.2 Axis-Angle Pairs Equivalent to a

60� Rotation about h111iA in a Cubic Bicrystal

Axis Angle

h111iA 180�

h012iA 131.8�

h112iA 180�

h113iA 146.4�

h11�33iA 146.4�

h011iA 70.5�

h011iA 109.5�
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does provide us with three of the five degrees of freedom needed to specify the

grain boundary orientation, however. One of these degrees of freedom, we have

seen, is a rotation angle. The rotation is carried out about a rotation axis, which we

have been denoting by three indices of direction, [uvw]. Because an axis is a polar

vector in spherical coordinates, it can also be specified by a polar angle and an

azimuthal angle relative to the grain boundary plane. Thus, three of our five degrees

of freedom are Euler angles that, taken together, describe the orientation relation-

ship between the grains: 0 � fE � 2p; 0 � yE � p; and 0 � cE � 2p (the sub-

script E simply denotes that these are Euler angles). The remaining two degrees of

freedom define the boundary plane in the coordinate system of the reference grain.

They are spherical angles that specify the boundary plane inclination: 0 � yS � 2p;

0 � fS � p, where the subscript S denotes spherical angles.

One might naturally ask: How many different grain boundary orientations are

observable? The number of distinguishable orientations, N, depends on the preci-

sion with which the various angular measurements are made, and the number of

symmetry operators for the crystal class. For example, for a cubic bicrystal the

boundary normal can be selected in two directions, the crystals can be exchanged,

and one can apply 24 rotation operations to either crystal. There are thus 2 � 2 � 242

combinations of the five angular parameters that lead to identical bicrystals. To

generalize, if we represent the number of symmetry operations for the crystal class

by Z, the precision of the angular measurements by �, and the number of degrees of

freedom by n, we have the following formula for the number of distinguishable

orientations (Saylor et al., 2000).

N ¼ 1=ð4Z2ÞQ
n;�

ðn=�Þ

¼ ½ð2pÞðpÞð2pÞð2pÞðpÞ�=ð4Z2�5Þ ð1:9Þ
¼ 8p5=ð4Z2�5Þ

where � is in radians. The 8p5 factor is the product of the full ranges for each

angular parameter. For a cubic system, if � ¼ 0:087 (5�), Eq. 1.9 predicts 2:1 � 105

distinct boundaries. The number of distinguishable boundaries obviously increases

with increases in the angular precision.

(a) (b)

Figure 1.1 (a) The twin plane coincides with the boundary plane. (b) The twin plane and

boundary plane do not coincide.
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Despite such a large number of possible orientations, it has been observed

experimentally that grain orientation relationships do not occur in a random

manner. For example, low-energy grain boundaries like the twin boundary are

very commonly observed in cubic systems. It is hard to say whether this is a result

of thermodynamic or kinetic control. Interfacial energy minimization could be

responsible, or the activation energies for nucleation and grain growth in certain

orientations could be lower, or possibly both factors could be at work.

The Dislocation Model of Low Angle Grain Boundaries A general grain

boundary has a mixture of tilt and twist character. We can think of a pure tilt

boundary as consisting of an axis of rotation that is in the grain boundary plane

(Figure 1.2a). In contrast, twist boundaries contain an axis of rotation that is

perpendicular to the grain boundary plane (Figure 1.2b). A useful way to picture the

symmetrical tilt boundary (a boundary in which the boundary plane contains the

rotation axis and bisects the rotation angle) is to consider it as a straight array of

edge dislocations, as in Figure 1.3. In a single-crystal metal, edge dislocations

consist of extra half-planes of atoms. In ionic or covalent crystals, edge dislocations

involve extra half planes of unit cells. As long as the misorientation angle is low

(i.e., small-angle grain boundaries), tilt boundaries may be regarded as the

coalescence of these line defects into a dislocation network. The spacing

between the dislocations, D, is

D ¼ b= sin y ð1:10Þ

where b is the Burgers vector, perpendicular to the line of the dislocation, and y is

the misorientation angle.

If the dislocation density is low (the value of D is large), a semicoherent

interface results, in which regions of good fit are separated by the individually

recognizable interface dislocations. Note how the extra half-planes in Figure 1.3 all

have a single Burgers vector. In an unsymmetrical low-angle tilt boundary, different

Burgers vectors are required to accommodate the mismatch. The dislocation model

is really only valid for low-angle grain boundaries. In the cubic crystal class, for

(a) (b)

θ

θ

Figure 1.2 (a) A tilt boundary. (b) A twist boundary.
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values y >�15�, D can get so small, corresponding to a high dislocation density,

that dislocations become indistinguishable (Read and Shockley, 1950). The sym-

metrical low-angle twist boundary can similarly be represented by a screw

dislocation (Figure 1.4). Screw dislocations have been likened to multistoried

parking garages, the atomic planes spiraling around the dislocation line in the same

(a) (b)

θ
b

D

Figure 1.3 (a) A low-angle tilt boundary. (b) Representation as an array of parallel edge

dislocations.

(a) (b)

θ θ

Figure 1.4 (a) A low-angle twist boundary. (b) Representation as a screw dislocation.
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manner as a parking garage floor spirals around a central pole of the garage

(Weertman and Weertman, 1992).

1.1.3 Grain Boundary Geometry: The Coincidence Site Lattice

The evolution of our modern picture of crystalline interfaces can be summarized as

follows. The earliest geometric models of crystalline interfaces were the ‘‘amor-

phous’’ high-angle grain boundary by Hargreaves and Hill (Hargreaves and Hill,

1929), and the twin interface by the French mining engineer and crystallographer

Georges Friedel (1865–1933) (Friedel, 1926), son of organic chemist Charles

Friedel. (1832–1899). N. F. Mott first suggested that grain boundaries should

contain regions of fit and misfit (Mott, 1948). Kronberg and Wilson then pointed out

the importance of the coincidence of atom positions across grain boundaries in

influencing metal properties such as diffusion coefficients and mobilities (Kronberg

and Wilson, 1949). Ranganthan presented a general procedure for obtaining

coincidence relationships between lattices about rotation axes (Ranganathan, 1966).

The modern method for quantifying the goodness of fit between two adjacent

grains examines the number of lattice points (not atomic positions) from each grain

that coincide. In special cases, for example when the grain boundary plane is a twin

plane, the lattice sites for each of the adjacent crystals coincide in the boundary.

These are called coherent boundaries. It has long since been experimentally verified

that coherent grain boundaries possess special properties. For example, coherent

boundaries migrate faster than random boundaries during recrystallization (Aust

and Rutter, 1959).

Consider a pair of adjacent crystals. We mentally expand the two neighboring

crystal lattices until they interpenetrate and fill all space. Without loss of generality,

it is assumed that the two lattices possess a common origin. If we now hold one

crystal fixed and rotate the other, it is found that a number of lattice sites for each

crystal, in addition to the origin, coincide with certain relative orientations. The set

of coinciding points form a coincidence site lattice, or CSL, which is a sublattice

for both the individual crystals.

In order to quantify the lattice coincidence between the two grains, A and B, the

symbol � customarily designates the reciprocal of the fraction of A (or B) lattice

sites that are common to both A and B.

� ¼ Number of crystal lattice sites=Number of coincidence lattice sites ð1:11Þ

For example, if one-third of the A (or B) crystal lattice sites are coincidence points

belonging to both the A and B lattices, then, � ¼ 1=ð1=3Þ ¼ 3. The value of � also

gives the ratio between the areas enclosed by the CSL unit cell and crystal unit cell.

The value of � is a function of the lattice types and grain misorientation. The two

grains need not have the same crystal structure or unit cell parameters. Hence, they

need not be related by a rigid-body rotation. The boundary plane intersects the CSL

and will have the same periodicity as that portion of the CSL along which the

intersection occurs.
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The simple CSL model is directly applicable to the cubic crystal class. The lower

symmetry of the other crystal classes necessitates the more sophisticated formalism

known as the constrained coincidence site lattice, or CCSL (Chen and King, 1988).

In this book, we only treat cubic systems. Interestingly, whenever an even value is

obtained for � in a cubic system, it will always be found that an additional lattice

point lies in the center of the CSL unit cell. The true area ratio is then half the

apparent value. This operation can always be applied in succession, until an odd

value is obtained—thus � is always odd in the cubic system. A rigorous mathe-

matical proof of this would require that we invoke what is known as O-lattice

theory (Bollman, 1967) The O-lattice takes into account all equivalence points

between two neighboring crystal lattices. It includes as a subset not only coinciding

lattice points (the CSL) but also all nonlattice sites of identical internal coordinates.

However, to expand on that topic would be well beyond the scope of this textbook.

The interested reader is referred to Bhadeshia (1987) or Bollman (1970).

Single crystals and bicrystals with no misorientation (i.e., y¼ 0), by convention,

are denoted �1. In practice, small- or low-angle grain boundaries with a mis-

orientation angle less than 10�–15� are also included under the �1 term. Since � is

always odd, the coincidence orientation for high-angle boundaries with the largest

fraction of coinciding lattice points is �3 (signifying that 1/3 of the lattice sites

coincide). Next in line would be �5, then �7, and so on.

Figure 1.5 shows a tilt boundary between two cubic crystals. The grain boundary

plane is perpendicular to the plane of the page. In the figure, we are looking down

one of the h100i directions, and the [100] axis about which grain B is rotated is also

perpendicular to the page and passes through the origin. At the precise misorienta-

tion angle of 36.9�, one-fifth of the B crystal lattice sites are coincidence points,

which also belong to the expanded lattice of crystal A; this is a �5 CSL

misorientation. The set of coincidence points forms the CSL, the unit cell of which

is outlined. Note that the area enclosed by the CSL unit cell is five times that

enclosed by the crystal unit cell.

Fortunately, there is an easy, although tedious, way to determine the true value

for �. If an integer, N, can be found such that all the elements of the rotation matrix

become integers when multiplied by N, then that integer will be the � value. The

value of N is found simply by multiplying all the matrix elements by integers, in

increments of one beginning with the number 1, until the matrix elements are all

integers. If the value of � turns out to be even using this procedure, then the true

value is obtained by successively dividing N by two until the result is an odd

integer. This method can be used to compute the value of � for any general rotation

matrix. For example, factoring out 1/3 from R in Eq. 1.4 gives a matrix with

integral elements, in which � is equal to three:

R ¼ 1=3

2 2 �1

�1 2 2

2 �1 2

0
@

1
A

Hence, the 60� h111i twin boundary has a �3 CSL misorientation. It is also a

coherent boundary because of the large number of coincidence points along the
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twin plane itself, as shown in Figure 1.6. In this figure, we are looking down on the

h111i rotation axis. The lattice sites shown are in rows off the h111i axis, along the

set of (111) planes, as illustrated in the bottom left corner. It will be recalled that

the boundary plane intersects the CSL and will have the same periodicity as that

portion of the CSL along which the intersection occurs. Thus, not all �3 boundaries

will be coherent. For example, although rotations of 70.5� and 109.5� about h011iA

are also equivalent �3 misorientations, only the 70.5� rotation will result in a high

degree of coincidence along the h011i.

Example 1.2 The matrix corresponding to a rotation of 50.5� about [110] is given

in Bhadeshia’s monograph Worked Examples in the Geometry of Crystals as:

R ¼
0:545621 �0:545621 0:636079

0:181961 0:818039 0:545621

0:818039 0:181961 �0:545621

0
@

1
A

Calculate the value of �.

(a) (b)

Figure 1.5 A view down the [001] direction of a tilt boundary between two crystals (A, B)

with a misorientation angle of 36.9� about [001]. The grain boundary is perpendicular to

the plane of the page. Every fifth atom in the [010] direction in B is a coincidence point

(shaded). The area enclosed by the CSL unit cell (bold lines) is five times that of the crystal

unit cell, so �¼ 5.
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Solution Multiplying each matrix element by an integer, starting with the

number 1, and progressing in increments of 1 until the products are integers shows

that when N ¼ 11, the rotation matrix can be written as

R ¼ 1=11

6 �6 6

6 9 6

9 2 �6

0
@

1
A

Hence, �¼ 11.

For tilt boundaries, the value of � can also be calculated if the plane of the

boundary is specified in the coordinate systems for both adjoining grains. This

method is called the interface-plane scheme (Wolfe and Lutsko, 1989). In a crystal,

lattice planes are imaginary sets of planes that intersect the unit cell edges (Sec-

tion 2.1.3). These planes are denoted by Miller indices, a group of integers that are

the reciprocals of the fractional coordinates of the points where the planes intercept

each of the unit cell edges. In cubic crystals, the (hkl) planes are orthogonal to the

[uvw] direction. The tilt and twist boundaries can be defined in terms of the Miller

indices for each of the adjoining lattices and the twist angle, �, of both plane stacks

normal to the boundary plane, as follows:

ðh1k1l1Þ ¼ ðh2k2l2Þ; � ¼ 0 symmetric tilt boundary

ðh1k1l1Þ 6¼ ðh2k2l2Þ; � ¼ 0 asymmetric tilt boundary

ðh1k1l1Þ ¼ ðh2k2l2Þ; � > 0 low-angle twist boundary

ðh1k1l1Þ 6¼ ðh2k2l2Þ; � > 0 high-angle twist boundary

<111> Boundary Plane

<111>

Figure 1.6 The twin boundary (perpendicular to the plane of the page) is a �3 CSL

misorientation. Note that there is complete coincidence in the boundary plane itself.
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Thus, the value of the CSL-� value is obtained for symmetric tilt boundaries

between cubic crystals as follows:

� ¼ h2 þ k2 þ l2 for h2 þ k2 þ l2 ¼ odd

¼ ðh2 þ k2 þ l2Þ=2 for h2 þ k2 þ l2 ¼ even
ð1:12Þ

For asymmetric tilt boundaries between cubic crystals, � is calculated from

(Randle, 1993):

� ¼ ½ðh2
1 þ k2

1 þ l21Þ=ðh2
2 þ k2

2 þ l2
2Þ�

1=2 ð1:13Þ

For example, if we mentally expand the lattices of both A and B in Figure 1.5, it will

be seen that the grain boundary plane cuts the B unit cell at (340) in the B

coordinate system and the A unit cell at (010) in the A coordinate system. Thus,

Eq. 1.13 yields �¼ (25/1)1/2 ¼ 5.

In polycrystals, misorientation angles rarely correspond to exact CSL config-

urations. There are ways of dealing with this deviation, which set criteria for the

proximity to an exact CSL orientation that an interface must have in order to be

classified as belonging to the class �¼ n. The Brandon criterion (Brandon et al.,

1964) asserts that the maximum permitted deviation is v0�
�1=2. For example, the

maximum deviation that a �3 CSL configuration with a misorientation angle of 15�

is allowed to have and still be classified as �3 is 15�(3)�1/2 ¼ 8.7�. The coarsest

lattice characterizing the deviation from an exact CSL orientation, which contains

the lattice points for each of the adjacent crystals, is referred to as the displacement

shift complete lattice (DSL).

Despite the difficulties associated with characterizing inexact CSL orientations,

the CSL concept is useful because grain boundary structure, which depends on the

orientation relationship between the grains and, hence, the CSL, directly influences

intragranular properties like chemical reactivity (e.g., corrosion resistance), segre-

gation, and fracture resistance. Grain boundary engineering is a relatively new field

that concentrates on controlling the intragranular structure, or CSL geometry,

to improve these properties, in turn, improving bulk materials performance

(Watanabe, 1984, 1993). For the most part, this means introducing a large fraction

of low-� boundaries, particularly twin boundaries. It is believed, however, that

optimal grain boundary properties may be restricted to narrow regions (small

deviations) about exact CSL orientations.

1.1.4 Grain Boundary Energy

A finite number of point defects (e.g., vacancies, impurities) can be found in any

crystalline material because the configurational entropy term, �T�S, for a low

point-defect concentration outweighs the positive formation enthalpy in the free-

energy expression, �G ¼�H � T�S. Thus, introduction of a small number of

point defects into a perfect crystal gives rise to a free-energy minimum, as

illustrated in Figure 1.7a. Further increases in the point-defect concentration,
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however, will raise the free energy of the system. Point defects in crystals are

discussed in Sections 2.5.1 and 5.4.1.

On the other hand, the positive enthalpy of formation is so high for extended

defects that the entropy gain is not sufficient to give rise to minima in the free

[Point-Defect Concentration]

(a)

[Extended Defect Concentration]

Energy

Energy

(b)

Figure 1.7 Energy changes associated with the incorporation of defects into a perfect crystal.

(a) For point defects, the minimum in the free energy occurs at some finite concentration of

defects. (b) For extended defects, the minimum in the free energy corresponds to the

defect-free structure.
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energy (Figure 1.7b). Recall how a tilt boundary can be regarded as an array of edge

dislocations. Edge dislocations are extended defects in which the formation energy

must be proportional to the linear dimensions of the sample (Elliot, 1998). Hence,

dislocations and grain boundaries are higher energy metastable configurations,

introduced primarily from processing. On annealing, polycrystals tend to evolve

toward single crystals through grain growth, and grains with low dislocation

densities tend to grow by consuming grains with high dislocation densities.

Unfortunately, reliable grain boundary energies are hard to obtain. As one might

imagine, measuring grain boundary energies is difficult and tedious. So is calcula-

tion from first principles, since this requires accurate atom positions—the determi-

nation of grain boundary structure and orientation requires careful sample

preparation and high-resolution instruments. Nonetheless, some experimental

work has been performed, and it is possible to make some generalized statements.

First, low � boundaries tend to have relatively lower grain boundary energy, on

average. The entropy term is undoubtedly the dominant contribution to the free

energy in these cases. With small misorientation angles (y< 15�), D in Eq. 1.10 is

large. Since grain boundary energy is proportional to 1/D, g tends to be small for

low-angle boundaries, and it has been found experimentally that as the angle

exceeds 15�, the grain boundary energy typically begins to level off as it becomes

independent of y. However, one must be very cautious when attempting to correlate

the three parameters, �, y, and g. Increases in � do often correspond to increases in

y, but not all high-angle boundaries are high � also. For example, the high-angle

coherent twin boundary (y¼ 60�) is a ‘‘low sigma’’ �3 structure. Furthermore, the

atoms at the interface of a high-angle coherent twin boundary are coherent, which

results in a very low-energy boundary. Likewise, although many low-� boundaries

tend to have relatively low energies, the energy does not always show a simple

relationship to �.

1.1.5 Special Types of Low-Energy Grain Boundaries

In addition to low-energy coherent twin boundaries, other low-energy grain

boundaries exist that do not involve a grain misorientation (y¼ 0). In a cubic

close-packed (ccp) crystal, for example, the stacking repeat sequence of the close-

packed layers can be represented as . . .ABCABCABC . . ., where each letter

represents a layer of hexagonally coordinated atoms with a particular displace-

ment relative to its adjacent layers. Stacking faults occur when the layer sequence

is interrupted, for example, . . .ABCABABC. . . . This type of defect commonly

occurs in polytopic metals, in which the polytypes are different types of close

packing. However, stacking faults can occur in non-close-packed structures as well.

Figure 1.8 shows a (110) section through a diamond lattice (e.g., silicon) containing

a stacking fault by removal of two adjacent layers. The diamond structure may be

thought of as two interpenetrating face-centered cubic (fcc) lattices.

A second type of boundary, in which there is no misorientation between grains,

is the antiphase boundary. This occurs when ‘‘wrong’’ atoms are next to each other

on the boundary plane. For example, with hexagonal close-packed (hcp) crystals,
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the sequence . . .ABABAB . . . can be reversed at the boundary to ABABAjABABA,

where j represents the boundary plane. Antiphase boundaries and stacking faults are

typically of very low energy, comparable to that of a coherent twin boundary.

1.1.6 Grain Boundary Dynamics

Thus far, we have confined our discussion to the ‘‘static’’ properties of grain

boundaries. However, grain boundaries are metastable configurations and, as such,

in response to external forces (e.g., thermal, mechanical) they exhibit dynamical

behavior. We will briefly mention only two of the more important ones: grain

boundary migration and sliding. Grain boundary migration is an example of when a

heat-treated system attempts to minimize its free energy. Polycrystals tend to evolve

toward single crystals through grain growth. In this phenomenon, atoms move from

the side of the grain boundary with a high free energy to the low-energy side. The

free energy of the system can thus be reduced as the low-energy crystals consume

the high-energy crystals. For example, on annealing, polycrystalline grains with low

dislocation densities will grow by consuming grains with high dislocation densities.

Likewise, at curved boundaries atoms are more likely to diffuse from the convex

side to the concave side in order to flatten the interface. In this way, the interfacial

area and energy are reduced.

Grain boundary sliding is a process in which adjacent grains slide past each

other along their common boundary. It is a deformation mechanism that contributes

to plastic (nonrecoverable) flow and superplasticity in polycrystalline samples with

Figure 1.8 A (110) section through a diamond lattice showing a stacking fault by the

absence of two adjacent atomic layers. The layer sequence along the h111i body-diagonal

direction should be . . . A b B c C a A b. . . (Adapted from Runyan and Bean, 1990,

Semiconductor Integrated Circuit Processing Technology. Copyright # Addison-Wesley

Publishing Company, Inc. Reproduced with permission.)
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very small grain sizes. Superplasticity has been observed in both metals and

nonmetals. Superplasticity is an important property because it allows engineers

to fabricate complex shapes out of a material, which might otherwise be unobtain-

able. Grain boundary sliding and migration modify the texture, or preferred

orientation, of polycrystalline materials during recrystallization.

1.1.7 Orientation Distributions in Polycrystalline Aggregates

Methods such as high-resolution transmission electron microscopy (HRTEM)

enable direct examination of orientation relationships between pairs of crystals.

However, their use for the determination of preferred orientation, or texture, in bulk

polycrystalline samples is not convenient due to the very large number of grains

present. Rather, texture is normally determined from X-ray diffraction data.

In a polycrystal, the grains may all be oriented at random, exhibit some preferred

orientation, or there may be multiple regions, called domains, possessing different

preferred orientations. The most common way of illustrating texture is the use of

pole figures. The inclination to the normal to a particular type of crystal plane [e.g.,

(100)], relative to some reference plane, is specified for a large number of grains. It

is thus necessary to consider two coordinate systems, the crystal coordinate system

and the sample coordinate system. If a sphere is imagined to enclose the poly-

crystalline sample, then each plane normal will intersect the sphere’s surface at a

point called the pole, which by its position on the surface represents the orientation

to that crystal plane. Because it is difficult to draw a three-dimensional (3D) sphere

on a 2D piece of paper, the orientation distribution is displayed with a stereographic

projection of the sphere, called a pole figure. Several pole figures, one for each type

of crystal plane examined, collectively describe the texture.

As an example, consider a single crystallite contained within a thin film or rolled

specimen of cubic symmetry, with its (001) plane parallel to the substrate, as in

Figure 1.9a. The normal to the (001) plane is pointing straight up, its (00�11) plane

normal straight down, its (100) and (�1100) plane normals pointing left and right and

its (010) and (0�110) plane normals pointing front and back. Note from Figure 1.9a

that the h100i plane normals are parallel to the sample’s radial directions (RD),

transverse directions (TD), and normal directions (ND). This particular arrange-

ment is called cube texture.

The normal to each crystallite produces a pole by its intersection with the surface

of the sphere. Hence, a large number of poles will produce a spot with a diameter

that is dependent on the distance between the sample and the sphere surface. By

convention, the surface of the sphere is taken to be at sufficient distance such that

strong texture (a large number of parallel-plane normals) is manifested as small

diameter spots. Thus, for a polycrystalline aggregate with all its crystals aligned as

in Figure 1.9a the pole figure of the {100} poles would show sharp maxima in the

ND (top), RD (sides), and TD (center) locations, as illustrated in Figure 1.9b. If

there were only weak cube texture, the maxima would smear out into lighter spots

rather than form four distinct dark spots. This is because the plane normals are now

no longer all parallel and their intersections with the sphere surface produces wide-
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diameter less-densely populated spots, as illustrated in Figure 1.9c. If there were no

preferred orientation, there would be a uniform distribution of poles in the pole

figure. In this case, there is essentially one discernible pole corresponding to each

crystallite whose orientation was measured, as illustrated in Figure 1.9d.

The implications of texture on the properties exhibited by a material are

discussed in Sections 1.2.5, 1.3.1, and 1.3.2. We will see that the properties of

polycrystalline aggregates with a sufficiently large number of grains possessing a

completely random orientation distribution are macroscopically isotropic (indepen-

dent of direction), even though the crystallites themselves may be anisotropic.

Fabrication processes such as extrusion, rolling, and pressing, remove this isotropy,

however.

1.2 SOLIDIFIED METALS AND ALLOYS

The most economical and, hence, most common method for fabricating metal

pieces with a predefined size and shape is casting. In principle, solidification

processes are equally applicable to nonmetals. However, most ceramics are very

seldom prepared by this route, because of their high melting points. Typically, the

(a) (b)

(c) (d)

{010}
{001}

{100}

Figure 1.9 (a) Cube texture. (b) The (100) pole figure indicating sharp texture. (c) Weak

texture in the (100) pole figure. (d) No preferred orientation in the (100) pole figure.
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molten material is poured into a thermally conducting mould to solidify. At first

glance, solidification might appear to be a fundamentally simple process, but this

would be deceptive. The quantitative mathematical relations governing this phe-

nomenon are complicated moving interface diffusion equations. Fortunately, we

need not present such mathematical expressions in any detail here.

In many respects, crystallization from the molten state is analogous to that from

a solvent. For example, in both processes slow cooling tends to result in larger

crystals, while faster cooling typically gives smaller crystals. Another important

similarity involves the behavior of impurities. Impurity atoms usually do not ‘‘fit’’

into the crystal lattice of the solute crystallizing from a solvent. This allows

crystallization from a solvent to be used as a purification technique. Likewise,

impurity atoms in a polycrystalline metal tend to segregate at the grain boundaries

during solidification because of their mismatch with the lattice of the metal atoms.

Conventional industrial casting processes usually involve directional heteroge-

neous solidification occurring in three stages: nucleus formation, crystal growth,

and grain boundary formation. When enough heat is extracted, stable nuclei form in

the liquid either on solid-phase impurities near the walls of the mould or on the

mould itself, since this is the first region to cool sufficiently for crystals to form.

Heterogeneous nucleation can also occur at the surface of the melt on solid-phase

metal oxide particles. Oxides typically have much higher melting points than those

of their parent metals. Other possible nucleation sites are inclusions and intention-

ally added grain refiners. At any rate, the solidification begins near the exterior

edges and the solid–liquid interface subsequently moves inward toward the

casting’s center as heat is conducted through the freshly grown solid out through

the mould. The nuclei consist of tiny aggregates of atoms arranged in the most

favorable lattice under the process conditions. Crystals grow in all directions near

the liquid–container interface. Hence, this region is called the equiaxed zone, as

shown in Figure 1.10.

As solidification continues, an increasing number of atoms lose their kinetic

energy, making the process exothermic. For a pure metal, the temperature of the

melt will remain constant while the latent heat is given off (until freezing is

complete). As the atoms coalesce, they may attach themselves to existing nuclei or

form new nuclei. The process continues, with each crystal acquiring a random

orientation and, as the gaps between crystals fill in, each grain acquires an irregular

shape. The growth morphology is most likely under kinetic control, that is, the grain

morphology that appears is the one with the maximum growth rate. Eventually,

those grains that have a preferred growth direction will eliminate the others,

resulting in the formation of a columnar zone where the crystals are elongated,

or column-like. The growth direction is typically in the direction of heat flow. For

alloys, an inner equiaxed zone can sometimes form in the casting’s center, resulting

from the growth of detached pieces of the columnar grains. This will be dependent

on the degree of heat convection in that region.

Conventional casting procedures result in relatively coarse grains, with an

average size in the range of several millimeters to several hundred micrometers.

The interfaces between grains, formed by the last liquid to solidify, are the grain
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boundaries. A grain boundary is comprised of atoms that are not exactly aligned

with the crystalline grains on either side of it. Hence, the grain boundaries have

some degree of disorder and tend to contain a higher concentration of impurity

atoms, which do not ‘‘fit’’ into the crystal lattices on either side of them (a melt is

never entirely pure). The grain boundary has a slightly higher free energy due to the

presence of defects. We will now investigate how grain morphology and composi-

tion, collectively termed constitution, is affected by the solidification rate. Of the

many parameters affecting the development of the microstructure, none is more

important than the cooling rate.

1.2.1 Grain Homogeneity

There are two limiting cases to consider. The first is equilibrium solidification,

when the cooling rate is slow enough that solid-state diffusion can act to redistribute

atoms and result in homogeneous crystals. In this case, complete diffusion occurs in

both the liquid and solid. Under these conditions, the solid absorbs solute atoms

from the liquid and solute atoms within the solid diffuse from the previously frozen

material into subsequently deposited layers. The chemical compositions of the solid

and liquid at any given temperature then follow the solidus and liquidus lines,

respectively, of the equilibrium phase diagram.

Figure 1.10 A schematic illustration of a section through an ingot showing the different

solidification zones. The equiaxed zone forms near the mould walls. In the interior is the

columnar zone, where crystal growth is in the direction of heat flow.
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Use of tie lines and the lever rule enable one to determine those compositions, as

illustrated in Figure 1.11a for a binary system. The composition of the solid (Cs) as

a function of the fraction solid transformed (fs), assuming linear solidus and

liquidus lines, is given by

Cs ¼ kC0=½ fsðk � 1Þ þ 1� ð1:14Þ

where k is the partition coefficient (the ratio of the solute concentration in the solid

to that in the liquid) and C0 is the composition of the original liquid alloy. The first

crystals to freeze out have composition a1. As the temperature is reduced to T2, the

liquid composition shifts to L2. The compositions of the freezing solid and

remaining liquid continuously shift to higher B contents and leaner A contents.

The average solid composition follows the solidus line to T4, where it equals the

bulk composition of the alloy.

In order to qualify for equilibrium solidification, the solidification rate must be

slower than the solute diffusivity in the solid:

Ds � Lxn ð1:15Þ

where Ds is the solute diffusivity in the solid, Lx is the system length scale in one

dimension, and n is the solidification speed (Phanikumar and Chattopadhyay,

2001). Table 1.3 lists the self-diffusivities of pure metals at their freezing points

(Tf ) in the various structural classes. It can be deduced from Eq. 1.15 that, for a

system length scale of 1 cm, the solidification rate (cm/s) must be lower than the

numerical values given for the diffusivities (cm2/s) given in Table 1.3, which are

very slow rates, indeed. In other words, equilibrium solidification occurs only when

the melt is cooled extremely slowly!

(a) (b)

Figure 1.11 (a) A portion of a binary phase diagram illustrating equilibrium solidification.

(b) Nonequilibrium (rapid) solidification, which results in a chemical composition gradient in

the crystals, a condition known as coring.
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The second limiting case approximates conventional industrial casting processes, in

which the solidification rates are several orders of magnitude too fast to maintain

equilibrium. The most widely used classic treatment of nonequilibrium solidifica-

tion is by Scheil (Scheil, 1942). The model assumes negligible solute diffusion in

the solid phase, complete diffusion in the liquid phase, and equilibrium at the solid–

liquid interface. In this case, Eq. 1.14 can be rewritten as:

Cs ¼ kC0ð1 � fsÞk�1 ð1:16Þ

When the solid–liquid interface moves too fast to maintain equilibrium, it results

in a chemical composition gradient within each grain (a condition known as

coring). This is illustrated in Figure 1.11b. Without solid-state diffusion of the

solute atoms in the material solidified at T1 into the layers subsequently freezing out

at T2, the average composition of the crystals does not follow the solidus line, from

a1 to a4, but rather follows the line a01 to a05, which is shifted to the left of the

equilibrium solidus line. The faster the cooling rate, the greater the magnitude of

the shift.

Note also that final freezing does not occur until a lower temperature, T5 in

Figure 1.11b, so that nonequilibrium solidification happens over a greater tem-

perature range than equilibrium solidification. Because the time scale is too short

for solid-state diffusion to homogenize the grains, their centers are enriched in the

higher freezing component while the lowest freezing material gets segregated to the

edges (recall how grain boundaries are formed from the last liquid to solidify).

Grain boundary melting, liquation, can occur when subsequently heating such an

alloy to temperatures below the equilibrium solidus line, which can have devastat-

ing consequences for metals used in structural applications.

1.2.2 Grain Morphology

In addition to controlling the compositional profile of the grains, the solidification

velocity also determines the shape of the solidification front (solid–liquid interface),

which, in turn, determines grain shape. The resulting structure arises from the

TABLE 1.3 Self-diffusivities for Various Metals at the

Melting Temperature

Class Ds (cm2/s)

fcc 5.5 � 10�9

bcca (Li, Na, K, Rb) 1.4 � 10�6

bcc (Trans. elements) 2.9 � 10�8

hcp (Mg, Cd, Zn) 1.6 � 10�8

Alkali halides 3.2 � 10�9

Source: Brown, A. M.; Ashby, M. F. 1980, Acta Met, 28, 1085.
a bcc ¼ body-centered cubic.
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competition between two effects. Undercooling of the liquid adjacent to the

interface favors protrusions of the growing solid, which gives rise to dendrites

with a characteristic treelike shape, while surface tension tends to restore the

minimum surface configuration—a planar interface.

Consider the case of a molten pure metal cooling to its freezing point. When the

temperature gradient across the interface is positive (the solid is below the freezing

temperature, the interface is at the freezing temperature, and the liquid is above the

freezing temperature), a planar solidification front is most stable. However, with

only a very small number of impurities present in a pure melt on which nuclei can

form, the bulk liquid becomes kinetically undercooled. Diffusion of the latent heat

away from the solid–liquid interface via the liquid phase favors the formation of

protrusions of the growing solid into the undercooled liquid (the undercooled liquid

is a very effective medium for heat conduction). Ivantsov first mathematically

modeled this for paraboloidal dendrites over half a century ago (Ivantsov, 1947). It

is now known that this is true so long as the solidification velocity is not too fast. At

the high velocities observed in some rapid quenching processes (e.g., >10 ms�1),

dendritic growth becomes unstable, as the perturbation wavelengths become small

enough that surface tension can act to restore planarity (Hoglund et al., 1998;

Mullins and Sekerka, 1963)

For a pure melt, dendritic growth is a function of the rate of latent heat removal

from the interface. However, when we turn our attention to alloys, we see a slightly

different situation. Here, in addition to heat flow, one must consider mass transport

as well. In fact, the planar interface-destabilizing event primarily responsible for

dendritic morphology in conventional alloy casting is termed constitutional under-

cooling, to distinguish it from kinetic undercooling. The kinetic undercooling

contribution can still be significant in some cases. In most models for two-

component melts, it is assumed that the solid–liquid interface is in local equilibrium

even under nonequilibrium solidification conditions based on the concept that

interfaces will equilibrate much more rapidly than bulk phases. Solute atoms thus

partition into a liquid boundary layer a few micrometers thick adjacent to the

interface, slightly depressing the freezing point in that region. As in the case for

pure meals, the positive temperature gradient criterion for planar interface stability

still holds. However, although the bulk liquid is above the freezing point, once the

boundary layer becomes undercooled, there is a large driving force for solidification

ahead of the interface into the thin boundary layer.

The critical growth velocity, n, above which the planar interface in a two-

component melt becomes unstable is related to the undercooling, �Tc, by an

equation given by Tiller as:

GL=n � �Tc=DL ð1:17Þ

where �Tc ¼ mLC0ð1 � kÞ/k, and GL is the thermal gradient in the liquid ahead of

the interface, n is the solidification speed, mL is the liquidus slope, C0 is the initial

liquid composition, k is the partition coefficient (previously defined), and DL is the

solute diffusivity in the liquid (Tiller et al., 1953).
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Constitutional undercooling is difficult to avoid except with very slow growth

rates. With moderate undercooling, a cellular structure, resembling arrays of

parallel prisms, results. As the undercooling grows stronger, the interface breaks

down completely as anisotropies in the surface tension and crystal structure leads to

side branches at the growing tip of the cells along the ‘‘easy-growth’’ directions

(h100i for fcc and body-centered cubic (bcc), h1010i for hcp), marking a transition

from cellular to dendritic.

Since the mid-1950s, a large amount of work has gone into obtaining accurate

mathematical descriptions of dendrite morphologies as functions of the solidifica-

tion and materials parameters. Dendritic growth is well understood at a basic level.

However, most solidification models fail to accurately predict exact dendrite

morphology without taking into account effects like melt flow. In the presence of

gravity, density gradients due to solute partitioning produce a convective stirring in

the lower undercooling range corresponding to typical conditions encountered in

the solidification of industrial alloys (Huang and Glicksman, 1981). Melt flow is a

very effective heat transport mechanism during dendritic growth that may result in

variations in the dendrite morphology, as well as spatially varying composition

(macrosegragation).

1.2.3 Microstructural Features of Multiphase Alloys

The solidification of pure metals and single-phase solid solutions has been amply

discussed. It would now be beneficial to briefly describe the microstructures of

multiphase alloys. The simplest type is the binary eutectic system containing no

intermetallic compounds or solid-phase miscibility. An example is the Ag–Si

system, the phase diagram of which is shown in Figure 1.12. At the eutectic

composition (e.g., 96.9 wt % Ag in Figure 1.12), both metals form nuclei and

solidify simultaneously as two separate pure phases. Generally, high-volume

fractions of both phases will tend to promote lamellar structures. If one phase is

present in a small-volume fraction, that phase tends to solidify as fibers. However,

some eutectic growths show no regularity in the distribution of the phases. Eutectic

microstructures normally exhibit small interphase spacing, and the phases tend to

grow with distinctly shaped particles of one phase in a matrix of the other phase, as

shown in Figure 1.13. The microstructure will be affected by the cooling rate; it

is possible for a eutectic alloy to contain some dendritic morphology, especially if it

is rapidly cooled.

The microstructures of hypo- or hypereutectic compositions normally consist of

large particles of the primary phase (the component that begins to freeze first)

surrounded by fine eutectic structure. Often times the primary particles will show a

dendritic origin, but they can transform into idiomorphic grains (having their own

characteristic shape) reflecting the phases’ crystal structure.

Multiphasic alloys sometimes contain intermediate phases that are atomically

ordered, but that do not always crystallize in accordance with normal valency rules.

Intermediate phases that exist over small compositional ranges appear as line com-

pounds on a phase diagram. These phases are known as intermetallic compounds,
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or IMCs (e.g., Cu9Yb2, Au2Na). In contrast to the metallic bonds in a solid solu-

tion, the cohesive forces within an intermetallic may be partly covalent, ionic, or

ordered metallic. Intermetallic phases are, in general, less ‘‘metallic’’ than metals

or solid solutions. Their presence usually renders an alloy less ductile (but stronger)

and lowers the thermal and electrical conductivities.

1.2.4 Metallic Glasses

It has been known for decades that in alloy systems with a deep eutectic or low-

lying liquidus temperature, compared to the melting points of the pure metals, there

is a strong tendency for metallic glass formation with cooling rates in the range

105–106 K s�1. Such cooling rates are obtainable in industrial melt spinning and

splat quenching techniques. Under these processing conditions, the highly dis-

ordered state of the supercooled liquid phase becomes ‘‘configurationally frozen’’

into a rigid amorphous (glassy) state. Glasses are monolithic materials, absent of

grain boundaries or other crystalline defects. Some alloys can now be prepared as

bulk metallic glasses (BMGs) in ribbons or rods with thickness of several

centimeters, and at substantially lower cooling rates.

Glass formation can be compared to crystallization by referring to Figure 1.14,

which is applicable to both metallic and nonmetallic systems. Crystallization
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Figure 1.12 The Ag–Si phase diagram. This is the simplest type of binary eutectic system.

There are no intermetallic compounds and no solid-phase miscibility. (After Baker, ed., 1992,

ASM Handbook, Vol. 3: Alloy Phase Diagrams. Copyright # ASM International. Reproduced

with permission.)
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follows path abcd. As the temperature of a non-glass-forming melt is lowered, the

molar volume of the alloy decreases continuously until it reaches the melting point,

where it changes discontinuously, that is, where it experiences a first-order phase

transition. The enthalpy and entropy behave similarly. By contrast, in glass

formation the melt follows path abef with decreasing temperature. The liquid

remains undercooled (it does not solidify) in the region be, below the melting point.

The molar volume continuously decreases in the undercooled region and the

viscosity increases rapidly. At the point Tg, called the glass transition temperature,

the atomic arrangement becomes frozen into a rigid mass that is so viscous it

behaves like a solid.

Turnbull’s criterion for the ease of glass formation in supercooled melts predicts

that a liquid will form a glass, if rapidly solidified, as the ratio of the glass transition

temperature, Tg, to the liquidus temperature, Tl, becomes equal to or greater than

2/3 (Turnbull and Fisher, 1949; Turnbull, 1950). The Tg=Tl ratio is referred to as the

reduced glass transition temperature, Trg. Historically, most glass-forming alloys

Figure 1.13 Various eutectic microstructures. (a) Globular (50Sn–50In). (b) Acicular

(87Al–13Si). (c) Lamellar platelets (67Al–33Cu). (d) Lamellar ‘‘Chinese script’’ (63Mg–

37Sn). (After Baker ed., 1992, ASM Handbook, Vol. 3: Alloy Phase Diagrams. Copyright #

ASM International. Reproduced with permission.)
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were metal–metalloid and metal–metal binary systems (where the metal is usually a

transition element and the metalloid is B, Si, C, or P) with a Tg well above room

temperature, in the range 300–700 K. With the exception of the group 12 elements

(Zn, Cd, Hg) the transition metals have melting points exceeding 1200 K. Hence,

those alloy systems containing very low melting eutectics (e.g., 636 K in the Au–Si

system) tend to satisfy the Turnbull criterion.

Examples of binary metallic glasses include Fe80B20, Ni60Nb40, Ni63Zr27, and

Ca65Al35. The compositions of these glasses are near eutectic points (Turnbull,

1981). Turnbull’s criterion has thus been validated in systems at cooling rates

attainable by ‘‘conventional’’ casting procedures (�106 K s�1). Some alloy

systems, such as Cu60Zr40, exhibit glass formation over composition ranges

extending well beyond a eutectic point. By contrast, the Trg of pure metals seem

to be much smaller than 2/3. Furthermore, pure metallic liquids (�10�2 poise)

have much lower viscosities than the glass-forming alloys. Therefore, glass

formation from pure metal melts requires extremely high cooling rates, on the

order of �1012 K s�1.

There is both a kinetic and thermodynamic basis to Turnbull’s criterion. The rate

of homogeneous nucleation is dependent on the ease with which atomic rearrange-

ment can occur (commonly taken as the atomic diffusion coefficient), which scales
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Figure 1.14 A comparison of glass formation (curve abef) and crystallization (curve abcd).

The point Tg is the glass-transition temperature and Tm is the melting temperature. (After

West, 1985, Solid State Chemistry and Its Applications. Copyright # John Wiley & Sons, Inc.

Reproduced with permission.)
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with fluidity or viscosity. Easy glass-forming substances form highly viscous melts

(e.g., >102 poise), compared to non-glass-forming ones (e.g., water, with Z� 10�2

poise). In highly viscous melts, the atomic mobility is substantially reduced, which

suppresses the homogeneous nucleation rate. Hence, the homogeneous nucleation

rate is highly dependent on Trg. The Trg > 2=3 successfully predicts glass formation

in metallic and nonmetallic liquids. Igor Evgenevich Tammann (1861–1938) pointed

out, as early as 1904, that the higher the viscosity of a melt, the lower its

crystallizability (Tammann, 1904). It must be noted, however, that heterogeneous

nucleation (e.g., on ‘‘seed’’ particles) may prevent glass formation.

The preceding arguments are based on kinetics. It may also be shown on

thermodynamic grounds that a high value for Trg (and therefore the tendency to

form a glass at lower cooling rates) is obtained for deep eutectic systems, that is,

where the melting point is substantially lowered. These systems tend to be those

with very little solid solubility between the components. When atoms do not ‘‘fit’’

together in the lattice (due to mismatches in size, valence, etc.), the tendency for

crystallization diminishes. This is due to both a large negative heat of mixing and

entropy of mixing for the liquid compared with the competing crystalline phase

(Johnson, 2000).

Advances in metallic glasses have been made in the last couple of decades with

the discovery of new families of multicomponent alloys with significantly improved

glass-forming ability. Ternary glass formers include those systems in which the

binary subsets exhibit limited mutual solid solubility, such as Pd77.5Cu6Si6.5 and

Pd40Ni40P20. These systems have been found to form glasses at cooling rates as low

as 103 K s�1 and 10 K s�1, respectively. This is due to both an increased frustration

of the homogeneous nucleation process and to the greater suppression of the

liquidus temperature as the number of components is increased. Hence, the glass-

forming ability appears to be even further enhanced in yet higher order systems,

such as Pd40Cu30Ni10P20 (Inoue et al., 1997) and Zr41.2Ti13.8Cu12.5Ni10Be22.5

(vitreloy 1) (Perker and Johnson, 1993). These alloys have Tg of about 582 K

and 639 K, respectively, and critical cooling rates of just 1 K s�1!

In the supercooled liquid state, BMGs have very high yield strength and a high

elastic-strain limit (often exceeding 2%, compared with crystalline materials that

are almost always less than 1%), which makes them very ‘‘springy.’’ However, under

tensile loads bulk metallic glasses lack any significant global plasticity, which limits

applications as structural materials (Johnson, 1999). Recent efforts have focused

on the development of engineering applications for metallic-glass containing

composite materials. Such composites have been found to exhibit greatly enhanced

ductility and impact resistance as compared to monolithic glasses.

Metallic glasses, like nonmetallic ones, are thermodynamically metastable

states. However, metallic glasses appear to be more susceptible than nonmetallic

glasses to devitrification, or crystallization at temperatures above Tg. They trans-

form to more stable crystalline phases, typically around 300�– 450�C. For example,

nanocrystalline grains (grain size < 100 nm) can sometimes be obtained from a

metallic glass when it is annealed at temperatures at which primary crystallization

can occur. Nanocrystalline phases have been under increased study in recent years
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because they often have improved properties over their coarse-grained counterparts.

Nanocrystalline alloys themselves, however, are also metastable phases, with a

tendency toward grain growth.

DAVID TURNBULL

(b. 1915) earned his Ph.D. in physical chemistry from the University of Illinois

at Urbana-Champaign in 1939 under T. E. Phipps. From 1939 to 1946, he was on

the faculty of the Case Institute of Technology. Turnbull was a research scientist

at General Electric from 1946 to 1962, as well as an adjunct professor at

Rensselaer Polytechnic Institute from 1954 to 1962. He joined the faculty at

Harvard University in 1962, where he was the Gordon McKay Professor of

Applied Physics, becoming emeritus in 1985. Turnbull was a pioneer in the

study of kinetic phenomena in condensed matter. He performed the critical

experiment in several areas: nucleation and growth of crystals; diffusion in

crystalline and amorphous materials; and viscous flow of amorphous materials.

He formulated the classic theory for nucleation in condensed matter and, with

Morrel Cohen, the free volume theory for the flow of liquids and glasses. He

predicted that glass formation is universal, anticipated the discovery of metallic

glasses, and demonstrated the first formation of metallic glasses in bulk form.

The Turnbull criterion predicts the ease with which glass formation occurs.

Turnbull was awarded the von Hippel Prize of the Materials Research Society,

the Acta Metallurgica Gold Medal in 1979, and the Japan Prize in 1986. The

Materials Research Society named an annual lecture after him. He was elected

to the U.S. National Academy of Sciences in 1968.

(Source: B. Sewall and F. Spaepen, personal communication, February 25, 2004.)

David Turnbull (Courtesy of Materials Science Group, Division of Engineering & Applied

Sciences, Harvard University # Harvard University. Reproduced with permission.)
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1.2.5 Microstructure/Property Correlation and Control in Metals

Mechanical properties are studied in detail in Chapter 9. Here, we present a brief

introduction appropriate for the present discussion. The microstructures of all

metals and alloys greatly influence strength, hardness, malleability, and ductility.

These properties describe a body’s plasticity, or ability to withstand permanent

deformation without rupture. Plastic deformation is due to the gliding motion, or

slip, of planes of atoms. Slip most readily occurs on close-packed planes of high

atomic density in the close-packed directions. However, much smaller stresses are

required to move a dislocation through a crystal than a full plane of atoms.

Therefore, dislocations actually govern the ability of a coarse-grained material to

plastically deform. Dislocations have already been introduced. One type is the edge

dislocation, which is an extra half-plane of atoms.

Polycrystalline materials are stronger than single crystals. It is not easy for

dislocations to move across grain boundaries because of changes in the direction of

the slip planes. Thus, the mechanical properties of polycrystalline metals are

dependent on the average grain size and the orientation distribution, or texture.

Deformation processes such as rolling and extrusion, which rely on plasticity,

introduce texture into a sample. The elasticity of a polycrystal, or ability of the

body to return to its original size and shape upon removal of a mechanical stress, is

also a function of texture. Strictly speaking, this is true so long as the following

conditions are met: (1) the number of grains in the sample is sufficiently large; (2)

there is no preferred orientation; (3) the polycrystal is under homogenous strain and

stress (i.e., all grains experience the same strain and stress); and (4) grain

boundaries do not contribute to the body’s elasticity.

Other physical properties of polycrystalline metals, such as electrical and

thermal conduction, are also affected by microstructure. Point defects (vacancies,

impurities) and extended defects scatter electrons and phonons, shortening their

mean free paths. An approximation known as Matthiessen’s rule, from the nine-

teenth-century physicist Ludwig Matthiessen (1830–1906), asserts that all the

various scattering processes are independent (strictly true only so long as the

scattering processes are isotropic). Hence, the contributions to the resistivity can

simply be added up. The electrical resistivity of a polycrystalline metal is then

the sum of the contributions due to electron scattering in the bulk crystal and at the

interfaces, the latter of which is a function of the grain boundary structure.

Furthermore, the resistivity of a fine-grained metal is higher than that of a coarse-

grained sample because the former has a larger number of grain boundaries.

Transport properties are second-rank tensors, which are only isotropic for cubic

crystals and polycrystalline aggregates with a random crystallite orientation. For

all other cases, the conductivity will be dependent on direction. A noncubic

polycrystalline metal or alloy will show a texture dependency. However, because

most metals are in the cubic class, we postpone a discussion of this topic until

Section 1.3.1 on the transport properties of ceramics, where the effect is more

marked.

In addition to specifying the texture or orientation distribution to the grains

(Section 1.1.7), we can specify the fraction of a particular CSL boundary type
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(Section 1.1.3). This approach is also useful because the grain boundary structure

often correlates with certain materials properties, particularly conductivity, creep

(time-dependent deformation at constant load), and corrosion. The incorporation of

a high percentage of a specific grain boundary type in a polycrystal is referred to as

grain boundary engineering. For example, coherent twin boundaries are able to

block dislocation motion and strengthen a metal. They also allow for a much more

efficient transfer of current than do conventional grain boundaries. Hence, metals

with a high percentage of coherent twin boundaries are strengthened without a

loss to the electrical conductivity. Likewise, it has been shown that Ni–Cr–Fe alloys

with a high fraction of special CSL boundaries possess higher creep resistances

(lower strain rates) than those with general boundaries (Thaveepringsriporn and

Was, 1997; Was et al., 1998).

Grain boundary structure also contributes to the chemical properties exhibited by

a metal. Intergranular atomic diffusion processes occur more rapidly than intra-

granular ones, since these regions are usually not as dense as the grains. Remember

also that grain boundaries have a higher free energy than the grains themselves.

Because of these aspects, a metal will usually oxidize or corrode more quickly at

the grain boundaries, a condition known as intergranular corrosion. The oxidation

rate may be very dependent on the grain boundary structure. Again, this gives rise

to the possibility for grain boundary engineering. For example, it has been shown

that Ni–Fe (Yamaura et al., 2000) alloys and Pb electrodes (Palumbo et al., 1998)

deformation processed or thermally processed to have a high fraction of low-�
boundaries are much more resistant to intergranular corrosion, while those with

random high-angle boundaries, which are probably higher in energy, more easily

oxidize. For conventionally grained solids, however, the grain boundary volume is a

small fraction of the total volume of the sample. Hence, intragranular diffusion is

usually the dominant mass-transport process, except for very small grain sizes or at

low temperatures. Nonetheless, because impurity atoms tend to segregate at grain

boundaries, intergranular chemical reactions that may not occur intragranularly are

possible.

Materials processing is generally aimed at achieving a texture and/or grain

boundary structure that will maximize a specific property of interest. Approaches

with polycrystalline metals and alloys usually involve deformation processing and

annealing, or a combination thermomechanical method. During fabrication pro-

cesses, such as cold rolling, for example, polycrystalline metals deform by

mechanisms involving slip and, where slip is restricted, rotation of the individual

grains. Both processes, of course, must satisfy the condition that the interfaces

along which the grains are connected remain intact during deformation. As the

extent of deformation increases, larger grains may break up into smaller grains of

different orientations, giving rise to an orientation spread. Similar changes

accompany both hot working and annealing. In these procedures, the free energy

of a metal decreases due to rearrangement of dislocations into lower energy

configurations of decreased dislocation density. This is termed recovery. However,

in competition with this is recrystallization, in which the resulting grain structure

and texture depend on the spatial distribution and orientation of the recrystallization
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nuclei. The competition between these two processes and their effect on texture and

grain boundary structure is a hotly debated subject in metallurgy.

1.3 CERAMIC POWDER AGGREGATES

Traditionally, ceramics have been defined rather broadly as all man-made inorganic

nonmolecular materials, excluding metals and semiconductors. Solidification pro-

cesses, like those discussed in the previous section, are very seldom used to prepare

ceramics. This is because ceramics normally have exceedingly high melting points,

decompose, or react with most crucible materials at their melting temperatures. In

the past, ceramics were prepared only by high-temperature solid-state reactions,

which came to be known as the ceramic method. This restriction was lifted to a

certain degree with the advent of lower temperature (up to a few hundred degrees)

soft chemical routes, such as ion exchange, intercalation, and topochemical

reactions, where the reactivity is controlled by the crystal structure of the starting

material.

The products of most ceramic syntheses are powders. Fabricating a bulk part

from a powder requires a forming process, usually compaction (either compression

molding or injection molding) followed by sintering. The latter step involves

heating the phase at a temperature below its solidus (melting point), but high

enough that grain growth occurs via solid-state diffusion. In the early stages of

sintering, volatile species can be removed (e.g., moisture content) and, at later

stages, homogenization improved (e.g., the removal of macrosegragation), and

densification increased as the particles bond together, eliminating pores. The

resultant products have higher strength and reliability.

1.3.1 Transport Properties of Polycrystalline Ceramics

Although polycrystals are mechanically superior to single crystals, they have

inferior transport properties. Quite a large number of ceramics are actually

electrical conductors, that is, they exhibit a metallic-like conductivity. However,

a polycrystal has a lower thermal and electrical conductivity than a single crystal

because of phonon and electron scattering at grain boundaries. Generally, the

smaller the grain size, the larger the total interfacial volume and the lower the

conductivity. We will see a specific example of this grain-size dependence later in

Section 7.4.2 of Chapter 7. In addition to this effect, it is also important to

understand the effect of texture on transport properties. The conductivities of all

crystal classes other than the cubic class are anisotropic, or dependent on direction.

Some ceramics are even low-dimensional transport systems, in which conduction is

much weaker or completely absent along one or more of the principal crystal-

lographic axes. If the transport properties of the individual crystallites in a

polycrystalline aggregate are anisotropic, such as in a low-dimensional system,

sample texture will influence the anisotropy to the conductivity of the polycrystal.

When a polycrystal is free of preferred orientation, its transport properties will

be, like a cubic crystal, macroscopically isotropic regardless of the anisotropy to a
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single crystallite. For example, consider the low-dimensional metal Sr2RuO4, with

the tetragonal crystal structure shown in Figure 1.15a. At high temperatures,

metallic conduction occurs in the ab planes within the perovskite layers, parallel

to the two principal axes h010i and h100i. Transport along the c-axis, perpendicular

to the ab plane, is semiconducting at high temperatures.

Figure 1.15 (a) The crystal structure of Sr2RuO4. (b) Above TM , conduction in the ab

planes within the perovskite layers is metallic, while the c-axis transport is semiconducting.

(c) Random orientation in a powder aggregate with different crystallite sizes. Percolation

paths exist for both sab and sc in all directions, resulting in an isotropic conductivity at any

given temperature. (d) If identical crystallites are all aligned with their c axes parallel, the

polycrystal will have the same anisotropic conductivity as a single crystal.

34 THE MESOSCALE



For polycrystals, two extreme orientation distribution functions, which give the

volume fraction f(x) of crystals in orientation x, can be envisioned. These are zero

preferred orientation or perfect alignment. The absence of preferred orientation

statistically averages out the parallel and perpendicular conduction effects in

Sr2RuO4. The bidimensional metallic conductivity, which is clearly observed in a

single crystal, is completely inhibited in free powders composed of millions or

billions of randomly oriented crystallites. This is shown in Figure 1.15c. By

contrast, we can expect the application of several thousand pounds of uniaxial

pressure in forming a pellet (i.e., a cylindrical shaped specimen) to induce a high

degree of texture. This is especially true for elongated platelet crystals, where the c

axes of the crystallites align parallel to the pressure axis. We cannot assume that all

the crystals are identical in size and shape. Thus, with the application of uniaxial

pressure alone many crystallites will remain misoriented. Higher degrees of texture

may sometimes be induced by magnetic fields because of the anisotropy to the

magnetic susceptibility (Section 1.3.4).

If the Sr2RuO4 crystallites were to be identical and perfectly aligned with their c

axes parallel (somewhat like stacking children’s building blocks), the pellet’s

resistivity would exhibit the same anisotropy as a tetragonal single crystal of

Sr2RuO4. The resistivity along the ab axis of the pellet would follow the rab curve

in Figure 1.15b, while the resistivity along the c-axis would follow the rc curve.

This is illustrated in Figure 1.15d. Nonetheless, the current density of the pellet

would be lower than that of a single crystal of the same dimensions due to the grain

boundary resistance.

We can gain further enlightenment on electrical conduction in polycrystals by

likening the phenomenon to a random resister network with the bond percolation

model. In this model, we have a lattice, where each site corresponds to an individual

crystallite of the polycrystalline aggregate. We make the simplifying assumption

for now that all sites, or crystallites, are equivalent electrical conductors. The

grain boundaries are the ‘‘bonds’’ connecting the individual lattice sites. Each grain

boundary has an electrical resistance, RGB, that is dependent on the orientation

relationships of the grains. For now, let us also assume a bimodal RGB, that is, that 0

(superconducting) or 1 (nonconducting) are the only two possible values for RGB.

Each bond is either ‘‘open’’ with probability p, or ‘‘closed’’ with probability

ð1 � pÞ. The open bonds allow passage of current and the closed bonds do not.

The main concept of the bond percolation model is the existence of a percolation

threshold, pc, corresponding to the point at which a cluster of open bonds

(a conducting path) first extends across the entire sample. Such a cluster is called

a spanning cluster. For all p < pc, no current can flow due to the lack of a complete

current path, but there may be nonspanning clusters, connecting a finite number of

points, which exist for any nonzero p. At pc, the system abruptly transitions to the

electrically conductive state, and for all p > pc, the sample is electrically conduct-

ing because of the presence of spanning clusters.

For p > pc, the conductivity, s, is proportional to a power of ðp � pc):

s / ðp � pcÞm ð1:18Þ
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The exponent m is called a scaling exponent. It depends on the dimensionality of the

system. For 2D transport, m¼ 1.30 and for 3D transport, m¼ 2.0 (Stauffer and

Aharony, 1994).

The numerical value of the bond percolation threshold is dependent on the

geometry of the grain boundary network. For example, pc is equal to 0.500 for a

simple 2D square lattice and 0.388 for a 3D diamond lattice. For the simple cubic,

fcc, and bcc lattices, pc is equal to 0.2488, 0.1803, and 0.119, respectively. With

nontextured polycrystals, the geometries (grain orientations and/or angles) are

random, and hence, the exact value for pc may not be known. Furthermore, our

original assumption that the grain boundaries are either superconducting or

insulating is obviously a drastic one. In reality, the grain boundary resistance is

not bimodal. It can have values other than zero or infinity, which are dependent on

the grain orientations and/or angles, as can be inferred from Figure 1.15c. In fact, a

broad distribution of grain boundary resistances may be observed. For sufficiently

broad distributions, however, the resistance of the bulk sample is often close to the

resistance of the grain boundary cluster with exactly the percolation threshold

concentration (Stauffer and Aharony, 1994). For a derivation of Eq. 1.18, as well as

a detailed treatment of percolation theory, the interested reader is referred to the

book by Stauffer and Aharony (1994).

Example 1.3 The oxide Bi4V2O11 is similar in structure to the layered Aurivillius

phase Bi2MoO6 (tetragonal crystal class). The aliovalent exchange of Mo6þ by V5þ

results in oxygen vacancies in the BiO6 octahedral layers, which are separated

along the c-axis by edge-sharing BiO4 pyramids. The oxygen-ion conduction in

Bi4V2O11 is highly bidimensional, being much stronger in the ab planes of the

octahedral layers than in the perpendicular out-of-plane direction along the c-axis.

Speculate on what the (001) pole figures for each sample given in Table 1.4 would

look like.

Solution The (001) pole figure for the single crystal must have a single spot in

the middle of the circle since all (001) planes in a single crystal are parallel. The

anisotropy in the conductivity would be expected to be the greatest. The (001) pole

figure for the pressed polycrystal should show the greatest spread, or orientation

distribution, to the grains. This is because the anisotropy to the conductivity of the

TABLE 1.4 Sample of (001) Pole Figuresa

sk s�

Single crystal 73.2 2.6

Pressed polycrystal 40.2 20.2

Magnetically aligned polycrystal 59.1 13.8

Source: The data are from Muller, C.; Chateigner, D.; Anne, M.;

Bacmann, M.; Fouletier, J.; de Rango, P. 1996, J. Phys. D, 29.
a Conductivities (� 103 S cm�1).
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polycrystal was observed to be the smallest. Its properties are closest to that of a

randomly textured sample. The (001) pole figure for the magnetically aligned

polycrystal should have an intermediate spread since its anisotropy to the con-

ductivity was intermediate.

1.3.2 Magnetic and Dielectric Properties of Polycrystalline Ceramics

Just as crystals can have an easy direction for the transport of charge carriers, they

will likewise magnetize along easy axes of magnetization. The interactions between

subgrain domains of ferromagnetic and ferroelectric polycrystals further complicate

behavior. Subgrain domains form because the energy density associated with the

magnetic flux density exerted outside a sample is decreased if domains with

opposing magnetizations are created (Elliot, 1998). In the absence of an external

field, each domain exhibits spontaneous magnetization, or polarization in the case

of ferroelectrics, which can be represented by the resultant net vector for that

domain. However, a macroscopic crystal generally will exhibit very little magne-

tization in zero fields. This is because the individual domains have their vectors

pointing in different directions, giving rise to a zero net magnetization or polariza-

tion. In the presence of a sufficiently strong applied field, saturation is reached,

where the dipoles in all the domains within the crystal align.

Polycrystalline materials possess a texture, or orientation distribution to the

grains, and each grain may contain several domains (see Figure 1.16). We might

therefore expect that neighboring grains, and the domains within them, would

interact magnetically in very different ways, giving rise to a response that will be

very dependent on the grain size and texture. Such behavior is expected in the plots

of magnetization versus applied field, so-called hysteresis loops, that follow one

Figure 1.16 Schematic drawing of subgrain magnetic domains. Each of the three domains

shown has a different net magnetic moment.
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complete cycle of magnetization and demagnetization in an alternating field.

Simulated hysteresis loops for polycrystalline films with different textures are

shown in Figure 1.17. The greater the misalignment among grains, the less the

magnetization that remains after the field is removed (remanence), and the lower

the magnitude of the reverse field required for demagnetization (coercivity) (Jin

et al., 2002). If these parameters can be controlled by manipulating the micro-

structure, different magnetic properties can be designed. For example, if ultrasmall

(i.e., nanosized) grains of a highly magnetocrystalline–anisotropic thin-film mate-

rial can be deposited with all their easy magnetization axes normal to the film,

magnetic storage media with much greater recording densities can be obtained.

1.3.3 Mechanical Properties of Ceramics

The mechanical properties of ceramics differ greatly from those of metals.

Ceramics are typically brittle, very strong, hard, and resistant to deformation. It

is found that dislocation motion is virtually impossible except at high temperatures.

In ionic solids, slip is constrained because it requires bringing ions with like

charges in contact. Furthermore, although many ionic solids are ‘‘almost’’ close

packed, slip is very difficult on anything but truly close-packed planes. The strong

and directional bonding present in covalent solids similarly impedes dislocation

motion since it requires bond breaking and distortion.

The absence of a lattice-based mechanism, such as slip planes, does not neces-

sarily preclude all deformation. Plastic flow can proceed in other modes. For
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Figure 1.17 Simulated hysteresis loops for polycrystalline films with different textures.
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example, at temperatures of about 40–50% of their melting points, grain boundary

sliding can become important. Grain boundary sliding is believed to be the major

contributor to the superplasticty observed in some polycrystalline ceramics.

1.3.4 Texture Control in Ceramics

We have already mentioned that one method of producing a textured ceramic

involves the application of uniaxial pressure to form a cylindrical-shaped specimen.

However, in this method, there usually remain a large number of misoriented

grains. Furthermore, this simple approach is not applicable for every desired shape.

There are other methods that have been used to produce textured ceramics. One is

the templated grain growth (TGG) method, in which anisotropic seed particles

regulate crystal growth in specific growth directions. This process involves the

addition of a small amount of the template particles (usually less than 10 vol %) that

is, seed particles of the same substance, to a powder matrix. The template particles

are next oriented and the matrix is then sintered, causing the template particles to

grow by consuming the randomly oriented matrix. This produces a highly oriented

microstructure.

When the unit cell of a crystalline ceramic substance is anisotropic, this gives

rise to the possibility that the accompanying anisotropy in its physical properties

may aid the texture control of powder samples. For example, a crystal with an

anisotropic magnetic susceptibility will rotate to an angle, minimizing the system

energy when placed in a magnetic field. The reduction in magnetic energy is the

driving force for magnetic alignment. However, alignment may be difficult in

nondispersed powders because of strong particle–particle interactions that prevent

the particles from moving. Therefore, dispersion of the powder in a suspension is

usually necessary for effective utilization of a magnetic field. This can be readily

accomplished in slip casting, where a suspension, or slurry, called the slip, is

poured into a porous mold of the desired shape that absorbs the fluid. Magnetic

alignment, in conjunction with slip casting, has been used to produce textured

microstructures in a variety of substances, including some with only small

anisotropic diamagnetic susceptibility, such as ZnO and TiO2, if the magnetic field

is high enough (e.g., several tesla).

1.4 THIN-FILM MICROSTRUCTURE

The cornerstone of the entire semiconductor microelectronics industry is thin-film

technology. There are many methods available for growing thin films, including

physical vapor deposition (PVD) (e.g., sputtering, evaporation, laser ablation);

chemical vapor deposition (CVD); plating; and so-called soft chemical techniques

(e.g., sol-gel coating). Most of these processes are well established in the micro-

electronics industry, but many also have important applications in the areas of

advanced coatings and structural materials. An enormous variety of films can be

prepared. The interested reader is encouraged to refer to any of numerous texts on

thin films for details regarding the deposition processes.
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An exciting new area of materials research that has begun to evolve in recent

years is the application of combinatorial chemistry to the creation of thin-film

libraries. By using masks (grids with separate squares), thousands of distinct

combinations of materials can, in principle, be deposited onto a single substrate

in order to greatly accelerate the screening of the resultant compounds for certain

properties. This is part of a broad approach being sought for the rapid discovery of

new materials known as combinatorial materials science, inspired by the success of

combinatorial chemistry in revolutionizing the pharmaceutical industry.

1.4.1 Epitaxy

Thin films can be polycrystalline or single crystalline. The majority of thin films are

polycrystalline. Single crystal films can be grown with a particular crystallographic

orientation, relative to a single-crystal substrate that has a similar crystal structure,

if the deposition conditions and substrate are very stringently selected. Homo-

epitaxy refers to the growth of a thin film of the same material as the substrate (e.g.,

silicon on silicon). In this case, the crystallographic orientation of the film will be

identical to that of the substrate. In heteroepitaxy, such as silicon on sapphire, the

layer’s orientation may be different from that of the substrate. Both types of epitaxy

often proceed by an island nucleation and growth mechanism referred to as

Volmer–Weber growth.

Island growth also occurs with polycrystalline films, but in epitaxy, the islands

combine to form a continuous single-crystal film, that is, one with no grain bound-

aries. In reality, nucleation is much more complex in the case of heteroepitaxy.

Nucleation errors may result in relatively large areas, or domains, with different

crystallographic orientations. The interfaces between domains are regions of struc-

tural mismatch called subgrain boundaries and will be visible in the microstructure.

Epitaxy has been used to stabilize films with crystal structures that are

metastable in the bulk phases. Kinetic stabilization is obtained when the growth

is performed under conditions of high surface diffusion, but low bulk diffusion. In

this way, crystallographically oriented film growth occurs, while phase transforma-

tions are prohibited. The circumstances under which thermodynamic stabilization

can be achieved have also been enumerated. Namely, by minimizing: (1) the lattice

mismatch, or structural incoherency, and the free-energy difference between the

growing film and the substrate; (2) the film thickness; and (3) the shear and elastic

moduli of the film. Additionally, the growing film should be able to form a periodic

multiple-domain structure (Gorbenko et al., 2002).

The high-temperature bulk fcc phase d-Bi2O3 is observed on heating a-Bi2O3

(monoclinic structure) above 717�C, but heteroepitaxial thin films of d-Bi2O3 have

been deposited on an fcc gold substrate at temperatures as low 65�C. Similarly,

YMnO3 crystallizes in the hexagonal structure under atmospheric pressure at high

temperatures, yet was grown by pulsed laser deposition (PLD) as a stable

perovskite film on an NdGaO3 substrate (Salvador et al., 1998). It has also recently

been shown how metal–organic chemical vapor deposition (MOCVD) results in the

formation of metastable phases of GaS and GaTe, irrespective of the structure of the
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substrate (Keys et al., 1999; Gillan and Barron, 1997). Crystalline GaS was even

grown on an amorphous substrate. It appears in these cases that the precursor’s

structure or its decomposition mechanism completely controls the structure of the

thin film. Likewise, polycrystalline CVD diamond is commercially grown on a

variety of substrates, including titanium, tungsten, molybdenum, SiO2, and Si3N4.

Each of these materials is capable of forming a carbide layer upon which an

adherent diamond film can nucleate, although it is not clear whether carbide

formation is essential.

1.4.2 Polycrystalline PVD Thin Films

The commonest morphology exhibited by PVD thin films is the highly oriented

columnar (fiber) grain growth shown in Figure 1.18. This is a consequence of the

fact that PVD processes generally deposit thin films atom by atom in a ‘‘line of

site’’ fashion wherein the sputtered or evaporant adatoms travel from the source to

substrate on a straight path. The resulting grains are thus aligned with their long

axes perpendicular to the surface when the incident beam arrives at a normal angle

of incidence. If the depositing atoms arrive at an angle away from normal

incidence, the columns tilt into the oncoming beam. This gives rise to shadowing

effects, which result in the columns separated from one another by voids. In either

case, the grains can completely traverse the thickness of the film. Sputtered films

generally tend to be denser, more amorphous in nature, and more adherent than

evaporated films because of the higher energy of the arriving adatoms.

Slight variations can occur with columnar morphology, however. For example,

Movchan and Thornton used structure zone models to illustrate how temperature

influences the morphology of metal films (Movchan and Demchishin, 1969;

Thornton, 1977). Grain growth often begins with island formation (nucleation

sites). When the homologous temperature, Th (for thin films this is the ratio of

the substrate temperature to the melting point of the thin film), is <0.3, the

surface mobility of the deposited atoms, or adatoms, is low. As the homologous

Substrate

Figure 1.18 Highly oriented columnar (fiber) thin film. The grains are oriented with a

preferred crystal direction normal to the substrate along the growth axis, but with no

orientation relationship about the growth axis.
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temperature increases (0.3 < Th < 0:5), the surface mobility increases. Thus, the

islands may initially evolve three-dimensionally into V-shaped columns. Once the

V-shaped columns impinge on one another, the grain boundaries become parallel

and a dense structure is obtained. Finally, when Th > 0:5, bulk diffusion increases

substantially and allows for equiaxed grains. A major disadvantage of PVD thin

films is its inability for conformal coating, that is, it produces poor step coverage.

Residual stresses in PVD thin films are generally compressive.

As with solidification microstructures, kinetic factors are as important as

thermodynamics. For example, the (200) surface has the lowest energy in TiN.

But the preferred orientation of TiN thin films can vary between (111) and (200),

depending on deposition conditions. This means that the texture depends on kinetic

factors as well as the energy minimization.

1.4.3 Polycrystalline CVD Thin Films

Chemical-vapor deposition is a process in which a volatile species is transported in

the vapor phase to the substrate to be coated. Typically, a chemical reduction then

occurs at the substrate to deposit the desired film. For example, volatile ReCl5 will

deposit rhenium on a substrate heated to 1200�C. Although adatom energy exerts

the strongest influence on film morphology in PVD processes, CVD is dominated

by chemical reaction kinetics. The islands grown in CVD processes tend to be

larger in size and fewer in number. There also appears to be marked temperature

dependence to the growth rate. Kinetic Monte-Carlo (MC) simulations have shown

that grain morphology in CVD thin films is primarily due to an autocatalytic

process, in which precursor molecules dissociate preferentially at existing nuclei

sites (Mayer et al., 1994). Another difference between PVD and CVD films is that,

in PVD, the residual stress in the deposited film is normally compressive, whereas

in CVD, it is generally tensile. Nevertheless, as with PVD, the most common

microstructure produced from CVD is the highly oriented columnar structure.
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