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In this first chapter we focus on the basic, yet fundamental, problem of estimating an
unobservable quantity from a collection of measurements in the least-mean-squares sense.
The estimation task is made more or less difficult depending on how much information the
measured data convey about the unobservable quantity. We shall study this estimation
problem with increasing degrees of complexity, starting from a simple scenario and building
up to more sophisticated cases.

The presentation in the chapter relies on some basic concepts from probability theory and
random variables. For the benefit of the reader, we shall motivate these concepts whenever
needed, as well as highlight their relevance in the estimation context. In this way, readers
will be introduced to the necessary concepts in a gradual and motivated manner, and they
will come to appreciate their significance away from unnecessary abstractions.

The material is developed initially at a slow pace. This is done deliberately in order to
familiarize readers (and especially students) with the basic concepts of estimation theory
for both real and complex-valued random variables, as well as for scalar and vector-valued
random variables. We hope that, by the end of our exposition, the reader will be convinced
that these different scenarios (of real vs. complex and scalar vs. vector) can be masked by
adopting a uniform vector and complex-conjugation notation. The notation is introduced
gradually in the chapter and will be used throughout the book thereafter.

1.1 VARIANCE OF A RANDOM VARIABLE

Before plunging into a discussion of least-mean-squares estimation theory, and before giving
some reasons for its widespread use, we find it useful to provide an intuitive explanation
for what the variance of a random variable means. The explanation will help the reader
appreciate the value of the least-mean-squares criterion, which is used extensively in later
sections and chapters.
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Optimal Estimation Chapter 1

Consider a scalar real-valued random variable x with mean value x and variance a2 i.e.,

x = E#, a2 - E(x-x)2 = E®2-x2 (1.1.1)

where the symbol E denotes the expectation operator. Observe that we are using boldface
letters to denote random variables, which will be our convention in this book. When x has
zero mean, its variance is simply given by a^ — Ex2. Intuitively, the variance of x defines
an interval on the real axis around x where the values of x are most likely to occur:

1. A small G\ indicates that x is more likely to assume values that are close to its mean,
x.

2. A large a2 indicates that x can assume values over a wider interval around its mean.

For this reason, it is customary to regard the variance of a random variable as a measure of
uncertainty about the value it can assume in a given experiment. A small variance indicates
that we are more certain about what values to expect for x (namely, values that are close
to its mean), while a large variance indicates that we are less certain about what to expect.
These two situations are illustrated in Figs. 1.1 and 1.2 for two different probability density
functions.

Figure 1.1 plots the probability density function (pdf) of a Gaussian random variable
x for two different variances. In both cases, the mean of the random variable is fixed at
x — 20 while the variance is cr2 = 225 in one case and a2 = 4 in the other. Recall that the
pdf of a Gaussian random variable is defined in terms of (x, a2) by the expression

Ux) =
V%n &x

^T~, x e (-00,00) (1.1.2)

where ox is called the standard deviation of x. Recall further that the pdf of a random
variable is useful in several respects. In particular, it allows us to evaluate probabilities of
events of the form

r
P{a<x<b) = / fx{x)da

Jai.e., the probability of x assuming values inside the interval [a,b]. From Fig. 1.1 we find
that the smaller the variance of cc, the more concentrated its pdf is around its mean.

Figure 1.2 provides similar plots for a random variable x with a Rayleigh distribution,
namely, with a pdf given by

f x ( x ) = — e ~ = £ * , z > 0 , a > 0
a

(1.1.3)

where a is a positive parameter that determines the mean and the variance of x according
to the expressions (see Prob. 1.1):

x = a \ —
7T

2 '
CT = MV (1.1.4)

Observe in particular, and in contrast to the Gaussian case, that the mean and variance of
a Rayleigh-distributed random variable cannot be chosen independently of each other since
they are linked through the parameter a. In Fig. 1.2, the top plot corresponds to x = 1 and
&1 — 0.2732, while the bottom plot corresponds to x — 3 and o\ — 2.4592.
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Section 1.1. Variance of a Random Variable

Figure 1.1. The figure shows the plots of the probability density functions
of a Gaussian random variable x with mean x = 20, variance G\ = 225 in the
top plot, and variance a^. — 4 in the bottom plot.

These remarks on the variance of a random variable can be further qualified by invoking a
well-known result from probability theory known as Chebyshev's inequality — see Probs. 1.2
and 1.3. The result states that for a random variable x with mean x and variance <J ,̂ and
for any given scalar 5 > 0, it holds that

P(\x -x\>5) < crl/52 (1.1.5)

That is, the probability that x assumes values outside the interval (x — 8, x + S) does not
exceed c2/52, with the bound being proportional to the variance of x. Hence, for a fixed £,
the smaller the variance of x the smaller the probability that x will assume values outside
the interval (x — 5, x + 5). Choose, for instance, 5 = bax. Then (1.1.5) gives

P{\x -x\> 5<JX) < 1/25 = 4%

In other words, there is at most 4% chance that x will assume values outside the interval
(x — bcrx,x + §<JX).

Actually, the bound that is provided by Chebyshev's inequality is generally not tight.
Consider, for example, a zero-mean Gaussian random variable x with variance a2 and choose
S = 2ax. Then, from Chebyshev's inequality (1.1.5) we would obtain

P(\x\ > 2ax) < 1/4 - 25%
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Optimal Estimation Chapter 1

Two Rayleigh distributions

Figure 1.2. The figure shows the plots of the probability density functions of
a Rayleigh random variable x with mean x = 1 and variance a^. — 0.2732 in
the top plot, and mean x = 3 and variance <r̂  = 2.4592 in the bottom plot.

whereas direct evaluation of the integral1

A
P(\x\ > 2ax) = 1 - 2

1 ^

V2TT ax Jo
e *°% dx

yields
P{\x\ > 2ax) « 4.56%

Remark 1 [Zero-variance random variables] One useful consequence of Chebyshev's inequal-
ity is the following. It allows us to interpret a zero-variance random variable as one that is equal
to its mean with probability one. That is,

T * = 0 x = x with probability one

This is because, for any small 5 > 0, we obtain from (1.1.5) that

P(\x~x\ > 6 ) < 0

But since the probability of any event is necessarily a nonnegative number, we conclude that
P(\x — x\ > S) — 0, for any S > 0, so that x — x with probability one. We shall call upon this
result on several occasions (see, e.g., the proof of Thm. 1.3.2).

o
xMany books on statistics, and also on digital communications theory, contain tables with the values of

such integral expressions in the Gaussian case for different values of S. In the communications context, such
integrals are useful in quantifying the probability of erroneous decisions.
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Section 1.2. Estimation Given No Observations

1.2 ESTIMATION GIVEN NO OBSERVATIONS

We now initiate our discussions of estimation theory by posing and solving a simple (almost
trivial) estimation problem. Thus suppose that all we know about a real-valued random
variable x is its mean x and its variance cr̂ , and that we wish to estimate the value that
x will assume in a given experiment. We shall denote the estimate of x by x; it is a
deterministic quantity (i.e., a number). But how do we come up with a value for xl And
how do we decide whether this value is optimal or not? And if optimal, in what sense?
These inquiries are at the heart of every estimation problem.

To answer these questions, we first need to choose a cost function to penalize the esti-
mation error. The resulting estimate x will be optimal only in the sense that it leads to the
smallest cost value. Different choices for the cost function will in general lead to different
choices for x, each of which will be optimal in its own way.

The design criterion we shall adopt is the so-called mean-square-error criterion. It is
based on introducing the error signal

~ A
X — X - X

and then determining x by minimizing the mean-square-error (m.s.e.), which is defined as
the expected value of x2, i.e.,

min E x2 (1.2.1)
X

The error x is a random variable since x is random. The resulting estimate, x, will be
called the least-mean-squares estimate of #. The following result is immediate (and, in fact,
intuitively obvious as we explain below).

Lemma 1.2.1 (Lack of observations) The least-mean-squares estimate of x given
knowledge of only (x, a2) is x = x. The resulting minimum cost is Ex2 = a2.

Proof: Expand the mean-square error by subtracting and adding x as follows:

E x2 = E (x - xf = E [(x ~x) + (x- x)]2 = a2
x 4- (x ~ x)2

The choice of x that minimizes the m.s.e. is now evident. Only the term (x — x)2 is dependent on
x and this term can be annihilated by choosing x = x. The resulting minimum mean-square error
(m.m.s.e.) is then

A , 2 2

m.m.s.e. = Ex — ax

An alternative derivation would be to expand the cost function as
E(x - x)2 = Ex2 - 2xx -f x2

and to differentiate it with respect to x. By setting the derivative equal to zero we arrive at the
same conclusion, namely, x — x.

0

There are several good reasons for choosing the mean-square-error criterion (1.2.1). The
simplest one perhaps is that the criterion is amenable to mathematical manipulations, more
so than any other criterion. In addition, the criterion is in effect attempting to force the
estimation error to assume values close to its mean, which happens to be zero since

Ex — E{x — x) — E{x — x) = x — x = 0

5



6 Optimal Estimation Chapter 1

Therefore, by minimizing E x2 we are in effect minimizing the variance of the error. And in
view of the discussion in Sec. 1.1 regarding the interpretation of the variance of a random
variable, we see that the mean-square-error criterion tries to increase the likelihood of small
errors.

The effectiveness of this estimation procedure can be measured by examining the value
of the resulting minimum cost, which is the variance of the resulting estimation error. The
above lemma tells us that the minimum cost is equal to cr%. That is,

°\ = al
so that the estimate x = x does not reduce our initial uncertainty about x since the error
variable still has the same variance as x itself! We thus find that the performance of the
mean-square-error design procedure is rather limited in this case. Of course, we are more
interested in estimation procedures that result in error variances that are smaller than the
original signal variance. We shall discuss one such procedure in the next section.

The reason for the poor performance of the estimate x — x lies in the lack of more
sophisticated prior information about x. Note that Lemma 1.2.1 simply tells us that the
best we can do, in the absence of any other information about a random variable x, other
than its mean and variance, is to use the mean value of x as our estimate. This statement
is, in a sense, intuitive. After all, the mean value of a random variable is, by definition, an
indication of the value that we would expect to occur on average in repeated experiments.
Hence, in answer to the question: what is the best guess for #?, the analysis tells us that
the best guess is what we would expect for x on average! This is a circular answer, but one
that is at least consistent with intuition.

Example 1.2.1 (Binary signal) Assume x represents a BPSK (binary phase-shift keying) signal
that is equal to ±1 with probability 1/2 each. Then

x = \ - ( l ) + I - ( - I ) = 0

and
o* = Ex2 = l

Now given knowledge of {x,a^} alone, the best estimate for x in the least-mean-squares sense is
x — x = 0. This example shows that the least-mean-squares (and, hence, optimal) estimate does
not always lead to a meaningful solution! In this case, x — 0 is not useful in guessing whether a; is 1
or —1 in a given realization. If we could incorporate into the design of the estimator the knowledge
that x is a BPSK signal, or some other related information, then we could perhaps come up with
a better estimate for x.

o

1.3 ESTIMATION GIVEN DEPENDENT OBSERVATIONS

So let us now examine the case in which more is known about a random variable x, other
than its mean and variance. Specifically, let us assume that we have access to an observation
of a second random variable y that is related to x in some way. For example, y could be a
noisy measurement of x, say

y = x -\-v

where v denotes the disturbance, or y could be the sign of x, or dependent on x in some
other way.

The dependency between two real-valued random variables {x, y} is usually described in
terms of their joint probability density function (pdf). Thus let fx,y(%iy) denote the joint



Section 1.3. Estimation Given Dependent Observations

pdf of x and y; this function allows us to evaluate probabilities of events of the form:

P(a<x<b,c<y<d)= f f fXtV(x,y)dxdy
J c Ja

namely, the probability that x and y assume values inside the intervals [a, b] and [c, d],
respectively. Let also fx\y(x\y) denote the conditional pdf of x given y; this function allows
us to evaluate probabilities of events of the form

fb
P(a <x<b\y = y)= / fx\y(x\y)dx

Ja

namely, the probability that x assumes values inside the interval [a, b] given that y is fixed
at the value y. It is known that the joint and conditional pdfs of two random variables are
related via Bayes' rule, which states that

fx,yfay) = fy(y) fx\y(x\y) = fx(x) fy\x(y\x) (1.3.1)

in terms of the probability density functions of the individual random variables x and y.
The variables {x, y} are said to be independent if

fx\y{x\y) = fx(x) and fy\x{y\x) = fy{y)

in which case the pdfs of x and y are not modified by conditioning on y and x, respectively.
Otherwise, the variables are said to be dependent In particular, when the variables are in-
dependent, it follows that Exy — ExEy. It also follows that independent random variables
are uncorrelated, meaning that their cross-correlation is zero as can be verified from the
definition of cross-correlation:

crxy = E(x - x)(y — y) — Exy - xy = Ex Ey - xy = 0

The converse statement is not true: uncorrelated random variables can be dependent.2

Now given two dependent random variables {x,y}, we can pose the problem of deter-
mining the least-mean-squares estimator of x given y. Observe that we are now employing
the terminology estimator of x as opposed to estimate of x. In order to highlight this dis-
tinction, we denote the estimator of x by x\ it is a random variable that is defined as a
function of y, say

x = h{y)

for some function h(-) to be determined. Once the function h(-) has been determined,
evaluating it at a particular occurrence of y, say for y = y, will result in an estimate for x,
i.e.,

x= h(y)\y=y = h(y)

Different occurrences y = y lead to different estimates x. In Sec. 1.2 we did not need to
make this distinction between an estimator and an estimate. There we sought directly an
estimate x for x since we did not have access to a random variable y\ we only had access
to the deterministic quantities {x,o~l} and we could only come up with an estimate for x.

2 Consider the following example. Let 0 be a random variable that is uniformly distributed over the
interval [0, 2?r]. Define the zero-mean random variables x = cos0 and y — sin0. Then x2 + y2 = 1 so that
x and y are dependent. However, Exy = E cos0sin0 — 0.5E sin20 = 0, so that x and y are uncorrelated.
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Optimal Estimation Chapter 18

1.3.1 Mean-Square-Error Criterion

The criterion we shall use to determine the estimator x is still the mean-square-error crite-
rion. We define the error signal

x = x-x\ (1.3.2)

and then determine x by minimizing the mean-square-error over all possible functions h(-):

min Ex2 /i o o\
h(-) (L6'6>

The solution is given by the following statement.

Theorem 1.3.1 (Optimal mean-square-error estimator) The least-mean-squares
estimator (l.m.s.e.) of x given y is the conditional expectation of x given y, i.e.,
x = E(x\y). The resulting estimate is

x = E(x\y = y) = / xfx]y(x\y)dx

where Sx denotes the support (or domain) of the random variable x. Moreover, the
estimator is unbiased, i.e., Ex = x, and the resulting minimum cost is given by either
expression

Ex 2 = Ex 2 - Ex2 = <T2 - o\

Proof: There are several ways to establish the result. Our argument is based on recalling that
for any two random variables x and y, it holds that (see Prob. 1.4):

Ex = E[E(x|y)f] (1.3.4)

where the outermost expectation on the right-hand side is with respect to t/, while the innermost
expectation is with respect to x. We shall indicate these facts explicitly by showing the variables
with respect to which the expectations are performed, so that

Ex = Etf[E«(x|y)]

It now follows that, for any function of y, say g(y), it holds that

Ex,y xg(y) = Ev [Ex{xg{y)\y)\ = Ev [Ex{x\y)g(y)} = Ex,y [Ex{x\y)g{y)}

This means that, for any g(y),

Ex,y[x-Ex(x\y)]g(y) = 0

which we write more compactly as

E[x-E(x\y)]g(y)=o\ (1.3.5)

Expression (1.3.5) states that the random variable x — E(x\y) is uncorrelated with any function
s(- )ofy . 3

3 As mentioned before, two random variables x and y are uncorrelated if, and only if, their cross-
correlation is zero, i.e., E (sc — x){y — y) = 0. On the other hand, the random variables are said to be
orthogonal if, and only if, E xy = 0. It is easy to verify that the concepts of orthogonality and uncorrelated-
ness coincide if at least one of the random variables is zero mean. From equation (1.3.5) we conclude that
the variables x — E(x\y) and g(y) are orthogonal. However, since x — E(x\y) is zero mean, then we can
also say that they are uncorrelated.

Theorem 1.3.1 (Optimal mean-square-error estimator) The least-mean-squares
estimator (l.m.s.e.) of x given y is the conditional expectation of x given y, i.e.,
x = E(x\y). The resulting estimate is

x = E(x\y = y) = / xfx]y(x\y)dx

where Sx denotes the support (or domain) of the random variable x. Moreover, the
estimator is unbiased, i.e., Ex = x, and the resulting minimum cost is given by either
expression

Ex 2 = Ex 2 - Ex2 = <T2 - erf

E[x-E(x\y)]g(y)=Q
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Using this intermediate result, we return to the cost function (1.3.3), add and subtract E(sc|y)
to its argument, and express it as

E (x - x)2 = E [x - E (x\y) + E (x\y) - x]2

The term E (x\y) — x is a function of y. Therefore, if we choose g(y) = E (x\y) — x, then from the
uncorrelatedness property (1.3.5) we conclude that

E (x - xf = E [x - E (x\y)]2 + E [E (x\y) - xf

Only the second term on the right-hand side is dependent on x and the m.s.e. is minimized by
choosing x = E (x\y).

To evaluate the resulting m.m.s.e. we first note that the optimal estimator is unbiased since

Ex = E[E(x\y)} = Ex = x

so that its variance is given by
a\ = Ex2 - x2

Moreover, in view of the uncorrelatedness property (1.3.5), and in view of the fact that the optimal
estimator x = E(x\y) is itself a function of y, we have

E(x -x)x = 0

In other words, the estimation error, x, is also uncorrelated with the optimal estimator. Using this
fact, we can evaluate the m.m.s.e. as follows:

Ex2 — E [x — x] [x — x]

— E [x — x]x (because of (1.3.6))
= Ex2

= Ex2

= Ex2

= (Ex

= a2-

-

-

-
2

-al

Exx
Ex[x

Ex2

• * " )

+ x]

(because
+ [x2 - Ex

of (1.3.6))
2)

<>

Theorem 1.3.1 tells us that the least-mean-squares estimator of x is its conditional ex-
pectation given y. This result is again intuitive. In answer to the question: what is the best
guess for x given that we observed t/?, the analysis tells us that the best guess is what we
would expect for x given the occurrence of y\

Example 1.3.1 (Noisy measurement of a binary signal) Let us return to Ex. 1.2.1, where x
is a BPSK signal that assumes the values ±1 with probability 1/2. Assume now that in addition
to the mean and variance of as, we also have access to a noisy observation of x, say

y — x + v

Assume further that the signal x and the disturbance v are independent, with v being a zero-mean
Gaussian random variable of unit variance, i.e., its pdf is given by

f (v) - _ ! _ e~
v2/2

Our intuition tells us that we should be able to do better here than in Ex. 1.2.1. But beware, even
here, we shall be able to make some interesting observations.

9
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According to Thm. 1.3.1, the optimal estimate of x given an observation of y is

x=E{x\y = y) = / xfm}v(x\y)6x (1.3.7)
J — oo

We therefore need to determine the conditional pdf, fx\y(x\y), and evaluate the integral (1.3.7).
For this purpose, we start by noting that since y = x 4- v, and since x and v are independent, the
pdf of y is given by4

fy{v) = \h{y + l) + \u{y-l) (1.3.8)

Similarly, the joint pdf of {x, y} is given by

U,v(x>v) = U(x) • fy\*{y\x)

= [itf(x-i) + i*(* + l)] •/„(»-*)

= lfv(v-Wx-l) + ±fv(v + l)6(x + l)

Using (1.3.1) we get

f , n = fm,y(x,y) fv(y - l)5(x - 1) fv(y + l)5(x + 1)
Jx\v\\y) fy{y) fv(v+l) + My-l)* fv(y+l) + My-l)

Substituting into expression (1.3.7) for x and integrating we obtain

. = A>(y-i) A>(y + i)
A(y + i) + / « (y - i ) /«(y + i) + /« (y - i )

1 1 _ ey - e~y
 A

/e-(HD2 /2\ /e-(V-l)2/2N gy + e _ y ~ t a n h V

\e-(y-l)2/2j ~T~ X \ e - ( v + l)*/2j "•" -1

In other words, the least-mean-squares estimator of x is the hyperbolic tangent function,

x = tanh(y) (1.3.9)

The result is represented schematically in Fig. 1.3.

v

yX tanh(-) x

Figure 1.3. Optimal estimation of a BPSK signal embedded in unit-variance
additive Gaussian noise.

Figure 1.4 plots the function tanh(y). We see that it tends to ±1 as y —> ±oo. For other
values of y, the function assumes real values that are distinct from ±1. This is a bit puzzling from

4 From probability theory, it is known that the pdf of the sum of two independent random variables is
equal to the convolution of the individual pdfs, i.e.,

fy(y)= f°° U(x)fv{y-x)dx
J —oo

In this example,

Mx) = ±6(x-1) + U{x + l)
where <$(•) is the dirac-delta function, so that fy(y) is given by (1.3.8).
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Optimal decision device for BPSK data buried in Gaussian noise

Figure 1.4. A plot of the function tanh(y).

the designer's perspective. The designer is interested in knowing whether the symbol x is +1 or
— 1 based on the observed value of y. The above construction tells the designer to estimate x by
computing tanh(i/). But this value will never be exactly +1 or — 1; it will be a real number inside
the interval (—1,1). The designer will then be induced to make a hard decision of the form:

, . . . c c f +1 if x is nonnegative
decide in favor of < . . r „ .

[ — 1 if # is negative

In effect, the designer ends up implementing the alternative estimator:

x = sign[tanh(y)] (1.3.10)

where sign(-) denotes the sign of its argument; it is equal to +1 if the argument is nonnegative and
—1 otherwise.

We therefore have a situation where the optimal estimator, although known in closed form,
does not solve the original problem of recovering the symbols ztl's directly. Instead, the designer
is forced to implement a suboptimal solution; it is suboptimal from a least-mean-squares point of
view. Even more puzzling, the designer could consider implementing the alternative (and simpler)
suboptimal estimator:

x = s\gn(y) (1.3.11)

where the sign(-) function operates directly on y rather than on tanh(y) — see Fig. 1.5. Both
suboptimal implementations (1.3.10) and (1.3.11) lead to the same result since, as is evident from
Fig. 1.4, sign[tanh(2/)] = s\gn(y). In the computer project at the end of the chapter we shall compare
the performance of the optimal and suboptimal estimators (1.3.9)—(1.3.11).5

Figure 1.5. Sub-optimal estimation of a BPSK signal embedded in unit-
variance additive Gaussian noise.

5The purpose of Exs. 1.2.1 and 1.3.1 is not to confuse the reader, but rather to stress the fact that an
optimal estimator is optimal only in the sense that it satisfies a certain optimality criterion. One should
not confuse an optimal guess with a perfect guess. One should also not confuse an optimal guess with a
practical one; an optimal guess does not need to be perfect or even practical, though it can suggest good
practical solutions.

v

yX X
sign(-)

- 3 - 2 - 1 0 1 2 3
y

3
XZ

1

0.5

0

-0.5

-1



12 Optimal Estimation Chapter 1

We may mention that in the digital communications literature, especially in studies on equal-
ization methods, an implementation using (1.3.11) is usually said to be based on hard decisions,
while an implementation using (1.3.9) is said to be based on soft decisions.

0

Remark 2 [Complexity of optimal estimation] Example 1.3.1 highlights one of the inconve-
niences of working with the optimal estimator of Thm. 1.3.1. Although the form of the optimal
solution is known, in general it is not an easy task to find a closed-form expression for the con-
ditional expectation of two random variables (especially for other choices of probability density
functions). Moreover, even when a closed-form expression can be found, one is usually led to a
nonlinear estimator whose implementation may not be practical or may even be costly. For this
reason, from Chapter 2 onwards, we shall restrict the class of estimators to linear estimators, and
study the capabilities of these estimators.

0

1.3.2 Orthogonality Principle

There are two important conclusions that follow from the proof of Thm. 1.3.1, namely, the
orthogonality properties (1.3.5) and (1.3.6). The first one states that the difference

x - E(x\y)

is orthogonal to any function </(•) of y. Now since we already know that the conditional
expectation, E(x\y), is the optimal least-mean-squares estimator of se, we can re-state this
result by saying that the estimation error x is orthogonal to any function of y,

(1.3.12)

We shall sometimes use a geometric notation to refer to this result and write instead

(1.3.13)

where the symbol _L is used to signify that the two random variables are orthogonal; a
schematic representation of this orthogonality property is shown in Fig. 1.6.

g(y)

Figure 1.6. The orthogonality condition: x _L g{y).

Relation (1.3.13) admits the following interpretation. It states that the optimal esti-
mator x = E{x\y) is such that the resulting error, x, is orthogonal to (and, in fact, also
uncorrelated with) any transformation of the data y. In other words, the optimal estimator
is such that no matter how we modify the data y, there is no way we can extract additional
information in order to reduce the variance of x any further other than the information that
has already been extracted by x. This is because any additional processing of y will remain
uncorrelated with x.

x = x — E{x\y)

x

Ex g{y) = 0

& i- g{y)
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The second orthogonality property (1.3.6) is a special case of (1.3.13). It states that

x J_ x

That is, the estimation error is orthogonal to (or uncorrelated with) the estimator itself.
This is a special case of (1.3.13) since x is a function of y by virtue of the result x = E (x\y).

In summary, the optimal least-mean-squares estimator is such that the estimation er-
ror is orthogonal to the estimator and, more generally, to any function of the observation.
It turns out that the converse statement is also true so that the orthogonality condition
(1.3.13) is in fact a defining property of optimality in the least-mean-squares sense.

Theorem 1.3.2 (Orthogonality condition) Given two random variables x and y, an
estimator x = h(y) is optimal in the least-mean-squares sense (1.3.3) if, and only if, x
is unbiased (i.e., Ex = x) and x — x _L g(y) for any function #(•).

Proof: One direction has already been proven prior to the statement of the theorem, namely,
if x is the optimal estimator and hence, x = E{x\y), then we already know from (1.3.13) that
x _L g(y), for any #(•). Moreover, we know from Thm. 1.3.1 that this estimator is unbiased.

Conversely, assume x is an unbiased estimator for x and that it satisfies x — x _L g(y), for any
g(-). Define the random variable z = x — E (x\y) and let us show that it is the zero variable with
probability one. For this purpose, we note first that z is zero mean since

Ez = Ex - E(E(a?|y)) = x-x = 0

Moreover, from (1.3.5) we have x — E{x\y) _L g(y) and, by assumption, we have x — x _L g(y) for
any #(•). Subtracting these two conditions we conclude that

which is the same as E zg(y) = 0. Since the variable z itself is a function of y, we choose g{y) = z
to get Ez2 = 0. We thus find that z is zero mean and has zero variance, so that, from Remark 1 at
the end of Section 1.1, we conclude that z = 0, or equivalently, x — E (sc|y), with probability one.

0

Example 1.3.2 (Suboptimal estimator for a binary signal) Consider again Ex. 1.3.1, where
x is a BPSK signal that assumes the values ±1 with probability 1/2. Let us verify that the
estimator x = sign(y) is not optimal in the least-mean squares sense. We already know that this
is the case because we found in Ex. 1.3.1 that the optimal estimator is tanh(t/). Here we wish to
verify the sub-optimality of sign(y) without assuming prior knowledge of the optimal estimator,
and by relying solely on the orthogonality condition.

According to Thm. 1.3.2, we need to verify that the estimator sign(y) fails the orthogonality
test. In particular, we shall exhibit a function g{y) such that the difference x -sign(y) is correlated
with it. Actually, we shall simply choose g(y) = s\gn(y) and verify that

E[a;-sign(y)]sign(y) ^ 0 (1.3.14)

Let us first check whether the estimator x = sign(y) is biased or not. For this purpose we recall
that y = x + v and that

• , , x f +1 if x + v > 0s,gn(* + V) = | _x ifx + v < 0

We therefore need to evaluate the probability of the events x + v > 0 and x + v < 0. For the first
case we have

x + v > 0 <=> (x = +1 and v > — 1) or (x — — 1 and v > 1)

« JL0(y)
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Now recall that x and v are independent and that v is a zero-mean unit-variance Gaussian random
variable. Thus let

P(v > 1) = a (1.3.15)

Then
P ( v > - 1 ) = 1 - P ( w < - 1 ) = 1 - P ( v > l ) = 1 - a

and we obtain
P(x + v > 0) = (1 - a)/2 + a/2 = 1/2

Consequently,
P(x + v < 0) = 1/2

so that
E sign(# + v) = 0

This means that the estimator x = sign(y) is unbiased.
We now return to (1.3.14) and note that

E[x - sign(y)]sign(y) = E xsign(y) - 1

Therefore, all we need to do in order to verify that (1.3.14) holds is to check that Exs\gn(y) is
not unity. To do this, we introduce the random variable z = assign(y) and proceed to compute its
mean.

It is clear from the definition of z that

_ ( +1 if (a? = +1 and v > -1) or (x = - 1 and v < 1)
\ —1 if (x = -f-1 and v < —1) or (x = —1 and v > 1)

The events
(a; = +1 and v > —1) or (x — —1 and v < 1)

each has probability 0.5(1 — a). Likewise, the events

(x = -f-1 and v < —1) or (x = —1 and v > 1)

each has probability 0.5a. It then follows that

Ez = l - 2 a ^ l

so that x — sign(t/) is correlated with sign(y). Hence, the estimator sign(y) does not satisfy the
orthogonality condition and, therefore, it cannot be the optimal least-mean-squares estimator.

Let us further compute the enhancement in the signal-to-noise ratio (SNR) that results from
the use of this suboptimal estimator. Recall that the variances of x and v are both unity so that,
for this example, the SNR prior to the estimation procedure is6

SNRtn = 10log ( ^ | ) = OdB

After the estimation procedure, the SNR is taken as

SNROU( 4 101og(2 | )

where
Ex2 = E[x-sign(y)]2 = <rl - 2 Exsign(t/) + 1 = 2 - 2(1 - 2a) = 4a

so that
SNRout - -101og(4a)

The improvement in SNR is then given by

SNRont-SNR in = -101og(4a)
6We write log(-) to refer to the logarithm of a positive number relative to base 10.
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Recall from the definition of a in (1.3.15) that it is a number in the interval (0,1) and is given by

a = J L [°°e-v2'2dv « 0.1587
y/2ir Ji

The improvement in SNR is therefore approximately 1.9736 dB. This example is pursued further
in Probs. 1.5 and 1.6.

0

1.3.3 Gaussian Random Variables
We mentioned earlier in Remark 2 prior to Sec. 1.3.2 that it is not always possible to
determine a closed form expression for the optimal estimator E(x\y). Only in some special
cases this calculation can be carried out to completion (as we did in Ex. 1.3.1 and as we
shall do in another example below). This difficulty will motivate us to limit ourselves in
Chapter 2 to the subclass of linear (or affine) estimators, namely, to choices of h(-) in
(1.3.3) that are affine functions of the observation, say h(y) = ay + b for some constants a
and b to be determined. Despite its apparent narrowness, this class of estimators performs
reasonably well in many applications.

There is an important special case for which the optimal estimator of Thm. 1.3.1 turns
out to be affine in y. This scenario happens when the random variables x and y are jointly
Gaussian. To see this, let us introduce the matrix

R A I" «l CT 1

L ff*w ° v J
where {a2., a^} denote the variances of x and y, respectively,

*l = E(x-x)2, a2
y = E(y-y)2

whereas o~xy denotes their cross-correlation

<jxy = E{x-x){y~y)

We further assume that R is nonsingular, in fact positive-definite since it can be regarded
as the covariance matrix of the column vector co\{x,y}J namely,

* - 6 ( [ : H ; ] ) ( [ : H : ] ) T

where the symbol T denotes vector transposition. Every such covariance matrix is necessarily
symmetric, R = RT. It is also nonnegative-definite, written as R > 0 — see the argument
prior to Ex. 1.4.2 further ahead.8 Here we are requiring it to be positive-definite, R > 0,
and, hence, invertible — see Prob. 1.7.

The joint pdf of {x,y} is given by (see App. l.B for a review of Gaussian random
variables and their probability density functions):

1 1 {-i[x-S y-y ]«-[ X~S 1}
U,v(x,y) = ^ - 7 = expl L y-y J I (1.3.17)

T̂T vdet R
7The notation col{a, 6} denotes a column vector whose entries are a and b.
8 A symmetric matrix R is said to be nonnegative-definite (written as R > 0) if, and only if, aTjRa > 0

for all column vectors a. It is said to be positive-definite (written as R > 0) if, and only if, aT Ra > 0 for
all nonzero column vectors a. Every positive-definite matrix is necessarily invertible — see App. l.A for a
brief review of Hermitian and sign-definite matrices.

, ,.,,-i._L_ expH*"* »-»H»:?]}
Jx,y\X,y) — Q / expv L J /

T̂T vdet R

1.3.3 Gaussian Random Variables

Sec. 1.3.2 that it is not always possible to

for which the optimal estimator of Thm. 1.3.1 turns

(1.3.16)
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Also, the individual probability density functions of x and y are given by

f (V> - 1 * exn{-(a;-^2/2<7-} f (v) - -^— — e x D H 3 ^ 2 / 2 ^ }

According to Thm. 1.3.1, the least-mean-squares estimator of x is x = E(as|y), which
requires that we determine the conditional pdf fx\y(x\y). This pdf can be obtained from the
calculation:

/,„(*) - ^
CA.LJ v u J *

= ^ ^ = = (1.3.18)

V2TT <ry

In order to simplify the above ratio, we shall use the fact that R can be factored into a
product of an upper triangular, diagonal, and lower triangular matrices, as follows (this can
be checked by straightforward algebra):9

M o 1 ][ 0 °l\\°*yl°l lj 1 (L319)

where we introduced the scalar

cr2 = cr? — cr^./al

which is called the Schur complement of a2 in JR; it is guaranteed to be positive in view of
the assumed positive-definiteness of R itself.10

Now, by inverting both sides of (1.3.19), we find that the inverse of R can be factored
as:11

o - i F 1 0 "I f I /a 2 0 1 [ 1 -*xy/*
2

y ] ,

This factorization of R~l allows us to express the term

[ * - * y - y ^ R [ y - y \
9 More generally, let

- [ ^ o]
be any symmetric matrix with possibly matrix-valued entries {A, B,C} satisfying A = AT and C = CT.
Assume further that C is invertible. Then it is easy to verify by direct calculation that every such matrix
can be factored in the form

\ A B i _ r i BC~1 ] \ s o i r i o i
[ B T C \ - [ 0 I J [ 0 C j [ C ~ l B ^ I J

where S = A — BC~1B'X is called the Schur complement of R with respect to C. The factorization (1.3.19)
is a special case of this result where the entries {A, B, C} are scalars: A = a^., B — <rxy, and C = a^.

10The determinant of a positive-definite matrix is positive — see App. l.A. We see from (1.3.19) that
det R = a2ay, so that cr2 is necessarily positive.

11 Here we used the simple fact that for any scalar a,

[0 1 [ 0 al\[axy/al l j

1 1

2TT VaetTR

{-*[*-* y-y]»ix
y--l}}

V27T <Jy

21 " [ - ^ / ^ i J L o i / ^ j [ o i J (1.3.20)

[ i ? ] • ' - [ - ! ; ] • [ J t f - [ i i ]
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which appears in expression (1.3.18), as a separable sum of two quadratic terms. Indeed,
direct calculation using (1.3.20) shows that

[*-* y-ff ]fl-i[*-!l = K»-g)-Wto-g)]a
 + (j/zft!

L J L y~y J a Gl

which allows us to write

J-»i-*»-»]-[ ;:J]}
f [{x-x)-axyg-2{y-y)}2\

= expt~ ^ I expH^)2/^}
This equality, along with det R = cr2cr̂ , allows us to simplify expression (1.3.18) for fx\y(x\y)
to

[ _ [(g - g) - <Txy<T-2{y - y))2 I

/*|y(^|2/) = -7= -7=f expi * J

This expression has the form of the pdf of a Gaussian random variable with variance a2 and
mean value x + axy(7y2(y — y)- Consequently, the optimal estimator is given by the affine
relation:

x = E(x\y) = x + 2f(y-y) I (1.3.21)

Moreover, the resulting m.m.s.e., which is the variance of x = a? — &, is given by

2

m.m.s.e. - a | - a* - a2 = ^ - ^ f - a 2 (1.3.22)
°_y_

Observe tha t , in this Gaussian case, the m.m.s.e. is completely specified by the second-order
statistics of the random variables {x,y} (namely, a2, a2, and axy). Note also tha t the
m.m.s.e. is smaller than a2,.

Example 1.3.3 (Correlation coefficient) A measure of the correlation between two random
variables is their correlation coefficient, defined by

A /
Pxy — Cxy/CxCTy

It is shown in Prob. 1.7 that pxy always lies in the interval [—1,1]. As pxy moves closer to zero,
the variables x and y become more uncorrelated (in the Gaussian case, this also means that the
variables become less dependent). We see from (1.3.22) that the m.m.s.e. in the Gaussian case can
be rewritten in the form

m.m.s.e. = al(l - p2
xy)

This shows that when pxy = 0, which occurs when axy = 0, the resulting m.m.s.e. is <r̂ . Also, from
(1.3.21), the estimator collapses to x = x. That is, we are reduced to the simple estimator studied
in Sec. 1.2. This is expected since in the Gaussian case, a zero cross-correlation means that the
random variables x and y are independent so there is no additional information available that we
can use to estimate a?, besides its mean and variance.

0

x = E (x\y) = x + -~(y-y)
ay

2
A o 9 9 9 XV 9

m.m.s.e. = cr| = oz
x - cr| = (jl

x f = a*
ay
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Example 1.3.4 (Gaussian noise) Let x denote a Gaussian random variable with mean x — 1
and variance a2 = 2. Similarly, let v denote a Gaussian random variable independent of x, with
mean v = 2 and variance a2. Now consider the noisy measurement

y — 2x + v

and let us estimate x from y. According to (1.3.21), we need to determine the quantities {y, crxy,cr2}-
From the above equation we find that y = 2x -f v — 4. The independence of x and v implies that
ay — £<j2 + a2 — 8 + a2. Finally, the cross-correlation axy is given by

axy = E(x- x){y ~y) = E(x- l)(2z + v - 4) =4

where we used Ex2 = G\ + x2 = 3 and Eccv = Ea?Ev = 2.
Using (1.3.21) we obtain

and the resulting m.m.s.e. from (1.3.22) is

2 = 2 _ _ _ 1 6 _ = 2ag
8 + erg 8 + cr?

Moreover, since a\ — a2 — <J|, we also find that

2 _ 16

Figure 1.7 shows the result of 50 random simulations for two noise variances, a2 = 0.5 (top
plot) and a2 =0.1 (bottom plot). The dotted lines indicate the values of x during the experiments,
while the solid lines indicate the resulting values of x.

o

1.4 ESTIMATION IN THE COMPLEX AND VECTOR CASES

We have focused so far in the chapter on scalar real-valued random variables. The results
however can be extended in a straightforward manner, by using the convenience and power of
the vector notation, to the cases of vector-valued and even complex-valued random variables.

These two situations are common in applications. For example, in channel estimation,
the quantities to be estimated are the samples of the impulse response sequence of a sup-
posedly finite-impulse-response (FIR) channel. If we group these samples into a vector x,
then we are faced with the problem of estimating a vector rather than a scalar quantity.
Likewise, in quadrature amplitude modulation (QAM) or in quadrature phase-shift key-
ing (QPSK) transmissions over a communications channel, the transmitted symbols are
complex-valued. The recovery of these symbols at the receiver requires that we solve an
estimation problem that involves estimating complex-valued quantities.

1.4.1 Complex-Valued Random Variables

Now a complex-valued random variable is one whose real and imaginary parts are real-valued
random variables themselves, say

X = Xr + JX\, j = \f~-i

where xx and x\ denote the real and imaginary parts of x. Therefore, the pdf of a complex-
valued random variable x is fully characterized in terms of the joint pdf, fXr,Xi(', •)> °f its

X = Xr + JX\, j = \f~-i

* = i + 8T^/-4)

oi =
8 + <T2
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CT^O.S

10 15 20 25 30
Experiment

35 40 45

Figure 1.7. Plots of the values of x and x over 50 random experiments with
0-2 _ 0.5 (top figure) and c^ = 0.1 (bottom figure) for Ex. 1.3.4. The dotted
lines with circles correspond to realizations of x while the solid lines with
diamonds correspond to realizations of the estimator x.

real and imaginary parts. This means that we can treat a complex random variable as a
function of two real random variables. The mean of x will then be defined as

Ex = Exr + jEx\ = xr + jx\

in terms of the means of its real and imaginary parts. Its variance, however, will be defined
as

G2
X = E(x-x)(x-x)* = E\x-x\2 (1.4.1)

where the symbol * denotes complex conjugation. Comparing with the definition (1.1.1) in
the real case, we see that the above definition is different because of the use of conjugation
(in the real case, the conjugate of (x — x) is (x — x) itself and the above definition collapses
to (1.1.1)). The use of the conjugate term in (1.4.1) is necessary in order to guarantee that
G\ will be a nonnegative real number. In particular, it is immediate to verify from (1.4.1)
that

°l = < + °l
in terms of the individual variances of xx and x\.

We shall say that two complex-valued random variables x and y are uncorrelated if, and
only if, their cross-correlation is zero, i.e., if

axy ± E(x-x)(y-y)*=0

On the other hand, we shall say that they are orthogonal if, and only if,

Exy* =0

Realizations
Estimates4
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a\ = E{x-x){x-xY = E\x-x\2



20 Optimal Estimation Chapter 1

It can be immediately verified that the concepts of orthogonality and uncorrelatedness co-
incide if at least one of the random variables is zero mean.

Example 1.4.1 (QPSK constellation) Consider a signal a? that is chosen uniformly from a QPSK
constellation, i.e., x assumes any of the values

, >/5 , .y/2
±~¥ ± 3T

with probability 1/4 (see Fig. 1.8). Clearly, a? is a complex-valued random variable; its mean and
variance are easily found to be x = 0 and a\ = 1.

1.4.2 Vector-Valued Random Variables

A vector-valued random variable, on the other hand, is a collection (in column or row vector
forms) of random variables. The individual entries can be real or complex-valued themselves.
For example, if x = col{x(0), x(l)} is a random vector with entries {a?(0), #( l )} , 1 2 then we
shall define its mean as the vector of individual means,

Ex = [ !(°) 1
L * ( l ) J

and its covariance matrix as

Rx = E(x-x)(x-x)* (1.4.2)

where the symbol * now denotes complex-conjugate transposition (i.e., we transpose the
vector and then replace each of its entries by the corresponding conjugate value).13 Com-
paring with the definition (1.3.16) in the real-valued case, we see that the symbol * replaces

12We use parenthesis to index the scalar entries of a vector, e.g., x(k) denotes the k~th entry of x.
13We may mention in passing that if x were a row random vector, rather than a column random vector,

then its covariance matrix would be defined as

Rx = E(x-x)*(x-x)
with the conjugate term coming first. This is because in this case, it is the product (x — x)*(x — x) that
yields a matrix, while the product (x — x)(x — x}* would be a scalar.

0

Rx = E(x-x)(x-x)*

Imaginary part

Real part

2

2

2 : 2

Figure 1.8. A QPSK constellation.
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the transposition symbol T. Moreover, we also see that Rx is not symmetric anymore but
rather Hermitian. That is, Rx satisfies

For the above two-element vector x we obtain

I" E|a;(0)-5(0)|2 E[x(0) - x(O))[x(l) - x(l))* '

[E[x(l)-x(l)}[x(0)-x(0)Y E|ar(l)-a;(l)|2

with the individual variances of the variables {x(Q),x(l)} appearing on the diagonal and
the cross-correlations between them appearing on the off-diagonal entries. In the zero-mean
case, the definition of Rx, and the above expression, simplify to

Rx = Exx*

and
" E|#(0)|2 Ea?(0)a;*(l) "

[ Eas(l)a:*(0) E|a!(l)|2

We mentioned before, following the definition (1.3.16), that the covariance matrix of a
random vector is always nonnegative-definite.14 In order to verify this claim in the general
complex and vector-valued case, we introduce the scalar-valued random variable y = a*(x —
x), where a is an arbitrary column vector. Then y has zero mean and

a2
y = E\y\2 = a*Rxa

But since the variance of any scalar-valued random variable is always nonnegative, we con-
clude that a*Rxa > 0 for any a. This means that Rx is nonnegative definite, as claimed.

Example 1.4.2 (Transmissions over a noisy channel) Consider the setting of Fig. 1.9. A se-
quence of independent and identically distributed (i.i.d.) symbols {s(i)} is transmitted over an
initially relaxed FIR channel with transfer function C(z) = 1 + 0.5^~1, where z~~l denotes the unit-
time delay in the z—transform domain. Each symbol is either +1 with probability p or — 1 with
probability 1 ~ p. The output of the channel is corrupted by zero-mean additive white15 Gaussian
noise v(i) of unit variance, i.e.,

Ev{i)v*{j) = 5ij

where Sij denotes the Kronecker delta function that is equal to unity when i = j and zero otherwise.
The noise and the symbols are assumed independent.

The output of the channel at any specific time instant i is given by

y(i) = s(i) + 0.5s(z - 1) + v(i)

Assume we collect N -h 1 measurements, {y(i), i — 0 , 1 , . . . , N}, into a column vector y, and then
pose the problem of recovering the transmitted symbols {s(i), i = 0 , 1 , . . . , N} over the same interval
of time. If we collect the symbols {s(i)} into a column vector x as well,

x = col{s(0),s(l),...,s(7V)}
14We defined in an earlier footnote what we mean by a nonnegative-definite matrix. There however we

were dealing with real-valued matrices. In the general complex-valued case, we say that a Hermitian matrix
R is nonnegative definite if, and only if, a*Ra > 0 for any column vector a (real or complex-valued). We
say that R is positive-definite if, and only if, a* Ra > 0 for any nonzero column vector a.

15A random process v(i) is white if Ev(i)v*(j) = 0 for all i ^ j ; i.e., if its terms are uncorrelated with
each other.

RX = K

Rx —

x(0)\*

Rx —
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Figure 1.9. Transmission over an additive white Gaussian FIR channel.

then we are faced with the problem of estimating a vector x from a vector y. Here the entries of x
and y are all real-valued. If the symbols s(i) were instead chosen from a QPSK constellation, then
both x and y will be complex-valued. We shall return to this problem further ahead in Ex. 1.4.4
and also in Chapter 2 (see Ex. 2.2.3).

1.4.3 Optimal Estimator in the Vector Case

It turns out that the optimal estimator in the general vector and complex-valued case is still
given by the conditional expectation of x given y. To see this, let us start with a special
case.

Assume x and y are both real-valued with x a scalar and y a vector, say

y = col{y(0),y(l),.. . ,y((/-l)}

As before, let x = h(y) denote an estimator for x. Since y is vector-valued, the function h(-)
operates on the entries of y and provides a real scalar quantity as a result. More explicitly,
we write

x = h[y(O),y(l),...,y(q-l)]

The function h(-) is to be chosen optimally by minimizing the variance of the error x = x—x,
i.e., by solving

min E x2

h(-)

The same argument that we used to establish Thm. 1.3.1 can be repeated here to verify-
that the optimal estimator is still given by

x = E(x\y) = E[a5|y(0),y(l),...,y(g-l)] (1.4.3)

The only difference between this result and that of Thm. 1.3.1 is that the conditional
expectation is now computed relative to a collection of random variables {y{i)}, rather
than a single random variable. Moreover, the orthogonality condition (1.3.5) extends to this
case and is still given by

E[x-E(x\y)]g(y)=0 (1.4.4)

for any function g(-) of y.

Example 1.4.3 (Various noisy measurements of a BPSK signal) Let us return to Ex. 1.3.1,
where as is a BPSK signal that is either +1 or — 1 with probability 1/2 each. Assume that we collect
two noisy measurements y(0) and y(l) of a:, say

y(0) - x +1>(0), y(l) = x + t;(l)

where {v(0),v(l)} are zero-mean unit-variance Gaussian random variables that are independent
of each other and of x. The value of x is the same in both measurements (i.e., if it is +1 in the

y(i)

v(i)

s(i)
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measurement 2/(0), it is also +1 in the measurement y(l), and similarly for — 1.) For instance, we
could interpret {y(0), y(l)} as the noisy signals measured at two antennas as a result of transmitting
x over two additive Gaussian-noise channels — see Fig. 1.10.

Figure 1.10. Reception by two antennas of a symbol x transmitted over two
additive Gaussian-noise channels.

We can then pose the problem of estimating x given both measurements {y(0),y(l)}. According
to (1.4.3), the solution is given by

x = E[x|y(0),»(l)]

The evaluation of the conditional expectation in this case is a trivial extension of the derivation
given in Ex. 1.3.1, and it is left as an exercise to the reader — see Prob. 1.11, where the more
general case of multiple measurements is treated. The result of that problem shows that

x = tanh[y(0) + y(l)]

In the context of the two-antenna example of Fig. 1.10, this result leads to the optimal receiver
structure shown in Fig. 1.11.

Figure 1.11. Optimal receiver structure for recovering a symbol x from two
separate measurements over additive Gaussian-noise channels.

0

Let us now study the general case and determine the form of the optimal estimator for a
vector-valued random variable x given another vector-valued random variable y, with both
variables allowed to be complex-valued as well. Thus assume that x is p—dimensional while
y is q—dimensional.

v(l)

0(1)
k ^

x

v(0)

v(P)

Xtanh(-)

v(0)

x

3/(0)

2/(1)

«(1)
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Again, let x = h(y) denote an estimator for x. Since x and y are vector-valued, the
function h(-) operates on the entries of y and provides a vector quantity as a result. More
explicitly, we can write for the individual entries of x and i/,

x(0) 1 1" ho[»(0),w(l),. ••,»(«-!)]
*(i) fri[w(o),v(i),...,v(«-i)]
x(2) = /»2[»(0),»(l),...,y(9-l)]

_ x(p-i) J [ Vi[»(o).»(i),---,v(g-i)] .

where the {̂ fc(*)} represent the individual mappings from the observation vector y to the
estimators {x(k)}. We can then seek optimal functions {hk(-)} that minimize the variance
of the error in each component of x, namely, each hk(-) is determined by solving

rain E |x(fc)|2 ( L 4 5 )

where
x(k) = x(k) - hk(y)

This formulation is also equivalent to solving over all {hk(-)} the following problem:

min E x*x /1 A «x
{hk{-)} | d-4-6)

This is because the quantity Ex*x is the sum of the individual terms E |^(A:)|2,

Ex*x = E|x(0)|2 + E|x(l)|2 + ... + E\x(p-l)\2

with each term E|x(fc)|2 depending only on the corresponding function /&&(•). In this way,
minimizing the sum Ex*x over all {ftfe(-)} is equivalent to minimizing each individual term,
E|x(/c)|2, over its hk(-)- Note further that

Ex*x = Tr(Exx*) = Tr(ife)

That is, the scalar quantity Ex*x in (1.4.6) is equal to the trace of the error covariance
matrix ife?16 so that (1.4.6) is also equivalent to solving over all {hk(-)}\

{$)} T'iR'} 1 OAT)

Now the solution to the general problem (1.4.5) follows from the special case discussed
at the beginning of this section. Indeed, if we express x(k) and hk{-) in terms of their real
and imaginary parts, say

x(k) = xr(k)+ j Xj(fc), hk = hr,k+jh\ik

then we can expand the error criterion as

E | x ( * ) - ^ ( y ) | 2 = E[xr(fc)-hr>fc(|/)]
2 + E[Xi(k) - h-uk(y)}2

16The trace of a matrix is equal to the sum of its diagonal elements. Moreover, for any column vector a,
it holds that a*a = Tr(aa*).

min E lx(fc)|2

hk{-)

min E x*x
{hk(-)}

min Tr(JRi)
{ftfc(0}

ho{y(O),y(l),...,y(q-l)}
fri[w(o),v(i),...,v(«-i)]
h2[y(0),y(l),...,y(q-l)}

Vi[#),y(i),...,y(9-i)]

x(0)
x(l)
x(2)

. &(P - 1) .



Section 1.4. Estimation in the Complex and Vector Cases 25

and we are reduced to minimizing the sum of two nonnegative quantities over the unknowns
{ r̂,fc(')> ^i,&(')}• This is equivalent to minimizing each term separately,

min E[xr{k)-hr,k(y)}2, min E[x-,{k) - h^k{y)]2

^i.fc(-)

and the solution we already know from (1.4.3) to be given by

xr(k) = E [^(^1^(0) , i/jCO), y r ( l ) , ^ (1 ) , . . . , 2/r(^ ~ 1), 2/i(^ - 1)]

X](k) = E [xi(fc)|yr(0), i/KO), t/ r(l), t / i ( l )5 . . . , yr(q - 1), yM - 1))

Therefore, the optimal choice for hk(-) is

x(k) = E[x(k)\y]

so that the optimal estimator that minimizes the variances of the individual errors {x(k)}
is

r E[*(O)M i
E[x(l)\y]

x = E(x\y) = . (1.4.8)

[ E[g(p-l)ly] J

Likewise, using the property (1.3.5) of conditional expectations, we conclude that the or-
thogonality condition in this case is still given by

E[x-E(x\y)]g(y) = 0 (1.4.9)

for any function g(-) of the observation y.

Theorem 1.4.1 (Optimal estimation in the vector case) The least-mean-squares
estimator of a (possibly complex-valued) vector x given another (possibly complex-
valued) vector y is still the conditional expectation of x given y, i.e., x = E(x\y).
This estimator solves

minTr(/fe)

where Rx = Exx* and x — x — x.

Example 1.4.4 (Estimation of transmitted symbols) Consider again the setting of Ex. 1.4.2
and assume N = 2, so that we are interested in estimating the vector x = col{s(0), 5(1)} from the
observation y = col{y(0),y(l)}, where

y(0) = s(0) + v(0), y(l) = «(1) + 0.5«(0) + t;(l)

Here we are assuming that transmissions start at time 0 so that s(—1) = 0. If we introduce the
2 x 2 matrix

H=[o15 ! ]
and the vector v = col{v(0),v(l)}, then the above equations can be written more compactly in
matrix form as follows:

y = Hx + v

' E [*(()) M "

x = E(x\y) = ,

_ E[x(p-l)\y] _

Theorem 1.4.1 (Optimal estimation in the vector case) The least-mean-squares
estimator of a (possibly complex-valued) vector x given another (possibly complex-
valued) vector y is still the conditional expectation of x given y, i.e., x = E(x\y).
This estimator solves

minTr(/fe)
X

where Rx = Exx* and x — x — x.

fcr.fcO)
E[aj,
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We are therefore faced with the problem of estimating x from y, with the noise term v assumed
independent of x. Now recall that the symbols s(i) are either +1 or —1 with probabilities p or
1 — p, respectively. Hence, the vector x can assume any of four values:

x e { [ t i ] ' [ - i ] ' [ - i ] 1 [ + i ] } = ^ m o ' m i ' m 2 ' m 3 >
with probabilities

{p2, (1 -P) 2 , P ( l - P ) , P ( l -P )}
respectively. Observe that we are denoting the four possibilities of cc by {rrii.i = 0, . . . ,3} for
compactness of notation. Let also q = 1 — p.

Moreover, the pdf of v is Gaussian and given by

/„(„) = ^ e x p { - ^ / 2 >

since the covariance matrix of v is assumed to be the identity matrix. It then follows that the pdf of
y is given by

fy{y) = P2U {y - Hmo) + q2fv (y - Hmi) + pqfv (y - Hm2) + pqfv {y ~ Hm3)

Similarly, we obtain, as in Ex. 1.3.1, that

fx,y(x,y) = fx(x) • fv{y ~ Hx)
= P2U{y- Hmo)S(x-mo) + q2fv(y~Hmi)S(x~mi)

+ PQfv{y - Hm2)S(x - m2) + pqfv(y - Hm3)S(x - m3)

The expressions so derived for fy(y) and fx,y(x,y) allow us to evaluate fx\y(x\y), from which we
can evaluate the desired conditional expectation E (x\y) and, consequently, {s(0),£(l)}. This final
computation is left as an exercise to the reader — see Prob. 1.12.

0

1.4.4 Equivalent Optimization Criterion

A useful fact to highlight here is that the optimal estimator E (x\y) defined by (1.4.8), which
solves problems (1.4.5)-(1.4.7), is also the optimal solution of another related matrix-valued
error criterion (cf. (1.4.11) further ahead), as we now explain.

Thus consider the following alternative formulation. Assume that we pose the problem of
estimating x from y by requiring that the functions {/&&(•)} be such that they minimize the
variance of any arbitrary linear combination of the entries of the error vector, say a*(x—h(y))
for any a. That is, assume we replace the optimization problem (1.4.5) by the alternative
problem

min E|a*x|2, for any column vector a (1.4.10)

The error vector x is dependent on the choice of h and, therefore, the covariance matrix
Exx* is also dependent on h. Let us indicate this fact explicitly by writing

Rz{h) = Exx*

Now note that
E|a*x|2 - a*Rz(h)a

so that problem (1.4.10) is in effect seeking an optimal function h° such that, for any vector
a and for any other h,

a?Rz{h)a > a*RS;(h
o)a

{M-)>
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That is, the difference matrix Rx{h) - Rx{h°) should be nonnegative-definite for all ft. For
this reason, we can equivalently interpret (1.4.10) as the problem of minimizing the error
covariance matrix Rx itself, written as

min Exx*
h(.)

(1.4.11)

Comparing with (1.4.6) we see that we are replacing the scalar Ex*x by the matrix Exx*.
Let us now verify that the solution to (1.4.10), or equivalently (1.4.11), is again h°(y) =

E(x\y). For this purpose, we recall that, for any ft(y),

x=x~x=x- h(y)

so that the covariance matrix Rx(h) is given by

Rx(h) = E[x-h(y)][x-h(y)}*
= Exx* - Exh*(y) - Eh(y)x* + Eh(y)h*(y)

We now verify that
Rz(h)-R$(h°)>0

for any choice of ft. Indeed, from the orthogonality property (1.3.5), we have that x — h°(y)
is uncorrelated with any function of y. Hence,

Rs(h°) = E[x-h°(y)][x-h°(y)]* = E[x-h°(y)]x* = Exx* - Eh°(y)x*

Subtracting from Rx{h) leads to

R*(h) - Rs(h°) = -Exh'(y)-Eh(y)x' + Eh(v)h?(y) + Eho(y)x'

From the orthogonality property (1.3.5) we again have that

E[x- h°{y))h°*{y) = 0, E[x- h°(y))h*(y) = 0

so that
Exh°*(y) = Eh°(y)h°*(y) and Exh*(y) = Eh°(y)h*(y)

These two equalities allow us to rewrite the difference Rx(h) - Rx(h°) as a perfect square:

Rs(h) - Ri(h°) = E[h°(y) - h(y)}[h°(y) - h(y)}*

The right-hand side is nonnegative-definite for all ft, as claimed. Finally, since the cost used
in (1.4.6) is simply the trace of the error covariance matrix, we conclude that minimizing
the error covariance matrix is equivalent to minimizing its trace.

Lemma 1.4.1 (Cost function) The conditional expectation of x given y is optimal
relative to either cost

min Tr (Rx) or min Rx
X X

where Rx = Exx* and x = x — x.
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1.4.5 Spherically Invariant Gaussian Variables

We saw earlier in Sec. 1.3.3 that for scalar real-valued Gaussian random variables {x,y},
the optimal estimator of x given y depends in an affine manner on the observation y. The
same conclusion holds in the general vector complex-valued case.

So assume that x and y are jointly Gaussian random vector variables with a nonsingular
covariance matrix

j ^ A I Rx RXy 1

L Ryx Ry J

where
Rx = E(x - x)(x - z)*, Ry = E(y- y)(y - y)*

and
Rxy = E(x-x)(y-yy = R*yx

The variables {x, y} are assumed to be complex-valued with dimensions p x 1 for x and
q x 1 for y.

If x and y were real-valued, then their individual probability density functions, as well
as their joint pdf, would be given by (see App. l.B):

^(2^)^ vdeti?x

, ( I r t __ i L_eJ-'i(i-i>T <»-»TH;=i]}
In particular, observe that if x and y were uncorrelated, i.e., if ii!^ = 0, then the covariance
matrix R becomes block diagonal, with entries {Rx,Ry}, and it is straightforward to verify
from the above pdf expressions that in this case

fx,y(xiy) = f*(x)' fy(v)

In other words, uncorrelated real-valued Gaussian random variables are also independent.
When, on the other hand, x and y are complex-valued, they need to satisfy two conditions

in order for their individual and joint pdfs to have forms similar to the above in the Gaussian
case. These conditions are known as circularity assumptions, and the need for them is
explained in App. l.B. The conditions are as follows. Each variable is required to be
circular, meaning that {x, y} should satisfy

E(l/ - y)(y - y)T = 0 and E(x - x)(x - x)T = 0

with the transposition symbol T used instead of the conjugation symbol *. The variables
are also required to be second-order circular, i.e.,

E{x-x){y-y)T = 0

These circularity assumptions are not needed when the variables {x, y} are real-valued. The
circularity of x guarantees that its pdf in the Gaussian case will have the form

Ux) =

/„(*) =

1 1 exp{-^x-sfR*1{x-s)}

1 1

\/(2n)i -y/det Ry

exp{-5(!/-S)T^l(y-5)}

V/(27T)P+<? VdeTR

^w^sfe^"'-"'̂ '"""1
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Likewise, the circularity of y guarantees that its pdf will have the form

The second-order circularity of x and y guarantees that the joint pdf of {cc, y} will have the
form

, ( I S ) - ^ ^ J - [ ( * - * ) - <»-»']"••[»:?]}
Thus observe again that if x and y were uncorrelated, then the above pdf expressions lead
to

fX,y{x,y) = fx(x) ' fy(y)

which shows that uncorrelated circular Gaussian random variables are also independent.
This conclusion would not have held without the circularity assumptions in the complex
case. We may add that circular Gaussian random variables are also called spherically-
invariant Gaussian random variables.

Now the least-mean-squares estimator of x given y requires that we determine the con-
ditional pdf fx\y{x\y). This can be obtained from the calculation

{- [ (* -* ) • {y-vY ]*-'[ x ~ l \ \
j»\vwv) - fy{y) - ^ detR exp{_(1/_s),H-1(2/_s)}

Following the same argument that we used earlier in Sec. 1.3.3, we can simplify the above
expression by introducing the block upper-diagonal-lower triangular factorization (whose
validity can again be verified, e.g., by direct calculation):

R A r RX RXV i r i RxyR-11 r s o i r i o i
K ~ [ Ryx Ry J [ 0 I J [ 0 Ry J [ R^Ry* I J

where S is the Schur complement of Ry in R, namely,

Inverting both sides of the above factorization for R we get

! _ r i o i r s-1 o i r i -R^R-1 "

- [ -R-lRyx I J [ 0 i?-1 J [ 0 I .
which allows us to express the term

[(*-*)• {y-yY}R-i[X
y-_l\

which appears in the expression for fx,y(x, y), as a separable sum of two quadratic terms,

[{x -x)- RxyR-\y - SOrs-MC* - x) - RxyR^iv - y)\ + (y - yfR'^y - y)

Substituting this equality into the expression for fx\y(x\y), and using det it! = det E • det Ry,
we conclude that

f , (T\y) - 1 l_em{-[{x-x)-RxyR~"{y-y)Yi:-\{x~x)-RxyR-\y-y)]}

A W " 5 5 ^ - P < - ' - ) " V ( M ' >

fx,y(
x>y) 1 det Ry exp

where £ is the Schur complement of Ry in R, namely,

Inverting both sides of the above factorization for R we get

which allows us to express the term

1 liXySXy

0 I. ~RylRyx I 0 Ry^

l l
TTP det E exp'
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which can be interpreted as the pdf of a circular Gaussian random variable with covariance
matrix E and mean value x 4- RxyR~1(y — y). We therefore conclude that

x = E(x\y) = x + RxyR-^y-y)

and the resulting m.m.s.e. matrix is

m.m.s.e. = Rx = Rx ~ Rx = Rx ~~ RxyRy Ryx

These are the extensions to the vector case of expressions (1.3.21) and (1.3.22) in the scalar
case. Note further that in the zero-mean case we obtain

x = RxyRyly

with {Rx,Ry,RXy} defined accordingly,

Rx = Exx\ Ry = Eyy*, Rxy = Exy*

Observe from the above expressions that the solution of the optimal estimation problem
in the Gaussian case is completely determined by the second-order moments of the variables
{x, y) (i.e., by RX1 Ry, and Rxy). This means that, in the Gaussian case, the m.m.s.e. matrix
can be evaluated beforehandby the designer (i.e., prior to the collection of the observations);
a step that provides a mechanism for checking whether the least-mean-squares estimator
will be an acceptable solution.

Lemma 1.4.2 (Circular Gaussian variables) If x and y are two circular and jointly
Gaussian random variables with means {x,y} and covariance matrices {Rx,Ry,Rxy},
then the least-mean-squares estimator of x given y is

x = x~\-RxyR~1(y -y)

and the resulting minimum cost is

m.m.s.e. = Rx-RxyR~lRyx

1.5 SUMMARY OF MAIN RESULTS

This chapter highlights several concepts and results in least-mean-squares estimation. Some of these
concepts are reproduced here in a less technical language in order to reinforce their importance.

1. The variance of a random variable serves as a measure of the amount of uncertainty about
the variable: the larger the variance the less certain we are about the value it may assume
in an experiment.

2. The least-mean-squares error criterion is useful in that it leads to tractable mathematical
solutions. The criterion is also intuitively appealing. By seeking to minimize the variance of
the estimation error we are in effect attempting to force this error to assume values close to
its mean and, hence, to assume small values since the mean is zero.

sb = E(se|y) = x + R^R'^y-y)

m.m.s.e. = Rx = Rx — Rx — Rx — RxyRy Ryx

x = RxyRy
ly

Lemma 1.4.2 (Circular Gaussian variables) If x and y are two circular and jointly
Gaussian random variables with means {x,y} and covariance matrices {Rx,Ry, Rxy},
then the least-mean-squares estimator of x given y is

x = x + RxyRy1 {y -y)

and the resulting minimum cost is

m.m.s.e. = Rx-RxyR~lRyx



Section 1.6. Bibliographic Notes 3 1

3. The least-mean-squares estimator of a random variable x given another random variable y is
the conditional expectation estimator, namely, x — E (x\y). This estimator is optimal in the
sense that it minimizes the covariance matrix of the error vector (or, equivalently, its trace),
i.e., it solves

min Exx* or min Tr(Rx)
MO h(.) V X)

4. A defining property of the least-mean-squares estimator is that the resulting estimation error
is uncorrelated with any function of the observations, namely, it holds that

E (x — x)g(y) = 0 for any function g(-) of y

In particular,
x _L x and x _L y

5. The evaluation of the conditional expectation, E(x\y), is a formidable task in most cases.
However, for circular Gaussian random variables the estimator x is related to the observation
y in an affine manner. Specifically, it holds that

x = x + RxyR^iy-y)

where
Rx = E(x - x)(x - x)\ Ry = E(y- y)(y - y)*

and
Rxy = E(x -x)(y -y)*

In particular, the estimator is completely determined from knowledge of the first and second-
order moments of {x,y}, namely, their means, covariances and cross-covariance.

1.6 BIBLIOGRAPHIC NOTES

Probability theory. The exposition in this chapter assumes some basic knowledge of probability
theory; mainly with regards to the concepts of mean, variance, probability density function, and
vector-random variables. Most of these ideas were defined and introduced in the chapter from first
principles. If additional help is needed, some accessible references on probability theory and basic
random variable concepts are Papoulis (1991), Picinbono (1993), Leon-Garcia (1994), Stark and
Woods (1994), and Durrett (1996). The textbook by Leon-Garcia (1994) is rich in examples, and
is particularly directed to an engineering audience.

Mean-square-error performance. The squared-error criterion, whereby the square of the esti-
mation error is used as a measure of performance, has a very distinguished history. It dates back
to C. F. Gauss (1795), who developed a deterministic least-squares-error criterion as opposed to
the stochastic least-mean-squares criterion of this chapter. Gauss' formulation was motivated by
his work on celestial orbits, and we shall comment on it more fully in the concluding remarks of
Chapter 11 when we study the least-squares criterion. A distinctive feature of the square-error
criterion is that it penalizes large errors more than small errors. In this way, it is more sensitive
to the presence of outliers in the data. This is in contrast, for example, to Laplace's proposition
to use the absolute error criterion as a performance measure (see Sheynin (1977)). Gauss was very
much aware of the distinction between both design criteria and this is how he commented on his
squared-error criterion in relation to Laplace's absolute-error criterion:

" Laplace has also considered the problem in a similar manner, but he adopted the absolute value
of the error as the measure of this loss. Now if I am not mistaken, this convention is no less arbitrary
than mine. Should an error of double size be considered as tolerable as a single error twice repeated or
worse? Is it better to assign only twice as much influence to a double error or more? The answers are
not self-evident, and the problem cannot be resolved by mathematical proofs, but only by an arbitrary
decision."

Extracted from the translation by Stewart (1995).
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Besides Gauss' motivation, there are many good reasons for using the mean-square-error crite-
rion, not the least of which is the fact that it leads to a closed-form characterization of the solution
as a conditional mean. In addition, for Gaussian random variables, it can even be argued that
the least-mean-squares error estimator is practically optimal for any other choice of the error cost
function (quadratic or otherwise) — see, for example, Pugachev (1958) and Zakai (1964),

Statistical theory. There is extensive work on the least-mean-squares error criterion in the sta-
tistical literature. For instance, the result of Thm. 1.3.1 on the conditional mean estimator is
related to the so-called Rao-Blackwell theorem from statistics (see, e.g., Caines (1988) and Scharf
(1991)). However, in statistics, there is often a distinction between what is known as the classical
approach to estimation and the alternative so-called Bayesian approach to estimation. In the clas-
sical approach, the unknown quantity to be estimated is modeled as a deterministic but unknown
constant; we shall encounter this situation in Chapter 3 while studying the Gauss-Markov theorem.
The Bayesian approach, on the other hand, models the unknown quantity as a random variable,
which is the point of view we adopted in this chapter. Such Bayesian formulations allow us to
incorporate prior knowledge about the unknown variable itself into the solution, such as informa-
tion about its probability density function. This fact helps explain why Bayesian techniques are
dominant in many successful filtering and estimation designs; still the Bayesian approach has not
been immune to controversies along its history (see Box and Tiao (1973)).

Complex random variables. Complex variables, as well as complex random variables, are frequent
in electrical engineering (and perhaps more so than in any other discipline). One notable example
arises in digital communications whereby symbols are often selected at random from a complex
constellation (or even in the complex representation of bandpass signals). Since complex random
variables will play a prominent role throughout this textbook, we have chosen to motivate them
from first principles in the body of the chapter. In App. l.B we pursue their study more closely
and focus, in particular, on the important class of complex-valued Gaussian random variables. It is
explained in the appendix that a certain circularity assumption needs to be satisfied if the resulting
pdf in the complex case is to be uniquely determined by the first and second-order moments of
the complex random variable, as happens in the real case. The main conclusion appears in the
statement of Lemma l.B.l, which shows the form of a complex Gaussian distribution under the
circularity assumption. The original derivation of this form is due to Wooding (1956) — see also
Goodman (1963) and Miller (1974). It is for this reason that, in future discussions, whenever we
refer to a complex Gaussian distribution we shall often attach the qualification "circular" to it and
refer instead to a circular Gaussian distribution.

Linear algebra. Throughout the book, the reader will be exposed to a variety of similar concepts
from linear algebra and matrix theory in a self-contained and motivated manner. In this way,
after progressing sufficiently enough into the book, students will be able to master many useful
concepts. If additional help is needed, some accessible references on matrix theory are the two
volumes by Gantmacher (1959), the book by Bellman (1970), and the two volumes by Horn and
Johnson (1987,1994). Accessible references on linear algebra are, for example, the books by Strang
(1988,1993), Lay (1994), and Lax (1997).
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1.7 PROBLEMS

Problem 1.1 (Rayleigh distribution) Consider a Rayleigh-distributed random variable x with
pdf given by (1.1.3). Show that its mean and variance are given by (1.1.4).

Remark. Recall that for a general random variable x with pdf fx(x), the mean and variance are defined by

*= nxMx)6x, <% = (r*a/.(*)d*) - *2

J-oo \J-oo /

Problem 1.2 (Markov's inequality) Suppose a? is a scalar nonnegative real-valued random vari-
able with probability density function fx{x). Establish the inequality P[x > a] < Ex/a.

Problem 1.3 (Chebyshev's inequality) Consider a scalar real-valued random variable x with
mean x and variance a%. Define the nonnegative random variable y — (x ~ x)2, whose mean is
clearly a\. Use Markov's inequality to establish Chebyshev's inequality (1.1.5).

Problem 1.4 (Conditional expectation) Consider two real-valued random variables x and y.
Establish that E[E(x|y)] = Ex. That is, show that

f f f f 1
/ xfx(x)dx = / fy{y)\ xfxly(x\y)dx\dy

Jsx Jsy Usx J
where Sx and Sy denote the supports of the variables x and y, respectively.

Remark. This identity states that we can split the evaluation of Ex into two separate expectations; one
is the conditional expectation of x given y (the result of which is a function of y), and the other is an
expectation over y.

Problem 1.5 (Estimator for a binary signal) Consider the same setting of Ex. 1.3.1 but as-
sume now that the noise v has a generic variance cr%.

(a) Show that the optimal least-mean-squares estimator of x given y is x = tanh(y/cr^). Plot
the estimate £ as a function of y for the values <TJJ = 0.5,1,2.

(b) Argue that x = s'\gn(y) can be taken as a suboptimal estimator. Follow the derivation at the
end of Ex. 1.3.2 to show that the improvement in SNR is given by

SNRout-SNRin = 101og(crS/4a)

where

a = —==— / e *°v6v

(c) Plot the improvement in SNR as a function of a%.

Problem 1.6 (Biased measurements) Consider the same setting of Ex. 1.3.1 but assume now
that the noise v has mean v and unit variance.

(a) Show that the optimal least-mean-squares estimator of x given y is x = tanh(y — v). Plot
the estimate x as a function of y for the values v = —0.5,0,0.5.

(b) Argue that x = sign (y — v) can be taken as a suboptimal estimator.
(c) Following the derivation at the end of Ex. 1.3.2, verify that the improvement in SNR is given

by

SNRo.t-SNR^ = iolog r ^ - )

where
1 1 f°° ("-*»*

a = —7= — / e 2 dv
V2n<Tv Ji

Remark. Since v is not zero mean, we are measuring its power by using Ev2 and not a%.
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Problem 1.7 (Correlation coefficient) Consider two scalar random variables {x, y} with means
{x,y}, variances {0^,0^}, and cross-correlation axy. Define the correlation coefficient pxy =
Vxy/(crxVy)' Use the fact that the covariance matrix

«Mm-m)(m-m)T
is nonnegative-definite, to conclude that \pxy\ < 1.

Problem 1.8 (Fully correlated random variables) Consider two scalar real-valued random
variables x and y with correlation coefficient pxy, means {x,y}, and variances {(Jx^y}- Show
that \pxy\ = 1 if, and only if, the random variables are related as

x-x = ±^-(y~y)

Problem 1.9 (Chi-square distribution) Let x be a real-valued random variable with pdf fx(x).
Define y — x2.

(a) Use the fact that for any nonnegative y, the event {y < y} occurs whenever {—y/y < x < yfy}
to conclude that the pdf of y is given by

(b) Assume x is Gaussian with zero mean and unit variance. Use part (a) to conclude that

' • M - v s r " " 9 ' y>0

Remark. The above pdf is known as the Chi-square distribution with one degree of freedom. More
generally, a Chi-square distribution with k degrees of freedom is characterized by the pdf

where F(-) is the so-called Gamma function, which is defined by the integral

V{z) = / sz-le~s6s, z > 0
Jo

The function T(-) has the following useful properties: T(l/2) = V r̂, F(z -f- 1) = zT(z) for any z > 0,
and F(n -f 1) = n! for any n > 0.

Problem 1.10 (Rayleigh distribution) Consider an FIR channel with two real-valued taps,
x(l) and x(2). The taps are assumed to be independent zero-mean unit-variance Gaussian random
variables.

(a) Use the result of part (b) of Prob. 1.9 to show that the random variable w = x2(l) + x2(2)
has a Chi-square distribution with two degrees of freedom, i.e.,

(b) Conclude that the random variable z — yjx2(l) + x2(2) has a Rayleigh distribution, namely,
show that

with z = y/ir/2 and a\ = (2 - TT/2).

^ ^ = 2 - ^ - + 2 - ^ - ' V > °

^-w^m^12^ «>°

Uz)=ze-z2'\ z>0

fm(w) = ±e-w/2, «;>0
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Problem 1.11 (BPSK signal) Consider noisy observations y(i) = x 4- v(i), where x and v(i)
are independent real-valued random variables, v(i) is a white-noise Gaussian random process with
zero mean and variance <r2, and x takes the values ±1 with equal probability. The value of x
is either +1 or —1 for all measurements {y(i)}. The whiteness assumption on v(i) means that
Ev(i)v(j) = 0 for i^ j .

(a) Show that the least-mean-squares estimate of x given N observations {y(0),..., y(N — 1)} is

xN = tanh I ^2 vW/vv I
\i=0 /

(b) Assume x takes the value 1 with probability p and the value —1 with probability 1 —p. Show
that the least-mean-squares estimate of x given N observations {y(0),..., y(N — 1)} is given
by

£„ = tanh fi In (j?-^ + £ y(i)/o2}

in terms of the natural logarithm of p/(l — p).

(c) Assume the noise is instead correlated. Specifically, define v — col{v(0),v(l),... ,«(iV)}
and let Rv — Evv*. Show that the least-mean-squares estimate of x given N observations
{y(0),..., y(N - 1)} is now given by

xN = tanh U In (jZT^) + ^ ^ 1 / l ]

where y = co\{y(0),y(l),..., y(iV)} and /i = col{l, 1,. . . , 1}.

Problem 1.12 (Optimal receiver) Let us complete the derivation of Ex. 1.4.4 and evaluate
E(x|»).

(a) Verify that

x = 7-7-T Y" a(k)mkfv(y - Hmk)
jy{y) \ k = 0 )

where a(0) = p2, a(l) = g2 and a(2) = a(3) = pq.

(b) Introduce
a =,p2 • e-i(-

2v(°)-3w(1)+2) b = q2 - e-i(-
2v(o)+3»(i)+2)

c = pg • c-i<-2w(0>+y(1» d = p^ • e-4^ ( 0 )-w ( 1 ) )

Show that the expression in part (a) simplifies to

[ J(°) 1 = 1 [ a - b + c - d 1
[ 5(1) J - a + ^ - } - C 4 . ( i [ a - 6 - - c H - d J

Problem 1.13 (Exponential distribution) Suppose we observe y = x + v where x and v are
independent real-valued random variables with exponential distributions with parameters Ai and
A2 (Ai ^ A2). That is, the pdfs of x and v are fx(x) = Aie~-Aia: for x > 0 and fv(v) = A2e~A2V for
v > 0, respectively.

(a) Using the fact that the pdf of the sum of two independent random variables is the convolution
of the individual pdfs, show that

/ir(y) = 3^L r . c-^.[e^-^-l]

for y > 0.
(b) Show that the joint pdf of x and y is fx,y(x,y) = AiA2e(A2-Xl)x-A2y for x > 0 and y > 0.
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(c) Show that the least-mean-squares estimate of x given y = y is

.__ _ L e-x'y

X ~~ Ai - A 2 e~x*y ~-e~xiy V

Problem 1.14 (Equivalent criteria) Show that the least-mean-squares estimator x = E(x\y)
also minimizes Ex*Wat, for any Hermitian nonnegative-definite matrix W\ it does not even need
to be invertible. [Hint Introduce the eigen-decomposition of W (cf. App. l.A), say W = UAU*, and
estimate U*x from y.]

Problem 1.15 (Second- and fourth-order moments) Let R denote an M x M positive-definite
matrix and introduce its eigen-decomposition (cf. App. l.A),

M

R — 2_. XiUiU*
i-\

where the Xi are the eigenvalues of R (all positive), and the m are the eigenvectors of R. The
Ui are orthonormal, i.e., u*Ui — 0 for all i ^ j and u*Ui = 1. Let h be a random vector with
probability distribution P(h = Uj) = Xj/Tr(R). That is, the probability that h coincides with the
j—th eigenvector of R is proportional to the corresponding eigenvalue.

(a) Show that Ehh* = R/Tr(R) and Ehh*hh* = R/Tr{R).

(b) Show that Eh*R~lh = M/Tr{R) and Ehh*R~lhh* = l/Tr{R).

(c) Show that Eh*h = 1 and

1 M

Problem 1.16 (Independent and Gaussian variables) Consider two independent zero-mean
random variables {w, w}, where u is a row vector and w is a column vector; both are M-dimensional.
The covariance matrices of u and w are defined by Eu*u = cr^l and Eww* = C. In addition, u
is assumed to be circular Gaussian. Define a third scalar-valued variable as ea = uw.

(a) Show that E \ea\
2 = cr^Tr(C).

(b) Use the result of Lemma 1.B.3 to show that E||w||2 • \ea\
2 = (Af + l)cr^Tr(C), where the

notation || • || denotes the Euclidean norm of its argument, i.e., ||w||2 = uu* (since u is a row
vector).

Problem 1.17 (Fourth-moment) Assume u is a circular Gaussian random row vector with a
diagonal covariance matrix A. Define z — ||ix||2. What is the variance of zl

Problem 1.18 (Covariance equation) Consider two column vectors {w, z) that are related via

Z = W + /JLU*(d — UW)

where u is a circular Gaussian random variable with a diagonal covariance matrix, Eu*u = A (u
is a row vector). Moreover, JJ, is a positive constant and d = uw° + vy for some constant vector
w° and random scalar v with variance a2. The variables {v,u,w} are independent of each other.
Define ea — u(w° — w), as well as the error vectors z = w° — z and w = w° — w, and denote their
covariances by {Rz, Rw}. Assume Ez = Ew = w°, while all other random variables are zero-mean.

(a) Verify that z = w - fiu*(ea + v).

(b) Use the result of Lemma 1.B.3 to show that

Rz = Rw- pRwA - fjiARa + /i2 (ATr(i^A) + AR&A) + /x2(j2A

(c) How would the result of part (b) change if u were real-valued Gaussian?
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1.8 COMPUTER PROJECT

Project 1.1 (Comparing optimal and suboptimal estimators) The purpose of this project
is to compare the performance of an optimal least-mean-squares estimator with three approxima-
tions for it, along the lines discussed in Ex. 1.3.1. Thus consider the setting of Prob. 1.11.

(a) Write a MATLAB program that generates a BPSK random variable x that is equal to +1
with probability p and to —1 with probability 1 — p.

(b) Simulate the estimator of part (b) of Prob. 1.11 for different number of observations N. For
instance, generate observations {y(i)} and plot XN as a function of N for 1 < N < 10, with
all observations assumed generated by the same value of £ — either -fl or —1. Plot XN for
the cases 7? = 0.1,0.3,0.5,0.8. Observe how the estimate gets closer to the true value of x as
the value of N increases. Do you notice any differences in behavior for the different values of
P?

(c) Compare the performance of the optimal estimate XN with the averaged estimate

1 N~1

XN,av = Jj ] T y(i)
i-0

for several values of N, say, for 1 < N < 300, and for the same values of p in part (b).
Does it take many more samples N for the averaged estimate XN,O.V to provide a good result
compared with the optimal nonlinear estimate XN*?

(d) Fix p = 1/2, and define the nonlinear decision device:

. r , r +1 if z > 0
agn[*] = | _x tfz-0

Consider also the alternative (sign-of-optimal) estimate

Xdec = sign [XN]

It is clear that Xdec assumes the values ±1, whereas the optimal estimate XN does not. Is Xdec
a better estimate than XJV? The answer in the mean-square sense is of course negative since
we already know that XN is the best estimate. To verify this fact do the following. Fix the
number of observations at N = 10. Then perform 1000 experiments, with each experiment %
resulting in an optimal estimate x\§{i) and an estimate Xdec(i)- For each estimate, the value
of x is fixed at either +1 or —1. Compute the sample variances

1000 1000

Iooo?>-*o<OI2, ioooI>-*-0la

Which one is smaller? Repeat for the following (sign-of-average) estimate:

Xsign = Sign [xN,av]

That is, apply the decision device to the estimate that is obtained from averaging.

The programs that solve this problem are the following.
1. psk.m This function generates a BPSK signal x that assumes the value +1 with probability

p and the value — 1 with probability 1 — p.
2. partB.m This program generates four plots of XN, as a function of JV, one for each value of

p. Each plot will converge to +1 or —1 depending on whether the corresponding value of x
is +1 or — 1. A typical output of this program is shown in Fig. 1.12.

3. partC.m This program generates a figure with four plots. The figure shows {XN, XN,av} for the
four different values of p and over the entire interval 1 < N < 300. A typical output of this
program is shown in Fig. 1.13. The dotted lines correspond to the optimal estimator, while
the solid lines correspond to the averaged estimator. Observe how the averaged estimator
requires many more experiments for good performance.

4. partD.m This program estimates the variances of the estimators {xN,XN,av,Xdec,xSign}-
Typical values are {0.0031,0.1027,0.0040,0.0040}, respectively.
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Figure 1.12. The plots show the values of the optimal estimates XN for
different choices of TV (the number of observations) and for different values of
p (which determines the probability distribution of x).
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Figure 1.13. The plots show the values of the optimal estimates xN (dotted
lines) and the averaged estimates XN,O.V (solid lines) for different choices of N
(the number of observations) and for different values of p (which determines
the probability distribution of x). Observe how the averaged estimates are
significantly less reliable for a smaller number of observations.



17The notation diag{a, b} denotes a diagonal matrix with diagonal entries a and h.
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l.A HERMITIAN AND POSITIVE-DEFINITE MATRICES

The Hermitian conjugate, A*, of a matrix A is the complex conjugate of its transpose, e.g., if

A-[2+j 1 - j ]

then

L3 1 + J J
where j — \J—\.

Hermitian matrices. A Hermitian matrix is a square matrix satisfying A* — A, e.g., if

then

so that A is Hermitian.

Spectral decomposition. Hermitian matrices can only have real eigenvalues. To see this, assume
m is an eigenvector of A corresponding to an eigenvalue A*, i.e., Aui — XiUi. Multiplying from the
left by u* we get

utAm = \i\\ui\\2

where || • || denotes the Euclidean norm of its argument. Now the scalar quantity on the left-hand
side of the above equality is real since it coincides with its complex conjugate,

(u*Aui)* = u*A*Ui = u*Am

Therefore, A« must be real too.
Another important property of Hermitian matrices, whose proof requires a more involved ar-

gument, is that such matrices always have a full set of orthonormal eigenvectors. That is, if A is
n x n Hermitian, then there will exist n orthonormal eigenvectors Ui satisfying

Aui = Xim, \\ui\\2 = 1, u*Uj = 0 for i ^ j

In compact matrix notation we can write this so-called spectral (or modal or eigen-) decomposition
of A as

1 A = UAU* \

where 1 7

A = d i a g { A i , A 2 , . . . , A n } , U = [ u\ u2 . . . un ]

and U satisfies
1 UU* = U*U = I 1

We say that U is a unitary matrix.

Positive-definite matrices. An n x n Hermitian matrix A is positive semi-definite (also called
nonnegative definite) if it satisfies

x* Ax > 0 for all column vectors x

It is positive definite if x* Ax > 0 except when x — 0. We denote a positive-definite matrix by
writing A > 0 and a positive semi-definite matrix by writing A > 0. Among the several characteri-
zations of positive-definite matrices, we note the following.

A = UAU*

UU* = U*U = I
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Lemma l .A . l (Eigenvalues of positive-definite matrices) An nxnHermitian matrix
A is positive-definite if, and only if, all its eigenvalues are positive:

A > 0 <=> {Xi > 0}

Proof: Let A = UAU* denote the spectral decomposition of A. Let also Ui be the i—th column of U
with Xi the corresponding eigenvalue,

If we multiply this equality from the left by u* we get

u*Aui = Ai||iii||2 = Xi > 0

where the last inequality follows from the fact that x* Ax > 0 for any nonzero vector x. Therefore, A > 0
implies Â  > 0. Conversely, assume A« > 0 and multiply the equality A = UAU* by any nonzero vector x
and its conjugate transpose, from right and left, to get

Now define the matrix

and the vector y = kl/2U*x. The vector y is nonzero since U and A1/2 are nonsingular matrices and,
therefore, the product A1/2?/* cannot map a nonzero vector x to 0. Then the above equality becomes
x*Ax = H2/II2 > 0, which establishes that A > 0.

0

In a similar vein, we can show that

A > 0 <=> Xi >~0~

Note further that since
detA = (detU) (detA) (detU*)

and
det/7 detCT = 1

we find that
n

det A = det A = J J A*

Therefore, the determinant of a positive-definite matrix is positive,
|~~A > Q = » det A > 0 I

Rayleigh-Ritz characterization of eigenvalues. If A is an n x n Hermitian matrix, then it holds
that for all vectors x

Amin||£||2 < ZMZ < Amax|M|2

as well as

x . /x* Ax\ . *
Amin = mm ) = mm x Ax

x^0 \ X*X ) ||a:|| = l

. fx*Ax\ * .
Amax = max = max x Ax

Xy£0 \ X*X ) 11*11=1

where {Amin, Amax} denote the smallest and largest eigenvalues of A. The ratio x*Ax/x*x is called
the Rayleigh-Ritz ratio.

Aui = XiUi, | | ^ | | 2 = 1

x*Ax = x*UAU*x

A1/2 £ diagjv/AT, yf\2, ..., y ^ }

det A = det A = J J Â

Therefore, the determinant of a positive-definite matrix is positive,
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One simple proof of these claims follows by invoking the spectral decomposition A — UAU*,
where U is unitary and A has real entries. Thus let y = U*x for any vector x. Then

n

x*Ax = x*UAU*x = y*Ay = ^Afe |s/(A;)|2

fc=i

with the {y(k)} denoting the individual entries of y. Now since the squared terms {|y(A;)|2} are
nonnegative, we get

Amin J2 \y(W2 ^ E A*i2/(fc)i2 ^ A - x Y, \y(k)\2

fc=l k = l fe=l

or, equivalently,
Amin|M|2<a:*Ac<Am«||y||2

Using the fact that U is unitary and, hence,

\\y\\2 = y'y = x ( T x = ||z||a

=1

we conclude that
Aminjl^ll Ĵ  X J\X v. Amax||2'||

The lower and upper bounds are achieved when x is chosen as the eigenvector corresponding to
Amin or to Amax, respectively.
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l.B GAUSSIAN RANDOM VECTORS

Gaussian random variables play an important role in many situations, especially when we deal
with the sum of a large number of random variables. In this case, a fundamental result in prob-
ability theory, known as the central limit theorem, states that under conditions often reasonable
in applications, the probability density function (pdf) of the sum of independent random variables
approaches that of a Gaussian random variable. Specifically, if {x(i), i — 1,2,..., N} are indepen-
dent real-valued Gaussian random variables with mean x(i) and variance al(i) each, then the pdf
of the normalized variable

5>(0-*(i)l
y =

approaches that of a Gaussian distribution with zero mean and unit variance, i.e.,

fv(y) = ^ e - ^ / 2 asiV-*oo

or, equivalently,

It is for this reason that whenever we say "Gaussian noise" in practice, the term essentially refers
to the combined effect of many independent disturbances.

In this appendix we shall describe the general form of the pdf of a vector Gaussian random
variable. However, as the discussion will show, we need to distinguish between two cases depending
on whether the random variable is real or complex. In the complex case, the random variable will
need to satisfy a certain circularity assumption in order for the given form of the pdf to be valid.

Real-Valued Gaussian Random Variables

We start with the real case. Thus consider a p x 1 random vector x with mean x and covariance
matrix

Rx = E(x-x)(x-x)T

assumed nonsingular. We say that x has a Gaussian distribution if its pdf has the form

Mx) = — L = - = L = exp{-i(—)T«--1(-*)} I (1.B.1)
V(2TT)P VdetRx

in terms of the determinant of Rx. Of course, when p = 1, the above expression reduces to the pdf
considered in the text in (1.1.2) with Rx replaced by ax.

Now consider a second g x l Gaussian random vector y with mean y and covariance matrix

Ry = E(y-y)(y-y)T

so that its pdf is given by

Let Rxy denote the cross-covariance matrix between x and y, i.e.,

Rxy = E{x~x)(y-y)T

We then say that the random variables {x,y} have a joint Gaussian distribution if their joint pdf
has the form

/.,,(s,y) = -?=i__L=expl [v-y\I (1.B.2)
V/(2TT)P+9 Vdet R

^J^^ = wJ-~e~v2'2*y

tix) = e3ro{-i (*-a)Ti i-1(x-* )}
^/(2n)P Vdet Rx

/ („) = _ ! = = 1 expi-it"-*)1"^1^-")}

M,.a--rj—^. J -« (I-I)T (»-s)T H «~i 1)
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in terms of the covariance matrix R of col{#, y} , namely,

« - ( [ : H ; ] ) ( [ : H ; ] ) T - [ & 5 :
It can be seen from (l.B.2) that the joint pdf of {x, y} is completely determined by the mean, covari-
ances, and cross-covariance of {#, y}, i.e., by the first and second-order moments {x, y, Rx, Ry, Rxy}.

Complex-Valued Random Variables and Circularity

Let us now examine the case of complex-valued random vectors. We consider again two real random
vectors {x,y}, both assumed of size p x l , with joint pdf given by (cf. (l.B.2)):

! 1 {-J[ (x-xf (V-VV]*-^*'*]}
f'"<x>v)-vk?vm°*x [ J/ (m3)

Let z = x + 2Vt where j — y/— 1, denote a complex-valued 'random variable defined in terms of
{x,y}. Its mean is simply

z = E z — x + jy

while its covariance matrix is

Rz = E(z-S)(z- z)' = (RX + Ry)+ j(Ryx - Rxy) (1.B.4)

which, as shown above, can be expressed in terms of the covariances and cross-covariance of {a?, y}.
We shall say that the complex variable z has a Gaussian distribution if its real and imaginary

parts {x,y} are jointly Gaussian. Since z is a function of {x,y}, its pdf is characterized by the
joint pdf of {x,y} as in (l.B.3), i.e., in terms of {x,y,Rx,Ry,Rxy}. However, we would like to
express the pdf of z in terms of its own terms first and second-order moments, i.e., in terms of
{z,z,Rz}. It turns out that this is not always possible. This is because knowledge of {z, Rz} alone
is not enough recover the moments {x:y, Rx,Ry, Rxy}. More information is needed in the form of
a circularity condition.

To see this, assume we only know {z, Rz}- Then this information is enough to recover {x,y}
since z = x + jy. However, the information is not enough to determine the required covariance
matrices {Rx,i?y, Rxy}- This is because, as we see from (1.B.4), knowledge of Rz allows us to
recover the values of (Rx -f Ry) and (Ryx — Rxy) via

Rx + Ry = Re(Rz), Ryx-Rxy = Im(^) (1.B.5)

This information is not sufficient to determine the individual covariances (Rx,Ry,Rxy)-
In order to be able to uniquely recover {Rx,Ry, Rxy) from Rz, it is generally assumed that the

random variable z satisfies a so-called circularity condition. This means that z should satisfy

E(z-z)(z-z)r = 0

with the transposition symbol T used instead of Hermitian conjugation. Knowledge of Rz and this
circularity condition are enough to recover {Rx, Ry,Rxy} from Rz. Indeed, using the fact that

E{z~z){z-z)1 = {Rx-Ry)+j(Ryx + Rxy)

we find that, in view of the circularity assumption, it must hold that Rx = Ry and Rxy = —Ryx.
Consequently, combining with (l.B.5), we can solve for {Rx,Ry>Rxy} to get

Rx = Ry = I Re(Rz) and Rxy = -Ryx = ~ | \m(Rz) (1.B.6)

in terms of the real and imaginary parts of Rz. It follows that the covariance matrix of col{a?, y}
can be recovered from Rz as

I f Re(Rz) -\m(Rz) 1
2[ \m(Rz) Re(Rz) J

(circularity condition)
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Actually, it also follows that R should have the symmetry structure

« = [ X R£] (LR7)

with the same matrix Rx appearing on the diagonal, and with Rxy and its negative appearing at
the off-diagonal locations. Observe further that when z happens to be scalar-valued, then Rxy

becomes a scalar, say axy, and the condition Rxy = —Ryx can only hold if axy = 0. That is, the
real and imaginary parts of z will need to be independent in the scalar case.

Using the result (1.B.7), we can now verify that the joint pdf of {x, y} in (1.B.3) can be rewritten
in terms of {z, Rz} as shown below — compare with (l.B.l) in the real case. Observe in particular
that the factors of 2, as well as the square-roots, disappear from the pdf expression in the complex

Lemma l .B. l (Circular Gaussian random variables) The pdf of a complex-valued cir-
cular (or spherically invariant) Gaussian random variable z of dimension p is given by

Proof: Using (1.B.7) we get
det R = det{Rx) • det(Rx + RxyR~lRxy)

Likewise, using the expression Rz = 2[RX — jRxy] we obtain
[detRz]

2 = det{Rz) • det{RT
z)

= 22p det[Rx(I - jR-1 Rxy)} • det{Rx - jRly)

But Rly = Ryx = —RXy and, for matrices A and B of compatible dimensions, det(AB) = det(£.4). Hence,

[detRz]
2 = 22pdetRxdet[{Rx+jRxy)(I-jR~1Rxy)}

= 22pdet(Rx)-det(Rx + RxyR-1Rxy)
We conclude that det R = 2~~2p(det Rz)2- Finally, some algebra will show that the exponents in (1.B.2) and
(1.B.8) are identical.

0

Figure 1.14 plots the pdf of a scalar zero-mean complex-valued and circular-Gaussian random
variable z using

R=[l i]
i.e., <JX = a2 = 1 and axy = 0 so that a2 = 2. Therefore, in this example, the real and imaginary
parts of z are independent Gaussian random variables with identical variances

When (1.B.8) holds, we can check that uncorrelated jointly Gaussian random variables will also
be independent; this is one of the main reasons for the assumption of circularity.

Two Fourth-Order Moment Results

We establish below two useful results concerning the evaluation of fourth-order moments of Gaus-
sian random variables, in both cases of real and complex-valued data. Although these results
will only be used later in Sec. 6.5 when we study the mean-square performance of adaptive filters,
we list them here because their proofs relate to the earlier discussions on Gaussian random variables.

Lemma 1.B.2 (Fourth-moment of real Gaussian variables) Let x be a real-valued
Gaussian random column vector with zero-mean and a diagonal covariance matrix, say
ExxT = A. Then for any symmetric matrix W of compatible dimensions it holds that

E |xa;TWajajT} = ATr(WA) + 2AWA (1.B.9)



Proof: The argument is based on the fact that uncorrelated Gaussian random variables are also inde-
pendent, so that if x(i) is the i-th. element of x, then x(i) is independent of x(j) for i ^ j . Now let S denote
the desired matrix, i.e.,

S = E{xxTWxxT}

and let Sij denote its (i, j)-th element. Assume also that x is M-dimensional. Then

( /M-iM-i \ ^ |

Sij = E I x(i)x(j) J2 E x(mWmnx(n) \
I \m=0 n=0 ) J

The right-hand side is nonzero only when there are two pairs of equal indices {i — j , m = n} or {i = m, j =
n} or {i = n, j = m}. Assume first that i = j (which corresponds to the diagonal elements of S). Then the
expectation is nonzero only for m = n, i.e.,

{ M - l ^ M - l

x2(i) ]T Wmmx2(m) I = Y, WmmE{x2(i)x2(m)} = \iTr(WA) +2WU\2

m=0 J m=0
where we used the fact that for a zero-mean real scalar-valued Gaussian random variable a we have Ea4 =
3(Ea2)2 = 3cr̂ , where a2 denotes the variance of a , ^ = Eo2 . We are also denoting the diagonal entries
of A by {\i}.

For the off-diagonal elements of S (i.e., for i ^ j) , we must have either i = n, j = m, or i = m, j = n,
so that

&,- = E {x(i)x(j)(x(i)WijXU))} +E {x(i)x(j)(x(j)WjiX(i))}

- (Wy + Wji)E [x2(i)x2(j)} = (Wkj + Wji) AiAj

Using the fact that W is symmetric, so that Wij — Wji, and collecting the expressions for Sij, in both cases
of i = j and i ^ j , into matrix form we get the desired result (1.B.9).

0

The equivalent result for complex-valued circular Gaussian random variables is the following.
The only difference is an additional factor of 2 in (1.B.9).

Figure 1.14. A typical plot of the probability density function of a zero-mean
scalar and circular-Gaussian random variable.
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Probability density function of a circular Gaussian random variable

V*"
0.15

0.1

0.05

0
4

2

0

* * * -2

- 4 - 4

-2
0

* > *

2
4

Su = E X2(i) ]T Wmm*2(m) J2 WmmE {v2(i)x2(m)} = XiTr(WA) + 2WaX2

where we used the fact that for a zero-mean real scalar-valued Gaussian random variable a we have Ea4 =

For the off-diagonal elements of S (i.e., for i ^ j) , we must have either i = n, j = m, or i = m, j = n,
so that
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Lemma 1.B.3 (Fourth-moment of complex Gaussian variables) Let z be a circular
complex-valued Gaussian random column vector with zero-mean and a diagonal covariance
matrix, say Ezz* = A. Then for any Hermitian matrix W of compatible dimensions it holds
that

E \zz*Wzz*| = ATr(WA) + AWA (1.B.10)

Proof: The argument is the same as in the proof of the previous lemma, with the main difference being
the fact that the fourth-order moment of a zero-mean complex scalar-valued circular random variable a, of
variance a\ — E |a|2, is given by E |a|4 = 2(E |a|2) = 2a\. Indeed, since in this case

{ /M-1M-1 \ ^

*(i)**(3)[ £ £ z*(m)Wmnz(n)\
\m=0 n=0 / J

we find that for i = j we have
( M-l ^ M-\

Sa = E I \z(i)\2 Y, Wmm\z(m)\2 I = £ WmmE{|2(i)|2|Z(rn)|2} = A4Tr(WA) + W«A?
I m=0 J m—0

Moreover, for z ̂  j ,

Sy = E{*(i)**o-)(**WWii*(j))}+E{*(i)**y)(**O')w>i*(i))}

= E {|*(t)|2W«|*(j)l2} + 0 = AiWyAj

The zero in the second equality follows from the circularity assumption on z, namely, EzzT = 0, which
guarantees

Ez2{i) = 0 for all i

0

{ /M-1M-1 \ " |

\m=Q n=0 / J
we find that for i = j we have

A f - l


