Devices and Circuits for Phase-Locked Systems

Behzad Razavi

Abstract—This turtorial deals with the design of devices
such as varactors and inductors and circuits such as ring
and LC oscillators. First, MOS varactors are introduced as
a means of frequency control for low-voltage circuits and
their modeling issues are discussed. Next, spiral inductors
are studied and various geometries targetting improved Q
or higher self-resonance frequencies are presented. Noise-
tolerant ring oscillator topologies are then described. Fi-
nally, a procedure for the design of LC oscillators is out-
lined.

The design of phase-locked systems requires a thorough
understanding of devices, circuits, and architectures. Intended
as a continuation of [1], this tutorial provides an overview
of concepts in device and circuit design for phase-locking in
digital, broadband, and RF systems.

I. PASSIVE DEVICES

The demand for low-noise PLLs has encouraged extensive
research on active and passive devices. In this section, we
study varactors and inductors as essential components of LC
oscillators.

A. Varactors

As supply voltages scale down, pn junctions become a less
attractive choice for varactors. Specifically, two factors limit
the dynamic range of pn-junction capacitances: (1) the weak
dependence of the capacitance upon the reverse bias voltage,
e.g., C; = Cjo/(1 + Vr/éB)™, where m ~ 0.3.; and (2) the
narrow control voltage range if forward-biasing the varactor
must be avoided.

As an example, consider the LC oscillator shown in Fig. 1.
It is desirable to maximize the voltage swings at nodes X and

Voo

Vcont

Fig. 1. LC oscillator using pn-junction varactors.

Y so as to both minimize the relative phase noise and ease the

design of the stage(s) driven by the VCO. On the other hand,
to avoid forward-biasing the varactors significantly, Vx and
V¥ must remain above approximately V,on: — 0.4 V. Thus,
the peak-to-peak swing at each node is limited to about 0.8 V.
Note that the cathode terminals of the varactors also introduce
substantial n-well capacitance at X and Y, further constraining
the tuning range.

In contrast to pn junctions, MOS varactors are immune to
forward biasing while exhibiting a sharper C-V characteristic
and a wider dynamic range. If configured as a capacitor [Fig.
2(a)], a MOSFET suffers from both a nonmonotonic C-V be-

Cas

Accumulation | Strong Inversion

Ves

] °—{‘Fll—°m

v
o VTH

(@)

cvar

Accumulation | Depletion

p—substra(e

Ves

®)

Fig. 2. (a) Simple MOSFET operating as capacitor, (b) MOS varactor.

havior and a high channel resistance in the region between
accumulation and strong inversion. To avoid these issues, an
“accumulation-mode” MOS varactor is formed by placing an
NMOS device inside an n-well [Fig. 2(b)]. Providing an
ohmic connection between the source and drain for all gate
voltages, the n-well experiences depletion of mobile charges
under the oxide as the gate voltage becomes more negative.
Thus, the varactor capacitance, Cy 4, (equal to the series com-
bination of the oxide capacitance and the depletion region
capacitance) varies as shown in Fig. 2(b). Note that for a
sufficiently positive gate voltage, Cy 4 approaches the oxide
capacitance.

The design of MOS varactors must deal with two important
issues: (1) the trade-off between the dynamic range and the

channel resistance, and (2) proper modeling for circuit simu-
lations. We now study each issue.

Dynamic Range Deep-submicron MOSFETs exhibit susb-
tantial overlap capacitance between the gate and source/drain
terminals. For example, in a typical 0.13-um technology, a
transistor having minimum channel length, Ly, , displays an
overlap capacitance of 0.4 fF/um and a gate-channel capaci-
tance of 12 fF/um?. In other words, for an effective channel
length 0of 0.12 um and a given width, the overlap capacitance
between the gate and source/drain terminals of a varactor con-
stitutes 2 x 0.4 fF /(0.12 x 12 fF+2 x 0.4 fF) = 36% of the
total capacitance. Thus, even if the gate-channel component
varies by a factor of two across the allowable voltage range, the
overall dynamic range of the capacitance is givenby (0.12 x 12
fF+2 x 0.4 fF)/(0.12 x 6 fF +2 x 0.4 fF) = 1.47.

In order to widen the varactor dynamic range, the transistor
length can be increased, thereby raising the voltage-dependent
component while maintaining the overlap capacitance rela-
tively constant. This remedy, however, leads to a greater resis-
tance between the source and drain, lowering the Q. The re-
sistance reaches a maximum for the most negative gate-source
voltage, at which the depletion region’s width is maximum and
the path through the n-well the longest (Fig. 3).! Note that

Qeiiletiua
Region

p—substrate

Fig. 3. Effect of n-well resistance in MOS varactor.

the total equivalent resistance that appears in series with the
varactor is equal to 1/12 of the drain-source resistance. This
is because shorting the drain and source lowers the resistance
by a factor of 4 and the distributed nature of the capacitance
and resistance reduces it by another factor of 3 [2]. Depending
on both the phase noise requirements and the Q limitations
imposed by inductors, the varactor length is typically chosen
between L,,;n and 3L,,5,.

Modeling The C-V characteristics of MOS varactors can be
approximated by a hyperbolic tangent function with reasonable
accuracy. Using the characteristic shown in Fig. 4 and noting
that tanh(+o00) = 1, we can write

Cmaa: - Cmin

Cyar(Vas) = 2

tanh(a+

Vo 2
(1)
Here, a and V} allow fitting for the intercept and the slope,
respectively, and Cp,;,, includes the overlap capacitance.
The above model yields different characteristics in different

circuit simulation programs! Simulation tools that analyze

! Fortunately, the capacitance reaches a minimum at this point, and the Q
degrades only gradually.

VGS)_I_Cma:c + Cmin)

CVIV

Py Ves
Fig. 4. Typical MOS varactor characteristic.

circuits in terms of voltages and currents (e.g., SPICE) interpret
the nonlinear capacitance equation correctly. On the other
hand, programs that represent the behavior of capacitors by
charge equations (e.g., Cadence’s Spectre) require that the
model be transformed to a Q-V relationship [3]:

Quar = /CvardVGS)

- Cmi
= -Cl"—a’-vT——’—'—% In [cosh(a + Yg—:)]

Chmi

Conae + Cmin 7.5,)
which is then used to compute

d
Ivar e %- (4)

If used in charge-based analyses, Eq. (1) typically overesti-
mates the tuning range of oscillators.

B. Inductors

The design of monolithic inductors has been studied exten-
sively. The parameters of interest include the inductance, the
Q, the parasitic capacitance (i.e., the self-resonance frequency,
fsr), and the area, all of which trade with each other to some
extent. For a spiral structure such as that in Fig. 5, the line
width, the line spacing, the number of turns, and the outer

Fig. 5. Spiral inductor.

dimension are under the designer’s control, chosen so as to
obtain the required performance.

Quality Factor The quality factor of monolithic inductors
has been the subject of many studies. Before considering the
phenomena that limit the @, it is important to select a useful

and clear definition for this quantity. For a simple inductor
operating at low frequencies, the @ is defined as

(5

where Rs denotes the metal series resistance. In analogy with
this expression, a more general definition is sometimes given
as

_Im(Z,) 6)
= Re(Z1)’ (

where Z;, represents the overall impedance of the inductor at
the frequency of interest. While reducing to Eq. (5) at low fre-
quencies, this definition yields = 0 if the inductor resonates
with its own capacitance and/or any other capacitance. This is
because at resonance, the impedance is purely resistive. Since
nearly all circuits employ inductors in a resonance mode,? this
expression fails to provide a meaningful measure of inductor
performance in circuit design. A more versatile definition as-
sumes that a resonant tank can be represented by a parallel
combination [Fig. 6(a)], yielding

Q

@=-—F %)

" Lpwgr’

where wpg is the resonance frequency. Note that the tank
reduces to Rp atw = wp, exhibiting a finite (rather than zero)
Q. Hereafter, we consider the behavior of inductors at or near
resonance.

___-I- LP EE Rp Cp
LeS =Ry =Cp —T—" Vout
_]- VlnHEM 1
(@) (®)

Fig. 6. (a) Parallel tank for definition of Q, (b) common-source stage using a
tank.

The utility of Eq. (7) can be seen in the example il-
lustrated in Fig. 6(b). Here, the knowledge of Lp and
Q = Rp/(Lpwgr) directly provides the voltage gain and the
output swing, whereas the) given by Eq. (6) serves no pur-
pose.

The @ of inductors is limited by resistive losses: parasitic
resistances dissipate a fraction of the energy that is recipro-
cated between the inductor and the capacitor in a tank. Note
that the finite () is also accompanied by generation of noise.
For example, in the circuit of Fig. 6(b), Rp produces an out-
put noise voltage of V2 = 4kTRp = 4kTQLpwr per unit
bandwidth if L p resonates with Cp.

The losses in inductors arise from three mechanisms (Fig.
7): (1) the series resistance of the spiral, including both low-
frequency resistance and current crowding due to skin effect;

20ne exception is inductive degeneration in low-noise amplifiers.

33 L
substrate E&‘J

©)

Fig. 7. Inductor loss mechanisms: (a) metal resistance, (b) substrate loss due
to electric coupling, (c) substrate loss due to magnetic coupling.

(2) the flow of displacement current through the series combi-
nation of the inductor’s parasitic capacitance and the substrate
resistance; (3) the flow of magnetically-induced (“eddy”) cur-
rents in the substrate resistance. At low frequencies, the dc
resistance is dominant, and as the frequency rises, the other
components begin to manifest themselves.

With the above observations in mind, let us construct a cir-
cuit model for inductors. Depicted in Fig. 8(a) is a simple
model where Rs denotes the series resistance at the frequency

L Rs L Rs

@ ®)

Fig. 8. (a) Inductor model including magnetic coupling to substrate, (b)
simplified model.
of interest, Rs; and Rg» represent the substrate resistance
through which the diplacement current flows, the transformer
models magnetic coupling to the substrate, and Rp is the sub-
strate resistance through which the eddy currents flow. This
model reveals how the @ drops at high frequencies. As the
impedance of C) and C) falls, Rgs; and Rs, appear as a con-
stant resistance in parallel with the inductor, lowering the @
as w rises. Similarly, at high frequencies, the effect of Rp be-
comes relatively constant, shunting Lp and further reducing
the Q.

In practice, the model of Fig. 8(a) is modified as shown
in Fig. 8(b) to both allow an easier fit to measured data and

account for the substrate capacitance. The model is usually
assumed to be symmetric, i.e., C; = C,,C3 = Cy,and Rs =
Rs;, implying that the equivalent parasitic capacitance, C,q, is
one-half of the total capacitance, C;,:, if one end of the inductor
is grounded. This result, however, is not correct because the
distributed nature of the structure yields Cey = Ciot/3 in
this case [5]. To avoid this inaccuracy, the inductor must be
modeled as a distributed network [5].

Characterization Most inductor modeling programs pro-
vide limited capabilities in terms of the type of structure that
they can analyze or the maximum frequency at which their
results are valid. For this reason, it is often necessary to fabri-
cate and characterize monolithic inductors and use the results
to revise the simulated models, thereby obtaining a better fit.
Owing to the need for precise measurements at high fre-
quencies, inductors are typically characterized by direct on-
wafer probing. High-speed coaxial probes having a tightly-
controlled 50-Q2 characteristic impedance and a low loss are
positioned on pads connected to the inductor. Figure 9(a)
shows an example where one end of the spiral is tied to the

Coaxial G G
Probe l b
S
G
(a) (b)

Fig. 9. (a) On-wafer measurement of inductor using coaxial probe, (b) cali-
bration structure.

“signal” (S) pad and the other to the “ground” (G) pads. The
signal pad is sensed by the center conductor and the ground
pads by the outer shield of the coaxial probe.

Since the capacitence of the pads and the wires connecting to
the spiral is typically significant, the test device is accompanied
by a calibration structure [Fig. 9(b)], where the spiral itself
is omitted. The scattering (S) parameters of both structures
are measured by means of a network analyzer across the band
of interest and subsequently converted to Y parameters. Sub-
traction of the Y parameters of the calibration geometry from
those of the device under test yields the actual characteristics
of the spiral.

An alternative method of measuring the @ of inductors is
illustrated in Fig. 10. Here, inductors are incorporated in
an oscillator and the tail current can be controlled externally.
In the laboratory measurement, the output is monitored on
a spectrum analyzer while Isgs is reduced so as to place the
circuit at the edge of oscillation. Next, the value of Iss thus
obtained is used in the simulation of the oscillator and the
equivalent parallel resistance of each tank, Rp, is lowered

Voo
Lp Lp
4 >—'° Vout
M » _D<_| MZ
O Iss

Fig. 10. Setup for “in-situ” measurement of Q.

until the circuit fails to oscillate. For such value of Rp, we
have Q@ = Rp/(Lw). Of course, this technique assumes that
the value of the inductor and the oscillation frequency are
known.

The above method proves useful if (a) the frequency of inter-
est is so high and/or the inductance so low that direct measure-
ments are difficult, or (b) an oscillator has been fabricated but
the inductors are not available individually, requiring “in-situ”
measurement of the Q. Note that other oscillator parameters
such as phase noise and ouput swing are also functions of @,
but it is much more straightforward to place the circuit at the
edge of oscillation than to calculate the () from phase noise or
output swing measurements.

Choice of Geometry The design of inductors begins with the
choice of the geometry. Shown in Fig. 11 are two commonly-
used structures. The asymmetric spiral of Fig. 11(a) exhibits

Fig. 11. (a) Asymmetric and (b) symmetric inductors.
a moderate @, about 5 to 6 at 5 GHz, and its interwinding
capacitance does not limit the self-resonance frequency be-
cause adjacent turns sustain a small potential difference. The
line spacing is therefore set to the minimum allowed by the
technology.

The symmetric geometry of Fig. 11(b) provides a greater @)
if stimulated differentially [4], about 7 to 10 at 5 GHz, but its
interwinding capacitance is typically quite significant because
of the large voltage difference between adjacent turns. For this
reason, the line spacing is chosen to be twice or three times
the minimum allowable value, lowering the fringe capacitance
considerably but degrading the @ slightly.

In differential circuits, the use of symmetric inductors ap-
pears to save area as well. For example, two asymmetric
1-nH inductors can be replaced by a symmetric 2-nH struc-
ture, which occupies less area. However, a cascade of dif-
ferential stages employing multiple symmetric inductors [Fig.
12(a)] faces routing difficulties. As illustrated in Fig. 12(b),
the signal lines must travel across the spirals, impacting the

Fig. 12. (a) Cascade of inductively-loaded differential pairs, (b) layout of first
stage using a symmetric inductor, (c) layout of first stage using asymmetric
inductors.

performance of the inductors. Furthermore, the power and
ground lines must either cross the spirals or go around with
adequate spacing. With asymmetric inductors, on the other
hand, the lines can be routed as shown in Fig. 12(c), leaving
the inductors undisturbed. Note that B; is quite larger than B,
because the symmetric structure must provide an inductance
twice that of each asymmetric spiral. Thus, the signal lines in
Fig. 12(b) are longer.

The two geometries of Fig. 11 can also be converted to
stacked structures, wherein spirals in different metal layers are
placed in series so as to achieve a greater inductance per unit
area. Figure 13(a) depicts an example using metal 8 and metal

@) ®)

Fig. 13. Stack of (a) metal 8 and metal 7 spirals, (b) metal 8 and metal 3
spirals.
7 spirals. The total inductance is equal to Ly + L, +2M , where
M denotes the mutual coupling between L and L,. Owing to
the strong magnetic coupling, the value of M is close to L and
L,, suggesting a fourfold increase in the overall inductance as
a result of stacking. In the general case, n stacked identical
spirals raise the inductance by a factor of approximately n?.
Stacking reduces the area occupied by inductors signifi-

cantly. However, the capacitance between the spirals may
limit the self-resonance frequency. For the two-layer structure
of Fig. 13(a), the overall equivalent capacitance is given by
(5]

Ceq = 4011—; CZ' (8)
Thus, if the bottom layer is moved down [Fig. 13(b)], then
C.q falls considerably. For example, in a typical 0.13-pm
CMOS technology having eight metal layers, the geometry of
Fig. 13(b) exhibits one-fifth as much as capacitance as the
structure in Fig. 13(a) does.

Stacked structures use lower metal layers, which typically
suffer from a greater sheet resistance than the topmost layer.
As explained below, the resistance can be reduced by placing
spirals in parallel.

Figure 14 illustrates three other configurations aiming to
improve the quality factor. In Fig. 14(a), multiple spirals are

s

Metal 8
Metal 7
Metal 6

(@) (v}

Patterned
Shield

Fig. 14. (a) Parallel combination of spirals to reduce metal resistance, (b)
tapered metal width, (c) patterned shield.

placed in parallel so as to reduce the series resistance, but at the
cost of larger capacitance to the substrate. Nonetheless, in a
typical process having eight metal layers, metal 6 capacitance
is about 30% greater than that of metal 8. Since metal 8 is
typically twice as thick as metal 6 or metal 7, this topology
lowers the series resistance by twofold while raising the par-
asitic capacitance by 30%. By the same token, in the stacked
structure of Fig. 13(b), addition of a metal 2 spiral in parallel
with the metal 3 layer decreases the overall resistance by 30%
while increasing the equivalent capacitance by about 15%.

At frequencies above 5 GHz, the skin depth of aluminum
falls below 2 pm, making the parallel combination of spirals
less effective. Electromagnetic field simulations may therefore
be necessary to determine the optimum configuration.

The structure in Fig. 14(b) employs tapering of the line
width to reduce the resistance of the outer turns. The idea is
to maintain a relatively constant inductance-resistance product
per turn, achieving a slightly higher) for a given inductance
and capacitance. Unfortunately, most inductor simulation pro-
grams cannot analyze such a geometry.

Shown in Fig. 14(c) is a method of lowering the loss due
to the electric coupling to the substrate. A heavily-conductive

shield is placed under the spiral and connected to ground so
that the displacement current flowing through the inductor’s
bottom-plate capacitance does not experience resistive loss.
To stop the flow of magnetically-induced currents, the shield
is broken regularly. Note that eddy currents still flow through
the substrate, dissipating energy.

The conductive shield in Fig. 14(c) may be realized in n-
well, n*, or p* diffusion, polysilicon, or metal, thus bearing
a trade-off between the parasitic capacitance and the Q en-
hancement. The resulting increase in the) depends on the
frequency of operation and the type of shield material, falling
in the range of 5 to 10%.

Thus far, we have studied square spirals. However, for a
given inductance value, a circular structure exhibits less series
resistance. Since mask generation for circles is more difficult,
some inductors are designed as octagonal geometries to benefit
from a slightly higher Q.

C. MOS Transistors

The modeling of MOSFETs for analog and high-frequency
design continues to pose challenging problems as sub-0.1-
pm generations emerge. BSIM models provide reasonable
accuracy for phase-locked system design, with the exception
that their representation of thermal and flicker noise may err
considerably. This issue becomes critical in the prediction of
oscillator phase noise.

The thermal noise arising from the channel resistance is
usually represented by a current source tied between the source
and drain and having a spectral density I2 = 4kTyg,, where
v is the excess noise coefficient. For long-channel devices,
¥ = 2/3, but for submicron transistors, ¥ may reach 2.5 to
3. Since some MOS models lack an explicit 7 parameter that
the user can set, it is often necessary to artificially raise the
effective value of 7 in circuit simulations. For linear, time-
variant circuits, this can be accomplished using a noise copying
technique [6]. However, the time variance of currents and
voltages in oscillators make it difficult to apply this method. As
a first-order approximation, the contribution of the transistors
to the overall phase noise can be increased by a factor equal to
2.5/(2/3) before all of the noise components are summed.>

The flicker noise parameters are usually obtained by mea-
surements. Itis therefore important to check the validity of the
device models by comparing measured and simulated results.
Owing to their buried channel, PMOS transistors exhibit sub-
stantially less flicker noise than NMOS devices even in deep
submicron technologies.

II. RING OSCILLATORS

Despite their relative high noise and poor drive capabil-
ity, ring oscillators are used in many high-speed applications.
Several reasons justify this popularity: (1) in some cases, the
oscillator must be tuned over a wide frequency range (e.g.,
one decade) because the system must support different data

3Inreality, the effective value of v also dependson the drain-source voltage
to some extent, further complicating the matter.

rates or retain a low-frequency clock in the “sleep” mode; (2)
ring oscillators occupy substantially less area than LC topolo-
gies do, an important issue if many oscillators are used; (3)
the behavior of ring oscillators across process, supply, and
temperature corners is predicted with reasonable accuracy by
standard MOS models, whereas the design of LC oscillators
heavily relies on inductor and varactor models.

In mostly-digital systems such as microprocessors, ring os-
cillators experience considerable supply and substrate noise,
making differential topologies desirable. Figure 15(a) shows
an example of a differential gain stage that allows several

Voo
Mg

¢
! ?

(a) ®)

Fig. 15. (a) Differential stage for use in a ring oscillator, (b) effect of supply
noise.

decades of frequency tuning with relatively constant voltage
swings. Here, Ms and M, define the output common-mode
(CM) level while M3 and My pull nodes X and Y to Vpp,
maintaining a constant voltage swing even at low current lev-
els.

Unlike a simple differential pair, the stage of Fig. 15(a)
does respond to input CM noise even with an ideal Iss. Thisis
because the gate voltages of M3 and M, are referencedto Vpp,
introducing a change in the drain currents if the input CM level
varies. In the presence of asymmetries, such a change results
in a differential component at the output. Nevertheless, since
the input CM level of each stage in the ring is referenced to
Vpp by the diode-connected PMOS devices in the preceding
stage [Fig. 15(b)], the oscillator exhibits low sensitivity to
supply voltage.

Figure 16(a) depicts another ring oscillator topology that
has become popular in low-voltage digital systems. Here, the

Fig. 16. (a) Constant-current ring oscillator, (b) transistor-level implementa-
tion of (a).

inverters in the ring are supplied by a current source, Ipp,

rather than a voltage source, and frequency tuning is also ac-
complished through Ipp. If Ipp is designed for low sensi-
tivity to Vpp, then the oscillator remains relatively immune
to supply noise—the principal advantage of this configuration
over standard inverter-based rings that are directly connected
to the supply voltage.

In practice, the nonidealities associated with Ipp limit the
supply rejection. Shown in Fig. 16(b) is a transistor imple-
mentation where M, operates as a contolled current source. If
I, is constant, Vx tracks Vp p variations whereas Vy does not,
yielding a change in Ipp through channel-length modulation
in M. Choosing long channels for M, and M, alleviates
this issue while necessitating wide channels as well to allow
a relatively small drain-source voltage for M,. However, the
resulting high drain junction capacitance of M, at Y creates a
low-impedance path from Vpp to this node at high frequen-
cies. To suppress both resistive and capacitive feedthrough of
Vb p noise, a bypass capacitor, Cp, is tied from Y’ to ground.
However, the pole associated with this node now enters the
VCO transfer function, complicating the design of the PLL.

Let us now study the response of the circuit of Figs. 15(a)
and 16 to substrate noise, V5. In the former, V;,; manifests
itself through two mechanisms (Fig. 17): (1) by modulat-
ing the drain junction capacitance of M, and M, and hence

S
M, M,
Vino—| o Vin
./-
Vsub ¥liss

Fig. 17. Effect of substrate noise on a differential stage.

the delay of the stage (a static effect); and (2) by injecting a
common-mode displacement current through Cp (a dynamic
effect). If injected slightly before or after the zero crossings
of the oscillation waveform, such a current gives rise to a dif-
ferential component at the drains of M} and M, because these
transistors display unequal transconductances as they depart
from equilibrium.

In the circuit of Fig. 16(b), V,4s modulates both the drain
junction capacitance of the NMOS devices and their threshold
voltage (and hence the transition points of the waveform).
Both effects are static, making the circuit susceptible even to
low-frequency noise.

It is instructive to determine the minimum supply voltage for
the above two circuits. Atthe midpoint of switching, where the
input and output differential voltages are around zero, the stage
of Fig. 15(a) requires that Vpp > IVGSPl + Vesn + Viss,
where Vgsp abd Vgsn denote the gate-source voltages of
M3-M, and M;-M,, respectively, and V;gs is the minimum
voltage necessary for Iss. Interestingly, the circuit of Fig.
16(b) imposes the same minimum supply voltage.

Another critical issue in the circuits of Figs. 15(a) and

16 relates to frequency tuning by means of current sources.
The voltage-to-current (V/I) conversion required here presents
difficulties at low supply voltages. In the example of Fig.
16(b), as Veon: rises and Vx falls, transistor M; eventually
enters the triode region, thus making I; supply-dependent. The
useful range of Veon: is therefore given by Vrgn < Veon: <
Vop — |Vaesp| — Vrun, suggesting the use of a wide device
for M, to minimize |Vgsp].

III. LC OSCILLATORS

LC oscillators have found wide usage in high-speed and/or
low-noise systems. Extensive research on inductors, varac-
tors, and oscillator topologies has provided the grounds for
systematic design, helping to demystify the “black magic.”

LC oscillators offer a number of advantages over ring struc-
tures: (a) lower phase noise for a given frequency and power
dissipation; (b) greater output voltage swings, with peak levels
that can exceed the supply voltage; and (c) ability to operate
at higher frequencies.

However, LC VCO design requires precise device and cir-
cuit modeling because (a) the narrow tuning range calls for
accurate prediction of the center frequency; (b) the phase noise
is greatly affected by the quality of inductors and varactors and
the noise of transistors. Also, occupying a large area, spiral
inductors pick up noise from the substrate and make it difficult
to incorporate many such oscillators on one chip.

The design of LC VCOs targets the following parameters:
center frequency, phase noise, tuning range, power dissipation,
voltage headroom, startup condition, output voltage swing,
and drive capability. The last two have often received less
attention, but they directly determine the design difficulty and
power consumption of the stages following the oscillator. That
is, a buffer placed after the VCO may consume more power
than the VCO itself!

A. Design Example

As an example of VCO design, let us consider the topology
shown in Fig. 18. Here, M, and M, present a small-signal
negative resistance of —2/gpm1,2 between nodes X and Y,

c,,% RpE %Lp Lp% E
X > Y
L M,

Isg

Fig. 18. LC oscillator.
compensating for the resistive loss in the tanks and sustaining
oscillation. Each tank is modeled by a parallel RLC network,
with all loss mechanisms lumped in Rp .*

“4For a narrow frequency range, series resistances in the tank elements can
be transformed to parallel components.

The design process begins with a power budget and hence
a maximum value for Iss. This is justified by the following
observation. Once completed and optimized for a given power
budget, the design can readily be scaled for different power
levels, bearing a linear trade-off with phase noise while main-
taining all other parameters constant. For example, if Iss,
the width of M, and M,, and the total tank capacitance are
doubled and the inductance value is halved, the phase noise
power falls by a factor of two but the frequency of oscillation
and the output voltage swings remain unchanged.’

Since subsequent stages typically require the VCO core to
provide a minimum voltage swing, Vi, we assume M, and
M, steer nearly all of Isgs to their correponding tanks and
write Iss Rp = Vjnin. Thus, the minimum inductance value
is given by

— RP
Lp = Qv &)
vmin
= Tss00’ (10)

where it is assumed the tank @ is limited by that of the induc-
tor. Note that this calculation demands knowledge of the @
before the inductance is computed, a minor issue because for a
given geometry and frequency of operation, the @ is relatively
independent of the inductance.

We now determine the dimensions of M, and M,. Increas-
ing the channel length beyond the minimum value allowed
by the technology does not significantly lower 7 unless the
length exceeds approximately 0.5 pm. For this reason, the
minimum length is usually chosen to minimize the capaci-
tance contributed by the transistors. The transistors must be
wide enough to steer most of Isg while experiencing a voltage
swing of V,;, at nodes X and Y. Viewing M; and M; as a
differential pair, we note that M; must turn off as Vx — Vy
reaches Vj,in. For square-law devices,

_ / 255
le‘" - I,lnCowW/L, (11)
and hence 21
55
W=—-or——— 12
/‘nCoa:V,-,ztin/L ()

but for short-channel devices, W must be obtained by simula-
tions using proper device models. This choice of W typically
guarantees a small-signal loop gain greater than unity, enabling
the circuit to start at power-up.

With Lp computed from Eq. (10), the total capacitance
at nodes X and Y is calculated as Ciot = (Lpw?)~'. This
capacitance includes the following fixed components: (1) the
parasitic capacitance of Lp, Cr p; (2) the drain junction, gate-
source, and gate-drain capacitances of M; and M,, Cpp +
Cgs +4Cgp;% and (3) the input capacitance of the next state

5We assume that, at a given frequency, the Q is relatively independent of
the inductance value.

6Since Cgp experiences a total voltage swing of 2Viyiy, its Miller effect
translates to a factor of two for each transistor.

10

(typically a buffer), Cr.. Thus, the allowable varactor capaci-
tance is given by the difference between C},: and the sum of
these components:

Cyar = (Lpw?)™'=CLp~Cpp—Css—4Cep—Cyr. (13)

This expression gives the center value of the tolerable varactor
capacitance. Of course, a negative Cy, 4, means the inductance
is excessively large, calling for a lower L p, a smaller Rp, and
hence a larger Iss. However, to steer a greater tail current,
the circuit must employ wider MOS transistors, thus incur-
ring a larger capacitance at nodes X and Y and approaching
diminishing returns. This ultimately limits the frequency of
oscillation in a given technology.

For a given supply voltage and oscillator topology, the var-
actor capacitance exhibits a known dynamic range Cygr min <
Cyar € Cyar,maz, yielding a tuning range of wmin < wose <
Wynaz, Where

1
\/LP(Cvar,ma:c + Cfixed)

1
\/LP(Cuar,min + Cji:ved)’
and Cfiged = CLp + CpB + Cgs +4Cgp + Cr.

Figure 19(a) depicts the oscillator with MOS varactors di-
rectly tied to X and Y. Since the output common-mode level

(14)

Wmin

Wmazx

15)

Voo v,

Fig. 19. LC oscillator with (a) direct coupling and (b) capacitive coupling of
varactors to tanks.

is near Vpp, M3 and My sustain only a positive gate-source
voltage (if 0 < Veont < Vbp). As seen from the C-V charac-
teristic of Fig. 2(b), this limitation reduces the dynamic range
of the capacitance by about a factor of two. As a remedy, the
varactors can be capacitively coupled to X and Y, allowing
independent choice of dc levels. Illustrated in Fig. 19(b), such
an arrangement defines the gate voltage of M, and M,, by
Vs & Vpp /2 through large resistors R and R,.

The coupling capacitors, C¢; and C¢,, must be chosen
much greater than the maximum value of C,,, so as not
to limit the tuning range. For example, if Ccy = Cgy =
5Cyar,maz» then the equivalent series capacitance reaches only
5C2 4r maz/(6Cuvar,maz) = 0.83Cyar mas, suffering from a
17% reduction in dynamic range. On the other hand, large cou-
pling capacitors display significant bottom-plate capacitance,

thereby loading the oscillator and limiting the tuning range.’
It is possible to realize C¢c; and Cc» as “fringe” capacitors
(Fig. 20) [7] to exploit the lateral field between adjacent metal

Side View
Metal8 (][] (] 3 10
Metal 7 I EI 303
Metai6 (03030303
Metal5 N C1EI I I

Substrate

Top View

Fig. 20. Fringe capacitor.
lines. This structure exhibits a bottom-plate parasitic of a few
percent, but its value must usually be calculated by means of
field simulators.

The tuning range of LC VCOs must be wide enough to
encompass (a) process and temperature variations, (b) uncer-
tainties due to model inaccuracies; and (c) the frequency band
of interest. In wireless communications, the last component
makes the design particularly difficult, especially if a single
VCO must cover more than one band. For example, in the
Global System for Mobile Communication (GSM) standard,
the transmit and receive bands span 890-915 MHz and 935-960
MHz, respectively. For one VCO to operate from 890 MHz
to 960 MHz, the tuning range must exceed 7.8%. With an-
other 7 to 10% required for variations and model inaccuracies,
the overall tuning rang reaches 15 to 18%, a value difficult
to achieve. In such cases, two or more oscillators may prove
necessary, but at the cost of area and signal routing issues.

The phase noise of each oscillator topology must be quanti-
fied carefully. The reader is referred to the extensive literature
on the subject.

B. Digital Tuning

Our study thus far implies that it is desirable to maximize the
tuning range. However, for a given supply voltage, a wider tun-
ing range inevitably translates to a greater VCO gain, Kv co,
thereby making the circuit more sensitive to disturbance (“rip-
ple”) on the control line. This effect leads to larger reference
sidebands in RF synthesizers and higher jitter in timing appli-
cations. With the scaling of supply voltages, the problem of
high Kv co has become more serious, calling for alternative
solutions.

A number of circuit and architecture techniques have been
devised to lower the sensitivity of the VCO to ripple on the
control line. For example, a digital tuning mechanism can be
added to perform coarse adjustment of the frequency, allowing
the analog (fine) control to cover a much narrower range. I1-
lustrated in Fig. 21(a), the idea is to switch constant capacitors
into or out of the tanks, thereby introducing discrete frequency
steps. The varactors then tune the frequency within each step,
leading to the characteristic shown in Fig. 21(b). Note that
the switches are placed between the capacitors and ground -
rather than between the tank and the capacitors. This permits

7This is relatively independent of whether the bottom plates are connected
to nodes X andY orto R; and R;.

11

i 3
o
Ay
' .
S

= Fine Control
Coarse Control

)

fout
Fewer
Capacitors
% Switched In

®)

Fig. 21. (a) VCO with fine and coarse digital control, (b) resulting character-
istics.

the use of NMOS devices with a gate-source voltage equal to
Vb p, minimizing their on-resistance.

The above technique entails three critical issues. First, the
trade-off between the on-resistance and junction capacitance
of the MOS switches translates to another between the ¢ and
the tuning range. When on, each switch limits the @ of its
corresponding capacitor to (R,nCyw)™'. When off, each
switch presents its drain junction and gate-drain capacitances,
Cpp + Cep, in series with Cy,, constraining the lower bound
of the capacitance to Cy(Cpp + Csp)/(Cy + CppCep)
rather than zero. In other words, wider switches degrade the
overall Q) to a lesser extent but at the cost of narrowing the
discrete frequency steps.

The second issue relates to potential “blind” zones in the
characteristic of Fig. 21(b). As exemplified by Fig. 22, if the

fou(

Fig. 22. Blind zone resulting from insufficient fine tuning range.
discrete step resulting from switching out one unit capacitor is
greater than the range spanned continuously by the varactors,
then the oscillator fails to assume the frequency values between
/1 and f, for any combination of the digital and analog controls.
For this reason, the discrete steps must be sufficiently small to
ensure overlap between consecutive bands.®

The third issue stems from the loop settling speed. As
described below, the PLL takes a long time to determine how

8With a finite overlap, however, more than one combination of digital and
analog controls may yield a given frequency. To avoid this ambiguity, the
loop must begin with a minimum (or maximum) value of the digital control
and adjust it monotonically.

many capacitors must be switched into the tanks. Thus, if a
change in temperature or channel frequency requires a discrete
frequency step, then the system using the PLL must remain idle
while the loop settles.

When employed in a phase-locked loop, the oscillator of Fig.
21(a) requires additional mechanisms for setting the digital
control. Figure 23 depicts an example for frequency synthesis.

Coarse
Control

—| Charge
—»=| Pump

Control

It

Fig. 23. Synthesizer using fine and coarse frequency control.

Here, the oscillator control voltage is monitored and compared
with two low and high voltages, Vi and Vj, respectively. If
V.ont falls below Vi, the oscillation frequency is excessively
low?, and one unit capacitor is switched out. Conversely, if
Veont €xceeds Vi, one unit capacitor is switched in. After each
switching, the loop settles and, if still unlocked, continues to
undergo discrete frequency steps.

9We assume the frequency increases with Veont.

12

REFERENCES

[1] B. Razavi, “Design of Monolithic Phase-Locked Loops
and Clock Recovery Circuits - A Tutorial,” in Monolithic
Phase-Locked Loops and Clock Recovery Circuits, B.
Razavi, Ed., Piscataway, NJ: IEEE Press, 1996.

[2] P. Larsson, “Parasitic Resistance in an MOS Transistor
Used as On-Chip Decoupling Capacitor,” IEEE J. Solid-
State Circuits, vol. 32, pp. 574-576, April 1997.

[3] K. Kundert, Private Communication.

[4] M. Danesh et al., “A Q-Factor Enhancement Technique
for MMIC Inductors,” Proc. IEEE Radio Frequency In-
tegrated Circuits Symp., pp. 217-220, April 1998.

[5] A. Zolfaghari, A. Y. Chan, and B. Razavi, “Stacked In-
ductors and Transformers in CMOS Technology,” IEEE
Journal of Solid-State Circuits, vol. 36, pp. 620-628,
April 2001.

[6] F. Behbahani, et al., “A 2.4-GHz Low-IF Receiver for
Wideband WLAN in 0.6-um CMOS,” IEEE Journal of
Solid-State Circuits, vol. 35, pp. 1908-1916, December
2000.

[7] O. E. Akcasu, “High-Capacity Structures in a Semicon-
ductor Device,” US Patent 5,208,725, May 1993.

Delay-Locked Loops - An Overview

Chih-Kong Ken Yang

Abstract — Phase-locked loops have been used for a wide
range of applications from synthesizing a desired phase
or frequency to recovering the phase and frequency of an
input signal. Delay-locked loops (DLLs) have emerged as
a viable alternative to the traditional oscillator-based
phase-locked loops. With its first-order loop
characteristic, a DLL both is easier to stabilize and has
no jitter accumulation. The paper describes design
considerations and techniques to achieve high
performance in a wide range of applications. Issues such
as avoiding false lock, maintaining 50% clock duty cycle,
building unlimited phase range for frequency synthesis,
and multiplying the reference frequency are discussed.

1. INTRODUCTION

Many applications require accurate placement of the
phase of a clock or data signal. Although simply delaying the
signal could shift the phase, the phase shift is not robust to
variations in processing, voltage, or temperature. For more
precise control, designers incorporate the phase shift into a
feedback loop that locks the output phase with an input
reference signal that indicates the desired phase shift. In
essence, the loop is identical to a phase-locked loop (PLL)
except that phase is the only state variable and that a
variable-delay line replaces the oscillator. Such a loop is
commonly referred to as a delay-line phase-locked loop or
delay-locked loop (DLL). As with a PLL, the goals are (1)
accurate phase position or low static-phase offset, and (2)
low phase noise or jitter.

Because a DLL does not contain an element of variable
frequency, it historically has fewer applications than PLLs.
Bazes in [1] demonstrated an example of precisely delaying
a signal in generating the timing of the row and column
access strobe signals for a DRAM. Another common
application uses a DLL to generate a buffered clock that has
the same phase as a weakly-driven input clock. Johnson in
[2] synchronizes the timing of the buffered clock of a
floating-point unit with the clock of a microprocessor. A
similar application recovers the data of a parallel bus by
generating a properly positioned sampling clock. Typically,
these systems provide a sampling clock with the same
sampling rate but with an arbitrary phase as compared to the
data (i.e. a “mesochronous” system [4]). A clocked DRAM
data bus is an example of such a system. A clock propagates
with the data as one of the signals in the bus and therefore
has a nominally known phase relationship with the data.
However, in order to receive and buffer the clock to sample

C.K. Ken Yang is with University of California at Los Angeles,
yang@ee.ucla.edu.

13

the data bus, the actual sampling clock is no longer properly
aligned with the data. A DLL is commonly used to lock the
phase of the buffered clock to that of the input data. The
phase locking significantly reduces timing uncertainty in
sampling the data, which then enables higher data rates as in
[3].

Although aperiodic signals can also be delayed by the
delay line in a DLL, the inputs to delay lines are typically
clock signals. By using a periodic signal, the delay lines do
not need arbitrarily long delays and typically only need to
span the period of the clock to generate all possible phases.
A data signal can be delayed by sampling the data with the
appropriately delayed clock.

The motivation for using DLLs is that the design of the
control loop is simplified by having only phase as the state
variable. Section II reviews how such a loop is
unconditionally stable and has better jitter characteristics.
However, a DLL is not without its own limitations. The
variable delay line has a finite delay range and finite
bandwidth. Section II also discusses these design
considerations. Section 111 describes different
implementations of the variable delay line. Within the past
ten years, modifications to the basic DLL architecture have
enabled clock and data recovery applications in
“plesiochronous” systems [4] where the sampling rates for
clock and data differ by a few hundred parts-per-million in
frequency. Delay lines with effectively infinite delay are also
addressed in Section III.

More recently, several researchers such as [5] and [6]
have introduced architectures that permit frequency
multiplication based on delay lines which further extends
their use in clock generation and frequency synthesis.
Section IV describes these architectures.

II. DLL CHARACTERISTICS

The basic loop building blocks are similar to that of a
PLL: a phase detector, a filter, and a variable-delay line.
Figure 1 illustrates the three main functional blocks. Since
phase is the only state variable, a control loop higher than
first-order is not needed to compensate a fixed phase error.
The resulting transient impulse response is a simple
exponential. Although the simple loop characteristics are an
advantage that DLLs have over PLLs, the design is
complicated by the additional circuitry that is needed to
overcome having a limited delay range and not producing its
own frequency.

A. First-order Loop

A phase detector compares the phase of the reference
input and the delay-line output. The comparison yiclds a
signal proportional to the phase error. The error is low-pass

PD
Kpp

Filter
Gg(s)
? Ve
Delay Line
KpL

dly_in dly_out

Figure 1: DLL architecture.

A

Kioop

\—

20dB/dec

open loop

H(s)
daB)

closed loop

Figure 2: Open- and closed-loop transfer characteristics.

filtered to produce a control voltage or current that adjusts
the delay of the delay line. The delay-line input can be either
the reference input or a clean clock signal.

The s-domain representation of each loop element is
depicted within each block in Fig. 1. The open-loop transfer
function can be written as 7(s) = KppKp;Gp(s) where
Kpp is the phase-detector gain, Gg(s) is the filter transfer
function, and Kp is the delay-line gain. If the loop has
finite gain at dc, the resulting output signal will exhibit a
static phase error as shown in the following equation.

1
1+ 1/(KppKp Gr())| _

H(s)|, _ = (M

To eliminate the static phase error, the filter is often an
integrator to store the phase variable. This results in a
first-order closed-loop transfer function.

!)
1+ (S/KPDKDLGF)

The equation assumes that the delay-line input is a clean
reference as opposed to the reference input. Higher-order
loop filters have not commonly been used but can enable
better tracking of a phase ramp (i.e. a frequency difference).

Figure 2 shows the open-loop and closed-loop transfer
functions. With only a single integrator, the open-loop phase
margin is 90°. The loop is unconditionally stable as long as
the delay in the loop does not degrade the phase margin
excessively. The closed-loop transfer function illustrates that

H(s) =

14

200

0 4 600
ot?me (ns)
Figure 3: Step response of PLL and DLL (with same loop charac-
teristics).

the tracking of the phase of the input clock changes at
different frequencies. Based on the transfer function, the
loop bandwidth is w,, = KppKp; Gr. For frequencies
within the loop bandwidth the phase of the output clock will
track that of the reference input and reject noise within the
loop. The phase characteristics of the output clock above the
bandwidth of the loop depend on the phase behavior of the
delay-line input and the noise from the delay line. The noise
transfer function from a noise source lumped at the
delay-line output is a high-pass response.

(s/KppKpy Gr) 3)
1+ (s/KppKp,Gr)

In some degenerate cases, the delay-line input is also the
reference input. The feedback loop would guarantee a fixed
phase relationship between the delay-line output and the
reference so any phase variations in the reference would
directly appear at the delay-line output in an all-pass
response. However, noise due to the delay line is still
high-pass filtered.

H(s) =

B. Advantages over a PLL

The loop characteristics are considerably simpler than
those of a PLL. A PLL would contain at least two states to
store both the frequency and phase information. In order to
maintain loop stability, an additional zero is needed. A DLL
is less constrained with only a single pole. The loop gain
directly determines the desired bandwidth. The only stability
consideration is when the loop bandwidth is very near the
reference frequency. The periodic sampling nature of the
phase detection and the delay in the feedback loop degrade
the phase margin. For instance, if the feedback delay is one
reference cycle, the loop bandwidth should not exceed 1/4 of
the reference frequency.

Figure 3 illustrates the response to a noise step applied
to the control voltage for both a PLL and a DLL. A PLL
accumulates phase error due to its higher-order loop
characteristic. In response to a phase error, the control

data sample

Revr -
D
data . transition sample
RCX" P> Filter
Y
ref _clk
—| Delay Line
sampling clock

Figure 4: Early-late receiver architecture using the receiver as the
phase detector. Timing diagram showing early and late data.

voltage alters the frequency of an oscillator. The output
phase is an integration of the frequency change. In response
to a noise perturbation, the loop accumulates a phase error
before correcting. In contrast, a DLL attenuates the phase
error by the time constant of the loop. In the figure, both
loops are designed with the same 3-dB bandwidth, the same
delay elements, and the PLL is a 2nd-order loop with a
damping factor of unity. Clearly, the PLL suffers from larger
phase errors due to the phase accumulation.

A second advantage relates to clock and data recovery
applications. An effective way to recover the timing for
sampling a data input is to use the data receiver as a phase
detector. The architecture, depicted in Fig. 4, uses the
180°-shifted clock to sample the data transitions in addition
to sampling the data values [7]. Whenever data changes
values, the sampled transition and the data values can be
combined to indicate whether the sampling clock edge is
earlier or later than the data transition. Phase information is
only present with data transitions. The feedback loop locks
when the transition sampling clock samples a metastable
value. This commonly used design is known as an early-late
or bang-bang architecture. The timing diagram in Fig. 4
illustrates examples of the data being early and late. Due to
the inherent setup time of the data receiver, the transition
sampling clock may not occur at the same time as the data
transition. The phase shift compensates for the receiver setup
time and maximizes the margin of error for the data
sampling.

15

o

+
/ lock 2nd lock
point point
0
w4
Delay (V¢)

Figure 5: Delay line phase/delay characteristic.

However, the data receiver is ultimately a binary
comparator and the phase detector does not indicate an error
that is proportional to the phase difference. Hence, the
timing-recovery loop is nonlinear. Although a higher-order
PLL using early-late control can be made conditionally
stable [8], the resulting phase dithers with a limit cycle
translating into jitter. The oscillation depends on the loop
parameters and can be considerable for high bandwidth
loops. With an early-late DLL, the phase of the clock output
also dithers. But because the stability only depends on the
delay within the loop, the dithering would only be a few
cycles and can be significantly less than the dithering of a
PLL.

C. Design Considerations in a DLL

A typical DLL involves several design considerations.
First, the delay line usually has a finite delay range. If the
desired phase of the output signal is beyond the delay range,
the loop will not lock properly. Second, the output of the
DLL also depends greatly on the input to the delay line.
Since the delay-line input propagates to the DLL output,
tracking jitter and the output’s duty cycle depend not only on
the delay-line design but also on the delay-line input. Third,
the basic DLL cannot generate new frequencies different
from that of the delay-line input.

A variable-delay line adjusts the delay by varying the
RC time constant of a buffer and often has limited
adjustment range. Section III will describe several
techniques in greater detail. Even though the delay range is
limited, DLLs for a periodic clock signal only need the range
to exceed 2m in phase across process and systematic
variations to cover all possible phases. For systems with a
range of operating frequencies, the delay line must span 21t
for the lowest input frequency.

An issue known as false-locking occurs when the delay
range exceeds 2t. There can be several secondary lock
points repeating every 2. Figure 5 depicts an example of the
characteristic of a delay line with two lock points. Since
phase detectors must be periodic, if the delay line initializes
within 1t of the second lock point, the phase detector will
push the delay line toward lock with a longer than necessary
delay. Long delays require large RC time constants for a
given variable-delay buffer element. The bandlimiting by the

filter would significantly attenuate a high-frequency input
clock. The attenuation increases the jitter and may even
prohibit the input from reaching the output.

Even if the delay line is constrained to span only one
lock point but greater than 27, a second similar issue exists.
It is difficult to design a delay line such that the adjustable
range is exactly & to +x across different operating and
processing conditions. If initialized at the minimum or
maximum delay, the phase detector may push the loop
toward either the maximum or minimum delay limit and
“false-lock” to an incorrect phase.

To address false-locking, designers employ several
techniques depending on the application. For systems that
require a delay line with a known fixed delay, operating
condition variations may be small enough such that the delay
line only needs a small variable range that is less than +r and
-nt. For systems that lock to a fixed phase over a wide range
of frequencies, one design [9] uses an auxiliary
frequency-sensing loop that generates a voltage to coarsely
set the delay for the given input frequency. Then DLL only
fine tunes the delay for the desired phase. For data recovery
applications where the clock phase can be arbitrary with
respect to the data, a common design uses a startup circuit
for the DLL that initializes the delay line at its minimum
delay to avoid any secondary lock points. However, as
mentioned earlier, the phase detector may keep the delay line
at the minimum delay. A sensing circuit or a state machine
detects when the delay line is at its limit and optionally
inverts the feedback clock. The phase would flip by 180° and
the loop would lock properly. As will be discussed in
Section III, a more robust alternative reconfigures the delay
line such that the delay only spans 27 and wraps back to 0°
when the delay exceeds 360°.

The jitter and duty cycle of the delay-line output clock
depend on the input, the coupling of the input to the delay
line, and the delay line itself. Often the input is from off-chip
and, therefore, it must be carefully received to prevent
supply and substrate noise from coupling onto the signal as
jitter. In contrast, the high-frequency phase noise of the
clock output of an oscillator-based PLL depends primarily
on the oscillator design. An improperly received input clock
can often result in worse jitter performance in a DLL as
compared to a PLL. Similarly, while the duty cycle from an
oscillator is only modestly distorted (by the difference
between the rising edge and falling edge delays), the duty
cycle of the DLL’s input clock can be significantly distorted
as it propagates to the output. Since duty cycle is a
systematic error, a good design corrects duty cycle using an
explicit block instead of compounding the difficulty of the
delay-line design.

A duty-cycle corrector (DCC) is commonly added to
either the DLL input or output. Figure 6 illustrates the basic
components of the feedback loop: an input with finite slew
rate, a buffer element with adjustable threshold, a
comparator, and an integrator. The comparator determines
the threshold crossing of the clock waveform. The result is
integrated and used to skew the threshold of the buffer stage.

16

clock out

clock in

duty cycle
reduction

L

clock out

Figure 6: Duty-cycle corrector block diagram. Timing diagram
shows change in duty cycle with changing offset.

Because the buffer input has finite slew rate, changing the
threshold effectively adjusts the output high and low
half-periods. The loop settles when the high and low
half-periods are equal. Figure 6 illustrates the reduction in
duty cycle as the threshold shifts from Vi to Vier,. Since
random variation of the duty cycle effectively appears as
jitter, single-ended implementations such as that shown in
the figure can be very sensitive to common-mode noise. For
this reason, differential architectures are preferred [3].

For low jitter on the output clock, the loop components
must be carefully designed. Many of the loop components
are very similar to that of a PLL and are well described in
[10]. For a charge-pump based loop filter, since the filter is
only first-order, a simple capacitor replaces the RC filter. As
in a PLL, noise on the control voltage directly translates into
jitter. Designers may use additional filtering to suppress the
noise. The loop element that has deviated the most from PLL
design and is critical for functionality and performance is the
design of the delay line.

III. DELAY-LINE ARCHITECTURES

The primary characteristics of a delay line are (1) gain
(i.e. change in delay for a given change in voltage), and (2)
delay range. For most applications using periodic inputs, the
absolute delay is not critical as long as the range spans 27.
Because delay lines are relatively short, they do not
contribute significant thermal or 1/f phase noise. However,
for large digital systems, low supply/substrate sensitivity is
needed to reject the on-chip switching noise.

Figure 7: Six different delay elements.

A. Basic Delay Line

A delay line comprises of a chain of variable-delay
elements. Each element is controllable by either a voltage or
a current. The delay of each element is proportional to its RC
time constant and changing the effective resistance or
capacitance adjusts the delay.

Figure 7 depicts several examples of buffer elements.
For a differential buffer, the load resistance can be an MOS
transistor in the triode region [Fig. 7-(a)] where the
resistance is proportional to Vgs-Vy,. Varying the gate
voltage adjusts the delay of the element. A non-linear device
such as a diode can also serve as a load resistance [Fig.
7-(b)]. Since the resistance varies with the current, varying
the bias current of the buffer would adjust the delay.
Similarly, a negative transconductance that changes with the
bias current can be placed in parallel with a fixed load
resistance [Fig. 7-(c)]. The varying negative
transconductance changes the effective load resistance and
hence varies the delay. Because nonlinear elements have
resistances that depend on both voltage and current, they can
be more sensitive to supply noise.

17

Delay

capacitive
control (f)

. o
Ve
Figure 8: Delay versus voltage for two different delay buffer ele-
ments: types (d) and (f) of Fig. 7.

For push-pull type elements such as inverters, the delay
can be changed by changing the rate at which the output
capacitance is charged [Fig. 7-(d)]. An adjustable current
source limits the peak current of an inverter and varies the
delay. An alternative method regulates the supply voltage of
the inverters and uses the control voltage to set the supply
voltage [Fig. 7-(e)]. The effective switching resistance varies
with the supply voltage. Instead of changing the resistance,
the effective capacitance can also be made adjustable [Fig.
7-(f)]. A transistor that behaves as an adjustable resistance
can be used to decouple an explicit output capacitance. The
larger the resistance the less capacitance is seen at the
output.

Figure 8 illustrates the delay versus control voltage for a
resistively-controlled delay element. For the element of Fig.
7-(d), either V5g-Vyy, or the bias current can be zero and,
therefore, a single element’s delay can span from the
minimum buffer delay to infinite. However, since the time
constant is proportional to the delay, a long delay setting
would significantly attenuate a high-frequency clock. Delay
lines with a wide range for high clock frequencies require a
large number of broadband delay elements.

Unlike resistive control, the maximum delay in a
capacitively-controlled element [Fig. 7-(f)] is proportional to
R(Cim+Cexp) and the minimum delay is proportional to
RC;,; where C;, is the intrinsic capacitance of the buffer
and the load of the subsequent stage, and C exp is the explicit
capacitance added to the circuit. Because of the limited
range per buffer, obtaining a wide delay range involves a
large number of buffers. The maximum delay of each buffer
is chosen to avoid attenuating the signal. In designs where
the clock has a large voltage swing, the transistor in series
with the explicit capacitance no longer appears as a variable
resistor because the device enters saturation and cut-off. For
these buffers, the control voltage determines the fraction of
current and period of time in which the buffer’s current
charges the explicit capacitance.

An example of the delay versus control voltage for a
capacitively-controlled element is overlaid in Fig. 8. Most

. 180° Phase
> -
- Detect +
Filter
]
!
-) '
cloc o X
b 0 oh o
s 205 135315

Figure 9: 180°-locked DLL to generate intermediate phases that are
a fraction of a cycle.

delay elements exhibit some nonlinearity. As a result, the
delay-line gain, Kpy;, is a function of the delay. Because a
DLL is unconditionally stable, the loop still functions with
the varying loop parameter. However, more linear elements
are better for designs that require a constant loop bandwidth.
To compensate for the variable Kp;, designers add
programmability to the loop-filter capacitor.

The control signal for either type of delay elements can
be digital. In a digital implementation [11], the current
source is binary weighted and switched by a digital word.
For capacitively-controlled elements, the capacitance can be
binary weighted and switched. A nearly all-digital DLL is
then possible by using a simple counter to replace the analog
integrating filter.

B. Phase Interpolation

Instead of only using the clock phase at the end of a
delay line, an earlier clock phase can be tapped from the
middle of a delay line. Some applications require the delay
line to produce a delay that is a fixed fraction of the
input-clock period. Figure 9 shows one implementation that
uses a DLL to lock the input clock to the output. An 180°
phase detector would guarantee the absolute delay of a delay
line to be a half-cycle. Tapping from different points on the
delay line provides different phases. As shown in Fig. 9, for
a45° phase shift, the clock can be tapped from the first delay
stage of a 4-stage differential delay line. If an arbitrary phase
is needed, each delay stage can be tapped and multiplexers
can select the nearest desired phase. The number of delay
elements quantizes the phase step and limits the resolution
[12]. Fine phase resolution requires longer delay lines. Yet,
the resolution is limited at high clock frequencies because
the maximum number of delay elements needed to span 180°
is limited.

An arbitrary intermediate phase can be obtained by
“interpolating” between two clock phases that are tapped
from a delay line. Depending on the weighting, an
interpolator produces a clock that has a programmable
output phase in between the input clock phases. As long as
discrete clock phases that span the entire cycle are available
as inputs, any phase for the interpolator’s output is possible.

]

kino f 2 Kouro

K ckinO
Ckim_ j CKout1 _h

Ckinl

éki’o“(;o TN ouo
: 7] I dkoutOl : Ckoutl
:Ckinl__ I : CIkoutOI
| (1-00I, |

18

\ _Phase Interpolator. /
Figure 10: Phase interpolator design by shorting of the output of
two integrators/buffers. .

Multiplexers are needed to select the phases to interpolate
between. For example, with phases tapped from a 4-stage
delay line, if the desired output clock phase is 120°, the
interpolator inputs would be from the second and third delay
elements.

Interpolators essentially perform a weighted average of
the input phases. As shown in Fig. 10, ideally, the two input
phases drive two integrators which charge a single output.
The weighting of the average is by the relative currents of
the two integrators. When o=1, the output clock phase
depends only on ck;,p. When 0=0.5, i.e. the current is split
equally between the two integrators, the output phase is
additionally delayed by half the phase difference. As
illustrated in Fig. 10, the phase of the interpolated output
(ckouror) falls between the phases of the non-interpolated
outputs (cky,0 and ckyyyp).

With ideal integrators, the interpolation is linear,
resulting in a constant Kpj. Alternatively, an interpolator
can effectively be formed with buffer elements instead of
integrators. By weighting the drive strength or current of two
buffer elements whose outputs are shorted together, one can
adjust the output phase. Because the output is not integrated,
the resulting interpolation is slightly nonlinear and depends
on (1) the phase difference between the inputs and (2) the
slew rate (or time constant) of the input and output signals
[13]. Figure 11 depicts the linearity of the interpolation for
two different input phase separations, s=t and s=21 where T
is the buffer’s time constant. The larger phase spacing results
in greater nonlinearity. Similar to RC delay elements, the
interpolation can be digitally controlled. Since the weighting
of the interpolation depends on the proportional current, the
current sources of the integrators or buffers can be digitally
weighted and programmed.

In a design for clock and data recovery by [3],
quadrature clocks are interpolated to generate an
intermediate clock phase within a quadrant. Figure 12
illustrates the mostly analog architecture. An analog control

0.0 0.2 04 0.6 0.8 1.0
current partition)

Figure 11: Buffer based phase interpolator linearity.

voltage produced by the phase detector and filter determines
the interpolator currents. Comparators indicate when the
current is fully steered to one integrator. A finite state
machine driven by the comparators selects the appropriate
quadrant by switching the interpolator inputs such that all
360° phases are possible. The quadrature input clocks is
generated from an external reference clock through the use
of a divide-by-two circuit.

Interestingly, because the phase rotates from one
quadrant to the next, the architecture effectively has an
unlimited delay range. If the input data rate and the reference
clock frequency are slightly different, a DLL would
continually increase or decrease the delay in order to track
the accumulating input phase. A typical DLL with a finite
delay range would run out of delay or lose lock. On the other
hand, plesiochronous operation is possible with an
interpolator-based delay line since the phase smoothly
rotates between quadrants.

Interpolating between clocks with large phase spacings
such as quadrature clocks results in an output clock with
slow slew rate. Such waveforms are more susceptible to
noise and result in higher jitter. An enhancement uses more
closely-spaced phases that span the cycle. The finer phases
spacing is possible using a multi-stage ring oscillator. As
shown in Fig. 13, a 4-stage differential oscillator would
generate 8 phases 45° apart. To guarantee a correct period
for each clock phase, the ring oscillator is locked to the
external reference clock using a PLL. The role of the PLL is
solely for generating the phases. A purely DLL-based
architecture is also possible by replacing by using the DLL
in Fig. 9 that locks the delay-line output with a 180° phase
shift [13].

The architecture is commonly known as a dual-loop
design because the first loop, a PLL or DLL, generates the
phases and the second loop, the interpolation-based DLL,
recovers the data and phase. Since the first loop is not in the
feedback of the second loop (or vice versa), the overall
system is stable as long as each loop is individually stable. A
dual-loop design is possible with the second loop within the

19

cloc
K, Phase Generator

Jq)o ¢¢90 ®150

’¢270

Mux
Control j V
——’
* Interpolator
datain Ph ase CI OCksamp
Detect

Figure 12: Infinite-range delay line based on phase rotation.

Bozh

]
]
¢45,225 ¢135,3 15
Figure 13: Oscillator with tapped outputs for multiple phases.

; Bo150

feedback of the first loop [15] as long as the stability of the
loop is carefully considered.

The data recovery portion of a dual-loop design is
conducive to a digital implementation. The binary output of
the receiver-replica phase detector can be accumulated using
a digital counter. The counter output selects the appropriate
phase from the oscillator and controls the digitally
programmable interpolators [13],[14]. As long as the
quantized phase step is small, the small error only minimally
impacts the data recovery.

C. Oversampled Implementation

An alternative purely digital approach to clock and data
recovery can be implemented by oversampling the data.
Figure 14 illustrates an example of a digital architecture.
Multiple finely-spaced clock phases oversample the data
input. The sampled results are digitally processed to
determine both the correct data value and the optimal phase
of the data sample. The digital processing can vary in
complexity. Simple implementations use the optimal data
sample as the received data [18] or take a majority vote from
the samples of a single bit [17]. The bit boundaries
determine the samples associated with a bit. Transitions that
are detected in the samples from the prior or current bits
indicate the bit boundaries.

The sampling rate limits the timing error margin.
Greater amount of oversampling reduces the data-recovery
timing error, but increases the number of clock phases. Low
data rate UARTs [16] typically use 8 to 16 times
oversampling. For high data rates, generating accurate clock
phases separated by sub-100ps is very challenging. More

damin R _
|D 9 S LD 97 ees Receiver
. Samplers
multi ‘
c]oqk-q) ¢0 1 EZ
[1:N] J<
do d, y dz* _g
Decision . 5
Logic
received data

Figure 14: Oversampled data recovery architecture.

aggressive designs with the least amount of clocking
overhead and high data rates use a minimum of 3x
oversampling [17], [18].

Even though phase spacing scales with the gate delay of
a technology, so does the bit time in each generation of
applications. For oversampling of the data bits, finely-spaced
clock phases are needed. Tapping from a delay line produces
phases separated by a buffer delay. For even finer phases,
several techniques are commonly used. For example, several
interpolators can be used where each interpolator has slightly
different weighting to generate intermediate phases with
spacing less than a buffer delay [19]. An alternative method
uses a chain or array of coupled oscillators [20]. By taking a
chain of oscillators and coupling them such that the output
and input of the chain are separated by only one gate delay,
sub-gate-delay phase spacings result from the outputs of
each oscillator. Lastly, if the data can be delayed with a
chain of delay buffers along with the clock, the clock at each
delay stage can be used to sample the data of the
corresponding stage. As long as the data and the clock delay
lines have slightly different delays, the sub-sampled outputs
are effectively an oversampling of the data. The effective
phase spacing depends only on the difference between the
data delay and clock delay [21]. The architecture has a
drawback in that it requires delaying the data and clock by
long delays of several cycles, which can significantly
increase jitter.

IV. CLOCK MULTIPLICATION

With a dual-loop architecture, a DLL can produce a
frequency plesiochronous to the delay-line input. However,
the rate at which the interpolator weight changes limits the
frequency difference. Generating a significantly different or
multiplied frequency from a low-frequency input reference
is not possible with the architecture.

Recently designers have explored several methods of
using DLLs for frequency multiplication. One method uses a
delay line that is locked to 180°. With the phases that span an
entire cycle, the tapped clock edges are combined to form a
clock with multiplied frequency. The most direct method

20

/ \
data, '
w 18(° Delay Line /
"D—— 180° Delay Line
- —r
*] clocksamp |
Receiver delay control
' received data

Figure 15: Clock/data recovery using startable oscillator.

uses logical AND-ORs to combine the multiple phased
clocks into a single high-frequency clock [23]. Alternatively,
the method in [24] converts each phase into a small pulse
and ORs the pulses together to form the output clock. In
cases where the output capacitance of the logic gates limits
the output frequency, one design [6] uses phases to excite a
tuned LC tank to combine the clock phases.

Instead of edge combining, the multiplied clock can be
the direct output of a delay line. The architecture is similar to
a technique for clock and data recovery that uses a startable
oscillator [22]. As shown in Fig. 15, the architecture uses
data transitions to trigger startable oscillators: high-value
data triggers one oscillator and low-value data triggers
another. Each startable oscillator comprises of a delay line
and an AND gate. The data value enables the AND gate and
the triggered oscillator propagates an edge through the delay
elements and produces a clock edge delayed by a half-cycle.
The edge is used to sample the data. In the absence of input
transitions, the delay line is configured an oscillator and
generates a sampling edge every cycle. Whenever a new data
transition occurs, the oscillator resynchronizes its phase to
that of the input. In the implementation by [22], the natural
oscillation frequency of the oscillator is determined by an
external plesiochronous clock reference. The architecture
has not been widely applied to higher data rate designs
because the sampling phase is directly derived from the input
data without any filtering. The deterministic and random
jitter inherent in the data are effectively doubled and can be
considerable.

If the input is a low-jitter reference clock, a similar
architecture can be used for clock multiplication [5]. As
illustrated in Fig. 16, a lower frequency but clean reference
clock is one input to a multiplexer that feeds into a delay
line. The output of the delay line is fed back to the
multiplexer as the second input. When a reference clock
edge is available, the multiplexer selects the reference input.
Otherwise, the multiplexer configures the delay line as an
oscillator with the output frequency controlled by the delay.
The multiplexer inputs are selected by a counter circuit that
determines the number of cycles to oscillate before accepting
the next reference clock edge. A phase detector compares the

]
Counter +
Control
L - clock,,,,
clock ¢ Delay Line >
4 Nx fref

[}

Phase
Detect

o
»

Figure 16: DLL-based clock multiplication.

reference input with the oscillator output and tunes the delay
of the delay elements. Once locked, the resulting output
clock frequency is a multiple of the input reference
frequency. Recent designs [26] extend the frequency range
and use an interpolator instead of a multiplexer to blend the
delay-line feedback and the low-frequency reference clocks.
Both edge-combining multiplication and delay-line
multiplication reduce the phase noise of the output clock
because the core DLL does not have an oscillator that
accumulates phase error. After N cycles, where N is the
divide ratio, a new clean reference clock edge arrives and
resets any accumulated phase error to zero. The architecture
potentially lowers jitter by eliminating the peaking in the
transfer function and allows a high tracking bandwidth.
However, matching is critical in these designs. Mismatches
in the phase detector or charge pump result in a static phase
error that modulates the output frequency at the input
reference frequency. Similarly, in the edge combining
implementations, if the delay line is mismatched, the output
clock would contain significant reference tones. Designers
either choose the reference frequency carefully so that the
tones do not impact the system performance or employ
additional circuitry to compensate for the mismatches.

V. CONCLUSION

DLLs have been commonly used for generating precise
phase delays of a signal and have been increasingly popular
in clock generation and data recovery applications. Most
importantly, because of the first-order loop characteristics
that controls the phase directly, DLLs can be designed with
high tracking bandwidths and do not exhibit the phase
accumulation of an oscillator-based PLL.

The more simple loop characteristics belie many
subtleties in DLL design. The delay-line input clock must
have low-jitter and good duty-cycle. Furthermore, it must be
carefully received and coupled to the input of the delay line
to maintain good jitter performance. This source of jitter
counter-balances the jitter accumulation of PLLs and results
in less jitter improvement. Additional circuitry is often
needed to prevent false-locking. Since a delay line does not

21

restore a clock’s duty cycle, the output clock requires
correction circuitry. To use DLLs in plesiochronous systems,
the delay line must have even more circuitry to achieve an
unlimited delay range. In clock multiplication applications,
very careful matching in the DLL components is critical to
eliminate reference tones. In the many designs that have
addressed these subtleties, DLLs have demonstrated
low-jitter clock outputs for a variety of clock generation and
data recovery applications.

REFERENCES

[1] Bazes, M., “A Novel Precision MOS Synchronous Delay
Line,” IEEE Journal of Solid-State Circuits, vol sc-20, no
6, Dec. 1985, pp. 1265-71

Johnson, M.G., E.L. Hudson, “A Variable Delay Line
PLL for CPU-Coprocessor Synchronization,” IEEE Jour-
nal of Solid-State Circuits, vol 23, no 5, Oct. 1988, pp.
1218-23

Lee, T.H., et. al., “A 2.5V CMOS Delay-Locked Loop for
an 18 Mbit, 500Megabytes/s DRAM,” IEEE Journal of
Solid-State Circuits, vol 29, no 12, Dec. 1994, pp. 1491-6
Messerschmitt, D.G., “Synchronization in Digital System
Design,” IEEE Journal on Selected Areas in Communica-
tions, Oct. 1990, pp. 1404-1420

Waizman, A., “A Delay Line Loop for Frequency Syn-
thesis of De-Skewed Clock,” IEEE ISSCC Dig. of Tech.
Papers, Feb. 1994, San Francisco, Session 18.5

Chien, G., P.R. Gray, “A 900-MHz Local Oscillator
Using a DLL-Based Frequency Multiplier Technique for
PCS Applications,” IEEE Journal of Solid-State Circuits,
vol 35, no 12, Dec. 2000, pp. 1996-9

Alexander, J.D., “Clock Recovery from Random Binary
Data,” Electronic Letters, vol 11, Oct. 1975, pp 541-2
D'Andrea, N.A., F. Russo, “A binary quantized digital
phase locked loop: a graphical analysis,” IEEE Transac-
tions on Communications, vol.COM-26, (no.9), Sept.
1978. p.1355-64

Moon, Y., “An All-Analog Multiphase Delay-Locked
Loop Using A Replica Delay Line for Wide-Range Oper-
ation and Low-Jitter Performance,” IEEE Journal of
Solid-State Circuits, vol 35, no 3, Mar. 2000, pp. 377-84
Razavi, B., “Design of Monolithic Phase-Locked Loops
and Clock Recovery Circuits - A Tutorial,” Monolithic
Phase-locked Loops and Clock Recovery Circuits, IEEE
Press 1996 New Jersey, pp. 1-28

Dunning, J., et. al. “An All-Digital Phase-Locked Loop
with 50-Cycle Lock Time Suitable for High-Performance
microprocessors,” IEEE Journal of Solid-State Circuits,
vol 30, no 4, Apr. 1995, pp. 412-22

Efendovich, A., et. al.,, “Multifrequency Zero-Jitter
Delay-Locked Loop,” IEEE Journal of Solid-State Cir-
cuits, vol 29, no 1, Jan. 1994, pp. 67-70

Sidiropoulos, S., M.A. Horowitz, “A Semidigital Dual
Delay-Locked Loop,” IEEE Journal of Solid-State Cir-
cuits, vol 32, no 11, Nov. 1997, pp. 1683-92

Garlepp, B., et. al, “A Portable Digital DLL for
High-Speed CMOS Interface Circuits,” IEEE Journal of
Solid-State Circuits, vol 34, no 5, May 1996, pp. 632-44
Larsson, P., “A 2-1600-MHz CMOS Clock Recovery
PLL with Low-Vdd Capability,” IEEE Journal of

[2]

3]

[4]

B3]

(6]

(71
(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

(20]

[21]

Solid-State Circuits, vol 34, no 12, Dec. 1999, pp.
1951-60

Cordell, R., “A 45-Mbit/s CMOS VLSI Digital Phase
Aligner,” IEEE Journal of Solid-State Circuits vol 23, no
2, Apr. 1988, pp. 323-28

Lee, K., et. al., “A CMOS Serial Link For Fully Duplexed
Data Communication,” IEEE Journal of Solid-State Cir-
cuits, vol 30, no 4, Apr. 1995, pp. 353-64

Yang, CK,, et al, “A 0.5-um CMOS 4.0-Gb/s Serial
Link Transceiver with Data Recovery Using Oversam-
pling,” IEEE Journal of Solid-State Circuits, vol 33, no §,
May 1998, pp. 713-22

Weinlader, D., et al., “An Eight Channel 36-GS/s CMOS
Timing Analyzer,” IEEE ISSCC Dig. of Tech. Papers,
Feb. 2000, San Francisco, pp. 170-1

Maneatis, J., M. Horowitz, “Precise Delay Generation
Using Coupled Oscillators,” IEEE Journal of Solid-State
Circuits, vol 28, no 12, Dec. 1993, pp. 1273-82

Gray, C., et. al., “A Sampling Technique and Its CMOS
Implementation with 1Gb/s Bandwidth and 25ps Resolu-
tion”, IEEE Journal of Solid-State Circuits, vol 29, no 3,
Mar. 1994, pp. 340

22

[22]

(23]

(24]

[25]

[26]

[27]

Ota, Y. et. al., “High-Speed, Burst-Mode, Packet Capable
Optical Receiver and Instantaneous Clock Recovery for
Optical Bus Operation,” JEEE Journal of Lightwave
Technology, vol 12, no 2, Feb. 1994, pp. 325-330

Foley, D., M.P. Flynn, “CMOS DLL-Based 2-V 3.2ps
Jitter 1-GHz Clock Synthesizer and Temperature-Com-
pensated Tunable Oscillaor,” JEEE Journal of Solid-State
Circuits, vol 36, no 3, Mar. 2001, pp. 417-23

Kim, C,, I. Hwang, S.M. Kang, “Low-Power Small-Area
+/-7.28ps Jitter 1GHz DLL-Based Clock Generator,”
IEEE ISSCC Dig. of Tech. Papers, Feb. 2002, San Fran-
cisco, Session 8.3

Farjad-rad, R, et. al., “A 0.2-2GHz 12mW Multiplying
DLL for Low-Jitter Clock Synthesis in Highly-Integrated
Data Communication Chips,” JEEE ISSCC Dig. of Tech.
Papers, Feb. 2002, San Francisco, Session 4.5

Ye, S., L. Jansson, 1. Galton, “A Multiple-Crystal Inter-
face PLL with VCO Realignment to Reduce Phase
Noise,” IEEE ISSCC Dig. of Tech. Papers, Feb. 2002,
San Francisco, Session 4.6

Kim, J., et. al., “A Low-Jitter Mixed-Mode DLL for
High-Speed DRAM Applications,” IEEE Journal of
Solid-State Circuits, vol 35, no 10, Oct. 2000, pp. 1430-3

Delta-Sigma Fractional-N Phase-Locked Loops

Ian Galton

Abstract—This paper presents a tutorial on delta-sigma
fractional-N PLLs for frequency synthesis. The presenta-
tion assumes the reader has a working knowledge of inte-
ger-N PLLs. It builds on this knowledge by introducing
the additional concepts required to understand AX frac-
tional-V PLLs. After explaining the limitations of integer-
N PLLs with respect to tuning resolution, the paper intro-
duces the delta-sigma fractional-N PLL as a means of
avoiding these limitations. It then presents a self-
contained explanation of the relevant aspects of delta-
sigma modulation, an extension of the well known integer-
N PLL linearized model to delta-sigma fractional-V PLLs,
a design example, and techniques for wideband digital
modulation of the VCO within a delta-sigma fractional-N
PLL.

I. INTRODUCTION

Over the last decade, delta-sigma (AZX) fractional-N phase
locked loops (PLLs) have become widely used for frequency
synthesis in consumer-oriented electronic communications
products such as cellular phones and wireless LANs. Unlike
an integer-N PLL, the output frequency of a AX fractional-N
PLL is not limited to integer multiples of a reference fre-
quency. The core of a AX fractional-N PLL is similar to an
integer-N PLL, but it incorporates additional digital circuitry
that allows it to accurately interpolate between integer multi-
ples of the reference frequency. The tuning resolution de-
pends only on the complexity of the digital circuitry, so con-
siderable flexibility and programmability is achieved. A sin-
gle AX fractional-N PLL often can be used for local oscillator
generation in applications that would otherwise require a cas-
cade of two or more integer-N PLLs. Moreover, the fine tun-
ing resolution makes it possible to perform digitally-controlled
frequency modulation for generation of continuous-phase
(e.g., FSK and MSK) transmit signals, thereby simplifying
wireless transmitters. These benefits come at the expense of
increased digital complexity and somewhat increased phase
noise relative to integer-N PLLs. However, with the relentless
progress in silicon VLSI technology optimized for digital cir-
cuitry, this tradeoff is increasingly attractive, especially in
consumer products which tend to favor cost reduction over
performance.

This paper presents a tutorial on AX fractional-N PLLs. It
is assumed that the reader has a working knowledge of inte-
ger-N PLLs. The paper builds on this knowledge by present-
ing the additional concepts required to understand AZ frac-
tional-N PLLs. The limitations of integer-N PLLs with respect
to tuning resolution are described in Section II. The key ideas

The author is with the Department of Electrical and Computer Engi-
neering, University of California at San Diego, La Jolla, CA, USA.

Reference Signal
Generator

vref
Y
On

Phase/ 13
Lowpass out
Frequency L —
Detector d | Loop Filter

Vegp—s{ Phase/ |y Vaiv | |
v Frequency e
div—"{ Detector —>d U ﬂl
d |

Figure 1: A typical integer-N PLL.

underlying fractional-N PLLs in general and AX fractional-N
PLLs in particular are presented in Section IIl. The primary
innovation in AX fractional-N PLLs relative to other types of
fractional-N PLLs is the use of AX modulation. Therefore, a
self-contained introduction to AX modulation as it relates to
AX fractional-N PLLs is presented in Section IV. A AX frac-
tional-N¥ PLL linearized model is derived in Section V and
compared to the corresponding model for integer-N PLLs. A
design example is presented to demonstrate how the model is
used in practice. Design issues that arise in AX fractional-N
PLLs but not integer-N PLLs are presented in Section VI, and
recently developed enhancements to AX fractional-N PLLs
that allow wideband digital modulation of the VCO are pre-
sented in Section VIL

II. INTEGER-N PLL LIMITATIONS

An example of a typical integer-N PLL for frequency syn-
thesis is shown in Figure 1 [1], [2]. Its purpose is to generate
a spectrally pure periodic output signal with a frequency of N
Jreps Where N is an integer, and f,is the frequency of the refer-
ence signal. The example PLL consists of a phase-frequency
detector (PFD), a charge pump, a lowpass loop filter, a voltage
controlled oscillator (VCO), and an N-fold digital divider.
The PFD compares the positive-going edges of the reference
signal to those from the divider and causes the charge pump to
drive the loop filter with current pulses whose widths are pro-
portional to the phase difference between the two signals. The
pulses are lowpass filtered by the loop filter and the resulting
waveform drives the VCO. Within the loop bandwidth phase
noise from the VCO is suppressed and outside the loop band-
width most of the other noise sources are suppressed, so the

23

f.., =2.402 GHz
+k MHz

()

+492

Charge Loop
Filter

l: D —s{ Pump
<+ 60050 + 25 k

Figure 2: An example integer-N PLL for generation of the Bluetooth wireless
LAN RF channel frequencies.

G

19.68 MHz

PLL can be designed to generate a spectrally pure output sig-
nal at any integer multiple of the reference frequency, f.y

As indicated by the timing diagram in Figure 1, the loop
filter is updated by the charge pump once every reference pe-
riod. This discrete-time behavior places an upper limit on the
loop bandwidth of approximately f,./10 above which the PLL
tends to be unstable [1]. In integrated circuit PLLs, it is com-
mon to further limit the bandwidth to approximately £../20 to
allow for process and temperature variations.

The output frequency can be changed by changing N, but
N must be an integer, so the output frequency can be changed
only by integer multiples of the reference frequency. If finer
tuning resolution is required the only option is to reduce the
reference frequency. Unfortunately, this tends to reduce the
maximum practical loop bandwidth, thereby increasing the
settling time of the PLL, the noise contributed by the VCO,
and the in-band portions of the noise contributed by the refer-
ence source, the PFD, the charge pump, and the divider.

This fundamental tradeoff between bandwidth and tuning
resolution in integer-N PLLs creates problems in many appli-
cations. For example, a PLL that can be tuned from 2.402
GHz to 2.480 GHz in steps of 1 MHz is required to generate
the local oscillator signal in a direct conversion Bluetooth
transceiver [3]. An integer-N PLL capable of generating the
local oscillator signal from a commonly used crystal oscillator
frequency, 19.68 MHz, is shown in Figure 2. A reference fre-
quency of f,,, = 40 kHz—the greatest common divisor of the
crystal frequency and the set of desired output frequencies—is
obtained by dividing the crystal oscillator signal by 492. The
resulting PLL output frequency is 60050 + 25k times the ref-
erence frequency, where k is an integer used to select the de-
sired frequency step.

The PLL achieves the desired output frequencies, but its
bandwidth is limited to approximately 2 kHz, i.e., f,,/20. Un-
fortunately, with such a low bandwidth the settling time ex-
ceeds the 200 puS limit specified in the Bluetooth standard, and
the phase noise contributed by the VCO would be unaccepta-
bly high if it were implemented in present-day CMOS tech-
nology. One solution is to use a 1 MHz reference signal, but
this requires the crystal frequency to be an integer multiple of
1 MHz, or another PLL to generate a 1 MHz reference fre-
quency. Unfortunately, in low cost consumer electronics ap-
plications such as Bluetooth, it is often desirable to be com-
patible with all of the popular crystal frequencies, so restrict-
ing the crystal frequencies to multiples of 1 MHz is not always
an option. In such cases, an additional PLL capable of gener-
ating the 1 MHz reference signal with very little phase noise
from any of the crystal frequencies is required, or, as de-

24

Phase/

—i
Freq. Charge ll;ic;op _
0 Detector [—= Pump ter f,..= 2.403 GHz
(on average)
19.68 MHz
I s 122 + yin]
Vv
Shift Register with 51 T
ones and 441 zeros | yin)

Figure 3: A fractional-N PLL that generates non-integer multiples of the refer-
ence frequency, but has phase noise consisting of large spurious tones.

scribed in the next section, a single fractional-N PLL can be
used.

ITI. THE IDEA BEHIND AY FRACTIONAL-N PLLS

In this section, the example problem of generating the sec-
ond Bluetooth channel frequency, 2.403 GHz, with a reference
frequency of 19.68 MHz is used as a vehicle with which to
explain the idea behind AX fractional-N PLLs. First, a pair of
“bad” fractional-N PLLs are presented that achieve the desired
frequency but have poor phase noise performance. Then the
AX fractional-N PLL technique is presented as a means of im-
proving the phase noise performance.

The output frequency of an integer-N PLL with a reference
frequency of 19.68 MHz is 2.40096 GHz when the divider
modulus, N, is set to 122 and 2.42064 GHz when N is set to
123. The problem is that to achieve the desired frequency of
2.403 GHz, N would have to be set to the non-integer value of
122 + 51/492. This cannot be implemented directly because
the divider modulus must be an integer value. However the
divider modulus can be updated each reference period, so one
option is to switch between N = 122 and N = 123 such that the
average modulus over many reference periods converges to
122 + 51/492. In this case, the resulting average PLL output
frequency is 2.403 GHz as desired. This is the fundamental
idea behind most fractional-N PLLs [4].

While dynamically switching the divider modulus solves
the problem of achieving non-integer multiples of the refer-
ence frequency, a price is paid in the form of increased phase
noise. During each reference period the difference between
the actual divider modulus and the average, i.e., ideal, divider
modulus represents error that gets injected into the PLL and
results in increased phase noise. As described below, the
amount by which the phase noise is increased depends upon
the characteristics of the sequence of divider moduli.

For example, in the fractional-N PLL shown in Figure 3,
the divider modulus is set each reference period to 122 or 123
such that over each set of 492 consecutive reference periods it
is set to 122 a total of 441 times and 123 a total of 51 times.
Thus, the average modulus is 122 + 51/492 as required. The
sequence of moduli is periodic with a period of 492, so it re-
peats at a rate of 40 kHz. Consequently, the difference be-
tween the actual divider moduli and their average is a periodic
sequence with a repeat rate of 40 kHz, so the resulting phase
noise is periodic and is comprised of spurious tones at integer
multiples of 40 kHz. Many of the spurious tones occur at low
frequencies, and they can be very large. Unfortunately, the

Loop
Filter

7,:- 2403 GHz

(on average)

19.68 MHz

l;‘!:::/ > Charge | |
0 l“ Detector [—> Pump

+ 122 +y[n]
|

} n] = 1 with probability 51/492
M™=10 with probability 441/492

Randomized Pulse
Density Modulator

Figure 4: A fractional-N PLL that generates non-integer multiples of the refer-
ence frequency, but has a large amount of in-band phase noise.

only way to suppress the tones is have a very small PLL
bandwidth, which negates the potential benefit of the frac-
tional-N technique.

One way to eliminate spurious tones is to introduce ran-
domness to break up the periodicity in the sequence of moduli
while still achieving the desired average modulus. For exam-
ple, as shown in Figure 4, a digital block can be used to gener-
ate a sequence, y[n], that approximates a sampled sequence of
independent random variables that take on values of 0 and 1
with probabilities 441/492 and 51/492, respectively. During
the n" reference period the divider modulus is set to 122 +
y[n], so the sequence of moduli has the desired average yet its
power spectral density (PSD) is that of white noise. Thus,
instead of contributing spurious tones, the modified technique
introduces white noise. Unfortunately, the portion of the
white noise within the PLL’s bandwidth is integrated by the
PLL transfer function, so the overall phase noise contribution
again can be significant unless the PLL bandwidth is small.

In each fractional-N PLL example presented above, the se-
quence, y[n], can be written as y[n] = x + e,[n], where x is the
desired fractional part of the modulus, i.e., x = 51/492, and
en[n] is undesired zero-mean quantization noise caused by
using integer moduli in place of the ideal fractional value. In
the first example, e,[r] is periodic and therefore consists of
spurious tones at multiples of 40 kHz. In the second example,
en[n] is white noise. Each PLL attenuates the portion of e,[n]
outside its bandwidth, but the portion within its bandwidth is
not significantly attenuated. Unfortunately, in each example
e,[n] contains significant power at low frequencies, so it con-
tributes substantial phase noise unless the PLL bandwidth is
very low.

A AY fractional-N PLL avoids this problem by generating
the sequence of moduli such that the quantization noise has
most of its power in a frequency band well above the desired
bandwidth of the PLL [5], [6], [7]. An example AX fractional-
N PLL is shown in Figure 5. The PLL core is similar to those
of the previous fractional-N PLL examples, but in this case
y[n] is generated by a digital AX modulator. The details of
how the AX modulator works are presented in the next section,
but its purpose is to coarsely quantize its input sequence, x[n],
such that y[n] is integer-valued and has the form: y[n] = x[n -
2] + en[n], where e,[n] is dc-free quantization noise with most
of its power outside the PLL bandwidth. In this example, x[n]
consists of the desired fractional modulus value, 51/492, plus
a small, pseudo-random, 1-bit sequence. As described in the
next section, the pseudo-random sequence is necessary to
avoid spurious tones in the AX modulator’s quantization noise,
but its amplitude is very small so it does not appreciably in-

25

o=
';.—':::," Charge Loop 2.403 GHz
0 Detector Pump Filter >
19.68 MHz
+ 122 + y[n)
2nd-Order
s1H xlx) Digital AZ —-—-’ Simulated PLL Phase Noise
Modulator ©
g [[500 kHz Loop Bandwidth |
‘o’ 2 11, ®
pseudo-random {
bit sequence -100

yinl =
sy -

-180

Figure 5: A AX fractional-N PLL example.

crease the phase noise of the PLL.

Also shown in Figure 5 are PSD plots of the output phase
noise arising from AX modulator quantization noise, e,[n], in
two computer simulated versions of the example AX frac-
tional-N PLL, one with a 50 kHz loop bandwidth and the other
with a 500 kHz loop bandwidth. As shown in the next section,
the PSD of e,[n] increases with frequency, so the phase noise
PSD corresponding to the 50 kHz bandwidth PLL is signifi-
cantly smaller than that corresponding to the 500 kHz band-
width PLL. For example, the former easily meets the re-
quirements for a local oscillator in a direct conversion Blue-
tooth transceiver, but the latter falls short of the requirements
by at least 23 dB.

IV. DELTA-SIGMA MODULATION OVERVIEW

As mentioned above, a digital AZ modulator performs
coarse quantization in such a way that the inevitable error in-
troduced by the quantization process, i.e., the quantization
noise, is attenuated in a specific frequency band of interest.
There are many different AX modulator architectures. Most
use coarse uniform quantizers to perform the quantization with
feedback around the quantizers to suppress the quantization
noise in particular frequency bands. Therefore, to illustrate
the AX modulator concept, first a specific uniform quantizer
example is considered in isolation, and then a specific AZ
modulator architecture that incorporates the uniform quantizer
is presented.

A. An Example Uniform Quantizer

The input-output characteristic of the example uniform
quantizer is shown in Figure 6. It is a 9-level quantizer with
integer valued output levels. For each input value with a
magnitude less than 4.5, the quantizer generates the
corresponding output sample by rounding the input value to
the nearest integer. For each input value greater than 4.5 or
less than —4.5, the quantizer sets its output to 4 or —4, respec-
tively; such values are said to overload the quantizer. By
defining the quantization noise as e [n]= y[n]—r[n], the
quantizer can be viewed without approximation as an additive
noise source as illustrated in the figure.

y

4 —

3

2

9-Level

r > . y 1
Quantizer ,
45-35-25-15 | |05 1.5 25 3545

e, =y-r e=y-r
’—‘é}—'}' LSS \ NG N N NG O N N NG N 4
s SOSONUNONOSUONTY
te——-"No-overload range" ——»

Figure 6: A 9-level quantizer example.

48 kHz sinusoid plus white 9-level (a), (b) Lo Fil <)
i = - ’ - wpass Filter
noise (SNR = 100 dB) —» Quantizer > (BW = 500 kHz) -—L
sampled at 48 MHz
@) ®)
g T 1o
§ s {1 L] ad
2 El
§ st
§ ° 500 1000 1500 2000
& I ©
11 zm
2 Ao
3 Mo+ $!
8 2]
e IO 10° 107 500 1000 1500 2000
Hz time (units of 1/(48 MHz))

Figure 7: (a) A power spectral density plot of the quantizer output in dB,
relative to the quantization step-size of A = 1, per Hz, (b) a time domain plot
of the quantizer output, and (c) a time domain plot of the quantizer output
filtered by a sharp lowpass filter with a cutoff frequency of 500 kHz.

To illustrate some properties of the example quantizer,
consider a 48 Msample/s input sequence, x[n], consisting of a
48 kHz sinusoid with an amplitude of 1.7 plus a small amount
of white noise such that the input signal-to-noise ratio (SNR)
is 100 dB. Figure 7(a) shows the PSD plot of the resulting
quantizer output sequence, and Figure 7(b) shows a time do-
main plot of the quantizer output sequence over two periods of
the sinusoid. Given the coarseness of the quantization, it is
not surprising that the quantizer output sequence is not a pre-
cise representation of the quantizer input sequence. As evi-
dent in Figure 7(a), the quantization noise for this input se-
quence consists primarily of harmonic distortion as repre-
sented by the numerous spurious tones distributed over the
entire discrete-time frequency band. Even in the relatively
narrow frequency band below 500 kHz, significant harmonic
distortion corrupts the desired signal. To illustrate this in the
time domain, Figure 7(c) shows the sequence obtained by
passing the quantizer output sequence through a sharp lowpass
discrete-time filter with a cutoff frequency of 500 kHz. The
significant quantization noise power in the zero to 500 kHz
frequency band causes the sequence shown in Figure 7(c) to
deviate significantly from the sinusoidal quantizer input se-
quence.

B. An Example AX Modulator

The example AZ modulator architecture shown in Figure 8

9-Level yln

| Quantizer| [p

> }—>(4)-> Delay *_ff\{ Delay

Figure 8: A AZ modulator example.

can be used to circumvent this problem. The structure incor-
porates the same 9-level quantizer presented above, but in this
case the quantizer is preceded by two delaying discrete-time
integrators (i.e., accumulators), and surrounded by two feed-
back loops [8], [9]. Each discrete-time integrator has a trans-
fer function of z™'/(1-2z"') which implies that its n™ output
sample is the sum of all its input samples for times k < n.
With the quantizer represented as an additive noise source as
depicted in Figure 6, the AZ modulator can be viewed as a
two-input, single-output, linear time-invariant, discrete-time
system. It is straightforward to verify that
ylnl=x[n-2]+e,[n], Q)
where e,[n] is the overall quantization noise of the AX modu-
lator and is given by
e [n]=¢,[n]-2¢,[n-1]+e,[n-2]. 2)

To illustrate the behavior of the AX modulator, suppose that
the same 48 Msample/s input sequence considered above is
applied to the input of the AZ modulator, and that the discrete-
time integrators in the AX modulator are clocked at 48 MHz.
Figure 9(a) shows the PSD plot of the resulting AX modulator
output sequence, y[n], and Figure 9(b) shows a time domain
plot of y[n] over two periods of the sinusoid. Two important
differences with respect to the uniform quantization example
shown in Figure 7 are apparent: the quantization noise PSD is
significantly attenuated at low frequencies, and no spurious
tones are visible anywhere in the discrete-time spectrum. For
instance, the SNR in the zero to 500 kHz frequency band is
approximately 84 dB for this example as opposed to 14 dB for
the uniform quantization example of Figure 7. Consequently,
subjecting the AX modulator output sequence to a lowpass
filter with a cutoff frequency of 500 kHz results in a sequence
that is very nearly equal to the AX modulator input sequence
as demonstrated in Figure 9(c).

Below about 120 kHz, the PSD shown in Figure 9(a) is
dominated by the two components of the AX modulator input
sequence: the 48 kHz sinusoid component, and the input noise
component. Above 120 kHz, the PSD is dominated by the AT
modulator quantization noise, e,[n], and rises with a slope of
40 dB per decade. It follows from (2) that e,[n] can be
viewed as the result of passing the additive noise from the
quantizer, e,[n], through a discrete-time filter with transfer
function (1-z"')*. Since this filter has two zeros at dc, the
smooth 40 dB per decade increase of the PSD of e,[r] indi-
cates that e,[n] is very nearly white noise, at least for the ex-
ample shown in Figure 9.

It can be proven that e,[n] is indeed white noise; it has a
variance of 1/12 and is uncorrelated with the AX modulator
input sequence [10]. Moreover, this situation holds in general
for the example AX modulator architecture provided that the

26

48 kHz sinusoid plus white -
e (N < 100 a8 Second Order

sampled at 48 MHz

(a), (b) | Lowpass Filter | _(©)
" |(BW = 500 kHz)

—~
o

-~
1

® 4ot
N
&
w
& .o
2 300 7000 1800 2000
8 oot
o
"
< 120t ?
el /\/\/
a .
N
i 500 7000 1500 2000

time (units of 1/(48 MHz))

Figure 9: (a) A power spectral density plot of the AZ modulator output in dB,
relative to the quantization step-size of A = 1, per Hz, (b) a time domain plot
of the AZ modulator output, and (c) a time domain plot of the AX modulator
output filtered by a sharp lowpass filter with a cutoff frequency of 500 kHz.

input sequence satisfies two conditions: 1) its magnitude is
sufficiently small that the quantizer within the AX modulator
never overloads, and 2) it consists of a signal component plus
a small amount of independent white noise. It can be shown
that the first condition is satisfied if the input signal is
bounded in magnitude by 3A where A is the step-size of the
quantizer (for this example, A= 1) [11]. Input sequences with
values even slightly exceeding 3A in magnitude generally
cause the quantizer to overload with the result that e,[»] con-
tains spurious tones and the SNR in the frequency band of
interest is degraded. For this reason, the range between —3A
and 3A is said to be the input no-overload range of the AZ
modulator. For the second condition to be satisfied, the power
of the AX modulator input sequence’s white noise component
may be arbitrarily small, but if it is absent altogether, e,[n], is
not guaranteed to be white. For instance, in the example
shown in Figure 9 the input sequence contains a white noise
component with 100dB less power than the signal component.
If this tiny noise component were not present, the resulting AZ
modulator output PSD would contain numerous spurious
tones. Since the AX modulators used in AX fractional-N PLLs
are all-digital devices, the noise must be added digitally. As
shown in [12], it is sufficient to add a 1-bit, sub-LSB, inde-
pendent, white noise dither sequence with zero mean at the
input node. In practice, a 1-bit pseudo-random dither se-
quence is typically used in place of a truly random dither se-
quence. Such a sequence can be generated easily using a lin-
ear feedback shift register, and has the desired result with re-
spect to the quantization noise despite not being truly random
[13], [14]}.

C. Other AZ Modulator Options

To this point, the AX modulation concept has been illus-
trated via the particular example AX modulator architecture
shown in Figure 8, namely a second-order multi-bit A modu-
lator. While this type of AX modulator is widely used in AX
fractional-N PLLs, there exist other types of AX modulators
that can be applied to AZ fractional-N PLLs. Most of the
other architectures are higher-order AX modulators that per-
form higher than second-order quantization noise shaping,

¥, () ——> Phase/ Charge m
shctl | o | (o)t
',,(’) R
[V0
sx |
v, (0 Loop Filter
+ N +y[n]
14 l
} ref-
yinl Vaiy i L

i, (371

- Tn e Tput ~Iaat

Figure 10: The AX fractional-N PLL with the details of a commonly used
loop filter and a timing diagram relating to the charge pump output.

thereby more aggressively suppressing quantization noise in
particular frequency bands relative to the example second-
order AZ modulator. Some of these higher-order AX modula-
tors incorporate a higher than second-order loop filter (e.g.,
more than two discrete-time integrators) and a single quantizer
surrounded by one or more feedback loops [15], [16]. In
many cases, these AZ modulators are designed specifically to
allow one-bit quantization [7], [17], [18]. This simplifies the
design of the divider in that only two moduli are required, but
such AX modulators tend to have spurious tones in their quan-
tization noise that cannot be completely suppressed even with
elaborate dithering techniques. Others of these higher-order
AZX modulators, often referred to as MASH, cascaded, or mul-
tistage AX modulators, are comprised of multiple lower-order
AX modulators, such as the second-order AX modulator pre-
sented above, cascaded to obtain the equivalent of a single
higher-order AZ modulator [5], [19], [20].

V. AX FRACTIONAL-N PLL DYNAMICS

A AX fractional-N PLL linearized model is derived in this
section in the form of a block diagram that describes the out-
put phase noise in terms of the component parameters and
noise sources in the PLL. As in the case of an integer-N PLL
the model provides an accurate tool with which to predict the
total phase noise, bandwidth, and stability of the PLL.

A. Derivation of a AX fractional-N PLL Linearized Model

In PLL analyses it is common to assume that each periodic
signal within the PLL has the form v(f) = A(?) sin(w? + 6(t)),
where A(f) is a positive amplitude function, @ is a constant
center frequency in radians/sec, and 6(f) is zero-mean phase
noise in radians. In most cases of interest for PLL analysis,
the amplitude is well modeled as a constant value, and the
phase noise is very small relative to # with a bandwidth that is
much lower than the center frequency. Solving for the time of
the n™ positive-going zero crossing, y,, of w(¢) gives y, = [n —
&y,)/(2n)]'T, where T = 2n/w is the period of the signal.
Therefore, the sequence, ¥,, is a sampled version of the phase
noise with very little aliasing, so knowing the sequence and T’
is approximately equivalent to knowing the phase noise. This
approximation is made throughout the following analysis.

The relationship between the charge pump output current
and the PFD input signals is shown in Figure 10. Ideally, dur-

27

ing the n™ reference period the charge pump output is a cur-
rent pulse of amplitude / or —/ and duration |¢, — 7,|, where ¢,
and 7, are the times of the charge pump output transitions trig-
gered by the positive-going edges of the divider output and
reference signal, respectively. Therefore, the average current
sourced or sunk by the charge pump during the n™ reference
period is I'(t, — 7,)/T.s In practice, the PFD is usually de-
signed such that, except for a possible constant offset, this
result holds even though the current sources have finite rise
and fall times [2].

The first step in deriving the model is to develop an ex-
pression for ¢, — 7,. Ideally, 1, = nT,; but phase noise intro-
duced by the reference source and PFD cause it to have the
form

"’ SE[6(5) +6pep(7,)] 3)

where 6.(7) and OPFD(t) are the reference source and PFD
phase noise functions, respectively. If the VCO output were
ideal its positive-going edges would be spaced at uniform in-
tervals of 7,/ (N + a), where a is the fractional part of the
modulus (e.g., a = 51/492 in Figure 5). Therefore, ideally,

Tf n-1
——ZL N (N+y[k]),
N+a§(yk])

but in practice it deviates because of VCO phase noise,
Ovco(?), divider phase noise, 64;,(f), and instantaneous devia-
tions of the VCO control voltage from its ideal average value
of v, =(N+a)/T,,K,c,), where Kyco is the VCO gain in
units of Hz/Volt. As a result,

T
T B0 b [)=, - F22|

T, = nTmf

t

n

" N+a

_"f.g 1),
271_ dlv(n)

which reduces to

- [:Z:,(y[k]—a)

T,
t,,=nTnf+N+

—kyco f (vcrrl O =V)dt _Gucot,. '32073")] @

=£0,.(t,).
2” dlv(n)
Subtracting (3) from (4) yields an expression for the average
current sourced or sunk by the charge pump during the n®

reference period:

I(t,-,)/T,,
Z(y[k] @)= kyco [()= 7,)t — Frcolla)
27
N+a &)
_ 6,,(,) + 6.,(z,) % O (T,)
27 27 2T

As mentioned above, the phase noise terms are assumed to
have bandwidths that are much smaller than the reference fre-
quency. Consequently, the sampling of the phase noise func-

28

Greo(t)

é, 8o (1)
¥

v

_~

B

-~

27K,

Yoo

Vel

z,(s)

Figure 11: The AX fractional-N PLL linearized model. Except for the shaded
region the model is identical to the corresponding integer-N PLL model.

tions in (5) can be neglected, and the charge pump output can
be modeled as a smoothly varying function of time with an
average value over each reference period equal to that of (5).
With these approximations, (5) implies that

_ = _ 6o ()
u, (1)~ kyco £(ch)=V)d’ .

i ()=1
o () N+a
(6
_gdiv(’)+0ref(1)+grro(t) ,
27 27 2z

where u,,(¢) is the result of discrete-time integrating and con-
verting to continuous-time the quantity, y[#] — a.

The AX fractional-N PLL linearized model follows directly
from (6) and Figure 10. It is shown in Figure 11, where i,(¢)
represents the noise contributed by the charge pump current
sources and the loop filter, and z)(s) is the transfer function of
the loop filter. The model specifies the phase noise transfer
functions and loop dynamics of the PLL. For example, the
model implies that

Pu.(s) () T(s) Gp. (5) - 1 1%
6,.,(s) 1+7(s)’ 0,c0(s) 1+T(s)
where
IKVCO I/
T6)=— s i’f)) ®)

is the loop gain of the PLL. For the loop filter shown in Fig-
ure 10, the transfer function is
1 1+sRC,

C, +C, s[1+sRC,C, (C, +C,)]

©)

Zlf(s)=

B. Differences Between the AX Fractional-N and Integer-N
PLL Models

The shaded region in Figure 11 indicates the part of the
model that is specific to AX fractional-N PLLs; except for the
shaded region the model is identical to the corresponding
model for integer-N PLLs. Therefore, each phase noise trans-
fer function in an integer-N PLL is identical to the correspond-
ing phase noise transfer function in a AX fractional-N PLL,
except every occurrence of N in the former is replaced by N+a
in the latter. In most cases, N>>landa<1l,soN+a=N
and the corresponding transfer functions in integer-N and AX
fractional-N PLLs are nearly identical in practice. Similarly,
the loop dynamics and stability issues are nearly the same in
AX fractional-N PLLs and integer-N PLLs.

Jrco =2.402 GHz
l;_!“”l ™ Charge Loop +k MHz
req. bt —
0 Detector —=| Pump Filter
19.68 MHz
+ N+yln]

2nd-Order
/492 Digital AX

Modulator | yinl=1{-1,0,1,2)

{0, 2-'7) pseudo-random bit seq

Frequency Plan:

« Togetk=0,1,..,0rl18: set N=122, m=k25+26
» Togetk=19,21,..,0r38: setN=123, m=(k-19)25+9
« Togetk =39,41,...,0r57: setN=124,m = (k-39)25+17

« Togetk =58,60,...,0r79: setN=125m=(k-58)25

Figurel2: The example AX fractional-N PLL and frequency plan for genera-
tion of the Bluetooth wireless LAN RF channel frequencies.

The primary difference between the AX fractional-N and
integer-N PLL models is the signal path corresponding to the
AX modulator shown in the shaded region of Figure 11. The
sequence, y[n] — a, consists of AX modulator quantization
noise, e,[n], which, as described previously, gives rise to
phase error in the PLL output. For the example second-order
AX modulator it follows from the results presented in Section
IV and the AX fractional-N PLL model equations presented
above that the PLL phase noise component resulting from
en[n] has a PSD given by

So,, ()

AL nnly

2.sin ll'f | 1
1 f,,, L |N+a
(10)

The argument of the log function has the form of a highpass
function times a lowpass function, which is consistent with the
claim in Section III that the PLL lowpass filters the primarily
high frequency quantization noise from the AX modulator. It
follows from (10) that the phase noise resulting from e,[#] can
be decreased by reducing the PLL bandwidth or increasing the
reference frequency. If a higher-order AX modulator is used,
an equation similar to (10) results except that the exponent of
the sinusoid is greater than two. This reduces the in-band por-
tion of the quantization noise, but increases the out-of-band
portion, which, depending upon the loop parameters of the
PLL, can result in a somewhat lower overall phase noise.
However, the PLL loop filter is highly constrained to maintain
PLL stability, so the phase noise reduction that can be
achieved by increasing the order of the AX modulator is lim-
ited in most applications [16].

PLL(JZﬂf)| dBC/HZ

10-log
6,,(j27f)|

C. A System Design Example

The PLL bandwidth and the phase margin both depend
upon the loop gain, 7{s), which, for the loop filter shown in
Figure 10, depends upon the parameters f; N, I, Kyco, R, Ci,
and C,. Usually, f-and N are dictated by the application, and
I and Kyco are, at least partially, dictated by circuit design
choices. This leaves the loop filter components as the main
variables with which to set the desired PLL bandwidth, phase

margin, and AX modulator quantization noise suppression.

The process is demonstrated below for the AZ fractional-N
PLL presented in Section III to generate the local oscillator
frequencies in a direct conversion Bluetooth wireless LAN
transceiver. The PLL is shown in Figure 12 with additional
detail regarding the frequency plan. As described previously,
the desired output frequencies are fyco = 2.402 GHz + k MHz
for k=0, ..., 78, and the crystal reference frequency is 19.68
MHz. Each of the 79 possible output frequencies is chosen by
selecting m and N as indicated in the figure. In each case, the
divider modulus is restricted to the set of four integers {N - 1,
N, N+ 1, N+ 2}. The combinations of m and N were chosen
to achieve the desired output frequencies yet keep the signals
at the input of the AX modulator sufficiently small so as not to
overload the AX modulator [11].

Typical requirements for such a PLL are that the loop
bandwidth must be greater than 40 kHz, the phase margin
must be greater than 60°, and the PLL phase noise be less than
—120 dBc/Hz at offsets from the carrier of 3 MHz and above.
Assume that the VCO, divider, PFD, and charge pump circuits
have been designed such that the overall PLL phase noise
specification can be met provided the phase noise contributed
by the AX modulator and loop filter are each less than —130
dBc/Hz at offsets from the carrier of 3 MHz and above. Fur-
thermore, assume that the VCO and charge pump circuits are
such that Kyco and I are 200 MHz/V and 200 pA, respectively,
and that the loop filter has the form shown in Figure 10. Thus,
the remaining design task is to choose the loop filter compo-
nents such that the bandwidth, phase margin, and phase noise
specifications are met.

The PLL phase margin, bandwidth, and phase noise arising
from AZ modulator quantization noise can be derived from the
linearized model equations, (7) through (10). While this can
be done directly, it involves the solution of third order equa-
tions which can be messy. Alternatively, approximate solu-
tions of the equations can be derived that provide better intui-
tion [21]. A particularly convenient set of approximate solu-

tions are
J(b-1
PM =tan (2\/.5), (11)
IKyeoR b-1
Jow = 22N b’ (2
RC, = b , (13)
27 fow
and
Sops (] g oy 10" log[3 I sin’ [Z J[f-fi] J dBo/Hz,
(14)

where PM is the phase margin of the PLL, fzy is the 3 dB
bandwidth of the PLL, and 4 = 1 + C,/C) is a measure of the
separation between the two loop filter capacitors [22]. The
derivations assume that b is greater than about 10, and (14) is
valid for frequencies greater than (C,+C,)/(22RC,C,)).

These equations are sufficient to determine appropriate
loop filter component values. For example, suppose b is set to

29

T LIS S 9 6 o s S g W 3 s
IR [" " oo :
T H Exact" simulation
80 - mom v v e | inearized Model
1 etk 1 [et L R 1} trorre
_100h4_14 O I S B S A N S N I S S) [I W U [B i P I R |
Vo o IR [RTN
K (B NENET] 1 i
_120 I R Rt A B S R
N t [N 1 [IREEEN]
T ' REREL ' P
it 1 L ' IR
o0 T T T T T T g T T ETh
o Pt AT e
Crron [T RN
u-160“|'|‘| Tminr I T T TTOHT Traonn T T
Lo rng 1l L L 1 (B RN ‘||
[RERT] [R NN [RN i)
—180"‘ B e W T ol I o W e el e SR A e B b 8 Bt Il e B o B
FErbnn 1 et 1 L R
PoErrent 1 Poror ol prenn
2200 S A R - s R S s i e -
torrlbnen ! Porvrrene 1 [T
RN Lo Lot
_220 Lol I ST Lol | 51518
10° 10° 10’ 10°

Hz

Figurel3: Simulated and calculated PSD plots of the phase noise arising from
AY. modulator quantization noise for the example AX fractional-N PLL.

49, so, as indicated by (11), the phase margin is approximately
70°. Solving (14) with the phase noise set to ~130 dBc/Hz at f
= 3 MHz indicates that fz = 50 kHz. Therefore, the phase
noise resulting from AX modulator quantization noise is suffi-
ciently suppressed with a 50 kHz bandwidth and a phase mar-
gin of 70°. With this information (12) can be solved to find R
=960 Q with which (13) and the definition of b can be used to
calculate C, = 23 nF and C, = 480 pF. It is straightforward to
verify that the phase noise introduced by the loop filter resistor
(the only noise source in the loop filter) is well below —130
dBc/Hz at offsets from the carrier of 3 MHz and above as re-
quired.

Figure 13 shows PSD plots of the phase noise arising from
AZ modulator quantization noise for the example PLL with the
loop filter component values derived above. The heavy curve
was calculated directly from the linearized model equations
(7) through (10). The light curve was obtained through a
behavioral computer simulation of the PLL. As is evident
from the figure, the two curves agree very well which suggests
that the approximations made in obtaining the linearized
model are reasonable.

An effect that does not have a counterpart in integer-N
PLLs is the presence of zeros in the PSD of the phase noise
arising from AX modulator quantization noise at multiples of
the reference frequency. These zeros are a result of the dis-
crete-to-continuous-time conversion of the AX modulator
quantization noise; each zero is a sampling image of the dc
zero imposed on the quantization noise by the AX modulator.

VI. AX FRACTIONAL-N PLL SPECIFIC PROBLEMS

One of the most significant problems specific to AX frac-
tional-N PLLs is that they can be sensitive to modulus-
dependent divider delays. In practice, each positive-going
divider edge is separated from the VCO edge that triggered it
by a propagation delay. Ideally, this propagation delay is in-
dependent of the corresponding divider modulus, in which
case it introduces a constant phase offset but does not other-
wise contribute to the phase noise. However, if the propaga-

30

tion delay depends upon the divider modulus and the number
of AX modulator output levels is greater than two, the effect is
that of a hard non-linearity applied to the AX modulator quan-
tization noise. This tends to fold out-of-band AZ modulator
quantization noise to low frequencies and introduce spurious
tones, which can significantly increase the PLL phase noise.
The problem is analogous to that of multi-bit digital-to-analog
converter step-size mismatches in analog AZ data converters
[23]. Unfortunately, circuit simulations are required to evalu-
ate the severity of the problem on a case by case basis as both
the extent of any modulus-dependent delays and their affect
on the PLL phase noise are difficult to predict using hand
analysis.

There are two well-known solutions to this problem. One
solution is to resynchronize the divider output to the nearest
VCO edge or at least a higher-frequency edge obtained from
within the divider circuitry [22], [24]. The resynchronization
erases memory of modulus-dependent delays and noise intro-
duced within the divider circuitry, but care must be taken to
ensure that the signal used for resynchronization is itself free
of modulus dependent delays. The primary drawback of the
approach is that it increases power consumption.

The other solution is to use a AX modulator with single-bit
(i.e., two level) quantization. In this case, modulus-dependent
delays give rise to phase error at the output of the divider that
consists of a constant offset plus a scaled version of the AX
modulator quantization noise. Since, by design, the AX modu-
lator quantization noise has most of its power outside the PLL
bandwidth, the modulus-dependent delays increase the phase
noise only slightly. Unfortunately, AX modulators with single-
bit quantization tend not to perform as well as AX modulators
with multi-bit (i.e., more than two-level) quantization. For
example, if the 9-level quantizer in the 48 Msample/s AT
modulator example presented in Section IV were replaced by
a one-bit quantizer, the dynamic range of the AX modulator in
the zero to 500 kHz band would be reduced from 88.5 dB to
approximately 65 dB. Moreover, unlike the 9-level quantizer
case, the additive noise from the single-bit quantizer would
not be white and would be correlated with the input sequence.
Its variance would be input dependent and it would contain
spurious tones.

These problems can be mitigated by using a higher-order
AZ modulator architecture to more aggressively suppress the
in-band portion of the additive noise from the two-level quan-
tizer. However, to maintain stability in a higher-order AX
modulator with single-bit quantization, the useful input range
of the AX modulator input signal must be reduced and more
poles and zeros must be introduced within the feedback loop
as compared to a multi-bit design with a comparable dynamic
range. Even then, the problem of spurious tones persists, and
it is difficult to predict where they will appear except through
extensive simulation. Furthermore, to compensate for the
restricted input range of the AX modulator the reference fre-
quency must be large enough that all of the desired PLL out-
put frequencies can be achieved. This can severely limit de-
sign flexibility. For example, if the magnitude of the AX
modulator input signal were limited to less than 0.5 in the case

of the Bluetooth local oscillator application considered above,
the reference frequency would have to be greater than 79
MHz. Otherwise, it would not be possible to generate all the
Bluetooth channel frequencies.

Another issue specific to AX fractional-N PLLs is that
modulus switching increases the average duration over which
the charge pump current sources are turned on each period
relative to integer-N PLLs. For comparison, consider a AT
fractional-N PLL and an integer-¥N PLL with the same N
(where N >> a), the same f,,; and identical loop components.
It follows from (5) that

(. -7.)

Tref n-1
Fractional-N (t" T) Integer~N + N+a é(y[k] - a)
15)
The last term in (15), which is caused by having the AX modu-
lator switch the divider modulus, represents a significant in-
crease in the time during which the charge pump current
sources are turned on each reference period. Consequently,
the phase noise arising just from charge pump current source
noise is larger in the AX fractional-N PLL by

A-lo Average fractional-N PLL charge pump "on time"
Average integer-N PLL charge pump "on time"

where A4 is a constant between 10 and 20. The value of 4 de-
pends upon the autocorrelation of the charge pump current
source noise. For example, if the current source noise in suc-
cessive charge pump pulses is completely uncorrelated, then 4
is 10. Near the other extreme, 4 is close to 20.

VII. TECHNIQUES TO WIDEN AYX FRACTIONAL-N
PLL Loop BANDWIDTHS

A transmitter with virtually any modulation format can be
implemented using D/A conversion to generate analog base-
band or IF signals and upconversion to generate the final RF
signal. However, many of the commonly used modulation
formats in wireless communication systems such as MSK and
FSK involve only frequency or phase modulation of a single
carrier [25]. In such cases, the transmitted signal can be gen-
erated by modulating a radio frequency (RF) VCO, thereby
eliminating the need for conventional upconversion stages and
much of the attendant analog filtering. At least two ap-
proaches have been successfully implemented in commercial
wireless transmitters to date. One is based on open-loop VCO
modulation, and the other is based on AX fractional-N synthe-
sis.

An example of a commercial transmitter that uses the
open-loop VCO modulation technique is presented in [26] and
[27], in this case for a DECT cordless telephone. Between
transmit bursts, the desired center frequency is set relative to a
reference frequency by enclosing the VCO within a conven-
tional PLL. During each transmit burst the VCO is switched
out of the PLL and the desired frequency modulation is ap-
plied directly to its input. The primary limitation of the ap-
proach is that it tends to be highly sensitive to noise and inter-
ference from other circuits. For example, in [27], the required
level of isolation precluded the implementation of a single-

chip transmitter. Furthermore, the modulation index of the
transmitted signal depends upon the absolute tolerances of the
VCO components which are often difficult to control in low-
cost VLSI technologies and can also drift rapidly over time.

In principle, AX fractional-N PLLs can avoid these prob-
lems by modulating the VCO within the PLL. This can be
done by driving the input of the digital AX modulator with the
desired frequency modulation of the transmitted signal. The
primary limitation is that bandwidth of the PLL must be nar-
row enough that the quantization noise from the AX modulator
is sufficiently attenuated, but sufficiently high to allow for the
modulation. For instance, the phase noise PSD of the example
AX fractional-N PLL shown in Figure 5 with a 50 kHz loop
bandwidth meets the necessary phase noise specifications
when used as a local oscillator in a conventional upconversion
stage within a Bluetooth wireless LAN transmitter. However,
if the Bluetooth transmitter is to be implemented by modulat-
ing the VCO through the digital AX modulator, then the loop
bandwidth of the PLL must be approximately 500 kHz. Un-
fortunately, when the loop bandwidth of the fractional-N PLL
shown in Figure 5 is widened to 500 kHz, the resulting phase
noise becomes too large to meet the Bluetooth transmit re-
quirements.

Nevertheless, commercial transmitters with VCO modula-
tion through AX fractional-N synthesizers are beginning to be
deployed, especially in low-performance, low-cost wireless
systems such as Bluetooth wireless LANs [28]. Facilitating
this trend are various solutions that have been devised in re-
cent years to allow for wideband VCO modulation in AX frac-
tional-N PLLs without incurring the phase noise penalty men-
tioned above. One of the solutions is to keep the loop band-
width relatively low, but pre-emphasize (i.e., highpass filter)
the digital phase modulation signal prior to the digital AZ
modulator [29]. Unfortunately, this approach requires the
highpass response of the digital pre-emphasis filter to be a
reasonably close match to the inverse of the closed-loop filter-
ing imposed by the largely analog PLL. Another of the solu-
tions is to use a high-order loop filter in the PLL with a sharp
lowpass response [30]. Increasing the order of the loop filter
increases the attenuation of out-of-band quantization noise
which allows for higher-order AX modulation to reduce in-
band quantization noise thereby allowing the loop bandwidth
to be increased without increasing the total phase noise.
However, as described in [30], this necessitates the use of a
Type 1 PLL which significantly complicates the design of the
phase detector. Yet another solution is to use a narrow loop
bandwidth but modulate the VCO both through the digital AZ
modulator and through an auxiliary modulation port at the
VCO input [28]. The idea is to apply the low-frequency
modulation components at the AX modulator input and the
high frequency modulation components directly to the VCO.
Again, matching is an issue, but it has proven to be manage-
able at least for low-end applications such as Bluetooth trans-
ceivers.

VIII. CONCLUSION

The additional concepts and issues associated with AZ

31

fractional-N PLLs for frequency synthesis relative to integer-N
PLLs have been presented. It has been shown that AZ frac-
tional-N PLLs provide tuning resolution limited only by digi-
tal logic complexity, and, in contrast to integer-N PLLs, in-
creased tuning resolution does not come at the expense of re-
duced bandwidth. Since one of the main innovations in a AX
fractional-N PLL is the use of a AX modulator to control the
divider modulus, the relevant concepts underlying AX modula-
tion have been described in detail. A linearized model has
been derived from first principles and a design example has
been presented to illustrate how the model is used in practice.
Techniques for wideband digital modulation of the VCO
within a delta-sigma fractional-N PLL have also been pre-
sented.

ACKNOWLEDGEMENTS

The author is grateful to Sudhakar Pamarti, Eric Siragusa,
and Ashok Swaminathan for their helpful discussions and ad-
vice regarding this paper.

REFERENCES

1. P. M. Gardner, “Charge-pump phase-lock loops,” IEEE
Transactions on Communications, vol. COM-28, pp.
1849-1858, November 1980.

2. B. Razavi, Design of Analog CMOS Integrated Circuits,
McGraw Hill, 2001.

3. Bluetooth Wireless LAN Specification, Version 1.0,
2000.

4. U. L. Rohde, Microvave and Wireless Synthesizers The-
ory and Design, John Wiley & Sons, 1997.

5. B. Miller, B. Conley, “A multiple modulator fractional
divider,” Annual IEEE Symposium on Frequency Con-
trol, vol. 44, pp. 559-568, March 1990.

6. B. Miller, B. Conley, “A multiple modulator fractional
divider,” IEEE Transactions on Instrumentation and
Measurement, vol. 40, no. 3, pp. 578-583, June 1991.

7. T. A. Riley, M. A. Copeland, T. A. Kwasniewski,
“Delta-sigma modulation in fractional-N frequency syn-
thesis,” IEEE Journal of Solid-State Circuits, vol. 28, no.
5, pp. 553-559, May, 1993.

8. S. K. Tewksbury, R. W. Hallock, “Oversampled, linear
predictive and noise-shaping coders of order N >1,”
IEEE Transactions on Circuits and Systems, vol. CAS-
25, pp. 436-447, July 1978.

9. G. Lainey, R. Saintlaurens, P. Senn, “Switched-capacitor
second-order noise-shaping coder,” IEE Electronics Let-
ters, vol. 19, pp. 149-150, February 1983.

10. I. Galton, “Granular quantization noise in a class of
delta-sigma modulators,” IEEE Transactions on Infor-
mation Theory, vol. 40, no. 3, pp. 848-859, May 1994.

11. N. He, F. Kuhlmann, A. Buzo, “Multiloop sigma-delta

quantization,” IEEE Transactions on Information The-

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

32

ory, vol. 38, no.3, pp.1015-1028, May 1992.

I. Galton, "One-bit dithering in delta-sigma modulator-
based D/A conversion," Proc. of the IEEE International
Symposium on Circuits and Systems, 1993.

S. W. Golomb, Shift Register Sequences. Laguna Hills,
CA: Aegean Park Press, 1982

E. J. McCluskey, Logic Design Principles. Englewood
Cliffs, NJ: Prentice-Hall, 1986.

S. K. Tewksbury, R. W. Hallock, “Oversampled, linear
predictive and noise-shaping coders of order N >1,”
IEEE Transactions on Circuits and Systems, vol. CAS-
25, pp. 436-447, July 1978.

W. Rhee, B. S. Song, A. Ali, “A 1.1-GHz CMOS frac-
tional-N frequency synthesizer with a 3-b third-order AX
modulator,” IEEE Journal of Solid-State Circuits, vol.
35, no. 10, pp. 1453-1460, October 2000.

W. L. Lee, C. G. Sodini, “A topology for higher order
interpolative coders,” Proceedings of the 1987 IEEE In-
ternational Symposium on Circuits and Systems, vol. 2,
pp.459-462, May 1987.

K. C.-H. Chao, S. Nadeem, W. L. Lee, C. G. Sodini, “A
higher order topology for interpolative modulators for
oversampling A/D converters,” IEEE Transactions on
Circuits and Systems, vol. 37, no.3, p.309-318, March
1990.

Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M.
Ishikawa, T. Yoshitome, “A 16-bit oversampling A-to-D
conversion technology using triple integration noise
shaping,” IEEE Journal of Solid-State Circuits, vol. SC-
22, pp- 921-929, December 1987.

K. Uchimura, T. Hayashi, T. Kimura, A. Iwata, “Over-
sampling A-to-D and D-to-A converters with multistage
noise shaping modulators,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. AASP-
36, pp. 1899-1905, December 1988.

J. Craninckx, M. S. J. Steyaert, “A fully integrated
CMOS DCS-1800 frequency synthesizer,” IEEE Journal
of Solid-State Circuits, vol. 33, pp. 2054=2065, Decem-
ber 1998.

S. Pamarti, “Techniques for Wideband Fractional-N
Phase-Locked Loops,” PhD Dissertation, University of
California, San Diego, 2003.

S. R. Norsworthy, R. Schreier, G. C. Temes, Eds. Delta-
Sigma Data Converters, Theory, Design, and Simulation,
New York: IEEE Press, 1997.

L. Lin, L. Tee, P. R. Gray, "A 1.4 GHz differential low-
noise CMOS frequency synthesizer using a wideband
PLL architecture", IEEE ISSCC Digest of Technical Pa-
pers, pp. 204-205, Feb. 2000.

J. G. Proakis, Digital Communications, fourth ed.,
McGraw Hill, 2000.

S. Heinen, S. Beyer, J. Fenk, “A 3.0 V 2 GHz transmitter
IC for digital radio communication with integrated
VCO's,” Digest of Technical Papers, IEEE International
Solid-State Circuits Conference, vol. 38, pp. 150-151,

Feb. 1995.

S. Heinen, K. Hadjizada, U. Matter, W. Geppert, V.
Thomas, S. Weber, S. Beyer, J. Fenk, E. Matshke, “A 2.7
V 2.5 GHz bipolar chipset for digital wireless communi-
cation,” Digest of Technical Papers, IEEE International
Solid-State Circuits Conference, vol. 40, pp. 306-307,
Feb. 1997.

N. Filiol, et. al., “A 22 mW Bluetooth RF transceiver
with direct RF modulation and on-chip IF filtering,” Di-
gest of Technical Papers, IEEE International Solid-State
Circuits Conference, vol. 43, pp. 202-203, Feb. 2001.

29. M. H. Perrott, T. L. Tewksbury III, C. G. Sodini, “A 27-

27.

28.

Ian Galton received the Sc.B. degree from Brown
University in 1984, and the M.S. and Ph.D. degrees
from the California Institute of Technology in 1989
and 1992, respectively, all in electrical engineering.

Since 1996 he has been a professor of electrical
engineering at the University of California, San
Diego where he teaches and conducts research in the
field of mixed-signal integrated circuits and systems
for communications. Prior to 1996 he was with UC

’ Irvine, the NASA Jet Propulsion Laboratory, Acu-
son, and Mead Data Central. His research involves the invention, analysis,
and integrated circuit implementation of key communication system blocks
such as data converters, frequency synthesizers, and clock recovery systems.
The emphasis of his research is on the development of digital signal process-
ing techniques to mitigate the effects of non-ideal analog circuit behavior with
the objective of generating enabling technology for highly integrated, low-
cost, communication systems. In addition to his academic research, he regu-
larly consults at several communications and semiconductor companies and
teaches portions of various industry-oriented short courses on the design of
data converters, PLLs, and wireless transceivers. He has served on a corpo-
rate Board of Directors and several corporate Technical Advisory Boards, and
his is the Editor-in-Chief of the IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing.

33

30.

mW CMOS fractional-N synthesizer using digital com-
pensation for 2.5-Mb/s GFSK modulation,” IEEE Jour-
nal of Solid-State Circuits, vol. 32, no. 12, pp. 2048-
2059, Dec. 1997.

S. Willingham, M. Perrott, B. Setterberg, A. Grzegorek,
B. McFarland, “An integrated 2.5GHz A frequency
synthesizer with Sps settling and 2Mb/s closed loop
modulation,” Digest of Technical Papers, IEEE Interna-
tional Solid-State Circuits Conference, vol. 43, pp. 200-
201, Feb. 2000.

Designing Bang-Bang PLLs for Clock and Data
Recovery in Serial Data Transmission Systems

Richard C. Walker

Abstract - Clock recovery using phase-locked loops (PLL)
with binary (bang-bang) or ternary-quantized phase detectors
has become increasingly common starting with the advent of
fully monolithic clock and data recovery (CDR) Circuits in the
late 1980’s. Bang-bang CDR circuits have the unique advan-
tages of inherent sampling phase alignment, adaptability to
multi-phase sampling structures, and operation at the highest
speed at which a process can make a working flip-flop. This
paper gives insight into the behavior of the nonlinear bang-
bang PLL loop dynamics, giving approximate equations for
loop jitter, recovered clock spectrum, and jitter tracking per-
formance as a function of various design parameters. A novel
analysis shows that the bang-bang loop output jitter grows as
the square-root of the input jitter as contrasted with the linear
dependence of the linear PLL.

1. INTRODUCTION

Prior to the advent of fully monolithic designs, clock recovery
was traditionally performed with some variant of the circuit in Fig.
1. The clock frequency component was typically extracted from

Variable Delay Block /4 Retiming Latch

Input NRZ Data T D Q Retimed Data
> N >
/ A
d BPF Recovered Clock
s antanry -
PLL

—

pulse frequency

conditioning extraction

Fig. 1. Traditional non-monolithic clock and data recovery architec-
ture.

the data stream using some combination of differentiation, rectifi-
cation and filtering. The bandpass frequency filtering was pro-
vided by LC tank, surface acoustic wave (SAW) filter, dielectric
resonator or PLL. Because the clock recovery path was separate
from the data retiming path, it was difficult to maintain optimum
sampling phase alignment over process, temperature, data-rate,
and voltage variations. Even the PLL techniques had the drawback
of using phase detectors with different set-up times than the retim-
ing flip-flop so that the recovered clock was not intrinsically
aligned to the optimum sampling point in the data eye. Circuits
utilizing SAW resonator filtering typically required hand matching
of SAW and circuit temperature coefficients along with custom cut

R. Walker is with Agilent Laboratories, 3500 Deer Creek Road, MS
26-U4, Palo Alto CA 94304. (e-mail: rick_walker@labs.agilent.com).

34

coaxial delay lines for setting the timing of the recovered sampling
clock with respect to the data eye [1].

Early monolithic CDR designs imitated these discrete block
diagrams. The propagation delay differences between data and
clock paths could be ignored as long as the gate delay skew was a
negligible fraction of the total bit time, or unit interval. The need
for higher link speeds grew faster than Moore’s law, and as clock
frequencies approached the effective f7 of the active devices, it
became increasingly difficult to maintain an optimum sampling
phase alignment between the recovered clock and the data over
process, temperature, data-rate, and voltage variations.

A second problem was that most linear phase detectors pro-
duced narrow pulses with widths proportional to the phase error
between the timing of the data and the clock [2], [3]. These narrow
pulses required a process speed in excess of that required to sim-
ply sample data at a given rate. The timing skew and speed of lin-
ear phase detector circuits then became the limiting factor for
aggressive designs.

Both these difficulties are eliminated by a family of circuits
which simultaneously retime data and measure phase error by
using matched flip-flops to sample both the middle of each data bit
and the transitions between the data bits. Fig. 2 shows such an

samples of master transitions -._
samples of all transitions -. A

v \
Input D Q _»|D Q
Data A | X A
(@)
y 1 o)
»| divide by 20 loop
filter
V1Y
D Qf—* Retimed Data

Fig. 2. A simple bang-bang loop using a flip-flop for a phase detector
to lock onto a data stream with a guaranteed “0” to “1” transition
every 20 bits.

early gigabit-rate monolithic example of such a circuit [4] which
samples data with two matched flip-flops. Flip-flop “Y” samples
the middle of each data bit on the rising edge of the VCO clock to
produce retimed data, while flip-flop “X” samples the transition of
each bit using the falling edge of the VCO clock.

The loop is designed to use the 16B/20B line code of Fig. 3
which guarantees a “01” “master transition” every 20 bits. The
divide by 20 circuit and associated flip-flop in Fig. 2 discard every

training sequence

11.6(?3113{ aanan - l]

means: 16 data

means: 16 data

means: Training Sequence
means: Control Word
Master Transition

ol

I (e

;

Fig. 3. Format of 16B/20B line code used with bang-bang CDR
of.Fig. 2.

transition sample except for this master transition sample. During
link start-up a training sequence is sent that has only one rising
transition at the location of the master transition. Once the loop is
locked, arbitrary data is allowed to be sent at the other 18 bits of
the frame, while the transition sampler pays attention only to the
data stream in the vicinity of the master transition. If the VCO fre-
quency is too high, the transition flip-flop starts sampling prior to
the master transition and outputs a “0” to the loop filter. A slightly
lower VCO frequency, on the other hand, will cause the loop to be
driven by 1’s.

The loop drives the falling edge of the VCO into alignment
with the data transitions based on the binary-quantized phase
error. Because the clock-to-Q delay of the retiming flip-flop is
monolithically matched with the phase detector flip-flop, the PLL
aligns the recovered clock precisely in the middle of the data eye
with no first-order timing skew over process and temperature vari-
ations. Because the narrowest pulse is the output of a flip-flop,
such detectors operate at the full speed at which a process is capa-
ble of building a functioning flip-flop. This ensures that the phase
detector will not be the limiting factor in building the fastest possi-
ble retiming circuit.

An additional advantage of flip-flop-based phase detectors is
that since they only require simple processing of digital values,
they easily generalize to multi-phase sampling structures allowing
CDR operation at frequencies in which it would be impossible to
build a working full-speed flip-flop. In contrast, most linear phase
detectors require at least some analog processing at the full bit
rate, limiting process speed and poorly generalizing to multi-phase
sampling architectures.

Because of these compelling advantages, the bang-bang loop
has become a common design choice for state-of-the CDR designs
which are pushing the capability of available IC processes. Fig. 4
surveys CDR designs presented from 1988 to 2001 at the Interna-
tional Solid State Circuits Conference. Designs are plotted by year
of presentation against each design’s ratio of link speed to effec-
tive fr. The majority of current designs utilize a combination of
multiphase sampling structures and bang-bang PLLs. In addition,
all CDRs operating at data rates greater than 0.4 f1 are bang-bang

designs.

35

08

: : [38](5")) IW
06 foioionnn b, OONOX) L ASVMEX)
5 20)(2
0.4 s X) ISGL@(-)-HQ}(wx)
; Y i13(10x) m(27]
02 [;,...;21](&)0....:..1?‘,’3 [.?%].,; {18
= : : [15](2x)’. /: 16() l33]
L o1 - 34y . X
T 008 .[31;
& 006 :
I o004 :
O Linear PLL
002 ool BBPLL
001 froernn: L S ¢ 11.21...,..........;
1988 1990 1992 1994 1996 1998 2000 2002

year of publication

Fig. 4. CDR PLL designs over time. The ratio of link speed to
effective process transit frequency is plotted vs year of publication.
Multi-phase BB PLLs predominate as data rate approaches the pro-
cess transit frequency limit. (The number of retiming phases used
in each design is given in parentheses.)

I1. FIRST-ORDER LOOP DYNAMICS

Unfortunately, transition-sampling flip-flop-based phase detec-
tors can provide only binary (early/late) or ternary (early/late +
hold) phase information. This amounts to a hard non-linearity in
the loop structure, leading to an oscillatory steady-state and ren-
dering the circuit unanalyzable with standard linear PLL theory.
Precise loop behavior can be simulated efficiently with time-step
simulators, but this is cumbersome to use for routine design. For-
tunately, simple approximate closed-form expressions can be
derived for performance parameters of interest, such as loop jitter
generation, recovered clock spectrum, and jitter tracking perfor-
mance as a function of various design parameters.

VvCO

I
t

-— r‘-
_I_Ll— 1updme

Fig. 5. A simple bang-bang loop using a flip-flop for a phase detector
to lock onto square-wave input.

A simple BB PLL is shown in Fig. 5. A flip-flop is used as a
phase detector to lock onto a square wave input signal. Depending
on whether the VCO phase samples slightly before or after the ris-
ing edge of the input square wave, the flip-flop output is either low
or high, adjusting the VCO period in such a way as to move the
sampling phase error back towards zero. The dynamics of such a
binary-quantized loop are equivalent to a data-driven phase detec-
tor operating on alternating 0,1 data with 100% transition density,
or a master-transition based loop similar to that shown in Fig. 2.
For simplicity, we assume that a valid binary phase determination
can be made at every timestep. The consequence of random data

and the introduction of a ternary hold mode are considered in a
later section.

The first-order BB PLL of Fig. 5 can be rendered into a block
diagram for analysis as shown in Fig. 6. The loop phase error

© |-
=

._.!:
A
)
tﬂ

fvca=fnom+£'fbb

.
:

s

-w

fi"=fnom+8f

Fig. 6. Block diagram of first order loop showing definition of signal
names.

0,(t,) , is defined as the difference between the data phase
0,(¢,) and the VCO phase 8 (¢,) at the nth sampling time
t, . For convenience, phase is measured with respect to an ideal

clock source running at f, .

The frequency of the incoming data signal differs from the
VCO center frequency by 0f , and has a zero mean phase jitter of
®(2) . In other words, the data can be considered to have been
generated by a pattern generator clocked on the rising edges of the

jittered clock signal sin[27(f,,,, + 0f)t+ ¢(¢)]. The data

phase 0 ,(¢,) isthen 21 ft, + &(¢,).

The phase detector binary-quantizes the loop phase error at
sign[0,(,)] . (Note: In the

each sampling time to give €,

case of a ternary data-driven phase detector, €, may be set to 0

when it is not possible to make a determination of phase error due
to consecutive identical bits in the data stream. The consequence
of this “hold” state is treated in a later section). The error signal

drives the VCO through an attenuator f3, to produce a change in
frequency of f,, = BK
the VCO operates at one of the two frequencies given by
f nom + enf bb*

veo - From time t, until time tn+ 1

Because the VCO frequency changes on each cycle, the system
has non-uniform sampling times. The time of phase sample

tn+l =tn+1/(fnom+£nfbb)' Inatypical CDR, fbb is

on the order of 0.1% of f° n so that an analysis assuming uni-

om’

form time steps of ¢ = 1/f,0m is sufficiently accurate

update
for most purposes. However, for loop analyses requiring exact
charge pump balance, such as wide-range loop pull-in without a

36

frequency detector, these non-uniform sampling times must be
accounted for.

With the uniform time step approximation, the VCO phase
changes up or down (or “walks off’) by

8, = 27(fpp/ S pom) radians during each update period.

In summary, the first order loop obeys a simple set of discrete
time difference equations:

0,(t,) = 6,4(0)+2nd/t, +o(t,))
0,(t,4+1) = 8,(2,) +€,0,, @
g, = signl8,(1,) —0,(1,)] 3)

As long as the VCO frequency step brackets the input signal
frequency error, the loop will remain phase locked. Assuming

¢(#) small, the lock range is: —f, < 8f < f,, . The loop gen-
erates an excess hunting jitter with a peak-to-peak value of two
bang-bang phase steps Jpp= An(fop” fnom) -

For the loop to be locked, the average VCO frequency must
equal the average data frequency. The phase detector duty cycle

C, must satisfy the relation

of = C(fbb) +(1- C)(_fbb)-
The value of C is then given by

Cc-= (l N _§_f_)
The phase detector duty cycle, and therefore its average output

voltage are proportional to the loop frequency error. Fig. 7 shows a
simulated loop with a range of input frequencies. The loop is

Fig. 7. Simulated response of first-order PLL to a range of input fre-
quencies.

“locked” whenever the input frequency is bracketed by the two
VCO frequencies. The rapid alternation between frequencies

slightly too high and slightly too low creates a bounded hunting
jitter (Jpp)-

The derivative of the input data phase deviation, d[¢(¢)]/dt,
adds to the frequency error that must be tolerated by the loop.
Assuming Of = 0, then for ¢(¢) = Asin(2nf, ,t), the

maximum amplitude A of phase modulation at frequency f mod

before onset of slew-rate limiting is l fp bl /[mod - Fig- 8. demon-

B e R
] ' .

6.0 7.0
time (useconds)

Fig. 8. Simulated response of first-order PLL to sinusoidal input jitter
just slightly beyond the tracking capability of the loop.

strates the loop at the onset of jitter-induced slew-rate limiting.
Although the average input frequency lies within the lock range of
the loop, the added sinusoidal jitter causes the instantaneous input
frequency deviation to exceed *f pb - The loop stops toggling and

goes into slew rate limiting, leading to a transient phase error.
A. Summary of First-Order Loop

The first-order bang-bang loop has only one degree of freedom.
Jitter generation, lock range, and jitter tolerance are all inconve-

niently controlled by one parameter, f pp - This situation can be

improved by using a second control loop to dynamically adjust the
nominal VCO frequency f

nom to be equal to the incoming data
frequency. Because the phase detector duty cycle is proportional to
the loop frequency error, this dynamic centering of VCO fre-
quency can be accomplished by adjusting the VCO center fre-

quency in a feedback loop to drive the phase detector duty cycle
C to 50%. This decouples the lock range from jitter tolerance and
jitter generation, giving more design freedom.

II1. SECOND-ORDER LOOP DYNAMICS

To extend the loop tracking range independent of the jitter gen-
eration, an extra integrator is added between the phase detector
and the VCO as in Fig. 9. Since the first-order loop dynamic pro-
duces a phase detector duty cycle proportional to the loop fre-
quency error, this added integrator can be viewed as an automatic
means for keeping the first-order portion of the loop properly cen-

37

Proportional (BB) branch

. S

al Ve

Integral branch

Fig. 9. Second-order bang-bang loop schematic.

tered on the average incoming data frequency. If certain assump-
tions are met, as described later, we can consider the system to be
composed of two non-interacting loops. These are the loops
labeled “bang-bang branch” and “integral branch.” If the center
frequency control loop is slow enough, the resulting loop behavior
will be very similar to a simple first-order loop, but with an
extended frequency lock range.

A. Stability Factor
To preserve the desirable qualities of the first order loop, it is
critical that the phase change due to the proportional branch domi-

nate over the phase change from the integral branch.

The loop phase change in one update time due to the propor-

tional connection is A8, , = B V¢K Jupdate - The phase change
. . 2
due to the integral branch is A, = Vq)Kvtupdate/(ZT) . The

ratio of these two is the stability factor of the loop

eproportional _ 2Bt
A8 tupdate

A
&=
integral
The reader should be careful not to confuse the bang-bang loop
stability factor & with the linear loop damping factor § [5].

The discrete time difference equations for the second-order
loop can be written as

0,(1,) = 0,(0)+2mdft, +o(¢,) ¢))
e) @
ev(tn*r l) = ev(tn) + ebb g, t¢ + _an
g
3)

e, = sign[0,(t,) - 6,(t,)]

From this, it can be seen that the second-order loop has two
degrees of freedom, the loop phase step 0 pp (or equivalently, the
loop frequency step f pp) and the stability factor Z‘, The added

loop integrator extends the frequency tracking range, leaving
0 pp free to control jitter tolerance and jitter generation.

B. Simulations of Second-Order Loop

Fig. 10 shows two block diagrams for the second-order loop.
The upper diagram is a straightforward translation of the sche-
matic in Fig. 9. The lower diagram is a topological re-arrangement

II

Ve

}
tn

o A8y ABy B,

Fig. 10. Two equivalent second-order bang-bang loop block diagrams.
The proportional phase-control signal flow is highlighted with a
dashed line, and the integral frequency-control loop with a solid line.

which places an inner first-order phase tracking loop inside an
outer frequency tracking loop. If one writes the transfer function
from the output of the non-linear quantizer block back to the input
of the quantizer, it can be shown that both diagrams are exactly
equivalent. Some of the signals in the second diagram do not cor-
respond to actual physical variables in the circuit, but they are
helpful in understanding the operation of the loop.

v) 1
PN A, A
H fin
et mepebae——
) U J

B ke e bt e s R

MHz

'
12 i NN N
) 1 1

degrees

R
‘H‘Hn

[[;h
ll‘

volts

!ﬂ!l |

7.0

\H
}H [‘1! Nt ‘I

5.0
time (useconds)

)
]

Fig. 11. Second-order loop response to instantaneous frequency
step smaller than f'p, .

Fig. 11 shows the second-order loop responding to a step

producing a slow response f;

change in input frequency f int

in’
in the outer integral loop. The resulting phase error AGI is
tracked by the inner bang-bang loop Gv to produce the final
sampler phase error 0 ¢ - Notice that, unlike linear PLLs, if the

power-supply noise-induced VCO frequency modulation is lim-

38

ited to , then there is no jitter accumulation or phase tran-
bb J p

sient at the sampling flip-flop.

ccbochobofip
)

MHz

degrees

[-
' ' '

volts

- i~
] 1 ! [}

5.0
time (useconds)

6.0

7.0

Fig. 12. Second-order loop response to instantaneous frequency

step larger than fp, .

Fig. 12 is a simulation in which the input frequency step is big-
ger than f pb» SO the loop goes into slew rate limiting, leading to a

transient phase error 0 ¢ at the sampler.
C. Response to Phase Step

0

For a normalized transient phase step of A = step

/ebb ,a

first-order loop relocks in A update times. The total time for
relocking is then 9step/(21tfbb) .

During the relocking transient of the second-order loop, the
loop integrator overshoots the correct steady-state VCO tune volt-
age. This causes a quadratic overshoot in the phase trajectory.

Fig. 13 shows the second-order phase step response with & as

a parameter. Up to the first zero crossing, the phase trajectory is
given by

2
%512 = ZS._.(n 4—:&.)’
bb 3
with n =t/ tup date+ The time of the first zero crossing

approaches A as & — oo, consistent with a first-order loop. In
general, the second-order loop is quicker to reach zero phase error
than the first-order loop, but pays for this with an oscillatory over-
shoot. As a conservative rule of thumb, the magnitude of the oscil-
latory transient of a second-order step response can be considered
bounded by the simple linear transient of the first-order loop. The

time required to reach steady state, given a step of A is always

less than or equal to A timesteps, independent of E_, .

[[]
- o =g
]

Berror /8 bb

o 100 200 300 400 500 600 700
time /1 5.0 6.0
me / typdate time (useconds)

Fig. 13. Noise-free loop response to a phase step with stability Fig. 15. Second-order loop response to large sinusoidal input jitter.

factor & as a parameter.

load so that a loop can be easily designed to never slew for signals

IV. SLOPE OVERLOAD meeting a typical frequency-domain jitter tolerance specification.

Many systems, such as SONET, specify jitter tolerance in the A. Delta-Sigma Analogy

form of a sinusoidal jitter at various frequencies.
Before developing an analytic equation for slope overload, it is

helpful to introduce a further rearrangement of block diagram II
from Fig. 10. Fig. 16 transforms the loop by pulling two integra-

2o
st

“time (useconds) Fig. 16. Redrawing of the loop to show inner AX inner modulator

Fig. 14. Second-order loop response to sinusoidal input jitter. operating on the loop frequency error.

tors through the last summing node prior to the quantizer. The
update time interval is set to 1. The definition for bang-bang fre-

Fig. 14 shows the loop response with a sinusoidal input phase ~ quency step f,, = BK, ¥, and stability factor

jitter ¢(¢) . The outer integral loop tracks the input jitter at A8, £ = 2Bt /tupdate are also substituted in.

with a slight phase lag. The resulting phase error A92 is tracked

ded in Fig. 1 h i -
by the inner bang-bang loop Gv to produce the final sampler The shaded area in Fig. 16 Sh(.)WS ow the proportional fe?d
back loop can be thought of as an inner AX. modulator producing

phase error 6, . The duty-cycle of the PD output V¢ varies with g phase detector duty cycle proportional to the VCO frequency

the slope of AB, which is proportional to the instantaneous fre- error [6],[7]
quency error of the outer loop. Fig. 17 summarizes an analysis of the first order delta-sigma
(after [8]). When the loop is not in slew rate limiting, or in a peri-
In Fig. 15, the phase modulation is increased until the instanta- odic limit-cycle, the quantizer (e.g., PD) can be replaced with a

neous frequency error exceeds the inner loop’s ability to track. ypity pain element and a noise source Q(z) with the same

Slew-rate limiting produces a tracking error at the sampler 6 e A Asin(2mft/ tupdate) /@rft/ tupdate) noise characteris-

CDR would norm'ally. be designed such that s}ewing would never ;¢ o5 a random binary bitstream. Both these constraints are met
occur for any valid signal allowed l?y a partufular standard. The in practice as the VCO phase noise is sufficient to eliminate any
next two sections develop an analytic expression for slope over- deterministic limit cycles, and the loop is designed to never slew

rate limit on any conforming input signal. This insight is critical as

39

H(z) »g}_.-
E X(2) (integration) Y@ §

Q(2)
= HE 1 ~
Y@ =3 H(z)xw YT+ H(Z)Q(b)
. v . 7
~ .
"
£ £
@ ©
o o
T freq freq

Fig. 17. Simplified analysis of delta-sigma circuit.

it allows linear analysis to be applied whenever the bang-bang
loop is not in slew rate limiting.

With the AX substitution, the inner loop becomes a wide-band

unity-gain block as seen from the viewpoint of the outer integral
frequency control loop. The noise in the delta-sigma core is first-
order frequency shaped towards high frequencies. However, when
the frequency noise is converted to phase noise, the shaping is lost
and the noise becomes flat.

B. Expression for Slope Overload

A closed-form analysis of slope overload can now be derived.
|AF|> £,
Assuming no slew rate limiting, we can use the results from the

Referring to Fig. 16, the system slews when

AX analysis to justify replacing the loop quantizer with a unity
gain element. The maximum input phase jitter in Ul as a function

of frequency, G;wx(s) , normalized to © pp can then be calcu-

lated using Laplace transforms.

We want to find an input excitation F(s), for which
|AF| = at all frequencies. The inner AX of Fig. 16 has a
bb

linearized transfer function of 1/(s+ f,,). Using standard

feedback loop theory, the expression for AF' can then be written
as

2fF(s) '
(57

Setting AF = f,, and normalizing the equation by letting

AF =

fbb and tupdate = 1, we can solve for F'(s)/s to get the

40

maximum normalized input phase as a function of normalized fre-

quency
(-
s

This is a curious bootstrapped analysis, in that it assumes a lack
of slewing to justify the linearization which permits the computa-
tion of the onset of slew rate limiting.

*(s)

Gma
J

+s5+ 2)/(53 + sz)).
6bb

&

Fig. 18 shows a good agreement between this expression and
simulated loop performance in which slewing is defined as a con-
tiguous sequence of ten or more identical phase-error indications.
This expression can be used to design a loop for a given jitter tol-

100G T
LICTN FO N (s +s+é)/(33+sz) -
o 1M |- =10......... U SR
& ¢ points shown
~ 100k |-.... [N}. are from numerical ...
= &=100 : simulation
[} s \ N
E w] £=1000 N3 Sa N N - i
& : '
10 | i NG S
0.1 : : : : : .
1 10 100 im 1i0m 0.1 1 10
jitter frequency * typdate

Fig. 18. Normalized amplitude of sinusoidal jitter just sufficient to
cause slope overload as a function of normalized jitter frequency

and with & as a parameter.

erance. The tolerance plots are single-pole slope for high & and
high jitter frequency, becoming double-pole at lower frequencies
and small &. At high frequencies, all of the curves become
asymptotic to the single-pole tolerance of a first-order bang-bang
PLL. The operating region below each of these curves is where the
AX approximation is valid, and where a linear loop analysis is
justified.

source - L K
phase P+ [= Ly output
noise

BB phase noise VCO open loop phase noise

of form: Asin{x)/x

Fig. 19. Loop redrawn replacing phase detector with unity gain
element and additive quantization noise.

V. JITTER GENERATION

With these insights, it is possible to accurately predict the loop
Jitter generation in the frequency domain. Fig. 19 is a redrawing of
the loop replacing the phase detector by a unity gain element, and
an additive noise source. The forward loop gain is

Kyco 1
+—|.
<e(p+)

From this can be calculated two transfer functions: the lowpass
seen by both the source phase noise and the PD noise to the out-
put, A(s)= 1/[1+ H(s)], and the high-pass transfer function
from VvCO phase noise to the output,
B(s)= H(s)/[1+ H(s)]. As shown in Fig. 20, with a source
phase noise P(s), a PD phase noise Q(s), and a VCO phase noise
R(s), the total loop jitter generation spectrum becomes the RMS
combination of each of the three weighted terms

H(s)=

J(s)= A/(PA)2 + (QA)2 + (RB)2 . The source phase noise is

measured phase noise --

-140
1k

Fig. 20. Example computation of loop jitter generation spectrum
with parameters from [11].

generally taken to be the spectrum of the clock driving the data
source or BERT, or in the case of a clock multiplying circuit, the
spectrum of the reference clock corrected by 20 times the log of
the loop frequency multiplication ratio.

The phase noise power is given by

Wmax
Spus = | 7 ()do.
0
The RMS jitter in unit intervals is then

It should be noted that the linearized loop model is only suit-
able for computation of the jitter spectrum but not for computing
the actual sampling point phase error or other time-domain tran-
sient response. The linearized response only covers the dynamics
of the outer frequency tracking loop, but does not capture the extra

tracking of the internal nonlinear A% core.

41

V1. GAUSSIAN INPUT NOISE

Fig. 21 is a plot of output jitter vs input jitter with & as a

.."'ﬁ.E..G.'.aN.i.... 23 R LR,

Jrotal \ Opp

Fig. 21. Normalized output jitter vs input jitter sigma with § asa
parameter. Simulation is for a non-tristated loop, with square wave

data input, 108 timesteps per point, and ignoring phase wrapping.

parameter. For convenience, all jitter sigmas are normalized to
0 pb » the loop phase step size. The total loop output jitter can be
of
alk - In Region I, the output jitter

by three

Jidle + Jlinear + Jw

approximated regions operation:

J

total =
is independent of input jitter G I This occurs when the self-gener-

ated hunting jitter exceeds the input jitter. The RMS jitter in this
region is empirically determined to be well approximated by

Jig1e =06+ (1.65/&) . In Region II, the output jitter is pro-

portional to the input jitter. This occurs when the input jitter is so
high that, for a given & , the bang-bang dynamic is unable to con-
trol the second-order portion of the loop. This leads to large qua-
dratic trajectories in the phase domain, causing the loop phase to
“hunt” towards the limits of the input jitter distribution. As the
loop phase nears the limits of the input jitter distribution, the bang-
bang hunting has more effect on stabilizing the second-order loop.
In this region, the output jitter is proportional to the input jitter:

Jin=20;/(1+ JE) . InRegion I1I, the output RMS jitter

J

walk 18 approximately equal to 0.7 - /G - This surprising

result says that loops with large € have output jitter which grows
as the square root of the input jitter. Contrast this with a linear PLL
which simply low-pass filters the input jitter and thus has an out-
put jitter which grows linearly with the input jitter.

An approximate analysis of loop jitter can shed light on this curi-
ous square-root dependence of output jitter on input jitter. Assume

a zero-mean input jitter distribution with a sigma © Iz Using a lin-
earized approximation to the standard probability distribution
function, the probability of getting an “early” phase error indica-

tion for small loop phase deviation A@® , is approximately

1 A0

pe~i_0j.~/2_;t'

The expected phase change in the loop after one update time is

2A0
0,,((1-p)-p,) = —=9
bb e e Gj m bb
The discrete time equation for the average evolution of loop phase
under the condition of a small input phase error can then be
expressed as

A8t .) =1 295 AB(t,)
n+1 Gj«/ﬁ n’»

This equation has the same form as a discrete time approximation
to the capacitor voltage in an RC lowpass filter. By analogy, when
time is expressed in units of loop update times, any transient phase
error in the bang-bang loop can then be said to decay to zero with

a time constant of T = Gj«/21t/(29bb) .

This “lowpass” loop characteristic is being driven by random
energy from the early/late phase detector output. A related prob-
lem is the computation of the baseline wander voltage generated
by passing a random NRZ data stream through a coupling capaci-
tor. It can be shown that the sigma on the capacitor voltage is

givenby Op;p = Vpp /tbit/(S’t).Extending this analogy to

the loop, we can consider the output of the phase detector as a
50% duty-cycle random NRZ data stream. Given that the output

from each “bit” must cause a loop phase change of 0 bb » WE Can

compute that the effective Vpp to satisfy our loop difference

equation must be +/27TC Iz We can then compute the loop jitter by

using the analogous baseline wander expression with the effective
loop V op and 7. The result is

beojAth

which is consistent with empirical analysis of simulation results.

One further insight into this behavior is offered. The second-
order loop drives the phase detector output to a steady-state 50%
duty-cycle. In this condition, the loop phase splits the input jitter
distribution into equal early and late halves. This means that the
bang-bang loop phase is servoed to the median of the input jitter
distribution rather than to the mean as would be the case with a
linear loop. Because of this, the bang-bang loop makes a constant
modest correction in response to large jitter outliers, rather than
the proportionally large overcompensation of a linear loop. This
insight supports the idea that the bang-bang loop jitter should only
be sub-linearly affected by the magnitude of the input jitter.

VIIL. DATA-DRIVEN PHASE DETECTORS

Unless the data contains a guaranteed periodic transition, the
CDR will be required to lock onto random transitions embedded in
the data stream. The effects of runlength and transition density on
loop performance must then be considered. The effect of these two
data attributes is dependent on the type of phase detector used.
Most modern codes use some variation of Alexander’s phase
detector [9] shown in Fig. 22.Two matched flip-flops form the

L B ™ Viune
A
D QH+D Q
ot | Ly 4 +JD
al
— R O P
\Va T T clock from VCO lpump
D QD
Transition Samples

Fig. 22. Modified form of Alexander’s ternary-quantized phase
detector for NRZ data along with a typical charge pump for driving
the VCO tuning input.

front-end of Alexander’s phase detector, with the first flip-flop
driven on the rising edge of the 50% duty-cycle clock, and the sec-
ond flip-flop driven on the falling edge of the same clock. (Using
a fully-differential monolithic ring-oscillator, it is possible to
achieve a very precise 50% duty-cycle clock source). When the
loop is locked, the rising-edge retiming flip-flop samples the cen-
ter of each data bit and produces a retimed data bit at (A) and the
following retimed bit at (B). The falling-edge flip-flop functions as
a phase detector by sampling the transition (T) between the data
bits (A,B). To improve the circuit’s operating speed, the (T) sam-
ple is delayed an extra half bit time by a latch so that the logic on
(A,T,B) has a full bit time for resolution.

The transition sample is then compared to the surrounding data
bits to determine whether the clock sampling phase is early or late
to derive a binary-quantized (bang-bang) or ternary phase error
indication. A truth-table for the logic in Fig. 22 is given in Table 1.

TABLE 1. Truth table for logic in Fig. 22.

State | A | T | B | UP | DOWN | Meaning

0 0/1]0]0] O 0 hold
1 0101} 0 1 early
2 011101} 1 1 hold
3 01111 1 0 late

4 1100 1 0 late

5 1{0]1 1 1 hold
6 11170} 0 1 early
7 1111110 0 hold

42

The states 2 and 5 in Table 1 correspond to the normally impos-
sible condition of sampling a “1”” midway between two “0” bits. A
custom truth table can use these states to detect either a high bit-
error-rate condition [10], a VCO running grossly too slowly (eg:
lump these states into the “late” condition), or taken as an indica-
tion that a link has locked onto its own VCO crosstalk, perhaps by
amplification of power supply noise by pick up from a high-gain
optical transimpedance amplifier [11].

Since the mid-bit samples (A,B) straddle the (T) transition
sample, it is also possible to detect the lack of a transition. This
condition corresponds to states 0 and 7 in Table 1. This informa-
tion can be used to create an extra ternary hold-state in the PD out-
put, causing the charge pump to hold its value during long run-
lengths. Both binary and ternary PDs will be discussed in turn,
along with their implications on loop performance.

A. Run-length and Latency

Binary phase detectors have no hold state, so the PD continues
to put out the last valid phase error indication during long data
runlengths. In this situation, the loop idling jitter will be multi-
plied from the expected value by the maximum runlength of the
data. For example, an 8B/10B code has a maximum code run-
length of 5 and will have a peak jitter walk-off five times the value
of that computed for a “10” repetitive data pattern. The average
RMS jitter will be a function of the runlength distributions of each
particular code. There is also a trade-off in effective stability factor
as a repetitive pattern such as “11110000” will be equivalent to a
loop with an effective update time 4 times larger than the expected

tupdale = 1/f,om- Since the stability factor is inversely

dependent on update time, it is possible for binary PDs to become
unstable with data patterns containing very long runs due to the
delay in timely phase-error feedback.

Slope(t=0) = S

Ww \

Fig. 23. Setup for computing onset of loop instability with latency A.

Fig. 23 shows the loop phase trajectory during an acquisition
transient. At t=0, the loop crosses zero phase error with

d¢/dt = S. From this we can compute an overshoot A .
When the loop phase again crosses zero phase error, the phase

detector is late in responding by a time A . This time is a combina-

tion of runlength, latency in the phase detector logic, and high-
order poles in the VCO tuning characteristic.

Due to the loop latency A, the loop overshoots zero phase by

A%/ & — S\ before the “braking” effect of the proportional
branch starts to act. The onset of catastrophic instability occurs

when Al > AO, for this implies exponential growth of the acqui-

sition transient. The convergence is guaranteed whenever

E>2A.

Although usable for tightly constrained block codes such as 8b/
10B, binary phase detectors are essentially unusable for codes
such as 10Gb Ethernet 64b/66b or SONET which can have very
long runlengths of up to 66 or 80 bits, respectively.

B. Ternary Phase-Detector

The 3-state, or ternary phase detector provides superior jitter
performance for data with long runs [12]. Ternary PDs neither
charge nor discharge the loop filter during long runs causing the
loop to hold the current estimate of the data frequency. Such loops
effectively “stop time” during long runs.

If the charge pump does not have a hold-mode, it is possible to
emulate a ternary loop, with some loss of performance, by contin-
uously toggling the phase-detector output to approximately main-
tain the current charge pump voltage during long runs.

The peak idling jitter for ternary loops is unchanged from the
simple 100% transition density analysis. The RMS jitter will be
reduced by the average transition density. Because the loop phase
cannot change during hold mode, the jitter tolerance will be der-
ated by the average transition density. This can easily be taken into

account by increasing 0 pp appropriately for the characteristics of

the code to be used.

C. VCO Tuning Bandwidth

The previous analyses all assumed an infinite VCO tuning
bandwidth for the proportional tuning input. A VCO time-constant

T can slightly reduce hunting jitter if it is small compared to

veo’
the loop update time.

Timeconstants larger than the loop update time prevent the
loop from reversing phase slope within an update period and
lengthen the loop limit cycle. If the extra pole is thought of as an

extra latency 27T then the result of the previous section can be

vco’
used to give an approximate bound on loop stability. To avoid

divergence: T, . < gtup date’ 4 - Comparison with simulation

verifies this equation as a conservative limiton T, .

However, it cannot be recommended to flirt with this boundary.
Unless one meticulously checks performance by numerical simu-
lation, it is safest to design the VCO to essentially respond fully in
one update time. This is usually very easy to achieve in ring-oscil-
lators and possible with some care using low-Q LC VCOs.

VIII. CONCLUSION

Bang-bang CDR circuits have the unique advantages of inher-
ent sampling phase alignment, adaptability to multi-phase sam-

43

pling structures, and operation at the highest speed at which a
process can make a working flip-flop. Approximate equations for
loop jitter, recovered clock spectrum, and jitter tracking perfor-
mance as a function of various design parameters have been
derived. The median-tracking property of the bang-bang loop
resulting in an output jitter equal to the square root of the input jit-
ter has been presented.

ACKNOWLEDGMENT

The author is grateful to the contributions of Birdy Amrutur,
Bill Brown, John Corcoran, Craig Corsetto, Dave DiPietro, Brian
Donoghue, Jeff Galloway, Andrew Grzegorek, Tom Hornak, Jim
Homer, Tom Knotts, Benny Lai, Adolf Leiter, Bill McFarland,
Charles Moore, Rasmus Nordby, Cheryl Owen, Pat Petruno, Kent
Springer, Guenter Steinbach, Hugh Wallace, Bin Wu, J.T. Wu, and
Chu Yen for technical discussions and helpful insights into bang-
bang loop behavior.

REFERENCES

C. B. Armitage, “SAW Filter Retiming in the AT&T
432 Mb/s Lightwave Regenerator,” in Conference Pro-
ceedings: AT&T Bell Labs, pp. 102-103, Sept. 3-6, 1984.

C. R. Hogge, Jr., “A Self Correcting Clock Recovery
Circuit,” IEEE Transactions on Electron Devices, vol. ED-
32, no. 12, pp. 2704-2706, Dec. 1985.

J. Tani, Crandall, D., Corcoran, J. Hornak, T., “Parallel
Interface ICs for 120Mb/s Fiber Optic Links,” in ISSCC
Digest of Technical Papers, pp. 190-191,390, Feb. 1987.

R. C. Walker, T. Hornak, C. Yen and K. H. Springer, “A
Chipset for Gigabit Rate Data Communication,” in Pro-
ceedings of the 1989 Bipolar Circuits and Technology
Meeting, pp. 288-290 September 18-19 1989.

F. Gardner, Phaselock Techniques, New York: John
Wiley & Sons, 1979, pp. 8-14.

I. Galton, “Higher-order Delta-Sigma Frequency-to-
Digital Conversion,” in Proceedings of IEEE International
Symposium on Circuits and Systems, pp. 441-444, May 30
- June 2, 1994.

I. Galton, “Analog-Input Digital Phase-Locked Loops
for Precise Frequency and Phase Demodulation,” Transac-
tions on Circuits and Systems-II: Analog and Digital Sig-
nal Processing, vol. 42, no. 10, pp. 621-630, Oct. 1995.

M. W. Hauser, “Principles of Oversampling A/D Con-
version,” J. Audio Eng. So. vol 39, no. 1/2, pp 3-26, Jan./
Feb. 1991.

J. D. H. Alexander, “Clock Recovery from Random
Binary Signals,” Electronics Letters, vol. 11, no. 22, pp.
541-542, Oct. 1975.

J. Hauenschild, D. Friedrich, J. Herrle, J. Krug, “A Two-
Chip Receiver for Short Haul Links up to 3.5Gb/s with
PIN-Preamp Module and CDR-DMUX,” in ISSCC Digest
of Technical Papers, pp. 308-309,452, Feb. 1996.

(1]

(2]

3]

(4]

[3]

(6]

(7

(8]

(91

[10]

44

{111 R. C. Walker, C. Stout and C. Yen, “A 2.488Gb/s Si-
Bipolar Clock and Data Recovery IC with Robust Loss of
Signal Detection,” in ISSCC Digest of Technical Papers

pp. 246-247,466, Feb. 1997.

N. Ishihara and Y. Akazawa, “A Monolithic 156 Mb/s
Clock and Data Recovery PLL Circuit Using the Sample-
and-Hold Technique,” IEEE Journal of Solid-State Cir-
cuits, vol. 29, no. 12, pp. 1566-1571, Dec. 1994.

D. Chen, and M. O. Baker, “A 1.25 Gb/s, 460mW
CMOS Transceiver for Serial Data Communication,” in
ISSCC Digest of Technical Papers, pp. 242- 243,465 Feb.
1997.

L. DeVito, J. Newton, R. Goughwell, J. Bulzacchelli
and F.Benkley, “A 52MHz and 155 MHz Clock-Recovery
PLL,” in ISSCC Digest of Technical Papers, pp. 142-
143,306, Feb. 1991.

J. F. Ewen, A. X. Widmer, M. Soyuer, K. R. Wrenner,
B. Parker and H. A. Ainspan, “Single-Chip 1062Mbaud
CMOS Transceiver for Serial Data Communication,” in
ISSCC Digest of Technical Papers, pp. 32-33,336, Feb.
1995.

A. Fiedler, R. Mactaggart, J. Welch and S. Krishnan, “A
1.0625Gbps Transceiver with 2x-Oversampling and
Transmit Signal Pre-Empbhasis,” in ISSCC Digest of Tech-
nical Papers, pp. 238-239,464, Feb. 1997.

B. Guo, A. Hsu, Y. Wang and J. Kubinec, “125Mb/s
CMOS All-Digital Data Transceiver Using Synchronous
Uniform Sampling,” in ISSCC Digest of Technical Papers,
pp. 112-113, Feb. 1994.

Y. M. Greshishchev, P. Schvan, J. L. Showell, M. Xu, J.
J. Ojha and J. E. Rogers, “A Fully Integrated SiGe
Receiver IC for 10-Gb/s Data Rate,” IEEE Journal of Solid
State Circuits, vol. 35, no. 12, pp. 1949-1957, Dec. 2000.

R. Gu, J. M. Tran, H. Lin, A. Yee and M. Izzard, “A 0.5-
3.5Gb/s Low-Power Low-Jitter Serial Data CMOS Trans-
ceiver,” in ISSCC Digest of Technical Papers, pp. 352-
353,478, Feb. 1999.

J. Hauenschild, C. Dorshcky, T. W. Mohrenfels and R.
Seitz, “A 10Gb/s BICMOS Clock and Data Recovery 1:4-
Demultiplexer in a Standard Plastic Package with External
VCO,” in ISSCC Digest of Technical Papers, pp. 202-
203,445, Feb. 1996.

T. He, and P. Gray, “A Monolithic 480 Mb/s AGC/Deci-
sion/Clock Recovery Circuit in 1.2 um CMOS,” IEEE
Journal of Solid State Circuits, vol. 28, no. 12, pp. 1314-
1320, Dec. 1993.

P. Larsson, “A 2-1600MHz 1.2-2.5V CMOS Clock-
Recovery PLL with Feedback Phase-Selection and Aver-
aging Phase-Interpolation for Jitter Reduction,” in ISSCC
Digest of Technical Papers, pp. 356-357, Feb. 1999.

(12]

(13]

(14]

[15]

(16]

[17]

(18]

(19]

[20]

[21]

[22]

{23] B.Lai, and R. C. Walker, “A Monolithic 622Mb/s Clock
Extraction Data Retiming Circuit,” in ISSCC Digest of

Technical Papers, pp. 144,145, Feb. 1991.

T. H. Lee, and J. F. Bulzacchelli, “A 155MHz Clock
Recovery Delay- and Phase-Locked Loop,” IEEE Journal
of Solid State Circuits vol. 27, no. 12, pp. 1736-1746, Dec.
1992.

R. H. Leonowich, and J. M. Steininger, “A 45-MHz
CMOS phase/frequency-locked loop timing recovery cir-
cuit,” in ISSCC Digest of Technical Papers, pp. 14-15,278-
279, Feb. 1988.

I. Lee, C. Yoo, W. Kim, S. Chai and W. Song, “A
622Mb/s CMOS Clock Recovery PLL with Time- Inter-
leaved Phase Detector Array,” in ISSCC Digest of Techni-
cal Papers, pp. 198-199,444, Feb. 1996.

M. Meghelli, B. Parker, H. Ainspan and M. Soyuer, “A
SiGe BiCMOS 3.3V Clock and Data Recovery Circuit for
10Gb/s Serial Transmission Systems,” in ISSCC Digest of
Technical Papers, pp. 56-57, Feb. 2000.

T. Morikawa, M. Soda, S. Shiori, T. Hashimoto, F. Sato
and K. Emura, “A SiGe Single-Chip 3.3V Receiver IC for
10Gb/s Optical Communication System,” in ISSCC Digest
of Technical Papers, pp. 380-381,481, Feb. 1999.

A. Pottbacker, and U. Langmann, “An 8GHz Silicon
Bipolar Clock-Recovery and Data-Regenerator IC,” IEEE
Journal of Solid State Circuits vol. 29, no. 12, pp. 1572-
1576, Dec. 1994.

M. Reinhold, C. Dorschky, F. Pullela, E. Rose, P.
Mayer, P. Paschke, Y. Baeyens, J. Mattia and F. Kunz, “A
Fully-Integrated 40Gb/s Clock and Data Recovery / 1:4
DEMUX IC in SiGe Technology,” in ISSCC Digest of
Technical Papers, pp. 84-85,435, Feb. 2001.

M. Soyuer, and H. A. Ainspan, “A Monolithic 2.3 Gb/s
100mW Clock and Data Recovery Circuit,” in ISSCC
Digest of Technical Papers, pp. 158-159,282, Feb. 1993.

S. Ueno, K. Watanabe, T. Kato, T. Shinohara, K.
Mikami, T. Hashimoto, A. Takai, K. Washio, R. Takeyar
and T. Harada, “A Single-Chip 10Gb/s Transceiver LSI
using SiGe SOI/BiCMOS,” in ISSCC Digest of Technical
Papers, pp. 82-83,435, Feb. 2001.

H. Wang, and R. Nottenburg, “A 1Gb/s CMOS Clock
and Data Recovery Circuit,” in ISSCC Digest of Technical
Papers, pp. 354-355,477, Feb. 1999.

P. Wallace, R. Bayruns, J. Smith, T. Laverick and R.
Shuster, “A GaAs 1.5Gb/s Clock Recovery and Data
Retiming Circuit,” in ISSCC Digest of Technical Papers,
pp- 192-193, Feb. 1990.

Z. Wang, M. Berroth, J. Seibel, P. Hofmann, A. Huls-
mann, Kohler, B. Raynor and J. Schneider, “19GHz
Monolithic Integrated Clock Recovery Using PLL and
0.3um Gate-Length Quantum-Well HEMTs,” in ISSCC
Digest of Technical Papers, pp. 118-119, Feb. 1994,

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

45

[36] R. C. Walker, K. Hsieh, T. A. Knotts and C. Yen, “A
10Gb/s Si-Bipolar TX/RX Chipset for Computer Data
Transmission,” in ISSCC Digest of Technical Papers, pp.

302-303,450, Feb. 1998.

R. C. Walker, J. Wu, C. Stout, B. Lai, C. Yen, T. Hornak
and P. Petruno, “A 2-Chip 1.5Gb/s Bus-Oriented Serial
Link Interface,” in ISSCC Digest of Technical Papers, pp.
226-227,291, Feb. 1992.

[37]

C. K. Yang, and M. A. Horowitz, “0.8um CMOS 2.5Gb/
s Oversampled Receiver for Serial Links,” TEEE Journal
of Solid State Circuits vol. 31, no. 12, pp. 20150-2023,
Dec. 1996.

[38]

Richard Walker was born in San Rafael
CA, in 1960. He received the B.S.
degree in Engineering and Applied
Science from the California Institute of
Technology in 1982, and an M.S.
degree in Computer Science from Cali-
fornia State University, Chico, CA in
1992. Rick joined Agilent Laboratories
(formerly Hewlett-Packard Laborato-
ries) in 1981, where he is currently a
Principal Project Engineer. Since that
time, he has worked in the areas of
broadband-cable modem design, solid-
state laser characterization, phase-locked-loop theory, linecode
design, and gigabit-rate serial data transmission. He holds 15 U.S.
patents.

Predicting the Phase Noise and Jitter of PLL-Based
Frequency Synthesizers

Kenneth

Abstract — Two methodologies are presented for predicting the
phase noise and jitter of a PLL-based frequency synthesizer
using simulation that are both accurate and efficient. The meth-
odologies begin by characterizing the noise behavior of the
blocks that make up the PLL using transistor-level RF simula-
tion. For each block, the phase noise or jitter is extracted and
applied to a model for the entire PLL.

I. INTRODUCTION

Phase-locked loops (PLLs) are used to implement a variety of
timing related functions, such as frequency synthesis, clock
and data recovery, and clock de-skewing. Any jitter or phase
noise in the output of the PLL used in these applications gen-
erally degrades the performance margins of the system in
which it resides and so is of great concern to the designers of
such systems. Jitter and phase noise are different ways of
referring to an undesired variation in the timing of events at
the output of the PLL. They are difficult to predict with tradi-
tional circuit simulators because the PLL generates repetitive
switching events as an essential part of its operation, and the
noise performance must be evaluated in the presence of this
large-signal behavior. SPICE is useless in this situation as it
can only predict the noise in circuits that have a quiescent
(time-invariant) operating point. In PLLs the operating point
is at best periodic, and is sometimes chaotic. Recently a new
class of circuit simulators has been introduced that are capa-
ble of predicting the noise behavior about a periodic operating
point [1]. SpectreRF is the most popular of this class of simu-
lators and, because of the algorithms used in its implementa-
tion, is likely to be the best suited for this application [2].
These simulators can be used to predict the noise perfor-
mance of PLLs. The ideas presented in this paper allow those
simulators to be applied even to those PLLs that have chaotic
operating points.

A. Frequency Synthesis

The focus of this paper is frequency synthesis. The block dia-
gram of a PLL operating as a frequency synthesizer is shown
in Figure 1 [3]. It consists of a reference oscillator (OSC), a
phase/frequency detector (PFD), a charge pump (CP), a loop
filter (LF), a voltage-controlled oscillator (VCO), and two

Ken Kundert is with Cadence Design Systems, San Jose, Cal-
ifornia, kundert@cadence.com.

S. Kundert

frequency dividers (FDs). The PLL is a feedback loop that,
when in lock, forces fg, to be equal to f.+. Given an input fre-
quency fi,, the frequency at the output of the PLL is

fou = N5,

M ey

where M is the divide ratio of the input frequency divider, and
N is the divide ratio of the feedback divider. By choosing the
frequency divide ratios and the input frequency appropriately,
the synthesizer generates an output signal at the desired fre-
quency that inherits much of the stability of the input oscilla-
tor. In RF transceivers, this architecture is commonly used to
generate the local oscillator (LO) at a programmable fre-
quency that tunes the transceiver to the desired channel by
adjusting the value of N.

(s

0SsC w1
2 f[’PFD g 7z
fb
[FD 1
I A

Fig. 1. The block diagram of a frequency synthesizer.

B. Direct Simulation

In many circumstances, SpectreRFT can be directly applied to
predict the noise performance of a PLL. To make this possi-
ble, the PLL must at a minimum have a periodic steady state
solution. This rules out systems such as bang-bang clock and
data recovery circuits and fractional-N synthesizers because
they behave in a chaotic way by design. It also rules out any
PLL that is implemented with a phase detector that has a dead
zone. A dead zone has the effect of opening the loop and let-
ting the phase drift seemingly at random when the phase of
the reference and the output of the voltage-controlled oscilla-
tor (VCO) are close. This gives these PLLs a chaotic nature.

To perform a noise analysis, SpectreRF must first compute
the steady-state solution of the circuit with its periodic steady
state (PSS) analysis. If the PLL does not have a periodic solu-
tion, as the cases described above do not, then it will not con-
verge. There is an easy test that can be run to determine if a
circuit has a periodic steady-state solution. Simply perform a
transient analysis until the PLL approaches steady state and

T Spectre is a registered trademark of Cadence Design Systems.

46

then observe the VCO control voltage. If this signal consists
of frequency components at integer multiples of the reference
frequency, then the PLL has a periodic solution. If there are
other components, it does not. Sometimes it can be difficult to
identify the undesirable components if the components asso-
ciated with the reference frequency are large. In this case, use
the strobing feature of Spectre’s transient analysis to elimi-
nate all components at frequencies that are multiples of the
reference frequency. Do so by strobing at the reference fre-
quency. In this case, if the VCO control voltage varies in any
significant way the PLL does not have a periodic solution.

If the PLL has a periodic solution, then in concept it is always
possible to apply SpectreRF directly to perform a noise analy-
sis. However, in some cases it may not be practical to do so.
The time required for SpectreRF to compute the noise of a
PLL is proportional to the number of circuit equations needed
to represent the PLL in the simulator times the number of
time points needed to accurately render a single period of the
solution times the number of frequencies at which the noise is
desired. When applying SpectreRF to frequency synthesizers
with large divide ratios, the number of time points needed to
render a period can become problematic. Experience shows
that divide ratios greater than ten are often not practical to
simulate. Of course, this varies with the size of the PLL.

For PLLs that are candidates for direct simulation using Spec-
treRF, simply configure the simulator to perform a PSS analy-
sis followed by a periodic noise (PNoise) analysis. The period
of the PSS analysis should be set to be the same as the refer-
ence frequency as defined in Figure 1. The PSS stabilization
time (tstab) should be set long enough to allow the PLL to
reach lock. This process was successfully followed on a fre-
quency synthesizer with a divide ratio of 40 that contained
2500 transistors, though it required several hours for the com-
plete simulation [4].

C. When Direct Simulation Fails

The challenge still remains, how does one predict the phase
noise and jitter of PLLs that do not fit the constraints that
enable direct simulation? The remainder of this paper
attempts to answer that question for frequency synthesizers,
though the techniques presented are general and can be
applied to other types of PLLs by anyone who is sufficiently
determined.

D. Monte Carlo-Based Methods

Demir proposed an approach for simulating PLLs whereby a
PLL is described using behavioral models simulated at a high
level [5, 6]. The models are written such that they include jit-
ter in an efficient way. He also devised a simulation algorithm
based on solving a set of nonlinear stochastic differential
equations that is capable of characterizing the circuit-level
noise behavior of blocks that make up a PLL [6, 7]. Finally,
he gave formulas that can be used to convert the results of the
noise simulations on the individual blocks into values for the

jitter parameters for the corresponding behavioral models [8].
Once everything is ready, simulation of the PLL occurs with
the blocks of the PLL being described with behavioral models
that exhibit jitter. The actual jitter or phase noise statistics are
observed during this simulation. Generally tens to hundreds
of thousands of cycles are simulated, but the models are effi-
cient so the time required for the simulation is reasonable.
This approach allows prediction of PLL jitter behavior once
the noise behavior of the blocks has been characterized. How-
ever, it requires the use of an experimental simulator that is
not readily available to characterize the jitter of the blocks.

In an earlier series of papers [9, 10], the relevant ideas of
Demir were adapted to allow use of a commercial simulator,
Spectre [11], and an industry standard modeling language,
Vcrilog-AT [12]. These ideas are further refined in the later
half of this paper.

E. Predicting Noise in PLLs

There are two different approaches to modeling noise in
PLLs. One approach is to formulate the models in terms of
the phase of the signals, producing what are referred to as
phase-domain models. In the simplest case, these models are
linear and analyzed easily in the frequency domain, making it
simple to use the model to predict phase noise, even in the
presence of flicker noise or other noise sources that are diffi-
cult to model in the time domain. Phase-domain models are
described in the first half of this paper.

The process of predicting the phase noise of a PLL using
phase-domain models involves:

1. Using SpectreRF to predict the noise of the individual
blocks that make up the PLL.

2. Building high-level behavioral models of each of the
blocks that exhibit phase noise.

3. Assembling the blocks into a model of the PLL.

4. Simulating the PLL to find the phase noise of the overall
system.

The other approach formulates the models in terms of volt-
age, which are referred to as voltage-domain models. The
advantage of voltage-domain models is that they can be
refined to implementation. In other words, as the design pro-
cess transitions to being more of a verification process, the
abstract behavioral models initially used can be replaced with
detailed gate- or transistor-level models in order to verify the
PLL as implemented.

A voltage-domain model is strongly nonlinear and never has a
quiescent operating point, making it incompatible with a
SpICE-like noise analysis. Often such models have a periodic
operating point and so can be analyzed with small-signal RF
noise analysis (SpectreRF), but it is also common for that not
to be the case. For example, a fractional-N synthesizer does

t Verilog is a registered trademark of Cadence Design Systems
licensed to Accellera.

47

not have a periodic operating point. Occasionally, the circuit
is sensitive enough that the noise affects the large-signal
behavior of the PLL, such as with bang-bang clock-and-data
recovery PLLs, which invalidates any use of small-signal
noise analysis.

Modeling large-signal noise in a voltage-domain model as a
voltage or a current is problematic. Such signals are very
small and continuously and very rapidly varying. Extremely
tight tolerances and small time steps are required to accu-
rately resolve such signals with simulation. To overcome
these problems, the noise is instead represented using the
effect it has on the timing of the transitions within the PLL. In
other words, the noise is added to circuit in the form of jitter.
In this case there is no need for either small time steps or tight
tolerances.

The process of predicting the jitter of a PLL with voltage-
domain models involves:

1. Using SpectreRF to predict the noise of the individual
blocks that make up the PLL.

2. Converting the noise of the block to jitter.

3. Building high-level behavioral models of each of the
blocks that exhibit jitter.

4. Assembling the blocks into a model of the PLL.
5. Simulating the PLL to find the jitter of the overall system.

The simple linear phase-domain model described in the first
part of this paper, and the nonlinear voltage-domain model
described in the second part, represent the two ends of a con-
tinuum of models. Generally, the phase-domain models are
considerably more efficient, but the voltage-domain models
do a better job of capturing the details of the behavior of the
loop, details such as the signal capture and escape processes.
The phase-domain models can be made more general by mak-
ing them nonlinear and by analyzing them in the time domain.
It is common to use such models with fractional-N synthesiz-
ers. Conversely, simplifications can be made to the voltage-
domain models to make them more efficient. It is even possi-
ble to use both voltage- and phase-domain models for differ-
ent parts of the same loop. One might do so to retain as much
efficiency as possible while allowing part of the design to be
refined to implementation level. In general it is best to under-
stand both approaches well, and use ideas from both to con-
struct the most appropriate approach for your particular
situation.

II. PHASE-DOMAIN MODEL

It is widely understood that simulating PLLs is expensive
because the period of the VCO is almost always very short
relative to the time required to reach lock. This is particularly
true with frequency synthesizers, especially those with large
multiplication factors. The problem is that a circuit simulator
must use at least 10-20 time points for every period of the
VCO for accurate rendering, and the lock process often

involves hundreds or thousands of cycles at the input to the
phase detector. With large divide ratios, this can translate to
hundreds of thousands of cycles of the VCO. Thus, the num-
ber of time points needed for a single simulation could range
into the millions.

This is all true when simulating the PLL in terms of voltages
and currents. When doing so, one is said to be using voltage-
domain models. However, that is not the only option avail-
able. It is also possible to formulate models based on the
phase of the signals. In this case, one would be using phase-
domain models. The high frequency variations associated
with the voltage-domain models are not present in phase-
domain models, and so simulations are considerably faster. In
addition, when in lock the phase-domain-based models gener-
ally have constant-valued operating points, which simplifies
small-signal analysis, making it easier to study the closed-
loop dynamics and noise performance of the PLL using either
AC or noise analysis.

A linear phase-domain model of a frequency synthesizer is
shown in Figure 2. Such a model is suitable for modeling the
behavior of the PLL to small perturbations when the PLL is in
lock as long as you do not need to know the exact waveforms
and instead are interested in how small perturbations affect
the phase of the output. This is exactly what is needed to pre-
dict the phase noise performance of the PLL.

LF vVCO
H(w) :izu,Km iy
J
FDy
Il
N

Fig. 2. Linear time-invariant phase-domain model of the synthesizer
shown in Figure 1.

The derivation of the model begins with the identification of
those signals that are best represented by their phase. Many
blocks have large repetitive input signals with their outputs
being primarily sensitive to the phase of their inputs. It is the
signals that drive these blocks that are represented as phase.
They are identified using a ¢ variable in Figure 2. Notice that
this includes all signals except those at the inputs of the LF
and VCO.

The models of the individual blocks will be derived by assum-
ing that the signals associated with each of the phase variables
is a pulse train. Though generally the case, it is not a require-
ment. It simply serves to make it easier to extract the models.
Define I(#, 7, T) to be a periodic pulse train where one of the
pulses starts at 1y and the pulses have duration T and period T
as shown in Figure 3. This signal transitions between 0 and 1
if 7 is positive, and between 0 and -1 if 1 is negative. The
phase of this signal is defined to be ¢ = 27¢;/T. In many cases,
the duration of the pulses is of no interest, in which case
II(to, T) is used as a short hand. This occurs because the input

48

that the signal is driving is edge triggered. For simplicity, we
assume that such inputs are sensitive to the rising edges of the
signal, that ¢ specifies the time of a rising edge, and that the
signal is transitioning between 0 and 1.

i N,
NS

>0

|
<[

Fig. 3. The pulse train waveform represented by Il(¢g, T, 7).

The input source produces a signal v;, = Il(zg, T). Since this is
the input, ¢, is arbitrary. As such, we are free to set its phase ¢
to any value we like.

Given a signal v; = I1(#y, T) a frequency divider will produce
an output signal v, = I1(¢g, NT) where N is the divide ratio.
The phase of the input is ¢; = 2n¢y/T and the phase of the out-
put is ¢, = 2nty/(NT) and so the phase transfer characteristic
of a divider is

90 = O/N. @

There are many different types of phase detectors that can be
used, each requiring a somewhat different model. Consider a
simple phase-frequency detector combined with a charge
pump [13]. In this case, the detector takes two inputs,
vy =I1(¢;, T) and vy =Tl(#y, T) and produces an output
icp = ImaxI1(tg, 11~19, T) where I, is the maximum output
current of the charge pump. The output of the charge pump
immediately passes through a low pass filter that is designed
to suppress signals at frequencies of 1/T and above, so in most
cases the pulse nature of this signal can be ignored in favor of
its average value, (i_)) . Thus, the transfer characteristic of
the combined PFD/CP is
-1t

. ¢1 -9
<’cp) = T T

max " 2

where Ky, = Iyax- Of course, this is only valid for
|6 - ¢, <27 at the most. The behavior outside this range
depends strongly on the type of phase detector used [3]. Even
within this range, the phase detector may be better modeled
with a nonlinear transfer characteristic. For example, there
can be a flat spot in the transfer characteristics near 0 if the
detector has a dead zone. However it is generally not ?roduc-
tive to model the dead zone in a phase-domain model.

K C!
= 520-0) @

1 This phase-domain model is a continuous-time model that ignores
the sampling nature of the PFD. A dead zone interacts with the sam-
pling nature of the PFD to create a chaotic limit cycle behavior that
is not modeled with the phase-domain model. This chaotic behavior
creates a substantial amount of jitter, and for this reason, most mod-
ern phase detectors are designed such that they do not exhibit dead
zones.

The model of (3) is a continuous-time approximation to what
is inherently a discrete-time process. The phase detector does
not continuously monitor the phase difference between its
two input signals, rather it outputs one pulse per cycle whose
width is proportional to the phase difference. Using a continu-
ous time approximation is generally acceptable if the band-
width of the loop filter is much less than f.; (generally less
than f,.¢/10 is sufficient). In practical PLLs this is almost
always the case. It is possible to develop a detailed phase-
domain PFD model that includes the discrete-time effects, but
it would run more slowly and the resulting phase-domain
model of the PLL would not have a quiescent operating point,
which makes it more difficult to analyze.

The voltage-controlled oscillator, or VCO, converts its input

voltage to an output frequency, and the relationship between

input voltage and output frequency can be represented as
Jour=F(v) 4

The mapping from voltage to frequency is designed to be lin-
ear, so a first-order model is often sufficient,

5)

It is the output phase that is needed in a phase-domain model,

Jout = KycoVe-

Oou() = 27 [Keove 6)
or in the frequency domain,
2nK, .
bou(®) = — Fve(@). ™

A. Small-Signal Stability

This completes the derivation of the phase-domain models for
each of the blocks. Now the full model is used to help predict
the small-signal behavior of the PLL. Start by using Figure 2
to write a relationship for its loop gain. Start by defining

Gy = Qout _ &H(m 2K veo _ KooK yeoH (@) ®)
M g 2m jo jo
to be the forward gain,
O _ 1
=0 =2 ©
rev ¢0u[N
to be the feedback factor, and
K, K _H(®)
det
T = GigGrev = — 00— (10)

to be the loop gain. The loop gain is used to explore the small-
signal stability of the loop. In particular, the phase margin is
an important stability metric. It is the negative of the differ-
ence between the phase shift of the loop at unity gain and
180°, the phase shift that makes the loop unstable. It should
be no less than 45° [14]. When concerned about phase noise
or jitter, the phase margin is typically 60° or more to reduce
peaking in the closed-loop gain, which results in excess phase
noise.

49

B. Noise Transfer Functions

In Figure 4 various sources of noise have been added. These
noise sources can represent either the noise created by the
blocks due to intrinsic noise sources (thermal, shot, and
flicker noise sources), or the noise coupled into the blocks
from external sources, such as from the power supplies, the
substrate, etc. Most are sources of phase noise, and denoted

FDy, q) . PFD/CP LF VCO
N ref K ger H(w) _,2"ch° $ Dout
in o
FDy byco
1
N

cI)fdn

Fig. 4. Linear time-invariant phase-domain model of the synthesizer
shown in Figure 2 with representative noise sources added. The ¢’s
represent various sources of noise.

Oin> Pram> Pean> and o, because the circuit is only sensitive
to phase at the point where the noise is injected. The one
exception is the noise produced by the PFD/CP, which in this
case is considered to be a current, and denoted igg.

Then the transfer functions from the various noise sources to
the output are

G . < You _ Orwa _ NGiwa (an
ref ¢ref 1-T N - wad
¢ou! 1 N
G = —_— = e— = (12)
vee ¢vco 1-T N —wad
%u 10ms _1_N (13)
n ¢in M1-T MN-Ggy
and by inspection,
¢
Gian = ¢—::“ = ~Gep» (14)
n
¢
Gfdm = ¢f(;ut = —'Gref’ (15)
m
G _ ¢out 2nGref (16)
aet idet Kdel

On this last transfer function, we have simply referred iy, to
the input by dividing through by the gain of the phase detec-
tor.

These transfer functions allow certain overall characteristics
of phase noise in PLLs to be identified. As ® — oo,
Giya — 0 because of the VCO and the low-pass filter, and so
G et Gaer Gramr CGtan» Gin — 0 and G, — 1. At high fre-
quencies, the noise of the PLL is that of the VCO. Clearly this
must be so because the low-pass LF blocks any feedback at
high frequencies.

As 0 > 0, Gy, 4 — o because of the 1/(jw) term from the
VCO. So at DC, Gref, Geame Gen N, Gy — N/M and
G, — 0. At low frequencies, the noise of the PLL is con-
tributed by the OSC, PFD/CP, FD,, and FDy,;, and the noise
from the VCO is diminished by the gain of the loop.

Consider further the asymptotic behavior of the loop and the
VCO noise at low offset frequencies (w — 0). Oscillator
phase noise in the VCO results in the power spectral density
S¢Vco being proportional to 1/w? or S veo = 1/ @? (neglect-
ing flicker noise). If the LF is chosen such that H(w) ~ 1,
then Gy, 4~ 1/, and contribution from the VCO to the out-
put noise power, G?,cosqmo, is finite and nonzero. If the LF
is chosen such that H(w) ~ 1/, as it typically is when a
true charge pump is employed, then Gy~ 1/ ®? and the
noise contribution to the output from the VCO goes to zero at
low frequencies.

C. Noise Model

One predicts the phase noise exhibited by a PLL by building
and applying the model shown in Figure 4. The first step in
doing so is to find the various model parameters, including
the level of the noise sources, which generally involves either
direct measurement or simulating the various blocks with an
RF simulator, such as SpectreRF. Use periodic noise (or
PNoise) analysis to predict the output noise that results from
stochastic noise sources contained within the blocks using
simulation. Use a periodic AC or periodic transfer function
(PAC or PXF) to compute the perturbation at the output of a
block due to noise sources outside the block, such as on sup-
plies.

Once the model parameters are known, it is simply a matter of
computing the output phase noise of the PLL by applying the
equations in Section II-B to compute the contributions to ¢y,
from every source and summing the results. Be careful to
account for correlations in the noise sources. If the noise
sources are perfectly correlated, as they might be if the ulti-
mate source of noise is in the supplies or substrate, then use a
direct sum. If the sources produce completely uncorrelated
noise, as they would when the ultimate source of noise is ran-
dom processes within the devices, use a root-mean-square
sum.

Alternatively, one could build a Verilog-A model and use sim-
ulation to determine the result. The top-level of such a model
is shown in Listing 1. It employs noisy phase-domain models
for each of the blocks. These models are given in Listings 3-7
and are described in detail in the next few sections (III-VI). In
this example, the noise sources are coded into the models, but
the noise parameters are not set at the top level to simplify the
model. To predict the phase noise performance of the loop in
lock, simply specify these parameters in Listing 1 and per-
form a noise analysis. To determine the effect of injected
noise, first refer the noise to the output of one of the blocks,
and then add a source into the netlist of Listing 1 at the appro-
priate place and perform an AC analysis.

50

Listing 1 — Phase-domain model for a PLL configured as a
frequency synthesizer.

“include “discipline.h”
modaule pli(out);

output out;

phase out;

parameter integer m = 1 from [1:inf); / input divide ratio
parameter real Kdet = 1 from (0:inf); // detector gain
parameter real Kvco = 1 from (0:inf); / VCO gain
parameter real c1 = 1n from (0:inf); // Loop filter C1
parameter real c2 = 200p from (0:inf); / Loop filter C2
parameter real r = 10K from (0:inf); // Loop filter R
parameter integer n = 1 from [1:inf); // fb divide ratio

phase in, ref, fb;
electrical c;

oscillator OSC(in);

divider #(.ratio(m)) FDm(in, ref);
phaseDetector #(.gain(Kdet)) PD(ref, fb, c);
loopFilter #(.c1(c1), .c2(c2), .r(r)) LF(c);
veo #(.gain(Kvco)) VCO(c, out);

divider #(.ratio(n)) FDn(out, fb);

endmodule

Listings 1 and 3-7 have phase signals, and there is no phase
discipline in the standard set of disciplines provided by Ver-
ilog-A or Verilog-AMS in discipline.h. There are several dif-
ferent resolutions for this problem. Probably the best solution
is to simply add such a discipline, given in Listing 2, either to
discipline.h as assumed here or to a separate file that is
included as needed. Alternatively, one could use the rota-
tional discipline. It is a conservative discipline that includes
torque as a flow nature, and so is overkill in this situation.
Finally, one could simply use either the electrical or the volt-
age discipline. Scaling for voltage in volts and phase in radi-
ans is similar, and so it will work fine except that the units
will be reported incorrectly. Using the rotational discipline
would require that all references to the phase discipline be
changed to rotational in the appropriate listings. Using either
the electrical or voltage discipline would require that both the
name of the disciplines be changed from phase to either elec-
trical or voltage, and the name of the access functions be
changed from Theta to V.

Listing 2 — Signal flow discipline definition for phase signals (the
nature Angle is defined in discipline.h).

“include “discipline.h”

discipline phase
potential Angle;
enddiscipline

HII. OSCILLATORS

Oscillators are responsible for most of the noise at the output
of the majority of well-designed frequency synthesizers. This

is because oscillators inherently tend to amplify noise found
near their oscillation frequency and any of its harmonics. The
reason for this behavior is covered next, followed by a
description of how to characterize and model the noise in an
oscillator. The origins of oscillator phase noise are described
in a conceptual way here. For a detailed description, see the
papers by Kéertner or Demir et al [15, 16, 17].

A. Oscillator Phase Noise

Nonlinear oscillators naturally produce high levels of phase
noise. To see why, consider the trajectory of a fully autono-
mous oscillator’s stable periodic orbit in state space. In steady
state, the trajectory is a stable limit cycle, v. Now consider
perturbing the oscillator with an impulse and assume that the
deviation in the response due to the perturbation is Av, as
shown in Figure 5. Separate Av into amplitude and phase vari-
ations,

Av(r) = [1 +a(t)]v(z+-‘1’-(’—))-v(t).

2nf, (17

where v represents the unperturbed T-periodic output voltage
of the oscillator, o represents the variation in amplitude, ¢ is
the variation in phase, and f, = 1/T is the oscillation fre-
quency.

V2

Fig. 5. The trajectory of an oscillator shown in state space with and
without a perturbation Av. By observing the time stamps (¢, ..., #g)
one can see that the deviation in amplitude dissipates while the
deviation in phase does not.

Since the oscillation is stable and the duration of the distur-
bance is finite, the deviation in amplitude eventually decays
away and the oscillator returns to its stable orbit (o(t) — 0 as
t — o). In effect, there is a restoring force that tends to act
against amplitude noise. This restoring force is a natural con-
sequence of the nonlinear nature of the oscillator that acts to
suppresses amplitude variations.

The oscillator is autonomous, and so any time-shifted version
of the solution is also a solution. Once the phase has shifted
due to a perturbation, the oscillator continues on as if never
disturbed except for the shift in the phase of the oscillation.
There is no restoring force on the phase and so phase devia-
tions accumulate. A single perturbation causes the phase to
permanently shift (¢(£) — A as t — o). If we neglect any
short term time constants, it can be inferred that the impulse
response of the phase deviation ¢(f) can be approximated with

51

a unit step s(¢). The phase shift over time for an arbitrary input
disturbance u is

oo t

o)~ [st-nu(ndr = Iu(’c)dt, (18)
or the power spectral density (PSD) of the phase is
S (Af)
Sy(AN) ~ —= 19
o(A) (2rAn? (19)

This shows that in all oscillators the response to any form of
perturbation, including noise, is amplified and appears mainly
in the phase. The amplification increases as the frequency of
the perturbation approaches the frequency of oscillation in
proportion to 1/Af (or 1/Af Zin power).

Notice that there is only one degree of freedom — the phase
of the oscillator as a whole. There is no restoring force when
the phase of all signals associated with the oscillator shift
together, however there would be a restoring force if the
phase of signals shifted relative to each other. This observa-
tion is significant in oscillators with multiple outputs, such as
quadrature or ring oscillators. The dominant phase variations
appear identically in all outputs, whereas relative phase varia-
tions between the outputs are naturally suppressed by the
oscillator or added by subsequent circuitry and so tend to be
much smaller [8].

B. Characterizing Oscillator Phase Noise

Above it was shown that oscillators tend to convert perturba-
tions from any source into a phase variation at their output
whose magnitude varies with 1/Af (or 1/Af Zin power). Now
assume that the perturbation is from device noise in the form
of white and flicker stochastic processes. The oscillator’s
response will be characterized first in terms of the phase noise
S¢, and then because phase noise is not easily measured, in
terms of the normalized voltage noise £. The result will be a
small set of easily extracted parameters that completely
describe the response of the oscillator to white and flicker
noise sources. These parameters are used when modeling the
oscillator.

Assume that the perturbation consists of white and flicker
noise and so has the form

J
S, (AN~ 1+ K} (20)
Then from (19) the response will take the form
_ (1 L
S¢(Af) = H(Ez- + E) ’ (21)

where the factor of (21t)2 in the denominator of (19) has been
absorbed into #n, the constant of proportionality. Thus, the
response of the oscillator to white and flicker noise sources is
characterized using just two parameters, n and f,, where n is
the portion of Sy attributable to the white noise sources alone

at Af=1 Hz and f; is the flicker noise corner frequency. As
shown in Figure 6, n is extracted by simply extrapolating to
1 Hz from a frequency where the noise from the white
sources dominates.

Flicker sources dominate

White sources dominate

2:1 External noise sources

fo

Fig. 6. Extracting the noise parameters, n, a, and f, for an oscillator.
The parameter a is an alternative to n where n = af,2. It is used later.
The graph is plotted on a log-log scale.

S¢, is not directly observable and often difficult to find, so now
Sy is related to L, the power spectral density of the output
voltage noise S, normalized by the power in the fundamental
tone. S, is directly available from either measurement with a
spectrum analyzer or from RF simulators, and £ is defined as

S, (f, +Af)

LAf) =
(Af) 2V,

, (22)

where V| is the fundamental Fourier coefficient of v, the out-
put signal, It satisfies

oo

V() = z Vkejznkf°‘_

k = —o0

(23)

In (41) of [15], Demir et al shows that for a free-running
oscillator perturbed only by white noise sources

1 n
Af) = -, 24
which is a Lorentzian process with corner frequency of
feomer = T <fo. (25)
At frequencies above the corner,
1
Afy = 1 = =2
L(ASf) 2472 556AS). (26)

which agrees with Vendelin [18].

Use (21) to extract f,. Then use both (21) and (26) to deter-
mine n by choosing Af well above the flicker noise corner fre-
quency, f., and the corner frequency of (25), f omer to avoid
ambiguity and well below f,, to avoid the noise from other
sources that occur at these frequencies.

1 Demir uses c rather than n, where n = cf,%.

52

C. Phase-Domain Models for the Oscillators

The phase-domain models for the reference and voltage-con-
trolled oscillators are given in Listings 3 and 4. The VCO
model is based on (6). Perhaps the only thing that needs to be
explained is the way that phase noise is modeled in the oscil-
lators. Verilog-AMS provides the flicker_noise function for
modeling flicker noise, which has a power spectral density
proportional to 1/f* with o typically being close to 1. How-
ever, Verilog-AMS does not limit o to being close to one,
making this function well suited to modeling oscillator phase
noise, for which o is 2 in the white-phase noise region and
close to 3 in the flicker-phase noise region (at frequencies
below the flicker noise corner frequency). Alternatively, one
could dispense with the noise parameters and use the
noise_table function in lieu of the flicker_noise functions to
use the measured noise results directly. The “wpn” and “fpn”

Listing 3 — Phase-domain oscillator noise model.

“include “discipline.h”

module oscillator(out);
output out;
phase out;
parameter real n = 0 from [O:inf);
// white output phase noise at 1 Hz (rad’/Hz)
parameter real fc = 0 from [0:inf);
// flicker noise corner frequency (Hz)

analog begin
Theta(out) <+ flicker_noise(n, 2, “wpn”)
+ flicker_noise(nxfc, 3, “fpn”);
end
endmodule

Listing 4 — Phase-domain VCO noise model.

‘include “discipline.h”
“include “constants.h”

module vco(in, out);
input in; output out;
voltage in;
phase out;
parameter real gain = 1 from (0:inf);
// transfer gain, Kvco (Hz/V)
parameter real n = 0 from [0:inf);
// white output phase noise at 1 Hz (rad®/Hz)
parameter real fc = 0 from [0:inf);
// flicker noise corner frequency (Hz)

analog begin
Theta(out) <+ 2+ M_Plxgain*idt(V(in));
Theta(out) <+ flicker_noise(n, 2, “wpn”)
+ flicker_noise(n*fc, 3, “fpn”);
end
endmodule

though they should not contain any white space. wpn was
chosen to represent white phase noise and fpn stands for
flicker phase noise.

When interested in the effect of signals coupled into the oscil-
lator through the supplies or the substrate, one would com-
pute the transfer function from the interfering source to the
phase output of the oscillator using either a PAC or PXF anal-
ysis. Again, one would simply assume that the perturbation in
the output of the oscillator is completely in the phase, which
is true except at very high offset frequencies. One then
employs (12) and (13) to predict the response at the output of
the PLL.

1V. LoopP FILTER

Even in the phase-domain model for the PLL, the loop filter
remains in the voltage domain and is represented with a full
circuit-level model, as shown in Listing 5. As such, the noise
behavior of the filter is naturally included in the phase-
domain model without any special effort assuming that the
noise is properly included in the resistor model.

Listing 5 — Loop filter model.

‘include “discipline.h”

module loopFilter(n);

electrical n;

ground gnd;'

parameter real c1 = 1n from (0:inf);
parameter real c2 = 200p from (0:inf);
parameter real r = 10K from (0:inf);
electrical int;

capacitor #(.c(c1)) C1(n, gnd);
capacitor #(.c(c2)) C2(n, int);
resistor #(.r(r)) R(int, gnd);

endmodule

1 The ground statement is not currently supported in Cadence’s Ver-
ilog-A implementation, so instead ground is explicitly passed into
the module.

V. PHASE DETECTOR AND CHARGE PUMP

As with the VCO, the noise of the PFD/CP as needed by the
phase-domain model is found directly with simulation. Sim-
ply drive the block with a representative periodic signal, per-
form a PNoise analysis, and measure the output noise current.
In this case, a representative signal would be one that pro-
duced periodic switching at the output. This is necessary to
capture the noise present during the switching process. Gen-
erally the noise appears as in Figure 7, in which case the noise
is parameterized with n and f;. n is the noise power density at
frequencies above the flicker noise corner frequency, f,, and

strings passed to the noise functions are labels for the noise
sources. They are optional and can be chosen arbitrarily,

below the noise bandwidth of the circuit.

The phase-domain model for the PFD/CP is given in
Listing 6. It is based on (3). Alternatively, as before one could

53

S¢ Flicker sources dominate

\q(/Whlte sources dominate
Y
& f

| Y

Noise bandwidth

Fig. 7. Extracting the noise parameters, n and f,, for the PFD/CP.
The graph is plotted on a log-log scale.

use the noise_table function in lieu of the white_noise and
flicker_noise functions to use the measured noise results
directly.

Listing 6 — Phase-domain phase detector noise model.

“include “discipline.h”
‘include “constants.h”

module phaseDetector(pin, nin, out);
input pin, nin; output out;
phase pin, nin;
electrical out;
parameter real gain = 1 from (0:inf);
// transfer gain (A/cycle)
parameter real n = 0 from [0:inf);
// white output current noise (A2/Hz)
parameter real fc = 0 from [O:inf);
// flicker noise corner frequency (Hz)

analog begin
l(out) <+ gain * Theta(pin,nin) / (2+’M_PI);
I(out) <+ white_noise(n, “wpn”)
+ flicker_noise(n*fc, 1, “fpn”);
end
endmodule

VI. FREQUENCY DIVIDERS

There are several reasons why the process of extracting the
noise produced by the frequency dividers is more complicated
than that needed for other blocks. First, the phase noise is
needed and, as of the time when this document was written,
SpectreRF reports on the total noise and does not yet make
the phase noise available separately. Secondly, the frequency
dividers are always followed by some form of edge-sensitive
thresholding circuit, in this case the PFD, which implies that
the overall noise behavior of the PLL is only influenced by
the noise produced by the divider at the time when the thresh-
old is being crossed in the proper direction. The noise pro-
duced by the frequency divider is cyclostationary, meaning
that the noise power varies over time. Thus, it is important to
analyze the noise behavior of the divider carefully. The sec-
ond issue is discussed first.

A. Cyclostationary Noise.

Formally, the term cyclostationary implies that the autocorre-
lation function of a stochastic process varies with ¢ in a peri-
odic fashion [19, 20], which in practice is associated with a
periodic variation in the noise power of a signal. In general,
the noise produced by all of the nonlinear blocks in a PLL is
strongly cyclostationary. To understand why, consider the
noise produced by a logic circuit, such as the inverter shown
in Figure 8. The noise at the output of the inverter, ngy,,
comes from different sources depending on the phase of the
output signal, v,,,. When the output is high, the output is
insensitive to small changes on the input. The transistor Mp is
on and the noise at the output is predominantly due to the
thermal noise from its channel. This is region A in the figure.
When the output is low, the situation is reversed and most of
the output noise is due to the thermal noise from the channel
of My. This is region B. When the output is transitioning,
thermal noise from both Mp and My contribute to the output.
In addition, the output is sensitive to small changes in the
input. In fact, any noise at the input is amplified before reach-
ing the output. Thus, noise from the input tends to dominate
over the thermal noise from the channels of Mp and My in
this region. Noise at the input includes noise from the previ-
ous stage and noise from both devices in the form of flicker
noise and thermal noise from gate resistance. This is region C
in the figure.

Mp
in out

My

Vout A

v

out

B A B

[
-

Fig. 8. Noise produced by an inverter (n,) as a function of the
output signal (vo,). In region A the noise is dominated by the thermal
noise of Mp, in region B its dominated by the thermal noise of My,
and in region C the output noise includes the thermal noise from both
devices as well as the amplified noise from the input.

The challenge in estimating the effect of noise passing
through a threshold is the difficulty in estimating the noise at
the point where the threshold is crossed. There are several dif-
ferent ways of estimating the effect of this noise, but the sim-
plest is to use the strobed noise feature of SpectreRF.T When
the strobed noise feature is active, the noise produced by the

54

circuit is periodically sampled to create a discrete-time ran-
dom sequence, as shown in Figure 9. SpectreRF then com-
putes the power-spectral density of the sequence. The sample
time would be adjusted to coincide with the desired threshold
crossings. Since the T-periodic cyclostationary noise process
is sampled every T seconds, the resulting noise process is sta-
tionary. Furthermore, the noise present at times other than at
the sample points is completely ignored.

VoD

Y v l !

Fig. 9. Strobed noise. The lower waveform is a highly magnified
view of the noise present at the strobe points in v,, which are chosen
to coincide with the threshold crossings in v.

B. Converting to Phase Noise

The act of converting the noise from a continuous-time pro-
cess to a discrete-time process by sampling at the threshold
crossings makes the conversion into phase noise easier. If v,
is the continuous-time noisy response, and v is the noise-free
response (response with the noise sources turned off), then®

n; = vp(iT) — v(iT). QN

Then if v, is noisy because it is corrupted with a phase noise

process ¢, then
= (Z)
v,(2) v(t + anfl) . (28)

Assume the phase noise ¢ is small and linearize v using a Tay-
lor series expansion

- dv(t) 9()
() =v() +— 2, (29)
and
PR dv(in)oGT) .o _ dv(T)$GT)
ni=v(tT)+-—dt 217y v(iT) = i 2nfy 30)
Finally, ¢; can be found from »; using
0, = 2nfyn; dv(’tT). G1)

+ The strobed-noise feature of SpectreRF is also referred to as its
time-domain noise feature.

1 It is assumed that the sequence n; is formed by sampling the noise
at iT, which implies that the threshold crossings also occur at iT. In
practice, the crossings will occur at some time offset from iT. That
offset is ignored. It is done without loss of generality with the under-
standing that the functions v and v, can always be reformulated to
account for the offset.

v is T periodic, which makes dv(iT)/dt a constant, and so

d T
54 = [2)} 5.5 (32)
where S,(f) and Sp(f) are the power spectral densities of the
n; and ¢; sequences.

C. Phase-Domain Model for Dividers

To extract the phase noise of a divider, drive the divider with a
representative periodic input signal and perform a PSS analy-
sis to determine the threshold crossing times and the slew rate
(dvl/dt) at these times. Then use SpectreRF’s strobed PNoise
analysis to compute S,(f). When running PNoise analysis,
assure that the maxsidebands parameter is set sufficiently
large to capture all significant noise folding. A large value
will slow the simulation. To reduce the number of sidebands
needed, use T as small as possible. S¢(f) is then computed
from (32). Generally the noise appears as in Figure 10. Notice
that the noise is periodic in f with pericd 1/T because n is a
discrete-time sequence with period T. The parameters n and f,
for the divider are extracted as illustrated. The high frequency
roll-off is generally ignored because it occurs above the fre-
quency range of interest.

y Flicker sources dominate

s{\&~
‘White sources dominate
— n

A
fe

| ;f
| [
Noise bandwidth\ / T

Fig. 10. Extracting the noise parameters, # and f;;, for the divider.

With ripple counters, one usually only characterizes one stage
at a time and combines the phase noise from each stage by
assuming that the noise in each stage is independent (true for
device noise, would not be true for noise coupling into the
divider from external sources). The variation due to phase
noise accumulates, however it is necessary to account for the
increasing period of the signals at each stage along the ripple
counter. Consider an intermediate stage of a K-stage ripple
counter. The total phase noise at the output of the ripple
counter that results due to the phase noise S¢k at the output of
stage k is (Tg/ Tk) S¢k So the total phase noise at the output
of the ripple counter is
K
S = T2 itk 33
¢out — K T2

k=0

where S¢0 and T, are the phase noise and signal period at the
input to the first stage of the ripple counter.

With undesired variations in the supplies or in the substrate
the resulting phase noise in each stage would be correlated, so
one would need to compute the transfer function from the sig-

55

nal source to the phase noise of each stage and combine in a
vector sum.

Unlike in ripple counters, phase noise does not accumulate
with each stage in synchronous counters. Phase noise at the
output of a synchronous counter is independent of the number
of stages and consists only of the noise of its clock along with
the noise of the last stage.

The phase-domain model for the divider, based on (2), is
given in Listing 7. As before, one could use the noise_table
function in lieu of the white_noise and flicker_noise functions
to use the measured noise results directly.

Listing 7 — Phase-domain divider noise model.

‘include “discipline.h”

modaule divider(in, out);
input in; output out;
phase in, out;
parameter real ratio = 1 from (0:inf);/ divide ratio
parameter real n = 0 from [0:inf);

// white output phase noise (rads?/Hz)
parameter real fc = 0 from [0:inf);

// flicker noise corner frequency (Hz)

analog begin
Theta(out) <+ Theta(in) / ratio;
Theta(out) <+ white_noise(n, “wpn”)
+ flicker_noise(n+fc, 1, “fpn”);
end
endmodule

VII. FRACTIONAL-N SYNTHESIS

One of the drawbacks of a traditional frequency synthesizer,
also known as an integer-N frequency synthesizer, is that the
output frequency is constrained to be N times the reference
frequency. If the output frequency is to be adjusted by chang-
ing N, which is constrained by the divider to be an integer,
then the output frequency resolution is equal to the reference
frequency. If fine frequency resolution is desired, then the ref-
erence frequency must be small. This in turn limits the loop
bandwidth as set by the loop filter, which must be at least 10
times smaller than the reference frequency to prevent signal
components at the reference frequency from reaching the
input of the VCO and modulating the output frequency, creat-
ing spurs or sidebands at an offset equal to the reference fre-
quency and its harmonics. A low loop bandwidth is
undesirable because it limits the response time of the synthe-
sizer to changes in V. In addition, the loop acts to suppress the
phase noise in the VCO at offset frequencies within its band-
width, so reducing the loop bandwidth acts to increase the
total phase noise at the output of the VCO.

The constraint on the loop bandwidth imposed by the
required frequency resolution is eliminated if the divide ratio
N is not limited to be an integer. This is the idea behind frac-
tional-N synthesis. In practice, one cannot directly implement

a frequency divider that implements non-integer divide ratio
except in a few very restrictive cases, so instead a divider that
is capable of switching between two integer divide ratios is
used, and one rapidly alternates between the two values in
such a way that the time-average is equal to the desired non-
integer divide ratio [13]. A block diagram for a fractional-N
synthesizer is shown in Figure 11. Divide ratios of N and
N + 1 are used, where N is the first integer below the desired
divide ratio, and N + 1 is the first integer above. For example,
if the desired divide ratio is 16.25, then one would alternate
between the ratios of 16 and 17, with the ratio of 16 being
used 75% of the time. Early attempts at fractional-N synthesis
alternated between integer divide ratios in a repetitive man-
ner, which resulted in noticeable spurs in the VCO output
spectrum. More recently, AX modulators have been used to
generate a random sequence with the desired duty cycle to
control the multi-modulus dividers [21]. This has the effect of
trading off the spurs for an increased noise floor, however the
AX. modulator can be designed so that most of the power in its
output sequence is at frequencies that are above the loop
bandwidth, and so are largely rejected by the loop.

osc 5 Ly
PFD . cP || LF vCo >
Jou
o FD
+N, N+1[

)

Fig. 11. The block diagram of a fractional-N frequency synthesizer.

Mod

The phase-domain small-signal model for the combination of
a fractional-N divider and a AX modulator is given in
Listing 8. It uses the noise_table function to construct a sim-
ple piece-wise linear approximation of the noise produced in
an n order AX modulator that is parameterized with the low
frequency noise generated by the modulator, along with the
corner frequency and the order.

VIII. ITTER

The signals at the input and output of a PLL are often binary
signals, as are many of the signals within the PLL. The noise
on binary signals is commonly characterized in terms of jitter.

Jitter is an undesired perturbation or uncertainty in the timing
of events. Generally, the events of interest are the transitions
in a signal. One models jitter in a signal by starting with a
noise-free signal v and displacing time with a stochastic pro-
cess j. The noisy signal becomes

vp(8) = v(t+j(1)) (34

with j assumed to be a zero-mean process and v assumed to be
a T-periodic function. j has units of seconds and can be inter-
preted as a noise in time. Alternatively, it can be reformulated
as a noise is phase, or phase noise, using

56

Listing 8 — Phase-domain fractional-N divider model.

‘include “discipline.h”

module divider(in, out);
input in; output out;
phase in, out;
parameter real ratio = 1 from (0:inf);/ divide ratio
parameter real n = 0 from [O:inf);

// white output phase noise (rads?/Hz)
parameter real fc = 0 from [0:inf);

// flicker noise corner frequency (Hz)
parameter real bw = 1 from (0:inf);// AX mod bandwidth
parameter integer order = 1 from (0:9);//AX mod order
parameter real fmax = 10xbw from (bw:inf);

// maximum frequency of concern

analog begin
Theta(out) <+ Theta(in) / (ratio + noise_table([

0, n,
bw, n,
fmax, n*pow((fmax/bw),order)
], “dsn”));
end
endmodule
&(1) = 2mf, j(0), (35)
where f, = 1/T and
- (1)
v (1) = v(t + g;t—ﬁ)) : 36)

A. Jitter Metrics

Define {t;} as the sequence of times for positive-going zero
crossings, henceforth referred to as transitions, that occur in
v,. The various jitter metrics characterize the statistics of this
sequence.

The simplest metric is the edge-to-edge jitter, J, which is
the variation in the delay between a triggering event and a
response event. When measuring edge-to-edge jitter, a clean
jitter-free input is assumed, and so the edge-to-edge jitter J.

is
Je (i) = /var(tl.) .

Edge-to-edge jitter assumes an input signal, and so is only
defined for driven systems. It is an input-referred jitter metric,
meaning that the jitter measurement is referenced to a point
on a noise-free input signal, so the reference point is fixed. No
such signal exists in autonomous systems. The remaining jit-
ter metrics are suitable for both driven and autonomous sys-
tems. They gain this generality by being self-referred,
meaning that the reference point is on the noisy signal for
which the jitter is being measured. These metrics tend to be a
bit more complicated because the reference point is noisy,
which acts to increase the measured jitter.

37

Edge-to-edge jitter is also a scalar jitter metric, and it does not
convey any information about the correlation of the jitter

between transitions. The next metric characterizes the corre-
lations between transitions as a function of how far the transi-
tions are separated in time.

Define J,(i) to be the standard deviation of #;,; — 1,
Ji (i) = /var(t,. R NE

Ji(i) is referred to as k-cycle jitter or long-term jitter'. It is a
measure of the uncertainty in the length of k cycles and has
units of time. Jj, the standard deviation of the length of a sin-
gle period, is often referred to as the period jitter, and it
denoted J, where J = J;.

(38)

Another important jitter metric is cycle-to-cycle jitter. Define
T; =t;,1 — t; to be the period of cycle i. Then the cycle-to-
cycle jitter J. is

J () = /var(T,.+ =T

Cycle-to-cycle jitter is like edge-to-edge jitter in that it is a
scalar jitter metric that does not contain information about the
correlation in the jitter between distant transitions. However,
it differs in that it is a measure of short-term jitter that is rela-
tively insensitive to long-term jitter [22]. As such, cycle-to-
cycle jitter is the only jitter metric that is suitable for use
when flicker noise is present. All other metrics are unbounded
in the presence of flicker noise.

(39

If j(¢) is either stationary or T-cyclostationary, then {¢;} is sta-
tionary, meaning that these metrics do not vary with i, and so
Jee(D), Ji (D), and J (i) can be shortened to Je,, J;, and J .

These jitter metrics are illustrated in Figure 12.

:{—:St,-
‘ t; kcycles Iti+k

]
.. T; Tty
cycle-to-cycle jitter
Jo(i) = Joar(T, 1= T))

Fig. 12. The various jitter metrics.

edge-to-edge jitter

Jo (i) = /var(Sti)

k-cycle jitter

J (i) = /var(tHk—t,-)

B. Types of Jitter

The type of jitter produced in PLLs can be classified as being
from one of two canonical forms. Blocks such as the PFD,
CP, and FD are driven, meaning that a transition at their out-
put is a direct result of a transition at their input. The jitter

1 Some people distinguish between k-cycle jitter and long-term jitter
by defining the long-term jitter J_, as being the k-cycle jitter J; as
k —> oo,

57

exhibited by these blocks is referred to as synchronous jitter,
it is a variation in the delay between when the input is
received and the output is produced. Blocks such as the OSC
and VCO are autonomous. They generate output transitions
not as a result of transitions at their inputs, but rather as a
result of the previous output transition. The jitter produced by
these blocks is referred to as accumulating jitter, it is a varia-
tion in the delay between an output transition and the subse-
quent output transition. Table I previews the basic
characteristics of these two types of jitter. The formulas for
jitter given in this table are derived in the next two sections.

TABLE I: THE TWO CANONICAL FORMS OF JITTER.

Jitter Type Circuit Type Period Jitter
svnchronous driven < Jvar(n,(1.))
YRERIONOS | (pFDICP, FD) T Tav)y/dr
accumulating (zg;oéw{/néuos) J = JaT

IX. SYNCHRONOUS JITTER

Synchronous jitter is exhibited by driven systems. In the PLL,
the PFD/CP and FDs exhibit synchronous jitter. In these com-
ponents, an output event occurs as a direct result of, and some
time after, an input event. It is an undesired fluctuation in the
delay between the input and the output events. If the input is a
periodic sequence of transitions, then the frequency of the
output signal is exactly that of the input, but the phase of the
output signal fluctuates with respect to that of the input. The
jitter appears as a modulation of the phase of the output,
which is why it is sometimes referred to as phase modulated
or PM jitter.

Let 1 be a stationary or T-cyclostationary process, then
Jeyne®) = (D)
vp(0) = v(t+ g, (1))

(40)
(41)

exhibits synchronous jitter. If | is further restricted to be a
white Gaussian stationary or T-cyclostationary process, then
vo(f) exhibits simple synchronous jitter. The essential charac-
teristic of simple synchronous jitter is that the jitter in each
event is independent or uncorrelated from the others, and (35)
shows that it corresponds to white phase noise. Driven cir-
cuits exhibit simple synchronous jitter if they are broadband
and if the noise sources are white, Gaussian and small. The
sources are considered small if the circuit responds linearly to
the noise, even though at the same time the circuit may be
responding nonlinearly to the periodic drive signal.

For systems that exhibit simple synchronous jitter, from (37),

o = VarGgn @) . (42)

Similarly, from (38),

"k(i) =
J () = A/Var([(i+/<)T+jsy,,c(l,4+k)]—[iTﬂ'sy,,c(t,')]) ,(44)

var(t; , - 1), 43)

J () = /2var(jsync(1i)). (45)
T = 270 (46)

Since jgync(?) is T-cyclostationary jgyne = jsync(#;) is indepen-
dent of , and so is J.. and J;. The factor of jﬁ in (46) stems
from the length of an interval including the independent vari-
ation from two transitions. From (46), J, is independent of k,
and so

J,=J for k=1,2,..m. @n

Using similar arguments, one can show that with simple syn-
chronous jitter,

J.=1J,

cc

(48)

Generally, the jitter produced by the PFD/CP and FDs is well
approximated by simple synchronous jitter if one can neglect
flicker noise.

A. Extracting Synchronous Jitter

The jitter in driven blocks, such as the PFD/CP or FDs, occurs
because of an interaction between noise present in the blocks
and the thresholds that are inherent to logic circuits.

In systems where signals are continuous valued, an event is
usually defined as a signal crossing a threshold in a particular
direction. The threshold crossings of a noiseless periodic sig-
nal, v(¢), are precisely evenly spaced. However, when noise is
added to the signal, vy(t) = v(¢) + n,(t), each threshold cross-
ing is displaced slightly. Thus, a threshold converts additive
noise to synchronous jitter.

The amount of displacement in time is determined by the
amplitude of the noise signal, n,(#) and the slew rate of the
periodic signal, dv(t.)/dt, as the threshold is crossed, as shown
in Figure 13 [23]. If the noise n, is stationary, then

var(n,)

= iy P “)

Va'r(isync(tc))

where ¢, is the time of a threshold crossing in v (assuming the
noise is small).

Av

J/i Noise
N Histogram

Fig. 13. How a threshold converts noise into jitter.

N\

Threshold
AN

At

Jitter Histogram

58

Generally n, is not stationary, but cyclostationary (refer back
to Section VI-A). It is only important to know when the noisy
periodic signal v,(f) crosses the threshold, so the statistics of
n, are only significant at the time when v,(¢) crosses the
threshold,

) var(n,(¢.))
= VY c 50
Var(]sync(tc)) [dv(tc)/dtlz ()
The jitter is computed from (42) using (49) or (50),
/ t
e = M . (51)

dv(t))/dt

To compute var(n,(z.)), one starts by driving the circuit with a
representative periodic signal, and then sampling v(¢) at inter-
vals of T to form the ergodic sequence {v(;)} where t; = ¢ for
some i. Then the variance is computed by computing the
power spectral density for the sequence by integrating from
f=-f/2 to f,/2. Recall that the noise is periodic in f with
period f,, = 1/T because n is a discrete-time sequence with rate
T.

In practice, this is done by using the strobed noise capability
of SpectreRFr to compute the power spectral density of the
sequence. When the strobed noise feature is active, the noise
produced by the circuit is periodically sampled to create a dis-
crete-time random sequence, as shown in Figure 9. SpectreRF
then computes the power-spectral density of the sequence.
The sample time should be adjusted to coincide with the
desired threshold crossings. Since the T-periodic cyclostation-
ary noise process is sampled every T seconds, the resulting
noise process is stationary. Furthermore, the noise present at
times other than at the sample points is completely ignored.

1) Extracting the Jitter of Dividers: To extract the jitter of a
divider, drive the divider with a representative periodic input
signal and perform a PSS analysis to determine the threshold
crossing times and the slew rate (dv/dr) at these times. Then
use SpectreRF’s strobed PNoise analysis to compute S,(f).
The sample point should be set to coincide with the point
where the output signal crosses the threshold of the subse-
quent stage (the phase detector) in the appropriate direction.
When running PNoise analysis, assure that the maxsidebands
parameter is set sufficiently large to capture all significant
noise folding. A large value will slow the simulation. To
reduce the number of sidebands needed, use T as small as
possible. SpectreRF computes the power spectral density,
which is integrated to compute the total noise at the sample
points,

/2

var(n,(t.)) = JJO S, (f,t)df.
/2 v

(52)

Then J, is computed from (51).

+ The strobed-noise feature of SpectreRF is also referred to as its
time-domain noise feature.

With ripple counters, one usually only characterizes one stage
at a time. The total jitter due to noise in the ripple counter is
then computed by assuming that the jitter in each stage is
independent (again, this is true for device noise, but not for
noise coupling into the divider from external sources) and
taking the square-root of the sum of the square of the jitter on
each stage.

Unlike in ripple counters, jitter does not accumulate with syn-
chronous counters. Jitter in a synchronous counter is indepen-
dent of the number of stages and consists only of the jitter of
its clock along with the jitter of the last stage.

2) Extracting the Jitter of the Phase Detector: The PFD/CP is
not followed by a threshold. Rather, it feeds into the LF,
which is sensitive to the noise emitted by the CP at all times,
not just during transitions. This argues that the noise of the
PFD/CP be modeled as a continuous noise current. However,
as mentioned earlier, doing so is problematic for simulators
and would require very tight tolerances and small time steps.
So instead, the noise of the PFD/CP is referred back to its
inputs. The inputs of the PFD/CP are edge triggered, so the
noise can be referred back as jitter.

To extract the input-referred jitter of a PFD/CP, drive both
inputs with periodic signals with offset phase so that the PFD/
CP produces a representative output. Use SpectreRF’s PNoise
analysis to compute the output noise over the total bandwidth
of the PFD/CP (in this case, use the conventional noise analy-
sis rather than the strobed noise analysis). Choose the fre-
quency range of the analysis so that the total noise at
frequencies outside the range is negligible. Thus, the noise
should be at least 40 dB down and dropping at the highest fre-
quency simulated. Integrate the noise over frequency and
apply Wiener-Khinchin Theorem [24] to determine

var(n) = j S, (fdf,

—00

(53)

the total output noise current squared [19]. Then either calcu-
late or measure the effective gain of the PFD/CP, K. Scale
the gain so that it has the units of amperes per second. Then
divide the total output noise current by the gain and account
for there being two transitions per cycle to distribute the noise
over to determine the input-referred jitter for the PFD/CP,

T

7 _ var(n)
ee -
PFDICP 27K 4,

> (54)

As before, when running PNoise analysis, assure that the
maxsidebands parameter is set sufficiently large to capture all
significant noise folding. A large value will slow the simula-
tion. To reduce the number of sidebands needed, use T as
small as possible.

X. ACCUMULATING JITTER

Accumulating jitter is exhibited by autonomous systems, such
as oscillators, that generate a stream of spontaneous output

59

transitions. In the PLL, the OSC and VCO exhibit accumulat-
ing jitter. Accumulating jitter is characterized by an undesired
variation in the time since the previous output transition, thus
the uncertainty of when a transition occurs accumulates with
every transition. Compared with a jitter free signal, the fre-
quency of a signal exhibiting accumulating jitter fluctuates
randomly, and the phase drifts without bound. Thus, the jitter
appears as a modulation of the frequency of the output, which
is why it is sometimes referred to as frequency modulated or
FM jitter.

Again assume that | be a stationary or T-cyclostationary pro-
cess, then

1

Jaee®) = [A0 (55)
0

vo(8) = vt + oo (1) (56)

exhibits accumulating jitter. While 7 is cyclostationary and so
has bounded variance, (55) shows that the variance of j,.,
and hence the phase difference between v(¢) and v (1), is
unbounded.

If 1 is further restricted to be a white Gaussian stationary or
T-cyclostationary random process, then v, (¢) exhibits simple
accumulating jitter. In this case, the process {j,.c(iT)} that
results from sampling j,.. every T seconds is a discrete
Wiener process and the phase difference between v(iT) and
v,(iT) is a random walk [19]. As shown next, simple accumu-
lating jitter corresponds to oscillator phase noise that results
from white noise sources.

The essential characteristic of simple accumulating jitter is
that the incremental jitter that accumulates over each cycle is
independent or uncorrelated. Autonomous circuits exhibit
simple accumulating jitter if they are broadband and if the
noise sources are white, Gaussian and small. The sources are
considered small if the circuit responds linearly to the noise,
though at the same time the circuit may be responding nonlin-
early to the oscillation signal. An autonomous circuit is con-
sidered broadband if there are no secondary resonant
responses close in frequency to the primary resonance. !

For systems that exhibit simple accumulating jitter, each tran-
sition is relative to the previous transition, and the variation in
the length of each period is independent, so the variance in

the time of each transition accumulates,
J = JkJ for k=0,1,2,..., (57)

where

J = JVarGoe (t; + 1) ~ var(. () - (58)

1 Oscillators are strongly nonlinear circuits undergoing large peri-
odic variations, and so signals within the oscillator freely mix up and
down in frequency by integer multiples of the oscillation frequency.
For this reason, any low frequency time constants or resonances in
supply or bias lines would effectively act like close-in secondary res-
onances. In fact, this is the most likely cause of such phenomenon.

Similarly,
Jo = 2.
Generally, the jitter produced by the OSC and VCO are well

approximated by simple accumulating jitter if one can neglect
flicker noise.

(59

A. Extracting Accumulating Jitter

The jitter in autonomous blocks, such as the OSC or VCO, is
almost completely due to oscillator phase noise. Oscillator
phase noise is a variation in the phase of the oscillator as it
proceeds along its limit cycle.

In order to determine the period jitter J of v, (¢) for a noisy
oscillator, assume that it exhibits simple accumulating jitter
so that 1 in (55) is a white Gaussian T-cyclostationary noise
process (this excludes flicker noise) with a power spectral
density of

SN = a, (60)
and an autocorrelation function of
R (1), 1) = ad(1; - 1y), (61)
where & is a Kronecker delta function. Then
!
Jaed® = [My (62)
0

is a Wiener process [19], which has an autocorrelation func-
tion of

R].m(tl, t)) = amin(t}, t,). (63)

The period jitter is the standard deviation of the variation in
one period, and so

J? = var(oe (t+ 1) =) (64)
J2 = ElUeet + D = Jyee®)?] (65)
J2 = Elgeo(t + D? = 2ot + Do+, (O] (66)

J? = Eljgeo(t + D2 = 2By (t + Do (D] + Elj (9?1 (67)
J2 = R.m(t +T,t+7) —2Rja (t+T,0+R, (11) (68)

J
J2 = a(t+T)-2at +at (69)
J = JaT (70)

‘We now have a way of relating the jitter of the oscillator to the
PSD of n. However, 1 is not measurable, so instead the jitter
is related to the phase noise Sy. To do so, consider simple
accumulating jitter written in terms of phase,

!
bacel® = 20fyipee® = 20f, [n(ae, D)
0
where f, = 1/T. From (60) and (71) the PSD of §,. is
@nf))* af?
S, (AN = =22,
4 = A Af2 72

60

From (26)

_1 _]
LASf) = 2S¢acc(Af) = -Z—Zﬁ' (73)
2
a= ZL(Af)%. (74)

Determine a by choosing Af well above the comer frequency,
Jeornep to avoid ambiguity and well below f, to avoid the noise
from other sources that occur at these frequencies.

1) Example: To compute the jitter of an oscillator, an RF sim-
ulator such as SpectreRF is used to find £ and f, of the oscil-
lator. Given these, a is found with (74), J is found with (70)
and J, is found with (57). This procedure is demonstrated for
the oscillator shown in Figure 14. This is a very low noise
oscillator designed in 0.35u CMOS by of Rael and Abidi
[25]. The frequency of oscillation is 1.1 GHz and the resona-
tor has a loaded Q of 6.

Fig. 14. Differential LC oscillator.

The procedure starts by using an RF simulator such as Spec-
treRF to compute the normalized phase noise L. Its PNoise
analysis is used, with the maxsidebands parameter set to at
least 10 to adequately account for noise folding within the
oscillator.” In this case, £=-110 dBc at 100 kHz offset from
the carrier. Apply (74) to compute a from L, where L(Af) =
101!, Af= 100 kHz, and f, = 1.1 GHz,

a= 2-10‘“(

5 \2
10) = 165.3x10°2". 75)

1.1x10°
The period jitter J is then computed from (70),

—21
J=JET=J%= /%:123&. (76)
-)

In this example, the noise was extracted for the VCO alone. In
practice, the LF is generally combined with the VCO before
extracting the noise so that the noise of the LF is accounted
for.

t At one point it was mistakenly suggested in the documentation for
SpectreRF that maxsidebands should be set to 0 for oscillators. This
causes SpectreRF to ignore all noise folding and results in a signifi-
cant underestimation of the total noise.

XI. IITTER OF A PLL

If a PLL synthesizer is constructed from blocks that exhibit
simple synchronous and accumulating jitter, then the jitter
behavior of the PLL is relatively easy to estimate [26].
Assume that the PLL has a closed-loop bandwidth of f; , and
that 1 = 1/2nf;, then for k such that kT « 1, , jitter from the
VCO dominates and the PLL exhibits simple accumulating
jitter equal to that produced by the VCO. Similarly, at large k
(low frequencies), the PLL exhibits simple accumulating jitter
equal to that produced by the OSC. Between these two
extremes, the PLL exhibits simple synchronous jitter. The
amount of which depends on the characteristics of the loop
and the level of synchronous jitter exhibited by the FDs and
the PFD/CP. The behavior of such a PLL is shown in
Figure 15.

Accumulating jitter
o from OSC
Accumulating jitter /
from VCO
lo
) . Synchronous jitter from
J . PFD/CP, FDs

Y

AT 1ogiy

Fig. 15. Long-term jitter (J;) for an idealized PLL as a function of
the number of cycles.

XII. MODELING A PLL WITH JITTER

The basic behavioral models for the blocks that make up a
PLL are well known and so will not be discussed here in any
depth [27, 28]. Instead, only the techniques for adding jitter to
the models are discussed.

Jitter is modeled in an AHDL by dithering the time at which
events occur. This is efficient because it does not create any
additional activity, rather it simply changes the time when
existing activity occurs. Thus, models with jitter can run as
efficiently as those without.

A. Modeling Driven Blocks

A feature of Verilog-A allows especially simple modeling of
synchronous jitter. The transition() function, which is used to
model signal transitions between discrete levels, provides a
delay argument that can be dithered on every transition. The
delay argument must not be negative, so a fixed delay that is
greater than the maximum expected deviation of the jitter
must be included. This approach is suitable for any model that
exhibits synchronous jitter and generates discrete-valued out-
puts. It is used in the Verilog-A divider module shown in
Listing 9, which models synchronous jitter with (41) where
Jsync 18 @ stationary white discrete-time Gaussian random pro-
cess. It is also used in Listing 10, which models a simple
PFD/CP.

1) Frequency Divider Model: The model, given in Listing 9,
operates by counting input transitions. This is done in the

61

Listing 9 — Frequency divider that models synchronous jitter.

‘include “discipline.h”
module divider (out, in);
input in; output out; electrical in, out;

parameter real Vio=-1, Vhi=1;
parameter integer ratio=2 from [2:inf);
parameter integer dir=1 from [-1:1] exclude 0;
// dir=1 for positive edge trigger
// dir=—1 for negative edge trigger
parameter real tt=1n from (0:inf);
parameter real td=0 from (0:inf);
parameter real jitter=0 from [0:td/5);/ edge-to-edge jitter
parameter real ttol=1p from (0:td/5);/ ttol << jitter

integer count, n, seed;
real dt;

analog begin
@ (initial_step) seed = -311;

@ (cross(V(in) — (Vhi + Vlo)/2, dir, ttol)) begin
// count input transitions
count = count + 1;
if (count >= ratio)
count = 0;
n = (2*count >= ratio);
// add jitter
dt = jitter+$dist_normal(seed,0,1);
end

V(out) <+ transition(n ? Vhi : Vio, td+dt, tt);

end
endmodule

@cross block. The cross function triggers the @ block at the
precise moment when its first argument crosses zero in the
direction specified by the second argument. Thus, the @
block is triggered when the input crosses the threshold in the
user specified direction. The body of the @ block increments
the count, resets it to zero when it reaches ratio, then deter-
mines if count is above or below its midpoint (n is zero if the
count is below the midpoint). It also generates a new random
dither dT that is used later. Outside the @ block is code that
executes continuously. It processes n to create the output. The
value of the ?: operator is Vhiif nis 1 and Vlo if n is 0. Finally,
the transition function adds a finite transition time of tt and a
delay of td + dt. The finite transition time removes the discon-
tinuities from the signal that could cause problems for the
simulator. The jitter is embodied in dt, which varies randomly
from transition to transition. To avoid negative delays, td must
always be larger than dt. This model expects jitter to be speci-
fied as J,, as computed with (51).

2) PFD/CP Model: The model for a phase/frequency detector
combined with a charge pump is given in Listing 10. It imple-
ments a finite-state machine with a three-level output, -1, 0
and +1. On every transition of the VCO input in direction dir,
the output is incremented. On every transition of the reference

Listing 10 — PFD/CP model with synchronous jitter.

‘include “discipline.h”
module pfd_cp (out, ref, vco);
input ref, vco; output out; electrical ref, vco, out;

parameter real lout=100u;
parameter integer dir=1 from [-1:1] exclude 0;
// dir=1 for positive eage trigger
// dir=—1 for negative edge trigger
parameter real tt=1n from (O:inf);
parameter real td=0 from (0:inf);
parameter real jitter=0 from [0:td/5);/ edge-to-edge jitter
parameter real ttol=1p from (0:td/5);/ ttol << jitter

integer state, seed;
real dt;

analog begin
@ (initial_step) seed = 716;

@(cross(V(ref), dir, ttol)) begin

if (state > —1) state = state — 1;

dt = jitter«$dist_normal(seed,0,1);
end

@ (cross(V(vco), dir, ttol)) begin

if (state < 1) state = state + 1;

dt = jitterx$dist_normal(seed,0,1);
end

I(out) <+ transition(lout+state, td + dt, tt);
end
endmodule

input in the direction dir, the output is decremented. If both
the VCO and reference inputs are at the same frequency, then
the average value of the output is proportional to the phase
difference between the two, with the average being negative if
the reference transition leads the VCO transition and positive
otherwise [3]. As before, the time of the output transitions is
randomly dithered by dt to model jitter. The output is mod-
eled as an ideal current source and a finite transition time pro-
vides a simple model of the dead band in the CP.

B. Modeling Accumulating Jitter

1) OSC Model: The delay argument of the transition() func-
tion cannot be used to model accumulating jitter because of
the accumulating nature of this type of jitter. When modeling
a fixed frequency oscillator, the timer() function is used as
shown in Listing 11. At every output transition, the next tran-
sition is scheduled using the timer() function to be
T/K +J8/4/K in the future, where 8 is a unit-variance zero-
mean random process and K is the number of output transi-
tions per period. Typically, K = 2.

C. VCO Model

A VCO generates a sine or square wave whose frequency is
proportional to the input signal level. VCO models, given in

62

Listing 11 — Fixed frequency oscillator with accumulating jitter.

“include “discipline.h”
modaule osc (out);
output out; electrical out;

parameter real freqg=1 from (0:inf);

parameter real Vio=-1, Vhi=1;

parameter real tt=0.01/freq from (0:inf);

parameter real jitter=0 from [0:0.1/freq);// period jitter

integer n, seed;
real next, dT;

analog begin
@ (initial_step) begin
seed = 286;
next = 0.5/freq + $abstime;
end

@ (timer(next)) begin
n=1In;
dT = jitter+$dist_normal(seed,0,1);
next = next + 0.5/freq + 0.707*dT;
end

V(out) <+ transition(n ? Vhi : Vig, 0, tt);

end
endmodule

Listings 12 and 13, are constructed using three serial opera-
tions, as shown in Figure 16. First, the input signal is scaled to
compute the desired output frequency. Then, the frequency is
integrated to compute the output phase. Finally, the phase is
used to generate the desired output signal. The phase is com-
puted with idtmod, a function that provides integration fol-
lowed by a modulus operation. This serves to keep the phase
bounded, which prevents a loss of numerical precision that
would otherwise occur when the phase became large after a
long period of time. Output transitions are generated when the
phase passes —1/2 and /2.

) Bl
Vin b e D«b Vout

Jo

Fig. 16. Block diagram of VCO behavioral model that includes
jitter.

The jitter is modeled as a random variation in the frequency
of the VCO. However, the jitter is specified as a variation in
the period, thus it is necessary to relate the variation in the
period to the variation in the frequency. Assume that without
jitter, the period is divided into K equal intervals of duration t
= T/K = 1/Kf,. The frequency deviation will be updated
every interval and held constant during the intervals. With jit-
ter, the duration of an interval is

T, = T+AT;. an

At is a random variable with variance

var(At) = % L

T (78)

Therefore,

Jo;
AT, = —

l
JK
where 0 is a zero-mean unit-variance Gaussian random pro-
cess. The dithered frequency is
1

79

1(1) Kt fe
L= = = = 80
f; K T+AT! | _A_T‘ l+KATifc ()
T
Let AT; = KAT,, then
Je
P S 1
Ji 1 +AT,f, @1

Finally var(t) = J¥K, so At; = J8,/JK and AT, = JKJS,.

The @cross statement is used to determine the exact time
when the phase crosses the thresholds, indicating the begin-
ning of a new interval. At this point, a new random trial §; is
generated.

The final model given in Listing 12. This model can be easily
modified to fit other needs. Converting it to a model that gen-
erates sine waves rather than square waves simply requires
replacing the last two lines with one that computes and out-
puts the sine of the phase. When doing so, consider reducing
the number of jitter updates to one per period, in which case
the factor of 1.414 should be changed to 1.

Listing 13 is a Verilog-A model for a quadrature VCO that
exhibits accumulating jitter. It is an example of how to model
an oscillator with multiple outputs so that the jitter on the out-
puts is properly correlated.

D. Efficiency of the Models

Conceptually, a model that includes jitter should be just as
efficient as one that does not because jitter does not increase
the activity of the models, it only affects the timing of particu-
lar events. However, if jitter causes two events that would nor-
mally occur at the same time to be displaced so that they are
no longer coincident, then a circuit simulator will have to use
more time points to resolve the distinct events and so will run
more slowly. For this reason, it is desirable to combine jitter
sources to the degree possible.

To make the HDL models even faster, rewrite them in either
Verilog-HDL or Verilog-AMS. Be sure to set the time resolu-
tion to be sufficiently small to prevent the discrete nature of
time in these simulators from adding an appreciable amount
of jitter.

1) Including Synchronous Jitter into OSC: One can combine
the output-referred noise of FD,, and FDy and the input-

63

Listing 12 — VCO model that includes accumulating jitter.

“include “discipline.h”
“include “constants.h”

modaule vco (out, in);
input in; output out; electrical out, in;

parameter real Vmin=0;

parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Fmin=1 from (O:inf);

parameter real Fmax=2*xFmin from (Fmin:inf);
parameter real Vio=—1, Vhi=1;

parameter real tt=0.01/Fmax from (0:inf);

parameter real jitter=0 from [0:0.25/Fmax);/ period jitter
parameter real ttol=1u/Fmax from (0:1/Fmax);

real freq, phase, dT;
integer n, seed;

analog begin
@ (initial_step) seed = -561;

// compute the freq from the input voltage
freq = (V(in) — Vmin)*(Fmax — Fmin) / (Vmax — Vmin})
+ Fmin;

// bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

// add the phase noise
freq = freq/(1 + dTxfreq);

// phase is the integral of the freq modulo 2n
phase = 2+’M_Plxidtmod(freq, 0.0, 1.0, —0.5);

// update jitter twice per period
// 1.414=sqri(K), K=2 jitter updates/period
@ (cross(phase + "M_Pl/2, +1, ttol) or
cross(phase — "M_PI/2, +1, ttol)) begin
dT = 1.414+jitter$dist_normal(seed,0, 1);
n = (phase >= —M_PI/2) && (phase < "M_PI/2);
end

// generate the output

V(out) <+ transition(n ? Vhi : Vio, 0, tt);
end
endmodule

referred noise of the PFD/CP with the output noise of OSC. A
modified fixed-frequency oscillator model that supports two
jitter parameters and the divide ratio M is given in Listing 14
(more on the effect of the divide ratio on jitter in the next sec-
tion). The accJitter parameter is used to model the accumulat-
ing jitter of the reference oscillator, and the syncditter
parameter is used to model the synchronous jitter of FD,,,
FDy and PFD/CP. Synchronous jitter is modeled in the oscil-
lator without using a nonzero delay in the transition function.
This is a more efficient approach because it avoids generating
two unnecessary events per period. To get full benefit from
this optimization, a modified PFD/CP given in Listing 15 is
used. This model runs more efficiently by removing support
for jitter and the td parameter.

Listing 13 — Quadrature Differential VCO model that includes
accumnulating jitter.

“include “discipline.h”
“include “constants.h”

module quadVco (Plout,Nlout, PQout,NQout, Pin,Nin);

electrical Plout, Nlout, PQout, NQout, Pin, Nin;
output Plout, Nlout, PQout, NQout;
input Pin, Nin;

parameter real Vmin=0;

parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Fmin=1 from (0:inf);

parameter real Fmax=2+Fmin from (Fmin:inf);
parameter real Vio=—1, Vhi=1;

parameter real jitter=0 from [0:0.25/Fmax);/ period jitter
parameter real ttol=1u/Fmax from (0:1/Fmax);
parameter real tt=0.01/Fmax;

real freq, phase, dT;
integer i, q, seed;

analog begin
@ (initial_step) seed = 133;

// compute the freq from the input voltage
freq = (V(Pin,Nin) — Vmin) * (Fmax — Fmin) / (Vmax ~ Vmin)
+ Fmin;

// bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

// add the phase noise
freq = freq/(1 + dTxfreq);

// phase is the integral of the freq modulo 2r
phase = 2+M_Pl*idtmod(freq, 0.0, 1.0, -0.5);

// update jitter where phase crosses n/2
/ 2=sqri(K), K=4 jitter updates per period
@ (cross(phase — 3«'M_Pl/4, +1, ttol) or
cross(phase — "M_Pl/4, +1, ttol) or
cross(phase + "M_Pl/4, +1, ttol) or
cross(phase + 3+'M_Pl/4, +1, ttol)) begin
dT = 2+jitter+$dist_normal(seed,0,1);
i = (phase >= ~3*'"M_PI/4) && (phase < "M_Pl/4);
g = (phase >= —M_Pl/4) && (phase < 3+'M_PI/4);
end

// generate the | and Q outputs
V(Plout) <+ transition(i ? Vhi: Vio, 0, tt);
V(Nlout) <+ transition(i ? Vlo : Vhi, 0, tt);
V(PQout) <+ transition(q ? Vhi : Vio, 0, tt);
V(NQout) <+ transition(q ? Vlo : Vhi, 0, tt);
end
endmodule

2) Merging the VCO and FDy;: If the output of the VCO is
not used to drive circuitry external to the synthesizer, if the
divider exhibits simple synchronous jitter, and if the VCO
exhibits simple accumulating jitter, then it is possible to
include the frequency division aspect of the FDy as part of the

64

Listing 14 — Fixed-frequency oscillator with accumulating and
synchronous jitter.

“include “discipline.h”
module osc (out);
output out; electrical out;

parameter real freq=1 from (0:inf);
parameter real ratio=1 from (0:inf);
parameter real Vlio=—1, Vhi=1;
parameter real tt=0.01+ratio/freq from (0:inf);
parameter real accJitter=0 from [0:0.1/freq); / period jitter
parameter real syncJitter=0 from [0:0.1+*ratio/freq);
// edge-to-edge jitter

integer n, accSeed, syncSeed;
real next, dT, dt, accSD, syncSD;

analog begin
@ (initial_step) begin

accSeed = 286;

syncSeed = —459;

accSD = acclitterssqrt(ratio/2);

syncSD = syncditter;

next = 0.5/freq + $abstime;
end

@(timer(next + dt)) begin
n=1In;
dT = accSD*$dist_normal(accSeed,0,1);
dt = syncSD+$dist_normal(syncSeed,0,1);
next = next + 0.5+ratio/freq + dT;

end

V(out) <+ transition(n ? Vhi : Vlo, 0, tt);
end
endmodule

VCO by simply adjusting the VCO gain and jitter. If the
divide ratio of FDy, is large, the simulation runs much faster
because the high VCO output frequency is never generated.
The Verilog-A model for the merged VCO and FDy is given
in Listing 16. It also includes code for generating a logfile
containing the length of each period. The logfile is used in
Section XIII when determining Sy co, the power spectral den-
sity of the phase of the VCO output.

Recall that the synchronous jitter of FDy; and FDy has
already been included as part of OSC, so the divider model
incorporated into the VCO is noiseless and the jitter at the
output of the noiseless divider results only from the VCO jit-
ter. Since the divider outputs one pulse for every N pulses at
its input, the variance in the output period is the sum of the
variance in N input periods. Thus, the period jitter at the out-
put, Jgp, is J/N times larger than the period jitter at the input,
Jvco, or

Jgp = A/]—\}Jvco. (82)

Listing 15 — PFD/CP without jitter.

‘include “discipline.h”
module pfd_cp (out, ref, vco);
input ref, vco; output out; electrical ref, vco, out;

parameter real lout=100u;
parameter integer dir=1 from [-1:1] exclude 0;
// dir = 1 for positive edge trigger
// dir = ~1 for negative edge trigger
parameter real tt=1n from (0:inf);
parameter real ttol=1p from (0:inf);

integer state;

analog begin
@ (cross(V(ref), dir, ttol)) begin
if (state > —1) state = state — 1;
end
@(cross(V(vco), dir, ttol)) begin
if (state < 1) state = state + 1;
end

I(out) <+ transition(lout * state, 0, tt);
end
endmodule

Thus, to merge the divider into the VCO, the VCO gain must
be reduced by a factor of N, the period jitter increased by a
factor of «/ITI , and the divider model removed.

After simulation, it is necessary to refer the computed results,
which are from the output of the divider, to the output of
VCO, which is the true output of the PLL. The period jitter at
the output of the VCO, Jy g, can be computed with (82).

To determine the effect of the divider on Sq,(m), square both
sides of (82) and apply (70)

agpTrp
aycoTvco = N (83)
TVCO = TFD /N, and so
ayco = agp (84)
From (72),
2 2
Svcoz; SFDiz_ @5
fico fép
Finally, fVCO =N fFD’ and so
Svco=N?*Sgp. (86)

Once FDy is incorporated into the VCO, the VCO output sig-
nal is no longer observable, however the characteristics of the
VCO output are easily derived from (82) and (86), which are
summarized in Table II.

It is interesting to note that while the frequency at the output
of FDy is N times smaller than at the output of the VCO,
except for scaling in the amplitude, the spectrum of the noise
close to the fundamental is to a first degree unaffected by the
presence of FDy. In particular, the width of the noise spec-

65

Listing 16 — VCO with FDy,.

‘include “discipline.h”
module vco (out, in);
input in; output out; electrical out, in;

parameter real Vmin=0;

parameter real Vmax=Vmin+1 from (Vmin:inf);

parameter real Fmin=1 from (0:inf);

parameter real Fmax=2*Fmin from (Fmin:inf);

parameter real ratio=1 from (0:inf);

parameter real Vio=—1, Vhi=1,

parameter real tt=0.01+ratio/Fmax from (0:inf);

parameter real jitter=0 from [0:0.25*ratio/Fmax);
// VCO period jitter

parameter real ttol=1uxratio/Fmax from (O:ratio/Fmax);

parameter real outStart=inf from (1/Fmin:inf);

real freq, phase, dT, delta, prev, Vout;
integer n, seed, fp;

analog begin
@ (initial_step) begin
seed = -561;

delta = jitter * sqrt(2*ratio);
fp = $fopen(“periods.m”);
Vout = Vlo;

end

// compute the freq from the input voltage
freq = (V(in) = Vmin)*(Fmax — Fmin) / (Vmax — Vmin)
+ Fmin;

// bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

// apply the frequency divider, add the phase noise
freq = (freq / ratio)/(1 + dT = freq / ratio);

// phase is the integral of the freq modulo 1
phase = idtmod(freq, 0.0, 1.0, -0.5);

// update jitter twice per period
@(cross(phase —0.25, +1, ttol)) begin
dT = delta * $dist_normal(seed, 0, 1);
Vout = Vhi;
end
@(cross(phase + 0.25, +1, ttol)) begin
dT = delta * $dist_normal(seed, 0, 1);
Vout = Vio;
if (fabstime >= outStart) $fstrobe(fp, “%0.10e”,
$abstime - prev);
prev = $abstime;
end
V(out) <+ transition(Vout, 0, tt);
end
endmodule

trum is unaffected by FDy. This is extremely fortuitous,
because it means that the number of cycles we need to simu-
late is independent of the divide ratio N. Thus, large divide
ratios do not affect the total simulation time.

TABLE II: CHARACTERISTICS OF VCO OUTPUT RELATIVE TO THE
OUTPUT OF FDpy ASSUMING THE VCO EXHIBITS SIMPLE

ACCUMULATING JITTER AND THE FD), IS NOISE FREE.

Frequency Jitter Phase Noise

JED = N2
fyeco = Nfep TN Soveo = N°S

‘,VC = ¢FD

To understand why FDy, does not affect the width of the noise
spectrum, recall that while we started with a jitter that varied
continuously with time, j(¢) in (34), for either efficiency or
modeling reasons we eventually sampled it to end up with a
discrete-time version. The act of sampling the jitter causes the
spectrum of the jitter to be replicated at the multiples of the
sampling frequency, which adds aliasing. This aliasing is visi-
ble, but not obvious, at high frequencies in Figure 18. How-
ever, especially with accumulating jitter, the phase noise
amplitude at low frequencies is much larger than the aliased
noise, and so the close-in noise spectrum is largely unaffected
by the sampling. The effect of FDy is to decimate the sampled
jitter by a factor of N, which is equivalent to sampling the jit-
ter signal, j(r), at the original sample frequency divided by N.
Thus, the replication is at a lower frequency, the amplitude is
lower, and the aliasing is greater, but the spectrum is other-
wise unaffected.

XIII. SIMULATION AND ANALYSIS

The synthesizer is simulated using the netlist from Listing 18
and the Verilog-A descriptions in Listings 14-16, modifying
them as necessary to fit the actual circuit. The simulation
should cover an interval long enough to allow accurate Fou-
rier analysis at the lowest frequency of interest (F,,;,). With
deterministic signals, it is sufficient to simulate for K cycles
after the PLL settles if Fp;;, = 1/(TK). However, for these sig-
nals, which are stochastic, it is best to simulate for 10K to
100K cycles to allow for enough averaging to reduce the
uncertainty in the result.

One should not simply apply an FFT to the output signal of
the VCO/FDy, to determine L(Af) for the PLL. The result
would be quite inaccurate because the FFT samples the wave-
form at evenly spaced points, and so misses the jitter of the
transitions. Instead, L(Af) can be measured with Spectre’s
Fourier Analyzer, which uses a unique algorithm that does
accurately resolve the jitter [11]. However, it is slow if many
frequencies are needed and so is not well suited to this appli-
cation.

Unlike L(Af), S¢(Af) can be computed efficiently. The Ver-
ilog-A code for the VCO/FD), given in Listing 16 writes the
length of each period to an output file named periods.m. Writ-
ing the periods to the file begins after an initial delay, speci-
fied using outStart, to allow the PLL to reach steady state.
This file is then processed by Matlab from MathWorks using
the script shown in Listing 17. This script computes So(Af),

66

the power spectral density of ¢, using Welch’s method [28].
The frequency range is from f,/2 to f,,/nfft. The script com-

Listing 17 — Matlab script used for computing Sy(Af). These results
must be further processed using Table II to map them to the output of
the VCO.

% Process period data to compute S¢(Aj)

echo off;

nfft=512; % should be power of two
winLength=nfft;

overlap=nfft/2;

winNBW=1.5; % Noise bandwidth given in bins

% Load the data from the file generated by the VCO
load periods.m;

% output estimates of period and jitter
T=mean(periods);

J=std(periods);

maxdT = max(abs(periods—T))/T;

fprintf(‘T = %.3gs, F = %.3gHz\n",T, 1/T);

fprintf(‘Jabs = %.3gs, Jrel = %.29%%\n’, J, 100+J/T);
fprintf(‘'max dT = %.29%%\n’, 100*maxdT);
fprintf(‘periods = %d, nfft = %d\n’, length(periods), nfft);

% compute the cumulative phase of each transition
phases=2+pi*cumsum(periods)/T;

% compute power spectral density of phase
[Sphi,fl=psd(phases,nfft, 1/T,winLength,overlap,linear’);

% correct for scaling in PSD due to FFT and window
Sphi=winNBWx*Sphi/nfft;

% plot the results (except at DC)

K = length(f);

semilogx(f(2:K),10*log10(Sphi(2:K)));

title(‘Power Spectral Density of VCO Phase’);

xlabel(‘Frequency (Hz)’);

ylabel(‘S phi (dB/Hz)’);

rbw = winNBW/(Txnfft);

RBW=sprintf(‘Resolution Bandwidth = %.0f Hz (%.0f dB)’,
rbw, 10+log10(rbw));

imtext(0.5,0.07, RBW);

putes S¢(Af) with a resolution bandwidth of row. ! Normally,
S¢(Af) is given with a unity resolution bandwidth. To com-
pensate for a non-unity resolution bandwidth, broadband sig-
nals such as the noise should be divided by rbw. Signals with
bandwidth less than rbw, such as the spurs generated by leak-
age in the CP, should not be scaled. The script processes the
output of VCO/FDy,. The results of the script must be further
processed using the equations in Table II to remove the effect
of FDN.

+ The Hanning window used in the psd() function has a resolution
bandwidth of 1.5 bins [29]. Assuming broadband signals, Matlab
divides by 1.5 inside psd() to compensate. In order to resolve narrow-
band signals, the factor of 1.5 is removed by the script, and instead
included in the reported resolution bandwidth.

XIV. EXAMPLE

These ideas were applied to model and simulate a PLL acting
as a frequency synthesizer. A synthesizer was chosen with f.¢
= 25 MHz, f,,, = 2 GHz, and a channel spacing of 200 kHz.
As such, M = 125 and N = 10,000.

The noise of OSC is -95 dBc/Hz at 100 kHz. Applying (74)
to compute a, where L(Af) =316 x 10712, Af = 100 kHz, and
f, =25 MHz, gives a= 1014, The period jitter J is then com-
puted from (70), giving J = 20 ps.

The noise of VCO is —48 dBc/Hz at 100 kHz. Applying (74)
and (70) with L(Af) = 1.59 x 107, Af = 100 kHz, and f, =
2 GHz, gives a = 7.9 x 10~'* and an period jitter of J = 6.3 ps.

The period jitter of the PFD/CP and FDs was found to be
2 ns. The FDs were included into the oscillators, which sup-
presses the high frequency signals at the input and output of
the synthesizer. The netlist is shown in Listing 18. The results
(compensated for non-unity resolution bandwidth (-28 dB)
and for the suppression of the dividers (80 dB)) are shown in
Figures 17-20. The simulation took 7.5 minutes for 450k
time-points on a HP 9000/735. The use of a large number of
time points was motivated by the desire to reduce the level of
uncertainty in the results. The period jitter in the PLL was
found to be 9.8 ps at the output of the VCO.

Listing 18 — Spectre netlist for PLL synthesizer.

// PLL-based frequency synthesizer that models jitter
simulator lang=spectre

ahdl_include “osc.va” // Listing 14
ahdl_include “pfd_cp.va" // Listing 15
ahdl_include “vco.va” //Listing 16

Osc (in) freq=25MHz ratio=125\
accdlitter=20ps syncditter=2ns

0sC

PFD (errinfb)pfd_cp lout=500ua
C1 (errc) capacitor c=3.125nF
R (c 0) resistor r=10k
C2 (c 0) capacitor c=625pF
VCO (fberr) vco Fmin=1GHz Fmax=3GHz \
Vmin=—4 Vmax=4 ratio=10000 \
jitter=6ps outStart=10ms
JitterSim tran stop=60ms
Oscé& | in err VCO &
+125 PFD & CP—I" 10,000

c
b
The low-pass filter LF blocks all high frequency signals from
reaching the VCO, so the noise of the phase lock loop at high
frequencies is the same as the noise generated by the open-

loop VCO alone. At low frequencies, the loop gain acts to sta-
bilize the phase of the VCO, and the noise of the PLL is dom-

67

oL

Sy (dB/Hz)

~70F CL E

-80F]

300Hz 1kHz 3kHz 10kHz 30kHz 100kHz

Fig. 17. Noise of the closed-loop PLL at the output of the VCO
when only the reference oscillator exhibits jitter (CL) versus the
noise of the reference oscillator mapped up to the VCO frequency
when operated open loop (OL).

T T T T

oL 4

Sy (0BIHZ)
s 8 3

CL
-40[1

300Hz 1kHz 3kHz 10kHz 30kHz 100 kHz

Fig. 18. Noise of the closed-loop PLL at the output of the VCO
when only the VCO exhibits jitter (CL) versus the noise of the VCO
when operated open loop (OL).

I
n
[

T

oL]

|
& &
.

CL

(dB/Hz)
& &

IS¢
g

&
a
8

:

TkHz T0kFz T00kHz

Fig. 19. Noise of the closed-loop PLL at the output of the VCO
when only the PFD/CP, FD,,, and FD)y exhibit jitter (CL) versus the
noise of these components mapped up to the VCO frequency when
operated open loop (OL).

inated by the phase noise of the OSC. There is some
contribution from the VCO, but it is diminished by the gain of

VCO-OL

1
—_
o

T
L

PLL-CL

!
N
o

T
s

(dB/Hz)

I
W
o

-~ PFD/CP,FD-OL) :

S
¢
A
S

0OSC-OL
50 .

300Hz 1kHz 3kHz 10KHz 30KkHz 100 KHz

Fig. 20. Closed-loop PLL noise performance compared to the open-
loop noise performance of the individual components that make up
the PLL. The achieved noise is slightly larger than what is expected
from the components due to peaking in the response of the PLL.

the loop. In this example, noise at the middle frequencies is
dominated by the synchronous jitter generated by the PFD/
CO and FDs. The measured results agree qualitatively with
the expected results. The predicted noise is higher than one
would expect solely from the open-loop behavior of each
block because of peaking in the response of the PLL from 5
kHz to 50 kHz. For this reason, PLLs used in synthesizers
where jitter is important are usually overdamped.

XV. CONCLUSION

A methodology for modeling and simulating the phase noise
and jitter performance of phase-locked loops was presented.
The simulation is done at the behavioral level, and so is effi-
cient enough to be applied in a wide variety of applications.
The behavioral models are calibrated from circuit-level noise
simulations, and so the high-level simulations are accurate.
Behavioral models were presented in the Verilog-A language,
however these same ideas can be used to develop behavioral
models in purely event-driven languages such as Verilog-
HDL and Verilog-AMS. This methodology is flexible enough
to be used in a broad range of applications where phase noise
and jitter is important.

REFERENCES

[1] Ken Kundert. “Introduction to RF simulation and its ap-
plication.” Journal of Solid-State Circuits, vol. 34, no. 9,
September 1999.

[2] Cadence Design Systems. “SpectreRF simulation op-
tion.” www.cadence.com/datasheets/spectrerf.html.

[3] F. Gardner. Phaselock Techniques. John Wiley & Sons,
1979.

[4] D. Yee, C. Doan, D. Sobel, B. Limketkai, S. Alalusi, and
R. Brodersen. “A 2-GHz low-power single-chip CMOS

receiver for WCDMA applications.” Proceedings of the
European Solid-State Circuits Conference, Sept. 2000.

68

[5] A. Demir, E. Liu, A. Sangiovanni-Vincentelli, and I.
Vassiliou. “Behavioral simulation techniques for phase/
delay-locked systems.” Proceedings of the IEEE Custom
Integrated Circuits Conference, pp. 453-456, May 1994,

[6] A. Demir, E. Liu, and A. Sangiovanni-Vincentelli.
“Time-domain non-Monte-Carlo noise simulation for
nonlinear dynamic circuits with arbitrary excitations.”
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 15, no. 5, pp. 493-505,
May 1996.

[7] A. Demir, A. Sangiovanni-Vincentelli. “Simulation and
modeling of phase noise in open-loop oscillators.” Pro-
ceedings of the IEEE Custom Integrated Circuits Con-
ference, pp. 445-456, May 1996.

[8] A. Demir, A. Sangiovanni-Vincentelli. Analysis and
Simulation of Noise in Nonlinear Electronic Circuits and
Systems. Kluwer Academic Publishers, 1997.

[9] Ken Kundert. “Modeling and simulation of jitter in
phase-locked loops.” In Analog Circuit Design: RF An-
alog-to-Digital Converters; Sensor and Actuator Inter-
Jfaces; Low-Noise Oscillators, PLLs and Synthesizers,
Rudy J. van de Plassche, Johan H. Huijsing, Willy M.C.
Sansen, Kluwer Academic Publishers, November 1997.

[10] Ken Kundert. “Modeling and simulation of jitter in PLL
frequency synthesizers.” Available from www.design-
ers-guide.com.

[11] Kenneth S. Kundert. The Designer’s Guide to SPICE and
Spectre. Kluwer Academic Publishers, 1995.

[12] Verilog-A Language Reference Manual: Analog Exten-
sions to Verilog-HDL, version 1.0. Open Verilog Inter-
national, 1996. Available from www.eda.org/verilog-
ams.

[13] Ulrich L. Rohde. Digital PLL Frequency Synthesizers.
Prentice-Hall, Inc., 1983.

[14] Paul R. Gray and Robert G. Meyer. Analysis and Design
of Analog Integrated Circuits. John Wiley & Sons, 1992.

[15] A. Demir, A. Mehrotra, and J. Roychowdhury. “Phase
noise in oscillators: a unifying theory and numerical
methods for characterization.” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Appli-
cations, vol. 47, no. 5, May 2000, pp. 655 -674.

[16] F. Kiertner. “Determination of the correlation spectrum
of oscillators with low noise.” IEEE Transactions on Mi-
crowave Theory and Techniques, vol. 37, no. 1, pp. 90-
101, Jan. 1989.

[17] F. X. Kéertner. “Analysis of white and f ™ noise in oscil-
lators.” International Journal of Circuit Theory and Ap-
plications, vol. 18, pp. 485-519, 1990.

[18] G. Vendelin, A. Pavio, U. Rohde. Microwave Circuit
Design. J. Wiley & Sons, 1990.

[19] W. Gardner. Introduction to Random Processes: With
Applications to Signals and Systems. McGraw-Hill,
1989.

[20] Joel Phillips and Ken Kundert. “Noise in mixers, oscilla-
tors, samplers, and logic: an introduction to cyclostation-
ary noise.” Proceedings of the IEEE Custom Integrated
Circuits Conference, CICC 2000. The paper and presen-
tation are both available from www.designers-
guide.com.

[21] T. A. D.Riley, M. A. Copeland, and T. A. Kwasniewski.
“Delta-sigma modulation in fractional-N frequency syn-
thesis.” IEEE Journal of Solid-State Circuits, vol. 28 no.
5, May 1993, pp. 553 -559

[22] Frank Herzel and Behzad Razavi. “A study of oscillator
jitter due to supply and substrate noise.” IEEE Transac-
tions on Circuits and Systems — II: Analog and Digital
Signal Processing, vol. 46. no. 1, Jan. 1999, pp. 56-62.

[23] T. C. Weigandt, B. Kim, and P. R. Gray. “Jitter in ring
oscillators.” 1994 IEEE International Symposium on
Circuits and Systems (ISCAS-94), vol. 4, 1994, pp. 27-
30.

[24] A. Papoulis. Probability, Random Variables, and Sto-
chastic Processes. McGraw-Hill, 1991.

[25] J. J. Rael and A. A. Abidi. “Physical processes of phase
noise in differential LC oscillators.” Proceedings of the
IEEE Custom Integrated Circuits Conference, CICC
2000.

[26] J. McNeill. “Jitter in Ring Oscillators.” IEEE Journal of
Solid-State Circuits, vol. 32, no. 6, June 1997.

[27] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt,
E. Liu, E. Malavasi, A. Sangiovanni-Vincentelli, and I.
Vassiliou. A Top-Down Constraint-Driven Methodology
for Analog Integrated Circuits. Kluwer Academic Pub-
lishers, 1997.

[28] A. Oppenheim, R. Schafer. Digital Signal Processing.
Prentice-Hall, 1975.

[29] F. Harris. “On the use of windows for harmonic analysis
with the discrete Fourier transform.” Proceedings of the
IEEE, vol. 66, no. 1, January 1978.

69

