
47

Now that we have taken a look at the JSF architecture in relation to other
frameworks, it is time to dig into JSF itself. This chapter begins that process by
giving an overview of essential JSF elements; in other words, those parts of the
framework that are key to understanding how it works. We’ll cover JSF UI
components, Converters, Validators, Renderers, and much more. In doing so,
we’ll explore some of the sample applications provided with the JSF reference
implementation. We’ll continue with these applications in Chapter 3, “JSF
Request-Processing Life Cycle,” and Chapter 4, “JSF Configuration,” as well
while we finish covering the basics of JSF. In future chapters we’ll present new
sample applications as we cover more advanced topics. The hope here is that
you become familiar with the JSF reference implementation while learning the
basics of JSF.

The goal of this chapter is not a complete examination of each element, since
that is the purpose of Chapters 5 to 10. Our goal here is simply to get a good
feel for how JSF is composed and how those parts work together. At the end of
this chapter, you will have a good, albeit basic, understanding of how the most
important elements of JSF work.

Elements of JSF

C H A P T E R

2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 47

Overview

JSF is primarily a user interface framework for developing Web-based appli-
cations on the Java platform. With the dizzying array of Java Web application
frameworks already in existence, you may be wondering why we need
another one. Here are a few of the more important motivations:

Standardization. JSF is an attempt to provide a standard user interface
framework for the Web where no such standard currently exists. There
are many benefits to having a multitude of frameworks to choose from,
but such a choice does tend to fragment the Java development commu-
nity. JSF provides a chance for Java developers to unite behind a stan-
dard, component-based user interface framework for the Web. JSF’s
ultimate inclusion under the J2EE umbrella will further this reality.

Tool Support. Having a standard Web application framework with a
well-documented API makes the decision of which framework to support
for all Java-based IDEs and other tools much easier. The design of JSF
also lends itself well to graphical user interface building tools and will
empower tool providers to create more complete and pleasurable devel-
opment environments for developers at varying levels of experience.

Components. Of all the frameworks out there, very few of them incorpo-
rate the concept of reusable user interface components (beyond the con-
cept of a Web page). JSF is just such an attempt, and it is intended to be
for Web user interfaces what Swing is for more traditional user interfaces.

Web Development
Although JSF is designed to be independent of specific protocols and markup
languages, most Java developers will use it in concert with Java servlets and
JSPs to create HTML-based Web applications. These applications can commu-
nicate with Java application servers via the now ubiquitous and venerable
HTTP. The authors of the JSF specification are aware of this demographic, so
one of their primary goals is to resolve a number of issues related to using the
stateless HTTP protocol in concert with HTML clients. The specification high-
lights a number of JSF features related to this goal:

UI Component State. JSF specifically addresses saving user interface
component state between requests in a Web client session.

Component Rendering. HTML is just one of many markup languages,
and each Web client’s support of a particular markup language may
vary. JSF provides a rendering mechanism for addressing this variety of
target Web clients.

48 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 48

Form Processing. Most Web applications are form-based. JSF provides a
number of convenient features for processing multipage and single-page
form-based requests.

Form Validation. Along with form processing, validating form data is a
critical need. JSF helps automate this process and provide the necessary
error reporting.

Event Model. JSF provides a strongly typed component event model for
responding to client-generated events with server-side handlers.

Type Conversion. Since Web client requests via HTTP provide form data
as strings, a mechanism for converting these strings to and from the
application model would be very useful. JSF provides a facility for
enabling type conversion.

Error Handling. All applications must deal with application errors and
exceptions. JSF provides a mechanism for handling error conditions and
reporting them back to the user interface.

Internationalization. Multilanguage support is often a key requirement
in Web applications, which are easily accessible from around the world.
JSF provides native support of internationalization.

JSF also provides a standard tag library and rendering kits that support JSP
development. We’ll cover this JSP support in detail in Chapter 8, “JSP Integra-
tion in JSF.”

UI Components

UI components are the centerpiece of JSF and are used as building blocks to
create user interfaces that range from simple to complex. We covered the com-
posable nature (via an implementation of the Composite Pattern) of these com-
ponents in the previous chapter. Here, we will examine JSF UI components in
more detail along with other component types that exist to support them.
We’ll delve into an even more comprehensive treatment of UI components in
Chapter 5, “UI Components.”

You are likely familiar with Swing user interface components as well as
those from other languages or development environments. As Swing did for
rich user interface clients, JSF provides a standard user interface component
framework for the Web. This standardization promises more powerful and
visual development environments for Web applications and libraries of rich
user interface components like calendars, trees, and tables.

JSF also provides a number of other standard component types that play
a supporting role to UI components. These include Converters, Validators,

Elements of JSF 49

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 49

Renderers, and others. Like UI components, these components are inter-
changeable and can be reused throughout the same application and a host of
others. This opens up the possibility of additional libraries of components that
cover these common supporting tasks.

So what makes a user interface component? Every user interface component
in JSF implements the javax.faces.component.UIComponent interface.
This comprehensive interface defines methods for navigating the component
tree, interacting with backing data models, and managing supporting con-
cerns such as component validation, data conversion, rendering, and a host of
others. A convenient base class that implements this interface, javax.faces.
component.UIComponentBase, is provided for creating new components.
It provides default implementations for each method that component devel-
opers can then extend to customize the behavior of a component.

When creating new components in JSF, you essentially have three choices:
create the component from scratch by directly implementing the UICompo-
nent interface when no existing components meet your needs and you expect
to override much of what UIComponentBase provides, subclass UICompo-
nentBase to get default component behavior, or subclass an existing compo-
nent to customize it for your needs. Subclassing an existing component will
most likely be your choice for new individual components because most of the
standard JSF components serve as good building blocks (input fields, labels,
panels, and so on). Subclassing UIComponentBase will likely be your choice
for building composite components. If you are creating new components for
use with JSPs, you also need to either extend existing tag libraries or create
your own so that your new component can be used in a JSP. We’ll cover this
process in great detail in Chapter 10, “Custom JSF Components.”

The standard JSF components (and the standard JSF HTML RenderKit) pro-
vide a number of the basic components you’ll need when building your Web
applications. In most cases, you’ll use one of these standard components or
those from third-party libraries, so you typically won’t need to worry about
UIComponent or UIComponentBase. However, there will be times where
you may wish to extend an existing component or have need of one that is not
readily accessible. You may also wish to directly manipulate component trees
on the server side (outside of JSPs) in a manner similar to that discussed in
Chapter 1 with our coverage of the Composite Pattern.

Standard UI Components
Before looking at the UIComponent interface in more depth, let’s briefly take a
look at what the standard JSF components are. Each component is summa-
rized in Table 2.1. A more detailed description of each component may be
found in the JavaServer Faces Specification.

50 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 50

Table 2.1 Standard JSF UI Components

COMPONENT DESCRIPTION

UICommand UICommand represents UI components like buttons, hyperlinks,
and menu items that result in application-specific actions or
events. These components emit an ActionEvent when triggered
that may be processed by a registered ActionListener.

UIForm UIForm represents a user input form and is meant primarily to be
a container of other components.

UIGraphic UIGraphic displays an immutable image or picture.

UIInput UIInput represents UI components like text input fields, numeric
input fields, date input fields, memo fields, and so on. UIInput
displays the current value of a field and accepts changes by the user.
Each change triggers a ValueChangedEvent that may be processed
with a registered ValueChangedListener. It is very common to see
registered Validators and Converters attached to this type of
component to ensure the validity of data entered by a user.

UIOutput UIOutput represents UI components like labels, error messages,
and any other textual data that is immutable.

UIPanel UIPanel represents UI components that serve as containers for
others without requiring form submissions. Examples of this type of
component include a standard panel, tables, and lists. UIPanel will
typically be used to manage the layout of its child components.

UIParameter UIParameter represents information that requires no rendering. It
is typically used to provide additional information to a parent
component. Examples include declaring request parameters for
the URL associated with a hyperlink (UICommand component) or
input parameters necessary for displaying a registered message.

UISelectBoolean UISelectBoolean represents a Boolean data field and is most
often rendered as a check box. This component descends from
UIInput, so it emits a ValueChangedEvent when a user checks or
unchecks it.

UISelectItem UISelectItem represents a single item in a selection list. It may be
used to insert an item into a UISelectMany or a UISelectOne list.

UISelectItems UISelectItems is very similar to UISelectItem with the exception
that it allows the insertion of multiple items at once.

UISelectMany UISelectMany represents UI components like combo boxes, list
boxes, groups of check boxes, and so on. This component allows
the selection of multiple items. Each item is specified by nesting
one or more UISelectItem and UISelectItems components. This
component descends from UIInput, so it emits a ValueChanged
Event when a user modifies the list of selected items.

UISelectOne UISelectOne is very similar to UISelectMany with the exception
that it only allows the selection of one item.

Elements of JSF 51

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 51

A component hierarchy is provided in Figure 2.1. You’ll notice how some
components build upon and specialize others. This is not uncommon in user
interface component libraries, and you can expect to see others extend this
component hierarchy with a richer set of UI components.

Figure 2.1 Standard JSF UI component hierarchy.

UIComponent

UIForm UIOutputUICommand

UIComponentBase

UISelectItem UIInput

UISelectBoolean UISelectBase

UIPanel

UIParameter UISelectItemsUIGraphic

UISelectManyUISelectOne

52 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 52

Each of the sample applications provided with the JSF Reference Implementa-
tion make use of some or all of these components. You will typically see them
used via JSP tags that are defined as part of the default HTML RenderKit that
every JSF implementation is required to provide. A summary list of these tags
is provided in the “Rendering” section of this chapter.

You may have already noticed an important distinction with respect to JSF
UI components. In JSF, function is separated from appearance. In other words,
a component like UIInput actually represents a class of user interface compo-
nents that you are used to dealing with. All of them are functionally similar,
but they appear differently. For example, a simple text input field is function-
ally similar to a password entry field. They are represented by the same com-
ponent type in JSF, but they have different Renderers (which produce a certain
look and feel) associated with them. This is a simple but important concept to
understand especially if you are considering developing your own UI compo-
nents. Develop components according to function, then create Renderers to
specify different look-and-feels as your user interface requires. The concept of
delegation (which is actually a simple, yet fundamental software pattern) is
used here to separate function from appearance. You’ll see it again when we
discuss Validators and Converters shortly.

Identifiers
Identifying components becomes important in complex user interfaces, and
JSF addresses this with the concept of a component identifier. You set a compo-
nent’s identifier programmatically via its setComponentId() method, and
you retrieve it via its getComponentId() method. However, most develop-
ers will set this identifier via a tag attribute in a JSP. Here is an example from
the sample login application in Chapter 1.

<h:output_label for=”userId”>

<h:output_text id=”userIdLabel” value=”User ID”/>

</h:output_label>

<h:input_text id=”userId” valueRef=”loginForm.userId”/>

Identifiers are optional, but in this example one is necessary for the label to
associate itself with the input field. You should explicitly declare an identifier
like this when other UI components or server-side components refer to it. Each
identifier is required by the specification to meet the following requirements:
should start with a letter; should contain only letters, whole numbers, dashes,
and underscores; and should be as short as possible to limit the size of
responses generated by JSF.

Elements of JSF 53

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 53

UI Component Trees
As we discussed in Chapter 1, user interface components in JSF are compos-
able. In other words, you can nest one component within another to form more
complex client interfaces. These compositions are referred to as component trees
in JSF. A simple example of such a tree is the Guess Number sample applica-
tion provided by the JSF Reference Implementation, is provided in Listing 2.1.

<html>

<head> <title>Hello</title> </head>

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>

<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>

<body bgcolor=”white”>

<h2>

Hi. My name is Duke. I’m thinking of a number from 0 to 10.

Can you guess it?

</h2>

<f:use_faces>

<h:form id=”helloForm” formName=”helloForm”>

<h:graphic_image id=”wave_img” url=”/wave.med.gif” />

<h:input_number id=”userNo” numberStyle=”NUMBER”

valueRef=”userNumberBean.userNumber”>

<f:validate_longrange minimum=”0” maximum=”10” />

</h:input_number>

<h:command_button id=”submit” action=”success” label=”Submit”

commandName=”submit” />

<p>

<h:output_errors id=”errors1” for=”userNo”/>

</h:form>

</f:use_faces>

</html>

Listing 2.1 JSP component tree.

You’ll notice how the root component is a form component, and inside it we
have an input component and a command button that submits the contents of
the input component. You can of course imagine much more complicated inter-
faces that involve more input fields, labels, tables, and other components, but
this at least provides a simple example of what a component tree looks like.

When the command button is pressed, a request that includes the content of
the input field is submitted to the FacesServlet. As you’ll see in Chapter 3,
the servlet goes through a number of steps to process the request and return an
appropriate response (in this case, another JSP). During that processing, a
Java object version of the component tree is either created (for the initial
request) or reconstituted. As a developer, you will work with this version of

54 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 54

the component tree in custom Validators, Converters, Renderers, and applica-
tion components. Fortunately, JSF provides a convenient component API for
manipulating these trees programmatically.

Tree Manipulation and Navigation
UI components have access to their parent and children via a number of meth-
ods defined by the UIComponent interface. These methods should be familiar
to you from our discussion of the Composite Pattern in Chapter 1. Let’s take
another look at the Guess Number sample. A graphical representation of it is
provided in Figure 2.2 in which some of those methods are reflected.

Most of these methods are self-explanatory. Invoking getParent() on
either the input or submit component will return the parent form. Invoking
containsChild() on the form will return true, while doing so on either of
the child components will return false. You can use getChildren() on the
form component to iterate over the list of direct children (in this case the input
and submit components).

There are also methods for changing the list of child components in the
form. Invoking addChild()with a new user interface component would add
that component either to the end of the list of child components or at a position
you specify. Likewise, invoking removeChild() either with a reference to
the desired user interface component or its position in the list of children will
remove it.

Since these methods are available for every user interface component in JSF,
you are provided with a generic interface for navigating and manipulating
components in arbitrarily complex tree structures. You just need to remember
that the methods in this interface will behave differently based on whether a
component actually has children or not. Methods like getChildCount() can
help you determine what behavior to expect.

When dealing with a tree of components, you may wish to search for a par-
ticular component. You can do this by invoking the findComponent()
method on a form, panel, or other container component. The expression argu-
ment will typically be the identifier of the component you are looking for. This
particular method is convenient for avoiding lengthy traversals of more com-
plex component trees.

Facets
The methods listed above allow you to manipulate and navigate composite
components through a generic interface as described by the Composite Pat-
tern. JSF provides an additional facility for defining the roles of subordinate
components that may be independent of or orthogonal to the parent-child rela-
tionship. These roles are called facets.

Elements of JSF 55

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 55

Figure 2.2 Component tree.

U
IC

o
m

p
o

n
en

tB
as

e

+g
et

p
ar

en
t(

)
: U

IC
om

p
on

en
t

+c
on

ta
in

sC
hi

ld
()

 :
bo

ol
ea

n
+g

et
C

hi
ld

()
 :

U
IC

om
p

on
en

t
+g

et
C

hi
ld

re
n(

)
: I

te
ra

to
r

+a
dd

C
hi

ld
(c

om
p

on
en

t
: U

IC
om

p
on

en
t)

+r
em

ov
eC

hi
ld

(c
om

p
on

en
t

: U
IC

om
p

on
en

t)
+f

in
dC

om
p

on
en

t(
)

: U
IC

om
p

on
en

t

H
el

lo
Fo

rm
 :

U
IF

or
m

TY
PE

 :
St

rin
g

=
“F

or
m

”
id

 :
St

rin
g

=
“h

el
lo

Fo
rm

”

G
ra

p
hi

cI
m

ag
e

: U
IG

ra
p

hi
c

TY
PE

 :
St

rin
g

=
“G

ra
p

hi
c”

id
 :

St
rin

g
=

“w
av

e_
im

g”

O
ut

p
ut

Er
ro

rs
 :

U
IO

ut
p

ut

TY
PE

 :
St

rin
g

=
“O

ut
p

ut
”

id
 :

St
rin

g
=

“e
rr

or
s1

”

U
se

rN
um

be
r

: U
IIn

p
ut

TY
PE

 :
St

rin
g

=
“I

np
ut

”
id

 :
St

rin
g

=
“u

se
rN

o”

Su
bm

it
: U

IC
om

m
an

d

TY
PE

 :
St

rin
g

=
“C

om
m

an
d”

id
 :

St
rin

g
=

“s
ub

m
it”

in
di

re
ct

ly
 s

ub
cl

as
si

ng
 U

IO
ut

p
ut

56 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 56

To understand how facets may be used, let’s take a look at the Component
sample application provided by the JSF Reference Implementation. An excerpt of
the tabbed panes JSP is provided in Listing 2.2.

<h:form formName=”tabbedForm” bundle=”demoBundle”>

<d:stylesheet path=”/stylesheet.css”/>

Powered by Faces components:

<d:pane_tabbed id=”tabcontrol”

paneClass=”tabbed-pane”

contentClass=”tabbed-content”

selectedClass=”tabbed-selected”

unselectedClass=”tabbed-unselected”>

<d:pane_tab id=”first”>

<f:facet name=”label”>

<d:pane_tablabel label=”T a b 1” commandName=”first” />

</f:facet>

...

</d:pane_tab>

<d:pane_tab id=”second” selected=”true”>

<f:facet name=”label”>

<d:pane_tablabel image=”images/duke.gif”

commandName=”second”/>

</f:facet>

...

</d:pane_tab>

<d:pane_tab id=”third”>

<f:facet name=”label”>

<d:pane_tablabel label=”T a b 3” commandName=”third”/>

</f:facet>

...

</d:pane_tab>

</d:pane_tabbed>

</h:form>

Listing 2.2 Facets in tabbed pane JSP.

In this example, a facet called label is used to identify the label of each tab
in the tabbed component. You can already see that the facet is being used here
to logically identify a specific component that appears in each tab. To see how
the facet is actually used, take a look at an excerpt from the TabbedRenderer
class in Listing 2.3.

Elements of JSF 57

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 57

public void encodeEnd(FacesContext context, UIComponent component)

throws IOException {

// Ensure that exactly one of the child PaneComponents is selected

Iterator kids = component.getChildren();

...

// Render the labels for the tabs.

String selectedClass =

(String) component.getAttribute(“selectedClass”);

String unselectedClass =

(String) component.getAttribute(“unselectedClass”);

ResponseWriter writer = context.getResponseWriter();

...

kids = component.getChildren();

while (kids.hasNext()) {

UIComponent kid = (UIComponent) kids.next();

if (!(kid instanceof PaneComponent)) {

continue;

}

PaneComponent pane = (PaneComponent) kid;

...

UIComponent facet = (UIComponent)pane.getFacet(“label”);

if (facet != null) {

if (pane.isSelected() && (selectedClass != null)) {

facet.setAttribute(“paneTabLabelClass”, selectedClass);

}

else if (!pane.isSelected() && (unselectedClass != null)) {

facet.setAttribute(“paneTabLabelClass”,

unselectedClass);

}

facet.encodeBegin(context);

}

...

}

...

}

Listing 2.3 Facets in tabbed pane Renderer.

58 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 58

This Renderer is used for showing the correct representation of a tabbed
pane after the client has performed some action (such as changing the active
tab). The label facet is used to easily locate the label component of each tab.
Once located, the style of the label (or how it appears to the client) is set, based
on whether or not the parent tab has been selected by the client. You can see
the difference in the selected tab’s label compared to those that are not selected
in Figure 2.3.

If you select a different tab, not only does the content change, but the shad-
ing of the tabs themselves also changes. This is shown in Figure 2.4.

Figure 2.3 Initial tab selection.

Elements of JSF 59

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 59

Figure 2.4 Different tab selection.

We’ll talk more about Renderers later, but all you need to know for now is
that facets can be used to easily classify and locate a component according to its
function in your user interface. Instead of searching through a collection of
components to find them, you simply retrieve them via their facet name or role.

It is worth noting that all components have methods for accessing and
manipulating facets that have been associated with them. In our example, the
getFacet() method was invoked along with the name of the facet we were
looking for. There are other methods for adding and removing facets, as well
as getting a list of facets. Only one component may be associated with a par-
ticular facet name at a time. Adding a facet that already exists has the effect of
replacing the associated component.

Generic Attributes
JSF supports the concept of generic attributes, which allow for runtime
component metadata that is separate from those properties defined for a com-
ponent’s implementation. Attributes are used frequently for Renderers, Val-
idators, Converters, and events.

60 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 60

Every component has methods for accessing generic attributes. In our pre-
vious example, you’ve already seen the getAttribute() and setAt-
tribute() methods in action for retrieving and changing the value of a
specific attribute by name. The getAttributeNames() method may also be
used to get a list of all attributes associated with a particular component. You
may add attributes to a component at design time (in a JSP) or at run time (in
a Validator, Renderer, and so on) to store pretty much anything.

When defining your own custom components, you may choose to represent
properties of a component via the generic attribute mechanism or via standard
JavaBean properties (with getters and setters on the component itself). You
must weigh the type safety of actual JavaBean properties on the component
itself versus the flexible but potentially unsafe use of generic attributes.

Render-Dependent Attributes

Each Renderer may have a set of attributes that is associated with a compo-
nent. If you take another look at the tabbed pane sample we just covered,
you’ll notice a number of generic attributes set on the tabbed pane itself. The
contentClass, selectedClass, and unselectedClass attributes are
used by the associated Renderer to properly draw child tabs and their con-
tents via style sheets. You’ll also notice that an attribute called selected is
used to mark the second tab (the one with our pal Duke) as the one that is cur-
rently selected. The code provided in Listing 2.3 (and the full method provided
in the associated sample application) shows how the Renderer uses these
attributes together to properly draw each tab in the tabbed pane.

Don’t get too caught up in the specifics of this example, because we will
cover the concept of component rendering in greater depth later in the book.
For now, you should have a good idea of how attributes can be used with
Renderers.

Configuration Parameters

Configuration parameters used with Converters, Validators, and event listen-
ers may also be associated with components via generic attributes. In the
Guess Number sample application we saw earlier in this chapter, you may
remember the Validator that was associated with the input field.

<h:input_number id=”userNo” numberStyle=”NUMBER”

valueRef=”userNumberBean.userNumber”>

<f:validate_longrange minimum=”0” maximum=”10” />

</h:input_number>

Elements of JSF 61

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 61

A Validator is assigned to an input component that expects a number.
The Validator has two attributes called minimum and maximum that when
combined define the acceptable bounds of the user-provided number. In this
case, the number must be between 1 and 10. When the Validator actually
validates the value provided by the input component, it will use these two
attributes to define the bounds.

This is just a simple example of using attributes to handle configuration
parameters. We’ll cover this topic in more detail later in the book.

Data Models
When working with JSF applications, you will usually deal with two different
data models. The first model is associated with user interface components to
manage their state. The second model is associated with the server-side
application-level model. User interface component models are often populated
with snapshots of data from the application model, while changes to component
models are propagated back to the application model via application events.

Component Model

A component model object, which is often a JavaBean object, is usually associ-
ated with a component via JSF’s managed bean facility. If you remember our
discussion of managed beans in Chapter 1 while exploring the MVC pattern as
applied to JSF, we used a managed bean to hold data from the login form JSP.
The LoginForm JavaBean was registered in the associated JSF configuration
file as a managed bean and made available to UI components through a
unique identifier. To bind a UI component to this bean, we used the valueRef
attribute.

<h:input_secret id=”password” valueRef=”loginForm.password”/>

This attribute references the managed bean through its loginForm identi-
fier and then binds to its password property. We’ll cover this topic in more
detail in Chapter 4 and then again in Chapters 5 to 11.

Application Model

Application models represent business data. As such, there are a number of
alternatives for representing and persisting such data:

62 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 62

■■ JavaBeans (where persistence is not required)

■■ JavaBeans with JDBC

■■ JavaBeans that use an object-relation framework

■■ Enterprise JavaBeans

You will often interface with these application model objects through man-
aged beans and their associated Action objects. Our discussion of the MVC
Pattern in Chapter 1 provided a good example of how a LoginAction inter-
faces with business objects. You’ll see more examples of this in Chapters 5 to 11.

Validation

Performing correctness checks on user submitted data is an important aspect
of all applications that collect information (not just Web applications), even if
that information is only temporarily used to perform a calculation of some
sort. Being able to catch bad data as it is provided is critical to ensuring the
integrity of the information you collect and for your application to perform as
expected. It is no surprise, then, that data validation is an integral part of the
JSF framework.

In this section, we’ll cover Validator components in JSF and how they are
associated with UI components. We’ll also look at how you register Validators
with your applications, and before using your first Validator component, it
will be good to know what standard Validator components JSF provides
out of the box.

Validators
Validation in JSF comes in two forms: direct validation within a user interface
component and delegated validation, which occurs outside of a user interface
component. Figure 2.5 provides a graphical summary of this choice. Which
method you choose is essentially determined by whether the validation you
are performing is specific to a user interface component or should be reused
among a number of different user interface components. It will not be uncom-
mon for you to use both methods for components that have a nontrivial
amount of data behind them, some of which may be unique to that compo-
nent, while the rest may be common data types seen elsewhere.

Elements of JSF 63

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 63

Figure 2.5 Direct validation versus delegated validation.

Direct Validation

If your validation is specific to a particular user interface component, then you
may implement your validation code within the component by overriding the
validate() method. At the appropriate point in the request processing life
cycle, the JSF framework will invoke this method, thereby executing any code
you have provided for correctness checking. This method of validation pro-
vides a quick and efficient means of validating your components; the down-
side is that your validation code is nonportable. An additional restriction is
that you can only use this method of validation for your own components or
you must subclass an existing component to implement the validate()
method.

UIComponent

ValidatoraddValidator(...)

clearValidators(...)

getValidators(...)

removeValidator(...)

isValid(...)

setValid(...)

validate(...)

validate(...)

Either direct validation or
delegated validators may set
the validity of a component
inside the validate(...) method.

UI Components may implement
the validate(...) method directly to

define non-portable validation code.

They may also delegate to one or more
reusable Validator components.

Validator
management

methods

64 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 64

Delegated Validation

If your validation should be reused among different user interface component
types or if you would like to attach a certain type of validation to an existing
component, the JSF framework provides a mechanism for defining reusable Val-
idator components that you can associate with a user interface component. Each
Validator component must implement the javax.faces.validator.
Validator interface. This interface contains the following method, which is
very similar to what we covered for direct validation:

public void validate(FacesContext context, UIComponent component);

You implement your validation code within this method and operate on the
generic component instance that is passed in.

We previously touched on the possibility of using generic attributes with
Validators for the purpose of storing configuration information. For general-
purpose Validators, this is certainly a flexible option. You may also define
these configuration items via JavaBean properties and/or constructor argu-
ments on the Validator component itself. Either way, you have the flexibility of
defining configurable Validators when necessary.

Let’s take a look at a simple, but complete Validator example. The JSP code
in Listing 2.4 is an excerpt from the Car Demo sample application provided by
the JSF Reference Implementation.

...

<h:form formName=”CustomerForm” >

...

<h:input_text id=”ccno” size=”16” converter=”creditcard” >

<f:validate_required/>

<cd:format_validator formatPatterns=”9999999999999999|

9999 9999 9999 9999|

9999-9999-9999-9999”/>

</h:input_text>

...

</h:form>

Listing 2.4 Assigning Validators to a UI component in a JSP.

You’ll notice that two different Validators are being assigned to an input
component that is used to collect a credit card number. Each Validator will
later be called upon in the order in which it was defined to perform correctness
checking. The first Validator ensures that something has been entered,
while the second Validator ensures that the string is formatted properly
according to the provided input masks. Let’s now take a look at the source
code for the second Validator in Listing 2.5.

Elements of JSF 65

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 65

public class FormatValidator implements Validator {

public static final String FORMAT_INVALID_MESSAGE_ID =

“cardemo.Format_Invalid”;

public FormatValidator() {

super();

}

/**

* <p>Construct a FormatValidator with the specified formatPatterns

* String.</p>

*

* @param formatPatterns <code>|</code> separated String of format

* patterns that this validator must match

* against.

*/

public FormatValidator(String formatPatterns) {

super();

this.formatPatterns = formatPatterns;

parseFormatPatterns();

}

private String formatPatterns = null;

public String getFormatPatterns() {

return (this.formatPatterns);

}

public void setFormatPatterns(String formatPatterns) {

this.formatPatterns = formatPatterns;

parseFormatPatterns();

}

/**

* Method from Validator interface

*/

public void validate(FacesContext context, UIComponent component) {

boolean valid = false;

if ((context == null) || (component == null)) {

throw new NullPointerException();

}

if (!(component instanceof UIOutput)) {

return;

}

if (formatPatternsList == null) {

// No patterns to match

Listing 2.5 Format Validator.

66 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 66

component.setValid(true);

return;

}

String value = (((UIOutput)component).getValue()).toString();

// validate the value against the list of valid patterns.

Iterator patternIt = formatPatternsList.iterator();

while (patternIt.hasNext()) {

valid = isFormatValid(((String)patternIt.next()), value);

if (valid) {

break;

}

}

if (valid) {

component.setValid(true);

} else {

component.setValid(false);

Message errMsg = getMessageResources().getMessage(context,

FORMAT_INVALID_MESSAGE_ID,

(new Object[] {formatPatterns}));

context.addMessage(component, errMsg);

}

}

/**

* Parses the <code>formatPatterns</code> into validPatterns

* <code>ArrayList</code>. The delimiter must be “|”.

*/

public void parseFormatPatterns() {

...

}

/**

* Returns true if the value matches one of the valid patterns

*/

protected boolean isFormatValid(String pattern, String value) {

...

}

/**

* This method will be called before calling

* facesContext.addMessage, so message can be localized.

* <p>Return the {@link MessageResources} instance for the message

* resources defined by the JavaServer Faces Specification.

*/

public synchronized MessageResources getMessageResources() {

...

}

}

Listing 2.5 (continued)

Elements of JSF 67

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 67

One of the first things you’ll notice here is that a constructor parameter is
being used to set the acceptable format patterns, which, as we just mentioned,
is an alternative to generic attributes. You’ll also notice how the setValid()
method is used inside the implemented validate() method to flag the tar-
get component as valid or invalid. In Chapter 3, we’ll take a look at what hap-
pens when components are flagged as invalid.

Validator Registration
When using any of the standard JSF Validators, you simply nest the appropri-
ate tag within the tag that represents a UI component. We saw an example of
this being done with the Required Validator in Listing 2.4. Although you
may assign Validators in JSPs via the standard JSF tag library, they may also be
assigned and managed dynamically at run time via the component tree. Every
user interface component has a number of methods for adding and removing
Validators, as well as getting a list of all active Validators in the order they are
assigned (as shown in Figure 2.5).

You may also create and assign your own Validator components. When
doing so, you must make sure you register each custom Validator in your
application’s associated JSF configuration file (see Chapter 4 for a discussion of
how to do this). You may then either create a JSP tag for your JSP or use the stan-
dard <validator> tag and specify the Validator by its type. When using
this generic tag, the input field in Listing 2.4 could be rewritten as follows.

<h:input_text id=”ccno” size=”16” converter=”creditcard” >

<f:validate_required/>

<f:validator type=”cardemo.FormatValidator”/>

<f:attribute name=”formatPatterns”

value=”9999999999999999|

9999 9999 9999 9999|

9999-9999-9999-9999”/>

</h:input_text>

You’ll see that the Validator is identified by its unique type (which is pro-
vided as part of the registration process in the associated JSF configuration
file), and its formatPatterns attribute is added to and accessible from the
text input UI component. The advantage of creating an associated custom JSP
tag is that it provides a more user-friendly notation for page authors, espe-
cially when the Validator requires the use of one or more attributes. For a
more complete discussion of Validator components, see Chapter 7, “Validation
and Conversion.”

68 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 68

Standard Validators
The JSF Specification requires every JSF implementation to provide some basic
but useful Validators, like the first Validator in the previous example. A
summary of each standard Validator is provided in Table 2.2.

The associated JSP tags are available via the core JSF tag library, which is
declared as follows in your JSP page.

<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>

You can expect a number of custom Validator components for all sorts of
correctness checking from third parties. The JSF framework makes this very
easy to do. In Chapter 7, we’ll cover the process of creating your own custom
Validators, which are similar to the format Validator we just examined.

Table 2.2 Standard JSF Validators

VALIDATOR JSP TAG DESCRIPTION

DoubleRangeValidator validate_doublerange Validates that an input field
provides a String that may be
converted to a double and that
it is within the supplied
maximum and minimum values.

LengthValidator validate_length Validates that an input field
provides a String (or a value
that may be converted to a
String) and that it’s length is
within the supplied maximum
and minimum values.

LongRangeValidator validate_longrange Validates that an input field
provides a String that may be
converted to a long and that it
is within the supplied maximum
and minimum values.

RequiredValidator validate_required Validates that an input field has
a value that is not null. If the
value is set to a String, the
length of that String must be
one character or more.

StringRangeValidator validate_stringrange Validates that an input field
provides a String (or something
that may be converted to a
String) and that it is within the
supplied maximum and
minimum values.

Elements of JSF 69

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 69

Conversion

Web applications capture user data as request parameters over the HTTP pro-
tocol. Each of these parameters is in the form of a String, while the backing
data for the application on the server side is in the form of Java objects. An
example of these two views of the same data is a date. To a Web client, the date
may be shown as a String in any number of formats from numbers
(03/05/2003) to natural language (March 5, 2003). It may also have some sort
of calendar control that allows users to graphically select a date. On the server
side, a date is probably represented with a java.util.Date object.

The challenge for you as a developer is to convert this data back and
forth between both representations. This can be mind-numbing, error-prone
work, but JSF fortunately provides support for reusable data conversion via
Converters.

Converters
Every user interface component may have an optional Converter associated
with it. Each Converter must implement the javax.faces.convert.
Converter interface. A custom Converter from the Car Demo sample appli-
cation is provided in Listing 2.6.

public class CreditCardConverter implements Converter {

/**

* Parses the CreditCardNumber and strips any blanks or

* <code>”-”</code> characters from it.

*/

public Object getAsObject(FacesContext context,

UIComponent component, String newValue)

throws ConverterException {

String convertedValue = null;

if (newValue == null) {

return newValue;

}

// Since this is only a String to String conversion, this

// conversion does not throw ConverterException.

convertedValue = newValue.trim();

if (((convertedValue.indexOf(“-”)) != -1) ||

((convertedValue.indexOf(“ “)) != -1)) {

char[] input = convertedValue.toCharArray();

StringBuffer buffer = new StringBuffer(50);

for (int i = 0; i < input.length; ++i) {

if (input[i] == ‘-’ || input[i] == ‘ ‘) {

Listing 2.6 Credit card custom Converter.

70 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 70

continue;

} else {

buffer.append(input[i]);

}

}

convertedValue = buffer.toString();

}

return convertedValue;

}

/**

* Formats the value by inserting a space after every four

* characters for better readability if one doesn’t already

* exist. In the process converts any <oode>”-”</code>

* characters into blanks for consistency.

*/

public String getAsString(FacesContext context,

UIComponent component, Object value) throws ConverterException {

String inputVal = null;

if (value == null) {

return null;

}

// Value must be of the type that can be cast to a String

try {

inputVal = (String)value;

} catch (ClassCastException ce) {

throw new ConverterException(Util.getExceptionMessage(

Util.CONVERSION_ERROR_MESSAGE_ID));

}

// Insert spaces after every four characters for better

// readability if it doesn’t already exist.

char[] input = inputVal.toCharArray();

StringBuffer buffer = new StringBuffer(50);

for (int i = 0; i < input.length; ++i) {

if ((i % 4) == 0 && i != 0) {

if (input[i] != ‘ ‘ || input[i] != ‘-’){

buffer.append(“ “);

// If there any “-”’s convert them to blanks.

} else if (input[i] == ‘-’) {

buffer.append(“ “);

}

}

buffer.append(input[i]);

}

String convertedValue = buffer.toString();

return convertedValue;

}

}

Listing 2.6 (continued)

Elements of JSF 71

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 71

This Converter implements the getAsObject() and getAsString()
methods as required by the Converter interface. Converters are expected to
be symmetric in their processing of data. In other words, a Converter should
typically implement both the getAsObject and getAsString methods
such that a piece of data will be equivalent when it is converted back and forth
via these methods.

Converter instances are typically shared among components via a factory
mechanism. Because of this, it is important that they be programmed in a
thread-safe manner. In some cases, a Converter may require configuration
values to operate correctly. The example we provided earlier involved the
expected format of a date, which may be stored as a generic attribute on an
associated user interface component.

Every user interface component has methods for getting and setting a Con-
verter. These methods are getConverter() and setConverter(), respec-
tively, and they may be used to dynamically assign a Converter at any time.
Converters are associated via a String-based converter identifier, which we will
cover in the following “Converter Registration” section.

Although you may associate a Converter with a user interface component
by invoking its setConverter() method, you will typically set a Converter
via an associated JSP tag attribute. If you take another look at Listing 2.4, you’ll
see the custom credit card Converter being assigned to the credit card number
input component via the converter attribute. This attribute is provided as
part of the standard JSF HTML tag library. Behind the scenes, the
<input_text> tag just invokes the setConverter() method for you with
the converter identifier provided.

Converter Registration
When using your own custom Converter components, you must first register
them with your application in its associated JSF configuration file. This process
is covered in Chapter 4 for the credit card Converter we have been using as an
example here. As part of the registration process, you provide a unique identi-
fier for the Converter, and this identifier is what you use to associate a Con-
verter with a UI component via its optional converter attribute.

Standard Converters
The JSF Specification requires every JSF implementation to provide a basic set of
Converters. A summary of each standard Converter is provided in Table 2.3.

72 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 72

Table 2.3 Standard JSF Converters

CONVERTER ATTRIBUTES DESCRIPTION

Date dateStyle Converts a String or Number to a Date
timezone with attributes for controlling the date

style and time zone considerations

DateFormat formatPattern Converts a String or Number to a Date
timezone with attributes for controlling the format

of the date and time zone considerations

DateTime dateStyle Converts a String or Number to a Date
timeStyle with attributes for controlling the date
timezone style, time style, and time zone

considerations

Number numberStyle Converts a String or Number to a Number
with an attribute for controlling the
number style (currency, percent, integer,
and so on)

NumberFormat formatPattern Converts a String or Number to a Number
with an attribute for controlling the
number format

These Converters basically give you a few different ways to convert input
fields into dates and numbers with various styles and formats. As with stan-
dard Validators, you’ll need to declare the core JSF tag library in the JSP page
you wish to use the Converters. An example usage of one of these standard
Converters is provided below.

<h:input_text id=”total” valueRef=”Invoice.total” converter=”Number”>

<f:attribute name=”numberStyle” value=”currency”/>

</h:input_text>

This input field represents the total amount of an invoice, and the associated
Converter will transfer the String entered by users into a Number that repre-
sents money.

As with Validators, you can expect a number of custom Converter compo-
nents for all sorts of String and Number conversions (among others) from
third parties. The JSF framework makes this very easy to do. In Chapter 7,
we’ll cover the process of creating your own custom Converters, which are
similar to the credit card Converter we just examined.

Elements of JSF 73

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 73

Events and Listeners

Events provide an important mechanism for user interface components to
propagate user actions to other components (including server-side compo-
nents). These interested components register as listeners to events they are
interested in (the pressing of a button or perhaps a change to the value in a text
input field). Events were introduced in Chapter 1 in terms of the Observer Pat-
tern, so the concept of events should be very familiar to you. We also discov-
ered that JSF takes an approach to events and event handling that is similar to
Swing’s. Both of them are based on the JavaBean Specification event model.
We’ll review JSF events here in a bit more detail.

UI Events
Each user interface component may emit any number of events and have any
number of listeners registered to have these events broadcast to them. These
listeners may be other user interface components or application components.
Each supported event must extend the javax.faces.event.FacesEvent
base class.

The constructor of each event accepts a reference to the user interface com-
ponent that is responsible for propagating it, while the getComponent()
method provides access to the originating component. Events may also have
useful information (usually involving component state) that they wish to com-
municate to registered listeners. For this reason, an Event may provide any
number of properties and constructors to initialize them. The JavaBean specifi-
cation recommends that the name of each event class end with the word Event.

The JSF specification defines two standard user interface component events.
The javax.faces.event.ActionEvent is broadcast from the standard
UICommand component (typically rendered as a push button, a menu item, or
a hyperlink) when activated by a user, whereas the javax.faces.event.
ValueChangedEvent is broadcast from the standard UIInput component
or subclasses when its value has changed and passed validation.

Listeners
Each event type has a corresponding listener interface that must extend the
javax.faces.event.FacesListener interface. Application components
or other user interface components may implement any number of listener
interfaces, as long as they provide the appropriate event handler method for
each one. Listener implementations have access to the corresponding event via
a parameter that is passed in to the event handler method. The JavaBean spec-
ification recommends that each listener interface name be based on the event
class it is associated with and end with Listener.

74 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 74

The JSF specification defines two standard listener interfaces corresponding
to the two standard event types. Listeners of the ActionEvent must imple-
ment javax.faces.event.ActionListener and receive notification
via invocation of the processAction() method, whereas listeners of
the ValueChangedEvent must implement javax.faces.event.Value
ChangedListener and receive notification via invocation of the process-
ValueChanged() method they are required to implement.

An example of a listener is provided in Listing 2.7 from the Car Demo sam-
ple. This particular listener implementation responds to a user’s clicking an
image map by forwarding control to the appropriate JSP page.

public class ImageMapEventHandler implements ActionListener {

Hashtable localeTable = new Hashtable();

public ImageMapEventHandler () {

localeTable.put(“NAmericas”, Locale.ENGLISH);

localeTable.put(“SAmericas”, new Locale(“es”,”es”));

localeTable.put(“Germany”, Locale.GERMAN);

localeTable.put(“France”, Locale.FRENCH);

}

public PhaseId getPhaseId() {

return PhaseId.ANY_PHASE;

}

// Processes the event queued on the specified component

public void processAction(ActionEvent event) {

UIMap map = (UIMap)event.getSource();

String value = (String) map.getAttribute(“currentArea”);

Locale curLocale = (Locale) localeTable.get(value);

if (curLocale != null) {

FacesContext context = FacesContext.getCurrentInstance();

context.setLocale(curLocale);

String treeId = “/Storefront.jsp”;

TreeFactory treeFactory = (TreeFactory)

FactoryFinder.getFactory(FactoryFinder.TREE_FACTORY);

Assert.assert_it(null != treeFactory);

context.setTree(treeFactory.getTree(context,treeId));

}

}

}

Listing 2.7 Custom event listener.

Elements of JSF 75

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 75

Now that we’ve covered what is required of event listeners, you may be
wondering how we register them to receive event notifications. The JavaBean
specification requires a component that emits a particular event to define a pair
of methods for registering and unregistering listeners. We’ll use the standard
ActionListener as an example of what these methods should look like:

public void addActionListener(ActionListener listener);

public void removeActionListener(ActionListener listener);

Any component that wishes to register for a certain event, must simply call
the appropriate add() method at any time on the user interface component it
wishes to observe. Likewise, if a component no longer wishes to receive event
notifications, it must simply call the appropriate remove() method on the
component it is observing. However, you will typically register listeners in
JSPs, as shown for our image map example in Listing 2.8.

...

<h:form formName=”imageMapForm” >

...

<h:graphic_image id=”mapImage” url=”/world.jpg” usemap=”#worldMap”

/>

<d:map id=”worldMap” currentArea=”NAmericas” >

<f:action_listener type=”cardemo.ImageMapEventHandler”/>

<d:area id=”NAmericas” modelReference=”NA”

onmouseover=”/cardemo/world_namer.jpg”

onmouseout=”/cardemo/world.jpg” />

<d:area id=”SAmericas” modelReference=”SA”

onmouseover=”/cardemo/world_samer.jpg”

onmouseout=”/cardemo/world.jpg” />

<d:area id=”Germany” modelReference=”gerA”

onmouseover=”/cardemo/world_germany.jpg”

onmouseout=”/cardemo/world.jpg” />

<d:area id=”France” modelReference=”fraA”

onmouseover=”/cardemo/world_france.jpg”

onmouseout=”/cardemo/world.jpg” />

</d:map>

</h:form>

...

Listing 2.8 Custom event listener assigned in JSP.

This registration is done via the standard JSF HTML tag library with the
<action_listener> tag, as shown below.

<f:action_listener type=”cardemo.ImageMapEventHandler”/>

76 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 76

The appropriate listener class is associated via the type attribute. Behind
the scenes, the <action_listener> tag calls the addActionListener()
method for you on the image map component.

Phase Identifiers
All listener implementations must implement the getPhaseId() method
from the FacesEvent interface to specify at which stage of the request-
processing life cycle they wish to receive event notifications. This method
returns an instance of javax.faces.event.PhaseId, which is an enu-
merated type that defines each stage at the end of which events may be broad-
cast to registered listeners. An additional type of PhaseId.ANY_PHASE is
provided for those listeners who wish to be notified every time a particular
event is broadcast. The event listener in Listing 2.8 implements this method.

We’ll cover the request-processing life cycle in greater detail in Chapter 3,
including the overall process for handling events.

Event Queuing and Broadcasting
During the request-processing life cycle, events may be created in response to
user actions, and all of them are queued in the FacesContext in the order in
which they are received. At the end of each phase where events may be handled,
any events in the queue are broadcast to registered listeners that define the
appropriate PhaseId. As we discussed earlier, this action results in the appro-
priate event-processing method being invoked on each registered listener.

Application Events
JSF also provides Action objects that may respond to ActionEvents emit-
ted by UICommand components. We covered the use of Action objects in our
discussion of the MVC Pattern in Chapter 1. You attach an Action object to a
UICommand component by setting its optional actionRef attribute. As a
review of what we covered, here is the relevant piece of code in the login JSP.

<h:command_button commandName=”login” actionRef=”loginForm.login”/>

The loginForm identifier refers to a managed bean that holds the input
form data and that has been registered in the application’s JSF configuration
file. It is not uncommon to place an Action inside of the component’s associ-
ated data bean so that it has direct access to the input form data. Actions are
used in JSF much as they are in Struts—to interface with business objects. We’ll
touch upon Action objects again in greater detail in Chapter 6, “Navigation,
Actions, and Listeners,” and again in Chapter 9, “Building JSF Applications.”

Elements of JSF 77

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 77

For now, just remember that JSF Action objects are what you will typically
use to interact with your business object layer in response to user interface
commands.

Rendering

One of the most important aspects of user interfaces is how they look and feel
to users. JSF provides a flexible mechanism for rendering responses in Web
applications, and it comes in two forms: direct rendering within a user inter-
face component and delegated rendering via RenderKits that occur outside of
a user interface component. Figure 2.6 provides a graphical summary of this
choice. As with Validators, the method you choose is dependent upon how
specific a rendering is to a particular user interface component.

Direct Rendering
With direct rendering, a user interface component must encode and
decode itself by overriding one or more of the rendering methods defined by
UIComponentBase.

The decode() method is invoked on a component after a request is
received and is expected to convert request parameters into a user interface
component with its current state. This conversion process is aided by a Con-
verter if one has been assigned to the component. The set of encode methods,
encodeBegin(), encodeChildren(), and encodeEnd() are invoked
when the JSF implementation is preparing a response to a client request. If the
component you are rendering has no children, then you only need to imple-
ment the encodeEnd() method. As with the decode() method, a Converter
may be used if assigned. When performing direct rendering, you must also
override the getRendersSelf() method to return true.

Direct rendering coupled with the direct validation we discussed earlier
allows component authors to build self-contained custom components in sin-
gle classes. If used correctly, this option can be compact and efficient. On the
other hand, it does limit reuse of common rendering and validation among
multiple components, which could have a negative impact on maintainability.

Delegated Rendering
Delegating user interface component encoding and decoding to external com-
ponents allows you to quickly change the look and feel of components and to
render appropriate responses to different client types. In essence, the render-
ing of a user interface component is separated out and becomes pluggable
with other possible rendering.

78 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 78

Figure 2.6 Direct rendering versus delegated rendering.

A Renderer is a subclass of the abstract class javax.faces.render
.Renderer and provides the same encode and decode methods that exist on
a user interface component for direct rendering. We provided an example of a
custom Renderer in Listing 2.3. We only showed the encodeEnd() method,
but if you look at the complete example provided with the JSF reference imple-
mentation, you’ll see the other methods as well.

You are probably wondering at this point how to associate a Rendererwith
a UI component. This is done by implementing the getRendererType()
method and returning the appropriate render type (see the “Registering Ren-
derers” section for more information on render types). At run time, your cho-
sen JSF implementation will call this method when encoding and decoding the
UI component to determine which Renderer, if any, should be used. This

UIComponent

RenderergetRenderType(...)

getRendersChildren(...)

getRendersSelf(...)

setRendererType(...)

isRendered(...)

setRendered(...)

decode(...)

encodeBegin(...)

encodeChildren(...)

encodeEnd(...)

encodeEnd(...)

encodeChildren(...)

encodeBegin(...)

decode(...)

Either direct rendering or
delegated renderer may encode
and decode a component.

UI Components may implement the
encode(...) methods and decode(...)

 directly to define nonportable
rendering code.

They may also delegate to a
reusable Renderer component.

Renderer
management

methods

Elements of JSF 79

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 79

property would return a value of null if you choose direct over delegated
rendering. When using standard JSF UI components, you don’t have to worry
about setting a render type, because each of these components already
defaults to one in the standard HTML RenderKit. You only need to worry
about setting a render type when you are creating a new component or cus-
tomizing the look of an existing one. A good example of handling component
rendering for a custom UI component is provided in Chapter 10.

Each Renderer may also recognize certain generic attributes that are used
to properly encode and decode an associated user interface component. You’ll
recall our earlier example of a tabbed pane that uses the selected attribute to
determine which tab is selected. This tab is then rendered with a different
appearance than the others.

Render Kits
A RenderKit is a subclass of the abstract class javax.faces.render.
RenderKit and represents a collection of Renderers that typically specialize
in rendering user interface components in an application based on some com-
bination of client device type, markup language, and/or user locale. Render
kits are conceptually similar to Swing looks and feels in that they are plug-
gable and often render user interfaces based on a common theme.

At some point you may wish to customize the Renderers of an existing Ren-
derKit or even create your own RenderKit. You will typically create Renderers
for your custom components and register them with existing RenderKits. We’ll
take a look at that registration process next, and we’ll explore custom user
interface component rendering in much greater detail in Chapter 10.

Registering Renderers
Before using the tabbed Renderer we have seen more than once so far in this
chapter, it must be registered in the associated application’s JSF configuration
file.

<render-kit>

...

<renderer>

<renderer-type>Tabbed</renderer-type>

<renderer-class>components.renderkit.TabbedRenderer</renderer-class>

</renderer>

...

</render-kit>

The configuration information here registers the Rendererwith the default
HTML RenderKit (which is the default behavior of not specifying a particular

80 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 80

RenderKit). As we discussed earlier in this chapter, your JSF implementation
will check each UI component’s getRendererType() method to see if it
should delegate rendering to a Renderer; otherwise, it will expect the UI
component to render itself. We’ll explore Renderers more in Chapter 10.

Standard RenderKits
The JSF specification defines a standard RenderKit and set of associated Ren-
derers for generating HTML compatible markup. Each JSF implementation is
required to support this RenderKit. A summary of the available Renderers is
provided in Table 2.4.

Table 2.4 Standard JSF HTML Renderers

RENDERER / TAGS UICOMPONENTS DESCRIPTION

Button / UICommand Represents your typical
<command_button> command button

Hyperlink / UICommand Represents a Web link
<command_hyperlink>

Image / UIGraphic Represents an icon or image.
<graphic_image>

Date / UIInput / UIOutput Represents a date String in an
<input_date> input field or a label
<output_date>

DateTime / UIInput / UIOutput Represents a date/time String in
<input_datetime> an input field or a label
<output_datetime>

Number / UIInput / UIOutput Represents a Number in an
<input_number> input field or a label
<output_number>

Text / UIInput / UIOutput Represents plain text in an input
<input_text> field or a label
<output_text>

Time / UIInput / UIOutput Represents a time String in an
<input_time> input field or a label
<output_time>

Hidden / UIInput Represents an invisible field that
<input_hidden> is useful for a page author

Secret / UIInput Represents a password input
<input_secret> field or one in which the

characters are masked

(continued)

Elements of JSF 81

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 81

Table 2.4 (continued)

RENDERER / TAGS UICOMPONENTS DESCRIPTION

TextArea / UIInput Represents a multiline text input
<input_textarea> or memo field

Errors / UIOutput Displays error messages for
<output_errors> input fields (or an entire page

as well)

Label / UIOutput Represents a label for an input
<output_label> field

Message / UIOutput Displays a localized message
<output_message>

Data / UIPanel Represents a set of rows from a
<panel_data> collection of data

Grid / UIPanel Represents a table
<panel_grid>

Group / UIPanel Visually represents a group of
<panel_group> related components

List / UIPanel Represents a list
<panel_list>

Checkbox / UISelectBoolean Represents a check box
<selectboolean_
checkbox>

CheckboxList / UISeletMany Represents a list of check boxes

Listbox / UISelectMany / Represents a list of items from
<selectmany_listbox> UISelectOne which one or more may be
<selectone_listbox> selected

Menu / UISelectMany / Represents a menu
<selectmany_menu> UISelectOne
<selectone_menu>

Radio / UISelectOne Represents a set of radio buttons
<selectone_radio> from which one choice may be

made

The determination of which Renderer you use will be automatically han-
dled based on the tag you use in your JSPs. You have already seen some of
these tags in action in our examples, and you’ll see more of them throughout
the rest of the book. You will no doubt also see more Renderers (and associated
tags) from third-party vendors and likely the vendor of your particular JSF
implementation.

82 Chapter 2

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 82

Summary

Now that we’ve covered the most important elements of JSF and how many of
them work together in JSF applications, it’s time to pull everything together
with a discussion of the JSF request-processing life cycle. We’ll do this in Chap-
ter 3 before rolling up our sleeves and digging into more details.

Elements of JSF 83

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 83

04 462071 Ch02.qxd 12/22/03 9:57 AM Page 84

