
CHAPTER 1

A Self-Assessment Test

Since this book was first published
25 years ago, software testing has become both easier and more diffi-
cult than ever.

Software testing is more difficult because of the vast array of pro-
gramming languages, operating systems, and hardware platforms that
have evolved. And, while relatively few people used computers in the
1970s, today virtually anyone in business or education could hardly
complete a day’s work without using a computer. Furthermore, the
machines themselves are hundreds of times more powerful than those
early devices.

Therefore, the software we write today potentially touches mil-
lions of people, enabling them to do their jobs effectively and effi-
ciently—or causing them untold frustration and the cost of lost work
or lost business. This is not to say that software is more important
today than it was when the first edition of this book was published,
but it is safe to say that computers—and the software that drives
them—certainly affect more people and more businesses today.

Software testing is easier, in some ways, because the array of soft-
ware and operating systems is much more sophisticated than ever,
providing intrinsic well-tested routines that can be incorporated into
applications without the need for a programmer to develop them
from scratch. Graphical user interfaces (GUIs), for example, can be
built from a development language’s libraries, and, since they are pre-
programmed objects that have been debugged and tested previously,
the need for testing them as part of a custom application is much
reduced.

Software testing is a process, or a series of processes, designed to
make sure computer code does what it was designed to do and that it

1

01.qxd 4/29/04 4:32 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

does not do anything unintended. Software should be predictable and
consistent, offering no surprises to users. In this book we will look at
many approaches to achieving this goal.

Now, before we start the book, we’d like you to take a short exam.
We want you to write a set of test cases—specific sets of data—to

properly test a relatively simple program. Create a set of test data for
the program—data the program must handle correctly to be consid-
ered a successful program. Here’s a description of the program:

The program reads three integer values from an input dialog. The
three values represent the lengths of the sides of a triangle. The
program displays a message that states whether the triangle is scalene,
isosceles, or equilateral.

Remember that a scalene triangle is one where no two sides are
equal, whereas an isosceles triangle has two equal sides, and an equi-
lateral triangle has three sides of equal length. Moreover, the angles
opposite the equal sides in an isosceles triangle also are equal (it also
follows that the sides opposite equal angles in a triangle are equal),
and all angles in an equilateral triangle are equal.

Evaluate your set of test cases by using it to answer the following
questions. Give yourself one point for each “yes” answer.

1. Do you have a test case that represents a valid scalene trian-
gle? (Note that test cases such as 1,2,3 and 2,5,10 do not
warrant a “yes” answer because there does not exist a triangle
having these dimensions.)

2. Do you have a test case that represents a valid equilateral tri-
angle?

3. Do you have a test case that represents a valid isosceles trian-
gle? (Note that a test case representing 2,2,4 would not count
because it is not a valid triangle.)

4. Do you have at least three test cases that represent valid
isosceles triangles such that you have tried all three permuta-
tions of two equal sides (such as, 3,3,4; 3,4,3; and 4,3,3)?

5. Do you have a test case in which one side has a zero value?

2 The Art of Software Testing

01.qxd 4/29/04 4:32 PM Page 2

6. Do you have a test case in which one side has a negative
value?

7. Do you have a test case with three integers greater than zero
such that the sum of two of the numbers is equal to the
third? (That is, if the program said that 1,2,3 represents a sca-
lene triangle, it would contain a bug.)

8. Do you have at least three test cases in category 7 such that
you have tried all three permutations where the length of
one side is equal to the sum of the lengths of the other two
sides (for example, 1,2,3; 1,3,2; and 3,1,2)?

9. Do you have a test case with three integers greater than zero
such that the sum of two of the numbers is less than the third
(such as 1,2,4 or 12,15,30)?

10. Do you have at least three test cases in category 9 such that
you have tried all three permutations (for example, 1,2,4;
1,4,2; and 4,1,2)?

11. Do you have a test case in which all sides are zero (0,0,0)?
12. Do you have at least one test case specifying noninteger val-

ues (such as 2.5,3.5,5.5)?
13. Do you have at least one test case specifying the wrong num-

ber of values (two rather than three integers, for example)?
14. For each test case did you specify the expected output from

the program in addition to the input values?

Of course, a set of test cases that satisfies these conditions does not
guarantee that all possible errors would be found, but since questions
1 through 13 represent errors that actually have occurred in different
versions of this program, an adequate test of this program should
expose at least these errors.

Now, before you become concerned about your own score, con-
sider this: In our experience, highly qualified professional program-
mers score, on the average, only 7.8 out of a possible 14. If you’ve
done better, congratulations; if not, we’ll try to help.

The point of the exercise is to illustrate that the testing of even a
trivial program such as this is not an easy task. And if this is true, con-
sider the difficulty of testing a 100,000-statement air traffic control

A Self-Assessment Test 3

01.qxd 4/29/04 4:32 PM Page 3

system, a compiler, or even a mundane payroll program. Testing also
becomes more difficult with the object-oriented languages such as
Java and C++. For example, your test cases for applications built with
these languages must expose errors associated with object instantia-
tion and memory management.

It might seem, from working with this example, that thoroughly
testing a complex, real-world program would be impossible. Not so!
Although the task can be daunting, adequate program testing is a
very necessary—and achievable—part of software development, as
you will learn in this book.

4 The Art of Software Testing

01.qxd 4/29/04 4:32 PM Page 4

