

1

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 1

Introduction

1.1 INTRODUCTION

Things don’t always work as intended. Some devices are manufactured incorrectly,
others break or wear out after extensive use. In order to determine if a device was
manufactured correctly, or if it continues to function as intended, it must be tested.
The test is an evaluation based on a set of requirements. Depending on the complex-
ity of the product, the test may be a mere perusal of the product to determine
whether it suits one’s personal whims, or it could be a long, exhaustive checkout of a
complex system to ensure compliance with many performance and safety criteria.
Emphasis may be on speed of performance, accuracy, or reliability.

Consider the automobile. One purchaser may be concerned simply with color and
styling, another may be concerned with how fast the automobile accelerates, yet
another may be concerned solely with reliability records. The automobile manufac-
turer must be concerned with two kinds of test. First, the design itself must be tested
for factors such as performance, reliability, and serviceability. Second, individual
units must be tested to ensure that they comply with design specifications.

Testing will be considered within the context of digital logic. The focus will be on
technical issues, but it is important not to lose sight of the economic aspects of the
problem. Both the cost of developing tests and the cost of applying tests to individual
units will be considered. In some cases it becomes necessary to make trade-offs. For
example, some algorithms for testing memories are easy to create; a computer pro-
gram to generate test vectors can be written in less than 12 hours. However, the set of
test vectors thus created may require several millenia to apply to an actual device.
Such a test is of no practical value. It becomes necessary to invest more effort into
initially creating a test in order to reduce the cost of applying it to individual units.

This chapter begins with a discussion of quality. Once we reach an agreement on
the meaning of quality, as it relates to digital products, we shift our attention to the
subject of testing. The test will first be defined in a broad, generic sense. Then we
put the subject of digital logic testing into perspective by briefly examining the
overall design process. Problems related to the testing of digital components and

2

INTRODUCTION

assemblies can be better appreciated when viewed within the context of the overall
design process. Within this process we note design stages where testing is required.
We then look at design aids that have evolved over the years for designing and
testing digital devices. Finally, we examine the economics of testing.

1.2 QUALITY

Quality frequently surfaces as a topic for discussion in trade journals and periodi-
cals. However, it is seldom defined. Rather, it is assumed that the target audience
understands the intended meaning in some intuitive way. Unfortunately, intuition
can lead to ambiguity or confusion. Consider the previously mentioned automobile.
For a prospective buyer it may be deemed to possess quality simply because it has a
soft leather interior and an attractive appearance. This concept of quality is clearly
subjective: It is based on individual expectations. But expectations are fickle: They
may change over time, sometimes going up, sometimes going down. Furthermore,
two customers may have entirely different expectations; hence this notion of quality
does not form the basis for a rigorous definition.

In order to measure quality quantitatively, a more objective definition is needed.
We choose to define quality as the degree to which a product meets its requirements.
More precisely, it is the degree to which a device conforms to applicable specifica-
tions and workmanship standards.

1

 In an integrated circuit (IC) manufacturing envi-
ronment, such as a wafer fab area, quality is the absence of “drift”—that is, the
absence of deviation from product specifications in the production process. For digi-
tal devices the following equation, which will be examined in more detail in a later
section, is frequently used to quantify quality level:

2

AQL =

 Y

(1

−

T

)

 (1.1)

In this equation, AQL denotes acceptable quality level, it is a function of

Y

 (product
yield) and

T

 (test thoroughness). If no testing is done, AQL is simply the

yield

—that
is, the number of good devices divided by the total number of devices made. Con-
versely, if a complete test were created, then

T

 = 1, and all defects are detected so no
bad devices are shipped to the customer.

Equation (1.1) tells us that high quality can be realized by improving product
yield and/or the thoroughness of the test. In fact, if

Y

 ≥

 AQL, testing is not required.
That is rarely the case, however. In the IC industry a high yield is often an indication
that the process is not aggressive enough. It may be more economically rewarding to
shrink the geometry, produce more devices, and screen out the defective devices
through testing.

1.3 THE TEST

In its most general sense, a test can be viewed as an experiment whose purpose is to
confirm or refute a hypothesis or to distinguish between two or more hypotheses.

THE TEST

3

Figure 1.1 depicts a test configuration in which stimuli are applied to a device-
under-test (DUT), and the response is evaluated. If we know what the

expected
response

 is from the correctly operating device, we can compare it to the response of
the DUT to determine if the DUT is responding correctly.

When the DUT is a digital logic device, the stimuli are called

test patterns

 or

test
vectors

. In this context a

vector

 is an ordered

n

-tuple; each bit of the vector is
applied to a specific input pin of the DUT. The expected or predicted outcome is
usually observed at output pins of the device, although some test configurations per-
mit monitoring of test points within the circuit that are not normally accessible dur-
ing operation. A tester captures the response at the output pins and compares that
response to the expected response determined by applying the stimuli to a known
good device and recording the response, or by creating a

model

 of the circuit (i.e., a
representation or abstraction of selected features of the system

3

) and simulating the
input stimuli by means of that model. If the DUT response differs from the expected
response, then an

error

 is said to have occurred. The error results from a

defect

 in the
circuit.

The next step in the process depends on the type of test that is to be applied. A
taxonomy of test types

4

 is shown in Table 1.1. The classifications range from testing
die on a bare wafer to tests developed by the designer to verify that the design is cor-
rect. In a typical manufacturing environment, where tests are applied to die on a
wafer, the most likely response to a failure indication is to halt the test immediately
and discard the failing part. This is commonly referred to as a go–nogo test. The
object is to identify failing parts as quickly as possible in order to reduce the amount
of time spent on the tester.

If several functional test programs were developed for the part, a common prac-
tice is to arrange them so that the most effective test program—that is, the one that
uncovers the most defective parts—is run first. Ranking the effectiveness of the test
programs can be done through the use of a fault simulator, as will be explained in a
subsequent chapter. The die that pass the wafer test are packaged and then retested.
Bonding a chip to a package has the potential to introduce additional defects into the
process, and these must be identified.

Binning is the practice of classifying chips according to the fastest speed at
which they can operate. Some chips, such as microprocessors, are priced according
to their clock speed. A chip with a 10% performance advantage may bring a 20–50%
premium in the marketplace. As a result, chips are likely to first be tested at their
maximum rated speed. Those that fail are retested at lower clock speeds until either
they pass the test or it is determined that they are truly defective. It is, of course, pos-
sible that a chip may run successfully at a clock speed lower than any for which it
was tested. However, such chips can be presumed to have no market value.

Figure 1.1

Typical test configuration.

DUTStimulus
Response

4

INTRODUCTION

Diagnosis may be called for when there is a yield crash—that is, a sudden, signif-
icant drop in the number of devices that pass a test. To aid in investigating the
causes, it may be necessary to create additional test vectors specifically for the pur-
pose of isolating the source of the crash. For ICs it may be necessary to resort to an
e-beam probe to identify the source. Production diagnostic tests are more likely to
be created for a printed circuit board (PCB), since they are often repairable and gen-
erally represent a larger manufacturing cost. Tests for memory arrays are thorough
and methodical, thus serving both as go–no-go tests and as diagnostic tests. These
tests permit substitution of spare rows or columns in order to repair the memory
array, thereby significantly improving the yield.

Products tend to be more susceptible to yield problems in the early stages of their
existence, since manufacturing processes are new and unfamiliar to employees. As a
result, there are likely to be more occasions when it is necessary to investigate prob-
lems in order to diagnose causes. For mature products, yield is frequently quite
high, and testing may consist of sampling by randomly selecting parts for test. This
is also a reasonable strategy for low complexity parts, such as a chip that goes into a
wristwatch.

To protect against yield problems, particularly in the early phases of a project,

burn-in

 is commonly employed. Burn-in stresses semiconductor products in order to

TABLE 1.1 Types of Tests

Type of Test Purpose of Test

Production
Wafer Sort or Probe
Final or Package

Test of manufactured parts to sort out those that are faulty
Test of each die on the wafer.
Test of packaged chips and separation into bins (mili-

tary, commercial, industrial).
Acceptance Test to demonstrate the degree of compliance of a device

with purchaser’s requirements.
Sample Test of some but not all parts.
Go–no-go Test to determine whether device meets specifications.
Characterization or

engineering
Test to determine actual values of AC and DC parameters

and the interaction of parameters. Used to set final
specifications and to identify areas to improve pro-
cess to increase yield.

Stress screening (burn-in) Test with stress (high temperature, temperature cycling,
vibration, etc.) applied to eliminate short life parts.

Reliability (accelerated
life)

Test after subjecting the part to extended high temperature
to estimate time to failure in normal operation.

Diagnostic (repair) Test to locate failure site on failed part.
Quality Test by quality assurance department of a sample of each

lot of manufactured parts. More stringent than final
test.

On-line or checking On-line testing to detect errors during system operation.
Design verification Verify the correctness of a design.

THE TEST

5

identify and eliminate marginal performers. The goal is to ensure the shipment of
parts having an acceptably low failure rate and to potentially improve product reli-
ability.

5

 Products are operated at environmental extremes, with the duration of this
operation determined by product history. Manufacturers institute programs, such as
Intel’s ZOBI (zero hour burn-in), for the purpose of eliminating burn-in and the
resulting capital equipment costs.

6

When stimuli are simulated against the circuit model, the simulator pro-
duces a file that contains the input stimuli and expected response. This informa-
tion goes to the tester, where the stimuli are applied to manufactured parts.
However, this information does not provide any indication of just how effec-
tive the test is at detecting defects internal to the circuit. Furthermore, if an
erroneous response should occur at any of the output pins during testing of
manufactured parts, there is no insight into the location of the defect that
induced the incorrect response. Further testing may be necessary to distinguish
which of several possible defects produced the response. This is accomplished
through the use of fault models.

The process is essentially the same; that is, vectors are simulated against a model
of the circuit, except that the computer model is modified to make it appear as
though a fault were present. By simulating the correct model and the faulted model,
responses from the two models can be compared. Furthermore, by injecting several
faults into the model, one at a time, and then simulating, it is possible to compare the
response of the DUT to that of the various faulted models in order to determine
which faulted model either duplicates or most closely approximates the behavior of
the DUT.

If the DUT responds correctly to all applied stimuli, confidence in the DUT
increases. However, we cannot conclude that the device is fault-free! We can only
conclude that it does not contain any of the faults for which it was tested, but it could
contain other faults for which an effective test was not applied.

From the preceding paragraphs it can be seen that there are three major aspects of
the test problem:

1. Specification of test stimuli

2. Determination of correct response

3. Evaluation of the effectiveness of the stimuli

Furthermore, this approach to testing can be used both to detect the presence of
faults and to distinguish between several faults for repair purposes.

In digital logic, the three phases of the test process listed above are referred to as
test pattern generation, logic simulation, and fault simulation. More will be said
about these processes in later chapters. For the moment it is sufficient to state that
each of these phases ranks equally in importance; they in fact complement one
another. Stimuli capable of distinguishing between good circuits and faulted cir-
cuits do not become effective until they are simulated so their effects can be deter-
mined. Conversely, extremely accurate simulation against very precise models with

6

INTRODUCTION

ineffective stimuli will not uncover many defects. Hence, measuring the effective-
ness of test stimuli, using an accepted metric, is another very important task.

1.4 THE DESIGN PROCESS

Table 1.1 identifies several types of tests, ranging from design verification, whose
purpose is to ensure that a design conforms to the designer’s intent, to various kinds
of tests directed toward identifying units with manufacturing defects, and tests
whose purpose is to identify units that develop defects during normal usage. The
goal during product design is to develop comprehensive test programs before a
design is released to manufacturing. In reality, test programs are not always ade-
quate and may have to be enhanced due to an excessive number of faulty units
reaching end users. In order to put test issues into proper perspective, it will be
helpful here to take a brief look at the design process, starting with initial product
conception.

A digital device begins life as a concept whose eventual goal is to fill a perceived
need. The concept may flow from an original idea or it may be the result of market
research aimed at obtaining suggestions for enhancements to an existing product.
Four distinct product development classifications have been identified:

7

First of a kind
Me too with a twist
Derivative
Next-generation product

The “first of a kind” is a product that breaks new ground. Considerable innovation
is required before it is implemented. The “me too with a twist” product adds incre-
mental improvements to an existing product, perhaps a faster bus speed or a wider
data path. The “derivative” is a product that is derived from an existing product.
An example would be a product that adds functionality such as video graphics to a
core microprocessor. Finally, the “next-generation product” replaces a mature
product. A 64-bit microprocessor may subsume op-codes and basic capabilities,
but also substantially improve on the performance and capabilities of its 32-bit
predecessor.

The category in which a product falls will have a major influence on the design
process employed to bring it to market. A “first of a kind” product may require an
extensive requirements analysis. This results in a detailed product specification
describing the functionality of the product. The object is to maximize the likelihood
that the final product will meet performance and functionality requirements at an
acceptable price. Then, the behavioral description is prepared. It describes what the
product will do. It may be brief, or it may be quite voluminous. For a complex
design, the product specification can be expected to be very formal and detailed.
Conversely, for a product that is an enhancement to an existing product, documenta-
tion may consist of an engineering change notice describing only the proposed
changes.

THE DESIGN PROCESS

7

Figure 1.2

Design flow.

After a product has been defined and a decision has been made to manufacture
and market the device, a number of activities must occur, as illustrated in Figure 1.2.
These activities are shown as occurring sequentially, but frequently the activities
overlap because, once a commitment to manufacture has been made, the objective is
to get the product out the door and into the marketplace as quickly as possible. Obvi-
ously, nothing happens until a development team is put in place. Sometimes the larg-
est single factor influencing the time-to-market is the time required to allocate
resources, including staff to implement the project and the necessary tools by which
the staff can complete the design and put a manufacturing flow into place. For a
device with a given level of performance, time of delivery will frequently determine
if the product is competitive; that is, does it fall above or below the performance–
time plot illustrated in Figure 1.3?

Once the behavioral specification has been completed, a functional design must
be created. This is actually a continuous flow; that is, the behavior is identified, and
then, based on available technology, architects identify functional units. At that
stage of development an important decision must be made as to whether or not the
product can meet the stated performance objectives, given the architecture and tech-
nology to be used. If not, alternatives must be examined. During this phase the logic
is partitioned into physical units and assigned to specific units such as chips, boards,
or cabinets. The partitioning process attempts to minimize I/O pins and cabling
between chips, boards, and units. Partitioning may also be used to advantage to sim-
plify such things as test, component placement, and wire routing.

The use of hardware design languages (HDLs) for the design process has become
virtually universal.Two popular HDLs, VHDL (VHSIC Hardware Description Lan-
guage) and Verilog, are used to

Specify an architecture
Partition the architecture into smaller modules
Synthesize an RTL description
Verify that a structural implementation corresponds to the architectural design
Check out microcode and/or diagnostic programs
Serve as documentation

Figure 1.3

Performance–time plot.

Concept
Behavioral

design
RTL

design
Logic
design

Physical
design

Mfg.
Allocate
resources

Pe
rf

or
m

an
ce

Time

Too late
Too little

8

INTRODUCTION

A behavioral description specifies what a design must do. There is usually little
or no indication as to how it must be done. For example, a large case statement
might identify operations to be performed by an ALU in response to different values
applied to a control field. The RTL design refines the behavioral description. Opera-
tions identified at the behavioral level are elaborated upon in more detail. RTL
design is followed by logic design. This stage may be generated by synthesis pro-
grams, or it may be created manually, or, more often, some modules are synthesized
while others are manually designed or included from a library of predesigned mod-
ules, some or all of which may have been purchased from an outside vendor. The use
of predesigned, or core, modules may require selecting and/or altering components
and specifying the interconnection of these components. At the end of the process, it
may be the case that the design will not fit on a piece of silicon, or there may not be
enough I/O pins to accommodate the signals, in which case it becomes necessary to
reevaluate the design.

Physical design specifies the physical placement of components and the routing
of wires between components. Placement may assign circuits to specific areas on a
piece of silicon, it may specify the placement of chips on a PCB, or it may specify
the assignment of PCBs to a cabinet. The routing task specifies the physical connec-
tion of devices after they have been placed. In some applications, only one or two
connection layers are permitted. Other applications may permit PCBs with 20 or
more interconnection layers, with alternating layers of metal interconnects and insu-
lating material.

The final design is sent to manufacturing, where it is fabricated. Engineering
changes must frequently be accommodated due to logic errors or other unexpected
problems such as noise, timing, heat buildup, electrical interference, and so on, or
inability to mass produce some critical parts.

In these various design stages there is a continuing need for testing. Require-
ments analysis attempts to determine whether the product will fulfill its objectives,
and testing techniques are frequently based on marketing studies. Early attempts to
introduce more rigor into this phase included the use of design languages such as
PSL/PSA (Problem Statement Language/Problem Statement Analyzer).

8

 It provided
a way both to rigorously state the problem and to analyze the resulting design.
PMS (Processors, Memories, Switches)

9

 was another early attempt to introduce
rigor into the initial stages of a design project, permitting specification of a design
via a set of consistent and systematic rules. It was often used to evaluate architec-
tures at the system level, measuring data throughput and looking for design bottle-
necks. Verilog and VHDL have become the standards for expressing designs at all
levels of abstraction, although investigation into specification languages continues
to be an active area of research. Its importance is seen from such statements as
“requirements errors typically comprise over 40% of all errors in a software
project”

10

 and “the really serious mistakes occur in the first day.”

3

A design expressed in an HDL, at a level of abstraction that describes intended
behaviors, can be formally tested. At this level the design is a requirements docu-
ment that states, in a simulation language, what actions the product must perform.
The HDL permits the designer to simulate behavioral expressions with input vectors

DESIGN AUTOMATION

9

chosen to confirm correctness of the design or to expose design errors. The design
verification vectors must be sufficient to confirm that the design satisfies the behav-
ior expressed in the product specification. Development of effective test stimuli at
this state is highly iterative; a discrepancy between designer intent and simulation
results often indicates the need for more stimuli to diagnose the underlying reason
for the discrepancy. A growing trend at this level is the use of formal verification
techniques (cf. Chapter 12.)

The logic design is tested in a manner similar to the functional design. A major
difference is that the circuit description is more detailed; hence thorough analysis
requires that simulations be more exhaustive. At the logic level, timing is of greater
concern, and stimuli that were effective at the register transfer level (RTL) may not
be effective in ferreting out critical timing problems. On the other hand, stimuli that
produced correct or expected response from the RTL circuit may, when simulated by
a timing simulator, indicate incorrect response or may indicate marginal perfor-
mance, or the simulator may simply indicate that it cannot predict the correct
response.

The testing of physical structure is probably the most formal test level. The test
engineer works from a detailed design document to create tests that determine if
response of the fabricated device corresponds to response of the design. Studies of
fault behavior of the selected circuit family or technology permit the creation of
fault models. These fault models are then used to create specific test stimuli that
attempt to distinguish between the correctly operating device and a device with the
fault.

This last category, which is the most highly developed of the design stages, due
to its more formal and well-defined environment, is where we will concentrate our
attention. However, many of the techniques that have been developed for structural
testing can be applied to design verification at the logic and functional levels.

1.5 DESIGN AUTOMATION

Many of the activities performed by architects and logic designers were long ago
recognized to be tedious, repetitious, error prone, and time-consuming, and hence
could and should be automated. The mechanization of tedious design processes
reduces the potential for errors caused by human fatigue, boredom, and inattention
to mundane details. Early elimination of errors, which once was a desirable objec-
tive, has now become a virtual necessity. The market window for new products is
sometimes so small that much of that window will have evaporated in the time that it
takes to correct an error and push the design through the entire fabrication cycle yet
another time.

In addition to the reduction of errors, elimination of tedious and time-consuming
tasks enables designers to spend more time on creative endeavors. The designer can
experiment with different solutions to a problem before a design becomes frozen in
silicon. Various alternatives and trade-offs can be studied. This process of automat-
ing various aspects of the design process has come to be known as

electronic design

10

INTRODUCTION

automatio

n (EDA). It does not replace the designer but, rather, enables the designer
to be more productive and more creative. In addition, it provides access to IC design
for many logic designers who know very little about the intricacies of laying out an
IC design. It is one of the major factors responsible for taking cost out of digital
products.

Depending on whether it is an IC, a PCB, or a system comprised of several PCBs,
a typical EDA system supports some or all of the following capabilities:

Data management

Record data
Retrieve data
Define relationships
Perform rules checks

Design analysis/verification

Evaluate performance/capabilities
Simulate
Check timing

Design fabrication

Perform placement and routing
Create tests for structural defects
Identify qualified vendors

Documentation

Extract parts list
Create/update product specification

The data management system supports a data base that serves as a central repository
for all design data. A data management program accepts data from the designer, for-
mats it, and stores it in the data base. Some validity checks can be performed at this
time to spot obvious errors. Programs must be able to retrieve specific records from
the data base. Different applications require different records or combinations or
records. As an example, one that we will elaborate on in a later chapter, a test pro-
gram needs information concerning the specific ICs used in the design of a board, it
needs information concerning their interconnections, and it needs information con-
cerning their physical location on a board.

A data base should be able to express hierarchical relationships.

11

 This is espe-
cially true if a facility designs and fabricates both boards and ICs. The ICs are
described in terms of logic gates and their interconnections, while the board is
described in terms of ICs and their interconnections. A “where used” capability for a
part number is useful if a vendor provides notice that a particular part is no longer
available. Rules checks can include examination of fan-out from a logic gate to
ensure that it does not exceed some specified limit. The total resistive or capacitive
loading on an output can be checked. Wire length may also be critical in some appli-
cations, and rules checking programs should be able to spot nets that exceed wire
length maximums.

ESTIMATING YIELD

11

The data management system must be able to handle multiple revisions of a design
or multiple physical implementations of a single architecture. This is true for manu-
facturers who build a range of machines all of which implement the same architecture.
It may not be necessary to maintain an architectural level copy with each physical
implementation. The system must be able to control access and update to a design,
both to protect proprietary design information from unauthorized disclosure and to
protect the data base from inadvertent damage. A lock-out mechanism is useful to pre-
vent simultaneous updates that could result in one or both of the updates being lost.

Design analysis and verification includes simulation of a design after it is
recorded in the data base to verify that it is functionally correct. This may include
RTL simulation using a hardware design language and/or simulation at a gate level
with a logic simulator. Precise relationships must be satisfied between clock and
data paths. After a logic board with many components is built, it is usually still pos-
sible to alter the timing of critical paths by inserting delays on the board. On an IC
there is no recourse but to redesign the chip. This evaluation of timing can be
accomplished by simulating input vectors with a timing simulator, or it can be done
by tracing specific paths and summing up the delays of elements along the way.

After a design has stabilized and has been entered into a data base, it can be fab-
ricated. This involves placement either of chips on a board or of circuits on a die and
then interconnecting them. This is usually accomplished by placement and routing
programs. The process can be fully automated for simple devices, or for complex
devices it may require an interactive process whereby computer programs do most
of the task, but require the assistance of an engineer to complete the task. Checking
programs are used after placement and routing.

Typical checks look for things such as runs too close to one another, and possible
opens or shorts between runs. After placement and routing, other kinds of analysis
can be performed. This includes such things as computing heat concentration on an
IC or PCB and computing the reliability of an assembly based on the reliability of
individual components and manufacturing processes. Testing the structure involves
creation of test stimuli that can be applied to the manufactured IC or PCB to deter-
mine if it has been fabricated correctly.

Documentation includes the extraction of parts lists, the creation of logic dia-
grams and printing of RTL code. The parts list is used to maintain an inventory of
parts in order to fabricate assemblies. The parts list may be compared against a mas-
ter list that includes information such as preferred vendors, second sources, or alter-
nate parts which may be used if the original part is unavailable. Preferred vendors
may be selected based on an evaluation of their timeliness in delivering parts and the
quality of parts received from them in the past. Logic diagrams are used by techni-
cians and field engineers to debug faulty circuits as well as by the original designer
or another designer who must modify or debug a logic design at some future date.

1.6 ESTIMATING YIELD

We now look at yield analysis, based on various probability distribution functions.
But, first, just how important are yield equations? James Cunningham

12

 describes a

12

INTRODUCTION

situation in which a company was invited to submit a bid to manufacture a large
CMOS custom logic chip. The chip had already been designed at another company
and was to have a die area of 2.3 cm

2

. The company had experience making CMOS
parts, but never one this large. Hence, they were uncertain as to how to estimate
yield for a chip of this size.

When they extrapolated from existing data, using a computer-generated best-fit
model, they obtained a yield estimate

Y

 = 1.4%. Using a Poisson model with

D

0

 = 2.1, where

D

0

 is the average number of defects per unit area

A

, they obtained an
estimate

Y

 = 0.8%. They then calculated the yield using Seeds’ model,

13

 which gave

Y

 = 17%. That was followed by Murphy’s model.

14

 It gave

Y

 = 4%. They decided to
average Seeds’ model and Murphy’s model and submit a bid based on 11% die sort
yield. A year later they were producing chips with a yield of 6%, even though

D

0

had fallen from 2.1 to 1.9 defects/cm

2

. The company had started to evaluate the neg-
ative binomial yield model

Y

 = (1 +

D

0

A

/

α

)

−

α

. A value of

α

 = 3 produced a good fit
for their yield data. Unfortunately, the company could not sustain losses on the prod-
uct and dropped it from production, leaving the customer without a supply of parts.

Probability distribution functions are used to estimate the probability of an event
occurring. The

binomial probability distribution

 is a discrete distribution, which is
expressed as

(1.2)

If

P

 is the probability of a defect on a die, then

P

(

k

) is the probability of

k

 defects on
the die, when there are a total of

n

 =

D

0

A

w

 defects, where

A

w

 is the area of the wafer.
The probability

P

 is

D

0

A

/

D

0

A

w

 =

A/A

w

. Substituting into Eq. (1.2) yields

(1.3)

To derive the equation for a die with no defects, set

k

 = 0. This yields

(1.4)

The first distribution that was frequently used to estimate yields was the

Poisson
distribution

, which is expressed as

for

k

 = 0, 1, 2, ... (1.5)

where

λ

0

 is the average number of defects per die. For die with no defects (

k

 = 0),
the equation becomes . If

λ

0

 = .5, the yield is predicted to be .607. In
general, the Poisson distribution requires that defects be uniformly and randomly
distributed. Hence, it tends to be pessimistic for larger die sizes. Considering again

P k() n!
k! n k–()!-----------------------Pk 1 P–()n k–=

P k() n!
k! n k–()!-----------------------

A
Aw

 k
1 A

Aw
-------–

 n k–
=

P k 0=() 1 A
Aw
-------–

D0 Aw

=

P k()
e

λ– 0λ0
k

k!
-----------------=

P 0() e λ0–=

ESTIMATING YIELD 13

the binomial distribution, if the number of trials, n, is large, and the probability p of
occurrence of an event is close to zero, then the binomial distribution is closely
approximated by the Poisson distribution with λ = n ⋅ p.

Another distribution commonly used to estimate yield is the normal distribution,
also known as the Gaussian distribution. It is the familiar bell-shaped curve and is
expressed as

(−∞ < k < ∞) (1.6)

The variable µ represents the mean, σ represents the standard deviation, and σ2

represents the variance. If n is large and if neither p or q is too close to zero, the
binomial distribution can be closely approximated by a normal distribution. This can
be expressed as

(1.7)

where np represents the mean for the binomial distribution, is the standard
deviation, npq is the variance, and x is the number of successful trials.

When Murphy investigated the yield problem in 1964, he observed that defect
and particle densities vary widely among chips, wafers, and runs. Under these cir-
cumstances, the Poisson model is likely to underestimate yield, so he chose to use
the normalized probability distribution function. To derive a yield equation, Murphy
multiplied the probability distribution function with the probability p that the device
was good, for a given defect density D, and then summed that over all values of D,
that is,

(1.8)

He substituted for the probability that the device was good. However, he
could not integrate the bell-shaped curve, so he approximated it with a triangle func-
tion. This gave

(1.9)

By substituting other expressions for f(D) in Eq. (1.8), other yield equations result.
Seeds used an exponential distribution function . Substituting
this into Eq. (1.8), he obtained

(1.10)

In 1973 Charles Stapper15 derived a yield equation that is often referred to as a

negative binomial distribution. By substituting and the gamma

P k() 1

σ 2π
--------------e k µ–()2– 2σ2⁄=

P
n ∞→
lim a x np–

npq
--------------- b≤ ≤

 1

2π
---------- e u

2– 2⁄ ud
a

b
∫=

npq

Y pf D() Dd
0

∞
∫=

p e Da–=

Y 1 e
D0 A––

D0 A

 2

=

f D() e D D0⁄– D0⁄=

Y 1
1 D0 A+
--------------------=

p x() e λ– λx x!⁄=

14 INTRODUCTION

distribution function into Murphy’s equation [Eq. (1.8)]

and integrating, he obtained

(1.11)

The mean of the gamma function is given by µ = α/λ, whereas the variance
is given by α/λ2. Compare these with the mean and variance of the negative
binomial distribution, sometimes referred to as Pascal’s distribution: mean = nq/p
and variance = nq/p2.

The parameter α in Eq. (1.11) is referred to as the cluster parameter. By selecting
appropriate values of α, the other yield equations can be approximated by
Eq. (1.11). The value of α can be determined through statistical analysis of defect
distribution data, permitting an accurate yield model to be obtained.

1.7 MEASURING TEST EFFECTIVENESS

In this chapter the intent has been to survey some of the many approaches to digital
logic test. The objective is to illustrate how these approaches fit together to produce
a program targeted toward product quality. Hence, we have touched only briefly on
many topics that will be covered in greater detail in subsequent chapters. One of the
topics examined here is fault modeling. It has been the practice, for over three
decades, to resort to the use of stuck-at models to imitate the effects of defects. This
model was more realistic when (small-scale integration) (SSI) was predominant.
However, the stuck-at model, for practical reasons, is still widely used by commer-
cial tools. Basically put, this model assumes that an input or output of a logic gate
(e.g., an inverter, an AND gate, an OR gate, etc.) is stuck to a logic value 0 or 1 and
is insensitive to signal changes from the signal that drives it.

With this faulting mechanism the process, in rather general terms, proceeds as
follows: Computer models of digital circuits are created, and faults are injected
into the model. The fault-free circuit and the faulted circuit are simulated. If there
is a difference in response at an observable I/O pin, the fault is classified as
detected. After many faults are evaluated in this manner, fault coverage is
computed as

Fault coverage = No. faults detected / No.faults modeled

Given a fault coverage number, there are two questions that occur: How accurate is
it, and for a given fault coverage, how many defective chips are likely to become
tester escapes? Accuracy of fault coverage will depend on the faults selected and the
accuracy of the fault model relative to real defect mechanisms. Fault selection
requires a statistically meaningful random sample, although it is often the practice to

f λ() 1

Γ α()βα-------------------λα 1– e λ β⁄–=

Y 1 D0 A+ α⁄() α–=

MEASURING TEST EFFECTIVENESS 15

fault simulate a universal sample of faults, meaning faults applied to all logic ele-
ments in a circuit. The fault model, like any model, is an imperfect replica. It is
rather simplistic when compared to the various, complex kinds of defects that can
occur in a circuit; therefore, predictions of test effectiveness based on the stuck-at
model are prone to error and imprecision. The number of tester escapes will depend
on the thoroughness of the test—that is, the fault coverage, the accuracy of that fault
coverage, and the process yield.

The term defect level (DL) is used to denote the fraction of shipped ICs that are
bad. It is computed as

DL = Number of faulty units shipped / Total no. units shipped (1.12)

It has also been variously referred to as field reject rate and reject ratio. In this sec-
tion we adhere to the terminology used by the original authors in their derivations.

Over the past two decades a number of attempts have been made to quantify the
effectiveness of test programs—that is, determine how many defective chips will be
detected by the tester and how many will slip through the test process and reach the
end user. Different researchers have come up with different equations for comput-
ing defect level. The discrepancies are based on the fact that they start with differ-
ent assumptions about fault distributions. Some of it is a result of basing results on
different technologies, and some of it is a result of working with processes that
have different quality levels, different failure mechanisms, and/or different defect
distributions. We present here a survey of some of the equations that have been
derived over the years to compute defect level as a function of process yields and
test coverage.

In 1978 Wadsack16 derived the following equation:

yr = (1 − f) ⋅ (1 − y) (1.13)

where yr denotes the field reject rate—that is, the fraction of defective chips that
passed the test and were shipped to the customer. The variable y, 0 ≤ y ≤ 1, denotes
the actual yield of the process, and f , 0 ≤ f ≤ 1, denotes the fault coverage. In 1981
Williams and Brown developed the following equation:

DL = 1 − Y (1− T) (1.14)

In this equation the field reject rate is DL (defect level), the variable Y represents the
yield of the manufacturing process, and the variable T represents the test percentage
where, as in Eq. (1.13), each of these is a fraction between 0 and 1.

Example If it were possible to test for all defects, then

f = 1 and yr = (1 − 1) ⋅ (1 − y) = 0 from Eq. (1.13)

T = 1 and DL = 1 − Y (1 − 1) = 0 from Eq. (1.14)

16 INTRODUCTION

On the other hand, if no defective units were manufactured, then

y = 1 and yr = (1 − f) ⋅ (1 − 1) = 0 from Eq. (1.13)

Y = 1 and DL = 1 − 1(1−T) = 0 from Eq. (1.14)

In either situation, no defective units are shipped, regardless of which equation is
used. ��

For either of these equations, if the yield is known, it is possible to find the fault
coverage required to achieve a desired defect level. Using Eq. (1.14), the test frac-
tion T is

(1.15)

Example Integrated circuits (ICs) are manufactured on wafers—round, thin silicon
substrates. After processing, individual ICs are tested. The wafer is diced and the die
that tested bad are discarded. If the yield of good die is 60%, and we want a defect level
not to exceed 0.1%, what level of testing must we achieve? Using Eq. (1.15), we get

��

This equation is pessimistic for VLSI. In later paragraphs we will look at other
equations that, based on clustering of faults, give more favorable results. Neverthe-
less, this equation illustrates an important concept. Test cost is not a linear function.
Experience indicates that test cost follows the curve illustrated in Figure 1.4.

This curve tells us that we reach a point where substantial expenditures provide
only marginal improvement in testability. At some point, additional gains become
exorbitantly expensive and may negate any hope for profitability of the product.
However, looking again at Eq. (1.14), we see that the defect level is a function of
both testability and yield. Therefore, we may be able to achieve a desired defect
level by improving yield.

Figure 1.4 Typical cost curve for testing.

T 1 1 DL–()log
Y()log

------------------------------–=

T 1 1 0.001–()log
0.6()log

-----------------------------------– 1 0.001956– 0.9980= = =

C
os

t

Percent tested
100%0% 50%

MEASURING TEST EFFECTIVENESS 17

Example Yield is improved to Y = 70%; what percentage of testing must be
achieved to hold DL below 0.1%?

��

Equations (1.13) and (1.14) give the same results at the endpoints, but slightly
different results between the endpoints. To understand why, it is necessary to look at
the assumptions behind the derivations. Wadsack assumes that yi = (1 − y)i, where yi
represents the chips with i faults and y represents the actual functional yield.
Williams and Brown assume the existence of n faults, that all faults have equal prob-
ability Pn of occurrence, and that the number of chips with i faults is

Working out the derivations from these different starting points results in the differ-
ent equations. However, regardless of which equation is used, the key point is that,
in order to achieve an acceptable quality level AQL (= 1 − DL), the fault coverage
has to be nearly perfect. In the words of Williams and Brown, the equations are
intended to “give estimates for quick calculations.” Wadsack, in his paper, points
out that even in a circuit with 100% fault coverage, a failure occurred on the tester
after the point where the test program had achieved 100% coverage of the faults.
But then he points out that, in general, his derivation tends to be pessimistic.

Other authors have found the equations to be pessimistic; that is, even with fault
coverage significantly less than that required by the equations, the quality level is
better than predicted by the equations. For instance, Wiscombe17 states that the
Williams–Brown model “predicts higher defect levels than seen in practice.” Max-
well et al. point out that for a defect level of less than 0.1%, the Williams–Brown
equation required fault coverage in excess of 99.6%. However, they were able to
realize those defect levels with about 96% fault coverage.18

The question of fault coverage versus defect levels was studied by Agrawal et al.
in 1982.19 Their study was motivated by the observation that the defect level equa-
tions “produced satisfactory results for chips with high yield (typically, SSI and
MSI), but the predictions were too pessimistic for larger chips with lower yield.” The
authors hypothesize the existence of n faults for a faulty chip, and then examine the
consequences of that assumption. They derive the following equation:

(1.16)

In this equation, y is the yield, n0 is the average number of faults on a faulty chip, f is
the fault coverage, and r(f) is the field reject rate for f. If the fault coverage is held
fixed, then the defect level goes down as n0 increases. The papers cited here suggest
that the value n0 = 3 appears to give reasonably good results at predicting defect level.

The model that was used to develop Eq. (1.16), referred to as the JSCC model,
was subsequently refined using what the authors called the CAD model.20 A Poisson

T 1 1 0.001–()log
0.7()log

-----------------------------------– 1 0.0028– 0.9972= = =

n

i
 1 Pn–()n i– Pi

n

r f() 1 f–() 1 y–()e
n0 1–() f–

y 1 f–() 1 y–()e
n0 1–() f–

+
---=

18 INTRODUCTION

distribution is assumed for the faults, and the number of defects is assumed to have a
clustered negative binomial distribution. With those assumptions the authors derived
a reject ratio r(f) = [y(f) − y] /y, where

y(f) = [(1 + Ab(1 − e− c f)] −a (1.17)

In this equation, A is the chip area, f is the fault coverage, and a, b, and c are model
parameters that are estimated by fitting y(f) versus f to the experimental data.

In yet another derivation,21 presented at a workshop in Springfield, Massachu-
setts, and referred to as the SPR model, the reject ratio rn = (yn − y)/yn is computed
as a function of the yield yn , after n vectors, and the true yield y. The variables yn
and y are computed as a function of the number of chips tested, the number of
applied vectors, and the number of chips failing at vector i. The authors point out
that the required data are derived from wafer probe. The calculations do not depend
on estimated fault coverage of the test vectors. In this same study21 the authors com-
pare the five models for defect level estimation.

Comparison of the five models was done by gathering statistics on a high-volume
chip at Delco Electronics. The chip was a 3-micron digital CMOS IC with 99.7%
fault coverage. The test program consisted of 12,188 clock periods, and the cumula-
tive fault coverage was computed after each vector. Of the 72,912 die initially con-
sidered, 847 chips that failed parametric test and 7699 chips that failed continuity
test were removed from consideration. Of the remaining 64,366 chips, 18,476 failed
the functional test. This resulted in an apparent yield of 71.30%. The true yield,
using the SPR model, was estimated to be 70.92%. The results of the comparison are
presented in Table 1.2.

In most columns the spread between these formulas varies by as much as a factor
of two. The one exception is the last column, where the SPR and JSSC models differ
by an order of magnitude. The bottom row of the table lists the actual fraction of
defects detected at various stages of testing the chips. For the rightmost column, cor-
responding to a fault coverage of 99.70%, all the vectors had been applied, so no
additional defects were found. However, each of the models predicts that additional
tester escapes will occur.

TABLE 1.2 Comparing Yield

Model
Fault Coverage

20% 50% 80% 91% 95% 98% 99.70%

SPR 0.11291 0.08005 0.03531 0.02160 0.00927 0.00702 0.00532
JSSC 0.21383 0.11373 0.03730 0.01548 0.00834 0.00362 0.00048
CAD 0.21714 0.12439 0.04556 0.01985 0.01090 0.00432 0.00064
Wadsack 0.23267 0.14542 0.05817 0.02617 0.1454 0.00582 0.00087
Williams 0.24038 0.15788 0.06642 0.03046 0.01704 0.00685 0.00103

Actual 0.18440 0.08340 0.02830 0.01330 0.00740 0.00210 0

MEASURING TEST EFFECTIVENESS 19

Although the Williams–Brown model tends to be the least accurate, at least for
the data in this experiment, it appears to be the most popular, based on frequency of
appearance in the literature. This may be due in large part to its simplicity, which
makes it easy for engineers to explain the relationship between quality, process
yield, and fault coverage. Perhaps, more significantly, any of these models can tell
the user when the fault coverage must be improved. For example, if the user wants
no more than 1000 defects per million (DPM), then all of these models convey the
message that 98% fault coverage is insufficient.

The SPR model computes tester escapes without benefit of fault simulation. A
drawback to this approach is the fact that, without fault coverage estimates for the
test program, it could require several iterations on the test floor acquiring data before
the test program is adequate. By contrast, when developing a test program with the
aid of fault coverage estimates, it is more likely that the test will be at, or near,
required coverage levels before it is used on the test floor.

Up to this point, when talking about fault coverage, the number used in the
calculations was simply the number of modeled faults that were detected, divided
by the total number of modeled faults. It has been assumed, for a given test cover-
age, that the coverage is uniform across the circuit. However, that may not be the
case. Consider the test for a large chip, consisting of several functions. The test
program may be a concatenation of several smaller test programs, each of which
targets a single function. Suppose there are six clearly identifiable functions on
the chip, then there might be six distinct test programs targeting the individual
functions. The tests for five of the functions may be near 100%, while the test for
the remaining function may be closer to 70%. Gross defects that might be
detected in the other functions could escape detection in the function with low
coverage.

Maxwell22 showed that it is necessary to get a uniformly high coverage across the
entire area of the chip. Also worth noting is the fact that each function may have
some unique characteristics. For example, one function may be sensitive to noise.
Another may use unique elements from a standard library, one or more of which are
prone to failure. Conceivably a latch or flip-flop, for whatever reason, may have dif-
ficulty holding a particular state. These properties may not all be adequately
addressed in one or more of the test programs.

Other investigations of defect levels have been performed. McCluskey and
Buelow introduce the term test transparency (TT).4 It is the fraction of all defects
that are not detected by a test procedure:

TT = defects not detected / total no. defects = 1 − m/n

where n is the total number of defects and m is the number of defects detected. They
show that, for DL ≤ 0.1% and Y ≥ 90%, DL = TT · (1 − y). They state that it is
customary to estimate test transparency by the percentage of single-stuck faults that
are not detected by the test, TT ≥ 1 − T, where T is the test coverage. Using 1 − T as
an estimate for TT gives DL = (1 − T) · (1 − y), which is the Wadsack equation
developed in 1978.

20 INTRODUCTION

1.8 THE ECONOMICS OF TEST

In previous sections we examined some factors that affect the quality of test pro-
grams. In this section we examine factors that influence the cost of test. Quality and
test costs are related, but they are not inverses of one another. As we shall see, an
investment in a higher-quality test often pays dividends during the test cycle.

Test related costs for ICs and PCBs include both time and resource. As pointed
out in previous sections, for some products the failure to reach a market window
early in the life cycle of the product can cause significant loss of revenue and may in
fact be fatal to the future of the product. The dependency table in Figure 1.5 shows
test cost broken down into four categories23—some of which are one-time, non
recurring costs whereas others are recurring costs. Test preparation includes costs
related to development of the test program(s) as well as some potential costs
incurred during design of the design-for-test (DFT) features. DFT-related costs are
directed toward improving access to the basic functionality of the design in order to
simplify the creation of test programs.

Many of the factors depicted in Figure 1.5 imply both recurring and nonrecur-
ring costs. Test execution requires personnel and equipment. The tester is amor-
tized over individual units, representing a recurring cost for each unit tested, while
costs such as probe cards may represent a one-time, nonrecurring cost. The test-
related silicon is a recurring cost, while the design effort required to incorporate
testability enhancements, listed under test preparation as DFT design, is a nonre-
curring cost.

The category listed as imperfect test quality includes a subcategory labeled as
tester escapes, which are bad chips that tested good. It would be desirable for tester
escapes to fall in the category of nonrecurring costs but, regrettably, tester escapes

Figure 1.5 Cost/benefit dependencies of DFT.

Test preparation Test generation

Tester program

DFT design

Test execution Hardware

Tester

Test related silicon

Imperfect test
quality

Escape

Lost performance

Lost yield

Pe
rs

on
ne

l c
os

t
T

es
t c

ar
d

co
st

Pr
ob

e
co

st
Pr

ob
e

li
fe

D
ep

re
ci

at
io

n
V

ol
um

e
T

es
te

r
se

tu
p

tim
e

T
es

te
r

ca
pi

ta
l c

os
t

W
af

er
 r

ad
iu

s
D

ie
 a

re
a

W
af

er
 c

os
t

D
ef

ec
t d

en
si

ty

*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

**

THE ECONOMICS OF TEST 21

are a fact of life and occur with unwelcome regularity. Lost performance refers to
losses caused by increases in die size necessary to accommodate DFT features. The
increase in die size may result in fewer die on a wafer; hence a greater number of
wafers must be processed to achieve a given throughput. Lost yield is the cost of dis-
carding good die that were judged to be bad by the tester.

The column in Figure 1.5 labeled “Volume” is a critical factor. For a consumer
product with large production volumes, more time can be justified in developing a
comprehensive test plan because development costs will be amortized over many
units. Not only can a more thorough test be justified, but also a more efficient test—
that is, one that reduces the amount of time spent in testing each individual unit. In
low-volume products, testing becomes a disproportionately large part of total prod-
uct cost and it may be impossible to justify the cost of refining a test to make it more
efficient. However, in critical applications it will still be necessary to prepare test
programs that are thorough in their ability to detect defects.

A question frequently raised is, “How much testing is enough?” That may seem
to be a rather frivolous question since we would like to test our product so thor-
oughly that a customer never receives a defective product. When a product is under
warranty or is covered by a service contract, it represents an expense to the manufac-
turer when it fails because it must be repaired or replaced. In addition, there is an
immeasurable cost in the loss of customer goodwill, an intangible but very real cost,
not reflected in Figure 1.5, that results from shipping defective products.

Unfortunately we are faced with the inescapable fact that testing adds cost to a
product. What is sometimes overlooked, however, is the fact that test cost is recovered
by virtue of enhanced throughput.24 Consider the graph in Figure 1.6. The solid line
reflects quality level, in terms of defects per million (DPM) for a given process,
assuming no test is performed. It is an inverse relationship; the higher the required
quality, the fewer the number of die obtainable from the process. This follows from the
simple fact that, for a given process, if higher quality (fewer DPM) is required, then
feature sizes must be increased. The problem with this manufacturing model is that, if
required quality level is too high, feature sizes may be so large that it is impossible to
produce die competitively. If the process is made more aggressive, an increasing num-
ber of die will be defective, and quality levels will fall. Point A on the graph corre-
sponds to the point where no testing is performed. Any attempt to shrink the process to
get more units per wafer will cause quality to fall below the required quality level.

Figure 1.6 The benefits of test.

Process capability
low

high

required quality

benefit of test
A

B

Q
ua

lit
y

22 INTRODUCTION

However, if devices are tested, feature sizes can be reduced and more die will fit
on each wafer. Even after the die are tested and defective die are discarded, the num-
ber of good die per wafer exceeds the number available at the larger feature sizes.
The benefit in terms of increasing numbers of good die obtainable from each wafer
far outweighs the cost of testing the die in order to identify those that are defective.

Point B on the graph corresponds to a point where process yield is lower than the
required quality level. However, testing will identify enough defective units to bring
quality back to the required quality level. The horizontal distance from point A to
point B on the graph is an indication of the extent to which the process capability
can be made more aggressive, while meeting quality goals. The object is to move as
far to the right as possible, while remaining competitive. At some point the cost of
test will be so great, and the yield of good die so low, that it is not economically fea-
sible to operate to the right of that point on the solid line.

We see therefore that we are caught in a dilemma: Testing adds cost to a product,
but failure to test also adds cost. Trade-offs must be carefully examined in order to
determine the right amount of testing. The right amount is that amount which mini-
mizes total cost of testing plus cost of servicing or replacing defective components.
In other words, we want to reach the point where the cost of additional testing
exceeds the benefits derived. Exceptions exist, of course, where public safety or
national security interests are involved.

Another useful side effect of testing that should be kept in mind is the informa-
tion derived from the testing process. This information, if diligently recorded and
analyzed, can be used to learn more about failure mechanisms. The kinds of defects
and the frequency of occurrence of various defects can be recorded and this informa-
tion can be used to improve the manufacturing process, focusing attention on those
areas where frequency of occurrence of defects is greatest.

This test versus cost dilemma is further complicated by “time to market.” Quality
is sometimes seen as one leg of a triangle, of which the other two are “time to mar-
ket” and “product cost.” These are sometimes posited as competing goals, with the
suggestion that any two of them are attainable.25 The implication is that quality,
while highly desirable, must be kept in perspective. Business Week magazine, in a
feature article that examined the issue of quality at length, expressed the concern
that quality could become an end in itself.26

The importance of achieving a low defect level in digital components can be
appreciated from just a cursory look at a typical PCB. Suppose, for example, that a
PCB is populated with 10 components, and each component has a defect level
DL = 0.999. The likelihood of getting a defect free board is (0.999)10 = 0.99004; that
is, one of every 100 PCBs will be defective—and that assumes no defects were
introduced during the manufacturing process. If several PCBs of comparable quality
go into a more complex system, the probability that the system will function cor-
rectly goes down even further.

Detecting a defective unit is often only part of the job. Another important aspect of
test economics that must be considered is the cost of locating and replacing defective
parts. Consider again the board with 10 integrated circuits. If it is found to be
defective, then it is necessary to locate the part that has failed, a time-consuming and

CASE STUDIES 23

error-prone operation. Replacing suspect components that have been soldered onto a
PCB can introduce new defects. Each replaced component must be followed by retest
to ensure that the component replaced was the actual failing component and that no
new defects were introduced during this phase of the operation. This ties up both tech-
nician and expensive test equipment. Consequently, a goal of test development must
be to create tests capable of not only detecting a faulty operation but to pinpoint,
whenever possible, the faulty component. In actual practice, there is often a list of sus-
pected components and the objective must be to shorten, as much as possible, that list.

One solution to the problem of locating faults during the manufacturing process
is to detect faulty devices as early as possible. This strategy is an acknowledgment
of the so-called rule-of-ten. This rule, or guideline, asserts that the cost of locating a
defect increases by an order of magnitude at every level of integration. For example,
if it cost N dollars to detect a faulty chip at incoming inspection, it may cost 10N
dollars to detect a defective component after it has been soldered onto a PCB. If the
component is not detected at board test, it may cost 100 times as much if the board
with the faulty component is placed into a complete system. If the defective system
is shipped to a customer and requires that a field engineer make a trip to a customer
site, the cost increases by another power of 10. The obvious implication is that there
is tremendous economic incentive to find defects as early as possible.

This preoccupation with finding defects early in the manufacturing process also
holds for ICs.27 A wafer will normally contain test circuits in the scribe lanes between
adjacent die. Parametric tests are performed on these test circuits. If these tests fail,
the wafer is discarded, since these circuits are far less dense than the circuits on the
die themselves. The next step is to perform a probe test on individual die before they
are cut from the wafer. This is a gross test, but it detects many of the defective die.
Those that fail are discarded. After the die are cut from the wafer and packaged, they
are tested again with a more thorough functional test. The objective? Avoid further
processing, and subsequent packaging, of die that are clearly defective.

1.9 CASE STUDIES

Finally, we present the results of two studies into test thoroughness versus AQL and
the consequences of decisions made with respect to test. The first is a classic study
published in 1985 that serves to underscore the importance of achieving high fault
coverage. The second is a study into the economics of multi-chip modules (MCMs).
A model was created and parameters were varied in order to discern their effect on
total product cost.

1.9.1 The Effectiveness of Fault Simulation

In this study, the results of which are shown in Figure 1.7, the authors were
concerned with the fact that at 96.6% fault coverage they were still getting too
many field rejects, and the costs of packaging and test were excessive.4,28 A decision
was made to improve the test program and determine what impact that would have
on the defect level.

24 INTRODUCTION

Figure 1.7 Fallout during test.

In their study, investigators analyzed 22,506 die. Of these, 4006 were eliminated
at the start of testing because of failures due to gross defects, including opens,
shorts, and so on. Then, 18,500 die were subjected to a functional test. The initial
test consisted of 858 vectors that provided 96.6% fault coverage. This test identified
6341 failing devices. Over time, the initial test was increased to 992 vectors to
address specific field reject problems encountered during production. During this
study the test was enhanced by the addition of another 298 vectors to bring the total
vector count to 1290. During their experiment, investigators recorded the vector
number at which failures occurred. The original 858 vectors uncovered 6341 defec-
tive chips. The added 432 vectors uncovered an additional 103 defective chips.

1.9.2 Evaluating Test Decisions

The second study examined test decisions involving (MCMs). The MCM is a hybrid
manufacturing technique in which several ICs are placed on an intermediate level of
packaging. It can be used to package incompatible technologies such as CMOS and
TTL, or it can be used to package digital circuits together with analog circuits that
can’t tolerate the noise generated by digital circuits. It can also be used to package
digital circuits together with memory, such as cache memory, or it can be used to
package two digital circuits that are either (a) too big to be placed on a single chip
with existing technology or (b) those in which yield of a single, larger chip may be
unacceptable. In this last instance, the MCM may be an intermediate phase until
manufacturing advances permit the individual digital chips to be integrated onto a
single die.

MCMs are often manufactured using known good die (KGD). The KGD is a bare
die that has gone through extensive testing. In a normal flow, wafer sort is performed
on individual die before they have been cut from the wafer. This is a test whose pur-
pose is to identify, as quickly as possible, those die that are grossly defective. Then,
those die that pass the test at wafer sort are packaged and tested more thoroughly. By
contrast, KGD must be thoroughly tested on the wafer because they will be sold as

Gross

858
Vectors
96.6%

Boolean ParametricWafer

432
Vectors
99.9%

fail fail fail

22.5 18.5 12 7

4 6.5 5

pass pass pass

Number
of die in
thousands

18,500 12,159
pass pass

fail fail

12,056

6,341 103
Number
of die

CASE STUDIES 25

bare die, and the buyer will mount them directly onto the MCM without benefit of
an additional layer of packaging. As a consequence of this approach, the MCMs that
use these die must be processed in a clean room, which adds to manufacturing cost.

The cost of manufacturing MCMs is affected in significant ways by choices made
with regard to test. Some of the factors include: chip yield and the thoroughness of
test, the number of chips on the MCM, yield of the interconnect structure, yield of
the bonding and assembly processes, and effectiveness of test and rework for detect-
ing, isolating, and repairing defective modules. The High-Level Test Economics
Advisor (Hi-TEA) evaluates decisions made with respect to these and other factors,
including cost of materials and processes, yield parameters, and test parameters.29

The metrics used by Hi-TEA are cost and quality: Hi-TEA attempts to optimize one
while the other serves as a constraint.

The Hi-TEA user enters many parameters and/or assumptions into the system.
Some of these inputs are easily obtained, such as the cost of labor and materials used
to package and test the MCMs. Other costs are initially guesses, which can be refined
as experience accumulates. In the paper cited here, the authors included several tables
contrasting MCM cost versus chip AQL. One of the interesting results brought out was
the trade-offs required to compensate for poor quality level of ICs used to populate the
MCMs in some of their examples. It was also interesting to note that as AQL for the
chips increased from 80% to 99.9%, total cost for MCMs followed a bell-shaped
curve, first increasing, then decreasing, so that with 99.9% AQL, it cost less to manu-
facture MCMs that met a given AQL goal. Another byproduct of higher chip AQL was
a significant reduction in the number of defective MCMs shipped to customers.

Figure 1.8 provides a summary of test cost versus quality trade-offs for several
different test and DFT strategies. The test vehicle for this study was an MCM that
contained a CPU, a coprocessor, and ten 4-Mbit SRAM chips. The clock speed for
this MCM was faster than that of any existing workstations at the time of the design.
It was assumed that there would be three defects per square inch for the CMOS CPU
and coprocessors, and six defects per square inch for the BICMOS SRAM wafers. It

Figure 1.8 Cost/quality trade-offs for various test/DFT strategies.

780

800

820

840

860

880

900

C
os

t (
$)

0

10,000

20,000

D
ef

ec
t l

ev
el

 (
pp

m
)

Cost
Defect level

B
as

e

95
%

 d
ie

 te
st

Pa
rt

ia
l D

FT

Fu
ll

D
FT

T
es

t c
on

tr
ol

le
r

Pa
rt

ia
l a

ss
em

bl
y

26 INTRODUCTION

was also assumed that 10% of the die would fail during burn-in. Test coverage at
wafer probe was 80%, and coverage at the die level was 99%. Substrate yield was
99.999% and test coverage for MCM test was 95% of all possible defects, including
faulty die, assembly errors, and so on.

From the base test, the next case reduced by half the test time for the die. As a
result, the fault coverage for the die decreased from 99% to 95%. From Figure 1.8 it
can be seen that, compared to the base case, final product cost increased by about
5% and defect level went up by almost 70%.

The next objective was to study the impact of DFT and built-in self-test (BIST)
on the cost and quality of the MCMs. The first experiment involved adding DFT and
BIST to the CPU and coprocessor. Compared to the base case, the use of partial
DFT reduced defect level from 10,000 to about 3000 ppm while reducing cost from
$845 to about $830. For the full DFT case the defect level remained about the same
as with the partial DFT case, but cost fell to about $805. An advantage that did not
get factored into these computations is the availability of the DFT features at higher
levels of integration, such as systems test.

The use of a test controller on the MCM was intended to evaluate the situation
where the manufacturer has no control over the ICs used in the design. In this sce-
nario, the test controller provides greater access to the individual chips on the
MCM. The cost of the additional test controller chip added $60 to the cost of the
MCM, but its presence helped to reduce the overall test cost slightly when com-
pared to the base case. The defect level was reduced by almost 80% relative to the
base case.

The final scenario considered testing the MCM after the SRAMs were attached.
If defects were encountered, they were repaired and the MCM retested. Then, when
the partial assembly passed the test, the CPU and coprocessor were mounted and the
MCM was retested. In this scenario the SRAMs can be considered hardcore (cf.
Section 9.7.1) and used to test the remaining logic on the MCM. Because diagnosis
is improved, it is less expensive to isolate defects and make repairs. Special fixtures
can be created to improve access to test points on the MCM. Note that this case pro-
vides the lowest overall cost of the MCM, although the defect level is slightly higher
than when DFT is used.

1.10 SUMMARY

During the past three decades a great deal of research has gone into the various fac-
ets of IC design, including system architectures, equipment used to create digital cir-
cuits with ever-shrinking feature sizes, and EDA tools used to facilitate the
migration from concept to digital product. Along the way, quality has benefited from
a better understanding of defect mechanisms, the development of better test methods
to identify and diagnose the causes of defects, and a better understanding of the
technical and economic trade-offs required to achieve desired quality levels.

Product reliability is another beneficiary as digital products have migrated from
SSI (small-scale integration), through very-large-scale integration (VLSI), into deep

SUMMARY 27

submicron (DSM). Greater integration has resulted in fewer assembly steps and
fewer soldering joints. As far back as 1979 it was reported that, based on five billion
device hours of experience, LSI devices with 70 to 100 gates per chip experienced
twice the failure rate of SSI devices with four to eight gates per chip. Put another
way, LSI devices experienced one-seventh the failure rate of SSI devices, on a per-
gate basis.30 CMOS technology, running at much lower power levels than equivalent
circuits implemented in previous technologies (ECL, TTL, etc.), has contributed to
improved reliability.

As the IC industry matures, and engineers gain a better understanding of the
many factors that contribute to yield loss, they are able to apply this new-found
knowledge to reduce both the sizes and the numbers of defects that occur in a given
die area, with the result that yields increase. This is all the more remarkable in view
of the fact that feature sizes continue to shrink and chip complexity continues to
increase. A relationship between complexity and minimum defect size is suggested
in Figure 1.9, where trends are projected to the year 2010.31

The incentive to shrink die size is motivated by a rather basic imperative, improved
profitability.32 Consider a wafer with N die and a yield Y. There will be Y × N good die
on the wafer. Each of these will be sold for Z dollars, producing an income of
Y × N × Z . This income must exceed the cost of designing, manufacturing, packaging,
testing, and marketing the chips. If die size is reduced, there will be more die on each
wafer, but the number of bad die may increase. If shrinking the die size causes a dis-
proportionately larger increase in the number of good die, then income increases,
assuming production costs do not go up disproportionately. Given a fixed selling price,
then, the object is to find die size and yield that maximize the product term Y × N × Z .

A simplistic analysis could lead to the conclusion that the number of good die
must increase disproportionately. Consider the following: If there were simply a
fixed number of point defects on a wafer, and they caused (1 − Y) die to fail, then
doubling the number of die on a wafer would produce N + (1 − Y) × N good die. In
effect, the overall yield increases. However, it is not quite that simple.

Figure 1.9 Complexity versus defect size.

1995 1998 2001 2004 2007 2010

0

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1.0

D
ef

ec
t s

iz
e

C
om

pl
ex

ity

Year

Relative decrease in
minimum defect size

Relative increase
in complexity

28 INTRODUCTION

As feature sizes shrink, supply voltages are reduced. This reduces power con-
sumption, heat dissipation, and failures caused by electric fields greater than the cir-
cuit can tolerate. But, reducing the supply voltage increases gate delay and thus
reduces the maximum clock rate. To compensate for this, the threshold voltage (the
voltage at which the transistor turns on) is reduced. If the threshold voltage is
reduced too far, leakage current becomes excessive. It is estimated that for every 60
mV that the threshold is lowered, leakage current increases by an order of magni-
tude.33 New failure mechanisms may be introduced into the process. Lower operat-
ing voltages imply less noise margin. Traces on the die are closer together, resulting
in greater potential for crosstalk. Greater capacitive coupling exists. Also, some
point defects on the wafer that may not have been problems at larger feature sizes
may become problems as feature sizes are reduced.

In summary, processes are improving, but as long as the universe is subject to
entropy, defects will continue to occur. The existence of defects implies a need for
test programs capable of detecting them, whether it be for reducing field rejects or to
help debug first silicon. The existence of chips with larger gate count implies a need
to develop more efficient test programs. The emergence of new fault mechanisms
implies a need for new test algorithms targeting those fault mechanisms. Further-
more, the ability to accurately compute defect level is important because it tells us
that, given levels of testability and yield beyond which we cannot hope to improve
(economically), we must expect a certain percentage of defective units shipped and
plan our business strategy accordingly, whether it be to stock more spare parts or to
improve our service department.

Another factor that has grown in importance in recent years is end-user expecta-
tions. In 1994, when a floating point problem was encountered in early Pentium
processors, the first inclination by Intel Corp. was to downplay the significance of
the problem, asserting that a typical user might only encounter an incorrect calcula-
tion once every 27 years. The outcry far exceeded anything that was anticipated by
Intel. They found that in order to maintain a favorable public image, it was necessary
to establish a generous return policy for anyone with a Pentium based microproces-
sor system. The resulting message from this experience is that, with electronic
products more pervasive than ever in many different end-user products, there is a
less forgiving public unwilling to understand or tolerate defective products. One slip
by a major vendor, and there will be another company waiting in the wings, ready to
step in and exploit the opportunity.

It is interesting to note that the delivery of correct and reliable computing is influ-
enced by factors that can be classified as nontechnical. For example, IBM’s Server
Group claims that the mean time between critical failures (MTBCF) of its System/390
mainframe is 20 to 30 years, where MTBCF is the average time between failures that
force a reboot and initial program load.34 A large part of the reason for this is because
the core software is extremely stable, a change is implemented only if it is determined
beyond all doubt that a bug exists. Of course, the hardware must also be stable.

One of the design parameters for a new system being developed is mean time
before failure (MTBF). The goal is to keep a system up and running as long as possi-
ble. However, another parameter that often must be considered when developing a new

PROBLEMS 29

system is mean time to repair (MTTR). While it is desired not to have a system fail, in
some circumstances it may be even more desirable to be able to get a system up and
running again after it has failed. This may necessitate the inclusion of hardware whose
sole purpose is to help diagnose and isolate failure to a field replaceable unit (FRU).
Design-for-test or built-in self-test may be vitally necessary to achieve MTTR goals.

Change, and an urge for novelty, are key aspects of human existence, but some-
times these urges must be resisted. This ability to resist the urge to make changes
unless it is absolutely necessary to do so is cited as a major reason for Intel’s suc-
cess. In an article in the San Jose Mercury News, the story is told of a drop in yield at
one of Intel’s foundries.35 An investigation revealed that a processing change caused
wafers to move more quickly from one station to the next. As a result, the tempera-
ture of the wafers as they arrived at the next station deviated from what it had previ-
ously been, and the deviation was enough to adversely affect the yield of the die on
those wafers.

This drop in yield was notable because Intel reportedly practices a policy called
“Copy Exactly.” This practice involves building a fabrication plant as part of the
research and development process for a new product. The R&D process involves not
just the designers of a next generation chip, but also the people in manufacturing
who must fabricate and test it. Once a manufacturing process is put into place,
changes are not made until after considerable debate and considerable examination
of the data. This is basically an implementation of concurrent engineering, which is
defined as “a systematic approach to the integrated, concurrent design of products
and their related processes, including manufacture and support.”36

An appreciation for the relationship between test cost, yield, and reject rate can
be gained by considering an analogous situation in the field of communications.
When communicating through a noisy medium, communications can be made more
reliable by increasing transmission power. However, Shannon’s theorem for com-
munications in a noisy channel tells us that it is possible to make the transmission
error rate arbitrarily small by resorting to error correcting codes (ECC). The most
economic solution is found by factoring in both the cost of transmission power and
the cost of employing ECC circuitry to find a solution that allows the most reliable
communication at the highest possible rate, at the lowest possible cost.

Consider that the objective, when processing wafers, is to ship only good die. If
field reject rate is too high, it could be improved by resorting to larger feature sizes.
However, it can also be improved by employing a more thorough test that identifies
more of the defective die before they are shipped to customers. The most economic
solution is a complex function of process yield and test coverage.

PROBLEMS

1.1 For a semiconductor process with a yield Y = 0.7, compute the defect level
DL by means of Eqs. (1.13) and (1.14) for values of T equal to 0.7, 0.8, 0.9,
and 0.975. Repeat using Eq. (1.16), with values of n0 equal to 1 and 3. Repeat
all calculations for Y = 0.9.

30 INTRODUCTION

1.2 Assume that the relative cost, Cd , of diagnosing and repairing defects,
expressed as a function of the percentage t of faults tested, is

. Furthermore, assume that the cost Cp of achieving a
particular test percentage t is . What value of t will minimize
total cost?

1.3 Using Eq. (1.14), draw a graph of defect level versus fault coverage using
each of the following values of yield as a parameter: Y = {.40, .50, .70, .90,
.95}.

1.4 Using Eq. (1.5), calculate P(0) for λ0 = {.25, .5, .75, 1.0, 2.0}. Repeat using
Eq. (1.10) and assume D0A = {.25, .5, .75, 1.0, 2.0}. Repeat using Eq. (1.11),
for α = 2 and for α = 4.

1.5 Assume two randomly distributed defects per square inch, and assume that
each defect only affects one die. If there are four die on each square inch of
wafer, what is the yield? If feature sizes are shrunk so that there are nine die
per square inch, what is the yield?

1.6 Assume that the maximum allowable reject rate for a particular IC is 500
ppm. Use Eq. (1.5) to draw a graph of yield versus fault coverage for values
of n0 = 0, 1, 2, 3, 4, 5.

1.7 Given an MCM with 20 die, each of which has an AQL of 99.5%, what is the
probability of a fault-free MCM?

REFERENCES

1. Doyle, E. A. Jr., How Parts Fail, IEEE Spectrum, October 1981, pp. 36–43.

2. Williams, T. W., and N. C. Brown, Defect Level as a Function of Fault Coverage, IEEE
Trans. Comput., Vol. C-30, No. 12, December 1981, pp. 987–988.

3. Rechtin, Eberhardt, The Synthesis of Complex Systems, IEEE Spectrum, July 1997,
Vol. 34, No. 7, pp. 51–55.

4. McCluskey, E. J. and F. Buelow, IC Quality and Test Transparency, Proc. Int. Test Conf.,
1988, pp. 295–301.

5. Donlin, Noel E., Is Burn-in Burned Out?, Proc. Int. Test Conf., 1991, p. 1114.

6. Henry, T. R., and Thomas Soo, Burn-in Elimination of a High Volume Microprocessor
Using IDDQ, Proc. IEEE Int. Test Conf., 1996, pp. 242–249.

7. Weber, Samuel, Exploring the Time to Market Myths, ASIC Technol. News, Vol. 3, No.
5, September 1991, p. 1.

8. Teichrow, D., and E. A. Hershey, III, PSL/PSA: A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing Systems, IEEE Trans.
Software Eng., Vol. SE-3, No. 1, January 1977, pp. 41–48.

9. Bell, C. G., and A. Newell, Computer Structures: Readings and Examples, McGraw-
Hill, New York, 1971.

Cd 100 0.7t–=
C p

t
100 t–
----------------=

REFERENCES 31

10. Davis, A. M., and D. A. Leffingwell, Using Requirements Management to Speed Delivery
of Higher Quality Applications, Technical Report 0001, Requisite, Inc., http://
www.requirement.com/requisite.

11. Sanborn, J. L., Evolution of the Engineering Design System Data Base, Proc. 19th D.A.
Conf., 1982, pp. 214–218.

12. Cunningham, J. A., The Use and Evaluation of Yield Models in Integrated Circuit
Manufacturing, IEEE Trans. Semicond. Mfg., Vol. 3, No. 2, May 1990, pp. 60–71.

13. Seeds, R. B., Yield and Cost Analysis of Bipolar LSI, Proc. IEEE IEDM, Washington,
D.C., October 1967.

14. Murphy, B. T., Cost-Size Optima of Monolithic Integrated Circuits, Proc. IEEE, Vol. 52,
December 1964, pp. 1537–1545.

15. Stapper, C. H., Defect Density Distribution for LSI Yield Calculations, IEEE Trans.
Electron Devices, Vol. ED-20, July 1973, pp. 655–657.

16. Wadsack, R. L., Fault Coverage in Digital Integrated Circuits, Bell Syst. Tech. J., May–
June 1978, pp. 1475–1488.

17. Wiscombe, Paul C., A Comparison of Stuck-at Fault Coverage and IDDQ Testing on Defect
Levels, Proc. Int. Test Conf., 1993, pp. 293–299.

18. Maxwell, P. C., R. C. Aitken, V. Johansen, and I. Chiang, The Effect of Different Test Sets
on Quality Level Prediction: When Is 80% Better than 90%?, Proc. Int. Test Conf., 1991,
pp. 358–364.

19. Agrawal, V. D., S. C. Seth, and P. Agrawal, Fault Coverage Requirement in Production
Testing of LSI Circuits, IEEE J. Solid-State Circuits, Vol. SC-17, No. 1, February 1982,
pp. 57–61.

20. Das, D. V., S. C. Seth, P. T. Wagner, J. C.Anderson, and V. D. Agrawal, An Experimental
Study on Reject Ratio Prediction for VLSI Circuits: Kokomo Revisited, Proc. 1990 Int.
Test Conf., pp. 712–720.

21. Seth, S. C. and V. D. Agrawal, On the Probability of Fault Occurrence, in Defect and
Fault Tolerance in VLSI Systems, ed. I. Koren, pp. 47–52, Plenum, New York, 1989.

22. Maxwell, Peter C., Reductions in Quality Caused by Uneven Fault Coverage of Different
Areas of an Integrated Circuit, IEEE Trans. CAD, Vol. 14, No. 5, May 1995, pp. 603–607.

23. Wei, S., P. K. Nag, R. D. Blanton, A. Gattiker, and W. Maly, To DFT or Not to DFT?,
Proc. Int. Test Conf., 1997, pp. 557–566.

24. Aitken, R. C., R. K. Scudder, and P. C. Maxwell, Never Mind the Cost of Test—Look at
the Value!, Test Cost Reduction Workshop, SEMI 1997, pp. D1–D5.

25. Young, Lewis H., Electronic Business Today, October 1995, p. 50.

26. Business Week, August 8, 1994.

27. Thompson, Tom, How to Make the World’s Fastest CPUs, Byte Magazine, Vol. 22, No.
2, February 1997, pp. bona3–bona12.

28. Daniels, R. G., and W. C. Bruce, Built-In Self-Test Trends in Motorola Microprocessors,
IEEE Des. Test, Comput., April 1985, Vol. 2, No. 2, pp. 64–71.

29. Abadir, M. S., et al., Analyzing Multichip Module Testing Strategies, IEEE Des. Test
Comput., Spring 1994, Vol. 11, No. 1, pp. 40–52.

30. Slana, Matthew F., Workshop Report: Computer Elements for the 80’s, IEEE Comput.,
Vol. 12, No. 4, April 1979, p. 102.

31. Vallett, David P., IC Failure Analysis: The Importance of Test and Diagnostics, IEEE Des.
Test, July–September 1997, Vol. 14, No. 3, pp. 76–82.

32 INTRODUCTION

32. Oldham, William G., The Fabrication of Microelectronic Circuits, Sci. Am., September
1977, Vol. 237, No. 3, pp. 111–128.

33. Pountain, Dick, Amending Moore’s Law, Byte Magazine, March 1998, pp. 91–95.

34. Halfhill, Tom R., Crash-Proof Computing, Byte Magazine, April 1998, pp. 60–74.

35. Gillmor, Dan, Curb on Tweaking Made Intel Strong, San Jose Mercury News, August 18,
1997, p. 1E.

36. Carter, Donald E., and B. S. Baker, Concurrent Engineering: The Product Development
Environment for the 1990s, Addison-Wesley, Reading, MA, 1992.

