
1 Clustering and Fuzzy Clustering

This chapter provides a comprehensive, focused introduction to clustering, viewed
as a fundamental means of exploratory data analysis, unsupervised learning, data
granulation, and information compression. We discuss the underlying principles,
elaborate on the basic taxonomy of numerous clustering algorithms (includ-
ing such essential classes as hierarchical, objective function-based algorithms),
and review the main interpretation mechanisms associated with various cluster-
ing algorithms.

1.1. INTRODUCTION

Making sense of data is an ongoing task of researchers and professionals in
almost every practical endeavor. The age of information technology, character-
ized by a vast array of data, has enormously amplified this quest and made it
even more challenging. Data collection anytime and everywhere has become the
reality of our lives. Understanding the data, revealing underlying phenomena,
and visualizing major tendencies are major undertakings pursued in intelligent
data analysis (IDA), data mining (DM), and system modeling.

Clustering is a general methodology and a remarkably rich conceptual and
algorithmic framework for data analysis and interpretation (Anderberg, 1973;
Bezdek, 1981; Bezdek et al., 1999; Devijver and Kittler, 1987; Dubes, 1987;
Duda et al., 2001; Fukunaga, 1990; Hoppner et al., 1999; Jain et al., 1999, 2000;
Kaufmann and Rousseeuw, 1990; Babu and Murthy, 1994; Dave, 1990; Dave and
Bhaswan, 1992; Kersten, 1999; Klawonn and Keller, 1998; Mali and Mitra, 2002;
Webb, 2002). In this chapter, we introduce basic notions, explain the functional
components essential to the formulation of clustering problems, and discuss the
main classes of clustering algorithms. These algorithms are accompanied by the
formalisms of granular computing, including sets, fuzzy sets, shadowed sets, and
rough sets.

1.2. BASIC NOTIONS AND NOTATION

To establish a formal setting in which clustering can be carried out, we start with
basic notions such as data types, distance, and similarity/resemblance.

Knowledge-Based Clustering, by Witold Pedrycz
ISBN 0-471-46966-1 Copyright 2005 John Wiley & Sons, Inc.

1

2 CLUSTERING AND FUZZY CLUSTERING

1.2.1. Types of Data

The world surrounding us generates various types of data in abundance. The rich-
ness of data formats is impressive. The formal representation and organization of
patterns reflect the way in which we intend to process the data. The most gen-
eral taxonomy being in common use distinguishes among numeric (continuous),
ordinal, and nominal variables. A numeric variable can assume any value in R.
An ordinal variable assumes a small number of discrete states, and these states
can be compared. For instance, there are four states, denoted a1, a2, a3, and a4,
and we can say that a1 and a2 are closer (in some sense of similarity that we
define in the next section) than a1 and a3. A nominal variable assumes a small
number of states, but nothing can be said about their closeness. Regardless of this
distinction, nominal and ordinal variables are represented as discrete variables.
For computing purposes, we usually have several coding schemes, such as binary
coding or binary coding with various options.

The variables can be organized into internal structures that reflect the speci-
ficity of the problem. If each pattern is described by a number of features,
intuitively we arrange them into vectors—say, x, y, and z. Depending upon the
character of the variables involved, the entries can be real or binary. Obviously,
this can give rise to a variety of vectors, including both types of entries. Vectors
and matrices are “flat” structures in the sense that all variables are at the same
level as individual entries of the feature vector, and they have no structure. Hier-
archical structures like trees are used to visualize the relationship between objects
(patterns) we are interested in when dealing with clustering or classification.

1.2.2. Distance and Similarity

The concept of dissimilarity (or distance) or dual similarity is the essential com-
ponent of any form of clustering that helps us navigate through the data space
and form clusters. By computing dissimilarity, we can sense and articulate how
close together two patterns are and, based on this closeness, allocate them to the
same cluster. Formally, the dissimilarity d(x, y) between x and y is considered
to be a two-argument function satisfying the following conditions:

d(x, y) ≥ 0 for every x and y

d(x, x) = 0 for every x (1.1)

d(x, y) = d(y, x)

This list of requirements is intuitively appealing. We require a nonnegative char-
acter of the dissimilarity. The symmetry is also an obvious requirement. The
dissimilarity attains a global minimum when dealing with two identical patterns,
that is d(x, x) = 0.

Distance, (metric) is a more restrictive concept, as we require the triangular
inequality to be satisfied; that is, for any pattern x, y, and z we have

d(x, y) + d(y, z) ≥ d(x, z) (1.2)

BASIC NOTIONS AND NOTATION 3

TABLE 1.1. Selected Distance Functions Between Patterns x and y

Distance Function Formula and Comments

Euclidean distance d(x, y) =
√√√√ n∑

i=1

(xi − yi)
2

Hamming (city block) distance d(x, y) =
n∑

i=1

|xi − yi |

Tchebyschev distance d(x, y) = maxi=1,2,...,n |xi − yi |

Minkowski distance d(x, y) = p

√√√√ n∑
i=1

(xi − yi)
p, p > 0

Canberra distance d(x, y) =
n∑

i=1

|xi − yi |
xi + yi

, xi and yi are positive

Angular separation d(x, y) =

n∑
i=1

xiyi

[
n∑

i=1

x2
i

n∑
i=1

y2
i

]1/2

Note: this is a similarity measure that expresses
the angle between the unit vectors in the
direction of x and y

In the case of continuous features (variables), we have a long list of distance
functions (see (Table 1.1)). Each of these functions implies a different view of
the data because of their geometry. The geometry is easily illustrated when we
consider only two features (x = [x1x2]T) and compute the distance of x from
the origin. The contours of the constant distance (Figure 1.1) show what type of
geometric construct becomes a focus of the search for structure. Here we become
aware that the Euclidean distance favors circular shapes of data clusters. With
the distance functions come some taxonomy; the Minkowski distance comprises
an infinite family of distances, including well-known and commonly used ones
such as the Hamming, Tchebyschev, and Euclidean distances.

The same effect shown in Figure 1.1d can be achieved when the value of the
power in the Minkowski distance is changed; see Figure 1.2.

One commonly used generalization is the Mahalanobis distance

d(x, y) = xT A−1y (1.3)

where A is a positive definite matrix. By choosing this matrix, we can control the
geometry of potential clusters by rotating the ellipsoid (off diagonal entries of

4 CLUSTERING AND FUZZY CLUSTERING

(a) (b)

(d)(c)

50
10

8

6

4

2

40

30

20

10

−4

−4 −2

−2
0

2
4

−4 −2

−2
−4

0

0

2
4

5

4

3

2

1

−4

−4 −2

−2
0

2
4

0

6

−4

−4 −2

−2
0

2
4

4

2
0

Figure 1.1. Examples of distance functions—three-dimensional and contour plots:
(a) Euclidean, (b) Hamming (city block), (c) Tchebyschev, (d) “combined” type of
distance max (2/3 Hamming, Tchebyschev).

A) and changing the length of its axes (the elements lying on the main diagonal
of the matrix).

With binary variables, we traditionally focus on the notion of similarity rather
than distance (or dissimilarity). Consider two binary vectors x and y that consist
of two strings [xk], [yk] of binary data; compare them coordinatewise and do the
simple counting of occurrences:

number of occurrences when xk and yk are both equal to 1
number of occurrences when xk = 0 and yk = 1
number of occurrences when xk = 1 and yk = 0
number of occurrences when xk and yk are both equal to 0

BASIC NOTIONS AND NOTATION 5

(a) (b)

(c)

6

4

2

6

4

2

−4

−4

−2

−2

0

0

2

4

2

4

−4

−4

−2

−2

0

0

2
4

−4

−4

−2

−2

0

0

2
4

Figure 1.2. Examples of the Minkowski distance function for selected values of the
power: (a) 1.5 (b) 2.5, and (c) 7.0.

These four numbers can be organized in a 2 by 2 co-occurrence matrix (contin-
gency table) that visualizes how “close” these two strings are to each other.

1 0
1 a b

0 c d

Evidently the zero nondiagonal entries of this matrix point at the ideal match-
ing (the highest similarity). Based on these four entries, there are several com-
monly encountered measure of similarity of binary vectors x and y. The simplest

6 CLUSTERING AND FUZZY CLUSTERING

matching coefficient computes as the following ratio:

a + d

a + b + c + d
(1.4)

The Russell and Rao measure of similarity consists of the quotient

a

a + b + c + d
(1.5)

The Jacard index involves the case when both inputs assume values equal to 1:

a

a + b + c
(1.6)

The Czekanowski index is practically the same as the Jacard index, but by adding
the weight factor of 2, it emphasizes the coincidence of situations where entries
of x and y both assume values equal to 1:

2a

2a + b + c
(1.7)

1.3. MAIN CATEGORIES OF CLUSTERING ALGORITHMS

Clustering techniques are rich and diversified. They have been continuously
developing for over a half century following a number of trends, depending
upon the emerging optimization techniques, main methodology (system mod-
eling, DM, signal processing), and application areas. At the very high end of
the overall taxonomy we envision two main categories of clustering, known as
hierarchical and objective function-based clustering.

1.3.1. Hierarchical Clustering

The clustering techniques in this category produce a graphic representation of
data (Duda et al., 2001). The construction of graphs (as these methods reveal the
structure by considering each individual pattern) is done in two ways: bottom-up
and top-down. The other names used reflect the way a structure is revealed. In the
bottom-up mode known as an agglomerative approach, we treat each pattern as a
single-element cluster and then successively merge the closest clusters. At each
pass of the algorithm, we merge the two closest clusters. The process is repeated
until we get to a single data set or reach a certain predefined threshold value.
The top-down approach, known as a divisive approach, works in the opposite
direction: we start with the entire set treated as a single cluster and keep splitting
it into smaller clusters. Considering the nature of the process, these methods are
often computationally inefficient, with the possible exception of patterns with
binary variables.

MAIN CATEGORIES OF CLUSTERING ALGORITHMS 7

The results of hierarchical clustering are usually represented in the form of
dendrograms (Figure 1.3). Dendrograms are visually appealing graphical con-
structs: they show how difficult it is to merge two clusters. The distance scale
shown at the right-hand side of the graph helps us quantify the distance between
the clusters. This implies a simple stopping criterion: given a certain threshold
value of the distance, we stop merging the clusters once the distance between
them exceeds this threshold, meaning that merging two distinct structures does
not seem to be feasible.

An important issue is how to measure the distance between two clusters. Note
that we have discussed how to express the distance between two patterns. Here,
as each cluster may contain many patterns, computation of the distance is neither
obvious nor unique. Consider two clusters, A and B, illustrated in Figure 1.4.
Let us describe the distance by d(A, B) and denote the number of patterns in A

and B by n1 and n2, respectively. Intuitively, we can easily envision three typical
ways of computing the distance between the two clusters.

a b c d e f g h

{a}

{b, c, d, e}

{f, g, h}

Figure 1.3. A dendrogram as a visualization of the structure of patterns; also shown are
the distance values guiding the process of successive merging of the clusters.

(a) (b)

(c)

Figure 1.4. Two clusters and three main ways of computing the distance between them:
(a) single link, (b) complete link, and (c) group average link.

8 CLUSTERING AND FUZZY CLUSTERING

Single-Link Method. The distance d(A,B) is based on the minimal distance
between the patterns belonging to A and B. It is computed in the form

d(A, B) = min
x∈A,y∈B

d(x, y) (1.8)

In essence, the distance supports a sort of radically “optimistic” mode of express-
ing vicinity between clusters where we get involved the closest patterns located in
different clusters. Clustering based on this distance is one of the most commonly
used methods.

Complete-Link Method. This method is at the opposite end of the spectrum,
as it is based on the distance between the two farthest patterns belonging to
two clusters:

d(A, B) = max
x∈A,y∈B

d(x, y) (1.9)

Group Average Link Method. In contrast to the two previous approaches, where
the distance is determined on the basis of extreme values of the distance function,
this method considers the average between the distances computed between all
pairs of patterns, one from each cluster. We have

d(A, B) = 1

card(A)card(B)

∑
x∈A,y∈B

d(x, y) (1.10)

Obviously, these computations are more intensive. However, they reflect a general
tendency between the distances computed for individual pairs of patterns.

Obviously, we can develop other ways of expressing the distance between A

and B. For instance, the Hausdorff method of computing the distance between
two sets of patterns could be an attractive alternative.

There is an interesting general expression for describing various agglomer-
ative clustering approaches known as the Lance-Williams recurrence formula.
It expresses the distance between clusters A and B and the cluster formed by
merging them (C)

dA∪B,C = αAdA,C + αBdB,C + βdA,B + γ|dA,C − dB,C | (1.11)

with the adjustable values of the parameters αA(αB), β, and γ. This is shown in
Table 1.2, where the choice of values implies a certain clustering method.

1.3.2. Objective Function-Based Clustering

The second general category of clustering is concerned with building partitions
(clusters) of data sets on the basis of some performance index known also as
an objective function. In essence, partitioning N patterns into c clusters (groups)

MAIN CATEGORIES OF CLUSTERING ALGORITHMS 9

TABLE 1.2. Values of the Parameters in the Lance-Williams Recurrence Formula
and the Resulting Agglomerative Clustering; nA, nB , and nC Denote the Number of
Patterns in the Corresponding Clusters

Clustering Method αA (αB) β γ

Single link 1/2 0 −1/2
Complete link 1/2 0 1/2

Centroid
nA

nA + nB

− nAnB

(nA + nB)2
0

Median 1/2 −1/4 0

is a nontrivial problem. First, the number of the partitions is expressed in the
following form (Webb, 2002):

1

c!

c∑
i=1

(−1)c−i

(
c

i

)
iN (1.12)

This number increases very quickly, making any attempt to enumerate all of
the partitions unfeasible. The minimization of a certain objective function can
be treated as an optimization approach leading to some suboptimal configuration
of the clusters (which, in practice, is an appealing solution). The main design
challenge lies in formulating an objective function that is capable of reflecting
the nature of the problem so that its minimization reveals a meaningful structure
in the data set. The minimum variance criterion is one of the most common
options. Having N patterns in Rn, and assuming that we are interested in forming
c clusters, we compute a sum of dispersions between the patterns and a set of
prototypes v1, v2, . . . , vc

Q =
c∑

i=1

N∑
k=1

uik||xk − vi ||2 (1.13)

with || ||2 being a certain distance between xk and vi . The important com-
ponent in the above sum is a partition matrix U = [uik], i = 1, 2, . . . , c, k =
1, 2, . . . , N whose role is to allocate the patterns to the clusters. The entries
of U are binary. Pattern k belongs to cluster i when uik = 1. The same pat-
tern is excluded from the cluster when uik = 0. Partition matrices satisfy the
following conditions:

Each cluster is nontrivial, that is, it does not include all patterns and is
nonempty:

0 <

N∑
k=1

uik < N, i = 1, 2, . . . , c

10 CLUSTERING AND FUZZY CLUSTERING

0

0.5

1
1

2

3

4

5

6

7

8

0

0.5

1
1

2

3

4

5

6

7

8

0

0.5

1
1

2

3

4

5

6

7

8

Figure 1.5. Star diagram as a graphical representation of the partition matrix for
three clusters.

Each pattern belongs to a single cluster:

c∑
i=1

uik = 1, k = 1, 2, . . . , N

The family of partition matrices (viz., binary matrices satisfying these two con-
ditions) will be denoted by U. As a result of minimization of Q, we construct the
partition matrix and a set of prototypes. Formally we express this in the following
way, which is just an optimization problem with constraints:

Min Q with respect to v1, v2, . . . , vc and U ∈ U (1.14)

Several methods are used to achieve this optimization. The most common one,
named C-Means (Duda et al., 2001; Webb, 2002), is a well-established way of
clustering data.

Partition matrices are an intuitively appealing form in which to illustrate the
structure of the patterns. For instance, the matrix formed for N = 8 patterns split
into c = 3 clusters is

U =

 1 0 0 1 0 1 0 1

0 1 1 0 0 0 0 0
0 0 0 0 1 0 1 0

Each row describes a single cluster. Thus we have the following arrangement:
the first cluster consists of patterns {1, 4, 6, 8}, the second involves patterns {2,
3}, and the third covers the remaining patterns, {5, 7}.

Graphically, the partition matrix (or, equivalently, the structure of the data set)
can be shown in the form of a so-called star or radar diagram (Figure 1.5).

1.4. CLUSTERING AND CLASSIFICATION

The structure revealed through the clustering process allows us to set up a classi-
fier. The “anchor” points of the classifier are the prototypes of the clusters. Each

FUZZY CLUSTERING 11

4

2

0

0.8
0.6

−2

−4

−4 −2
0 2

0.4
0.2

0

4

2

0

0.8
0.6

−2

−4

−4
−2

0 2
4

0.4
0.2

0

(b)(a)

Figure 1.6. Plots of the classification regions of the first class with prototype
v1 = [1.7 2.5]T . The two other prototypes are v2 = [0.4 0.3]T and v3 = [2.5 4.5]T for
two distance functions: (a) Euclidean and (b) Hamming.

cluster forms a single class ω1, ω2, . . ., ωc. Using the clusters, we develop a
nearest neighbor classification rule by stating that x belongs to class ωj if it is
the closest to the prototype vj :

j = arg mini ||x − vi ||2 (1.15)

This classification rule generates the corresponding decision regions in the feature
space. Depending on the form of the distance function, we end up with different
geometry of the classification boundaries, as shown in Figure 1.6.

The classifier formed in this way is one of the simplest architectures focusing
exclusively on the prototypes of the clusters.

1.5. FUZZY CLUSTERING

The binary character of partitions described so far may not always be a convinc-
ing representation of the structure of data. Consider the set of two-dimensional
patterns illustrated in Figure 1.7. While we can easily detect three clusters, their
character is different. The first one is quite compact, with highly concentrated
patterns. The other two exhibit completely different structures. They are far less
condensed, with several patterns whose allocation to a given cluster may be far
less certain. In fact, we may be tempted to allocate them to two clusters with
varying degrees of membership. This simple and appealing idea forms a corner-
stone of fuzzy sets—collections of elements with partial membership in several
categories. As illustrated in Figure 1.7, the two identified patterns could easily
belong to several clusters.

12 CLUSTERING AND FUZZY CLUSTERING

0

1

2

3

4

5

6

7

8

9

10

0 102 4 6 8

Figure 1.7. Three clusters with patterns of partial membership (belongingness) in the
clusters. The patterns of borderline character are pointed to by the arrows.

These situations of partial membership occur quite often. Structures (clusters)
may not be well separated for a variety of reasons. There may be noise or lack of
discriminatory power of the feature space in which the patterns are represented.
Some patterns could be genuine outliers. Some of them could be borderline
cases and thus are difficult to classify. As a result, they may require far greater
attention. A clustering algorithm that could easily provide detailed insight into the
membership grades of the patterns could be a genuine asset. Let us assume that
this is true and that the partition matrix now consists of grades of membership
distributed in the unit interval. For the data in Figure 1.8, the partition matrix
comes with the entries shown. The results are highly appealing, and they fully
reflect our intuitive observations: patterns 6 and 7 have a borderline character,
with membership grades in one of the clusters at the 0.5 level. The values in the
partition matrix quantify the effect of partial membership.

Because we have allowed for partial membership, the clustering algorithm
leading to such conceptual augmentation is regarded as a generalization of the
standard FCM and is named of fuzzy C-Means or FCM, for short This general-
ization was introduced by Dunn (1974) and generalized by Bezdek (1981). The
performance index (objective function) guiding the search through the data space
assumes the form

Q =
c∑

i=1

N∑
k=1

um
ik||xk − vi ||2 (1.16)

It seems similar to the one guiding the optimization of the Boolean (two-valued)
partition matrix with only one significant exception: we consider U to be a fuzzy
partition, viz., a matrix with the entries confined to the unit interval that satisfies
two important requirements:

FUZZY CLUSTERING 13

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 1.8. Star diagram of the fuzzy partition matrix.

ž The clusters are nontrivial. For each cluster (i = 1, 2, . . ., c) we end up
with a nonempty construct that does not include all patterns.

ž The total membership grades sum to 1, so the distribution of belongingness
is equal to 1.

In the above objective function, we can rewrite the distance in a quadratic form
by noting that ||xk − vi ||2 = (xk − vi)

T (xk − vi) = xT
k xk − 2xT

k vi + vT
i vi . More

formally, determining the structure is equivalent to the optimization task of the
form given by (1.13) in the case of the binary C-Means. As before, the min-
imization is completed with respect to the partition matrix and the prototypes.
The fuzzification factor (m), m > 1, helps control the shapes of the clusters and
produces a balance between the membership grades close to 0 or 1 and those
with intermediate values.

The derivations of the solution are completed in two steps. The first one
involves the constraints accompanying the requirements imposed on the partition
matrix. We incorporate the constraints with the aid of Lagrange multipliers. Then
for each pattern t = 1, 2, . . ., N , we formulate the augmented functional

V =
c∑

i=1

um
it d

2
it − λ

(
c∑

i=1

uit − 1

)
(1.17)

with λ denoting a Lagrange multiplier. Computing the derivative of V with
respect to ust and making it equal to 0, we obtain

∂V

∂ust

= mum−1
st d2

st − λ = 0 (1.18)

14 CLUSTERING AND FUZZY CLUSTERING

and

ust =
(

λ

m

)1/(m−1) 1

(dst)
2

m−1

(1.19)

Taking into account the identity constraint
c∑

j=1
ujt = 1, we have

(
λ

m

)1/(m−1) c∑
j=1

1

(djt)
2

m−1

= 1 (1.20)

This allows us to determine the Lagrange multiplier λ:

(
λ

m

)1/(m−1)

= 1
c∑

j=1

1

(djt)
2

m−1

(1.21)

Next, we insert the above expression into (1.19), which yields

ust = 1

c∑
j=1

(
dst

djt

) 2
m−1

(1.22)

The computations of the prototypes are straightforward, as no constraints are
imposed on them. The minimum of Q computed with respect to vs yields

∇vs
Q = 0

The detailed solution depends on the distance function. In the case of the
Euclidean distance, this leads to the expression

2
N∑

k=1

um
sk(xk − vs) = 0 (1.23)

We immediately obtain

vs =

N∑
k=1

um
skxk

N∑
k=1

um
sk

(1.24)

FUZZY CLUSTERING 15

Other forms of the distance function, such as the Hamming or Tchebyschev
distances do not lead to an immediate solution and require more optimization
effort. The clustering using these options has been reported in the literature. We
will discuss this extension later on.

To summarize, we can regard the FCM algorithm as an iterative process
involving successive computations (updates) of the prototypes and the partition
matrix. The values of the parameters are set up in advance. They consist of
the following items: the number of clusters (c), the distance function || · ||, the
fuzzification factor (m), and the termination criterion (ε).

Initialization Phase. Select values of c, m, and ε. Choose the distance function.
Initialize (randomly) the partition matrix:

Repeat // main iteration loop
Compute prototypes of the clusters
Compute the partition matrix
until a given stopping criterion quantified in terms of e has been satisfied.

Let us review the design of the clustering process in more detail; in this con-
text, it is useful to refer to the list of parameters we can choose up front the entire
process. The number of clusters reflects the level of generality we are interested in
setting up when dealing with the data. While this number is not known exactly, the
feasible range of clusters we can establish is rather narrow and clearly reflects the
domain knowledge we may have about the problem at hand and/or the objectives
of the data analysis problem. For instance, when dealing with a huge customer
database, it is reasonable to assume that we are interested in a few (say, five)
groups of customers, which we want to characterize for further marketing of new
products and services. There is no point in moving toward a very refined partition
of the data into 20 or more clusters, as these could be difficult to interpret and
take advantage of (perhaps we do not wish to be so specialized and launch a very
narrow marketing campaign). The limit cases are trivial: c = 1 does not reveal
any structure. The number of clusters set up to N , c = N , is meaningless: each
pattern forms an individual cluster, and this does not make any sense. Overall,
we observe that there is a strong monotonic character of the objective function
treated as a function of c; when the number of clusters increases, the values of
Q decrease. There may be a slight departure from this tendency, but very often
it is limited and insignificant. The distance function helps focus our search for
structure. As we demonstrated in Section 1.2.2 each distance function implies a
certain geometry and navigates search for finding structure in data. Hopefully,
the structure revealed in this way is compatible with the “internal” geometry
of the data set itself. For instance, when dealing with the Euclidean distance,
our favorite geometry consists of hyperballs (or hyperellipsoids in case we start
weighting the features). The Hamming distance focuses clustering on the search
for the structure that is compatible with diamond-like shapes of concentrations
of data. The Tchebyschev distance favors a search focusing on hyperboxes. The

16 CLUSTERING AND FUZZY CLUSTERING

(a) (b)

(c)

(e)

(d)

0.8

0.6

0.4

0.2

1
2

3
4

5

0.8

0.6

0.4

0.2

0
1

2
3

4
5

0.8

0.6

0.4

0.2

1
2

3
4

5

0.8

0.6

0.4

0.2

1
2

3
4

5

0.8

0.6

0.4

0.2

1
2

3
4

5

Figure 1.9. Shapes of the membership function for selected values of the fuzzification
factor (m): (a) m = 2; (b) m = 1.5; (c) m = 1.05; (d) m = 3; (e) m = 5.

fuzzification factor influences the shape of the clusters. Typically, its value is set
to 2. By changing the values of m, we can make the clusters (partition matrices)
look more Boolean so that we see more membership grades close to 0 or 1. This
happens when m approaches 1. On the other hand, when m increases (with val-
ues greater than 2), the resulting membership grades lead to spike-like functions.
Illustrative examples are presented in Figure 1.9.

FUZZY CLUSTERING 17

The stopping criterion quantifies the situation in which the clustering process
can be stopped because it has reached a steady state and further computations
are not justified. The typical approach used is to compare partition matrices
produced in two successive iterations of the FCM, say U(iter + 1) and U (iter),
and, if the distance between them ||U(iter + 1) − U(iter)|| does not exceed a
certain threshold (ε), stop the computing. The distance itself could be quantified
by taking into account the biggest change in the partition matrix, that is,

||U(iter + 1) − U(iter)|| = maxi,k |uik(iter + 1) − uik(iter)| (1.25)

The numeric value of ε is application oriented; usually it is confined to the
range of 10−3 –10−5.

Fuzzy partition matrices provide detailed insight into the structure of the data
set that is thoroughly quantified through the membership values. Based on these
values, we can easily separate the patterns that are typical of the cluster (as they
have membership grades close to 1) from the data of borderline character. Obvi-
ously, the membership grades help quantify the effect of partial membership.
Sometimes we are interested in cluster allocation without having any detailed
information on the patterns. This is achieved by a transformation known as hard-
ening (Bezdek, 1981). It produces a binary relation (partition matrix) based on
the original partition matrix by choosing the largest membership value. More
specifically, given uik , we produce Boolean entries of matrix ũik such that

ũik =
{

1 if i = arg maxj ujk

0 otherwise
(1.26)

Let us briefly note the use of the clustering results in the design of the classifier.
As in the K-means algorithm, we use the nearest neighbor rule, which in this
case takes into account the fact that the membership grades are continuous. We
then anticipate that all prototypes contribute to some extent to the determination
of the membership values. Consider that, given the set of prototypes, we now
have a new pattern, x. Its membership grades to the clusters u = [u1u2 . . . uc]T

take the form

ui = 1
c∑

j=1

(||x − vi ||
||x − vj ||

)2/(m−1)
(1.27)

It is easy to check that (1.27) is a solution to the optimization problem

Minu

c∑
i=1

um
i ||x − vi ||2 (1.28)

with the unity constraint imposed on the membership grades,
c∑

i=1
ui = 1.

18 CLUSTERING AND FUZZY CLUSTERING

1.6. CLUSTER VALIDITY

As we indicated above, the number of clusters is application-driven and user-
centric. As the user is in the middle of the process of data analysis, it is beneficial
to consider a varying number of clusters and analyze the results produced.
Obviously, it would be helpful to have some automation in this process. This
automation should come with a synthetic measure with which we can assess the
quality of the discovered structure. To state the problem in a different way, what
is the optimal number of clusters? Or, even better, what is the preferred num-
ber of clusters given the underlying geometry imposed on the clustering process
through the use of some objective function? The characteristics of the data could
be quite different from those captured by the objective function. How easily could
we detect elongated clusters when the objective function favors spherical shapes?
What about two elongated and crossing clusters? What about a porcupine-like
distribution of patterns? To address these questions, we need a certain cluster
validity measure (Dubes, 1987; Windham, 1980; Windham, 1982; Xie and Beni,
1991). Now that the problem has been identified, a number of proposals have
been made. Most of them define the validity functional on the partition matrix
returning a certain real number. More formally, the validity index v(c) is defined
as the following mapping V : U→R. The extreme value (either minimum or
maximum) of V treated as a function of c (as we are interested in changing this
parameter) points at the feasible or most likely number of clusters in the data
structure. The commonly used validity functionals include the partition index and
partition entropy.

Partition Index. The partition index of U , denoted by P(U), produces an aver-
age of the squared values of the membership grades encountered in the parti-
tion matrix:

P(U) = 1

N

c∑
i=1

N∑
k=1

u2
ik (1.29)

If each pattern belongs to a single cluster (hard partition), then the partition
index assumes its maximal value of 1. If patterns share their membership across
all clusters, with the same membership grade equal to 1/c, this gives rise to the
lowest value of P(U), which in this case equals 1/c. In other words, the index
quantifies the ambiguity of the partition matrices so that we can rank them and
select the one with the lowest ambiguity.

Partition Entropy. We form an entropy function defined over the partition matrix
in the following manner:

H(U) = − 1

N

c∑
i=1

N∑
k=1

uik ln(uik) (1.30)

(we assume that for u = 0, ln = 0)

EXTENSIONS OF OBJECTIVE FUNCTION-BASED FUZZY CLUSTERING 19

The values of the partition entropy range from 0 to ln(N). Again, if we consider
Boolean entries of the partition matrix, the entropy is equal to 0. The highest
value is obtained when there is a uniform distribution of membership grades
(equal to 1/c); here we have

H(U) = − 1

N

c∑
i=1

N∑
k=1

1

c
ln

(
1

c

)
= ln(c) (1.31)

If we are interested in the lowest entropy, the clusters leading to it are preferred
over other structures discovered in the collection of patterns.

While the partition index and partition entropy exhibit interesting properties
that are useful in quantifying the ambiguity of partition matrices and identifying
those with the lowest values as the most preferred, their use in revealing the
most plausible number of clusters may not be obvious. Even though they have
been used for this purpose, both indexes tend to be quite monotonic, without
a well-delineated minimum (which could have been used as a sound indicator
of the plausible data structure). The literature provides other cluster validity
criteria [proportion exponent (Windham, 1980, 1982), separation index, fuzzy
hypervolume, average partition density], but to some extent, all of them are
affected by monotonicity. Furthermore when applied together, they may lead
to conflicting findings concerning the most preferred number of clusters. These
indexes can be useful, but we should keep in mind their limited role and treat
the findings implied by them as only useful guidelines. In any case, we should
be concerned about the range of the plausible number of clusters rather than a
single value.

1.7. EXTENSIONS OF OBJECTIVE FUNCTION-BASED
FUZZY CLUSTERING

The objective function given by (1.16) is generic in terms of its composition and
the distance function being used. There are several interesting extensions of this
objective function that are helpful in exploring a broad range of geometry of
the clusters.

1.7.1. Augmented Geometry of Fuzzy Clusters: Fuzzy C Varieties

The search for structure (clusters) is always biased by the selection of the distance
function. Changing the distance function imposes different “computing lenses”
of the algorithm and causes the clustering technique to favor some geometry of
the clusters. There are many possible variations of the distance function. Instead
of expressing the distance between two patterns (one of them being a prototype),
we may imagine that the prototypes are more complex geometric constructs. This
is the rationale behind constructs such as fuzzy c-lines, fuzzy c-ellipsoids, and so
on. The concept of fuzzy c-varieties studied by Bezdek et al. (1981) addresses

20 CLUSTERING AND FUZZY CLUSTERING

the geometry of clusters. So far, these are just points. Here we consider a variety
of geometric constructs. Each cluster represents an r-dimensional variety, where
r ∈ {0, 1, 2, . . . , n − 1}, and is described by a prototype vi and the collection of
orthogonal unit vectors ei1, ei2, . . ., eir and in essence becomes an affine subspace
of Rn:

{y ∈ Rn|y = vi +
r∑

j=1

tj ei1, t ∈ Rr} (1.32)

In the case where r = 0, we end up with the generic version of the FCM
confined to a single prototype. If r = 1, this variety represents a straight line.
The value of r set to 2 returns a plane. In general, if r = p − 1, we end up
with a hyperplane. The distance between any pattern x and the ith c-variety is
computed in the form

d(x; vi , ei) = ||x − vi ||2 −
r∑

j=1

((x − vi)
T eij)

2 (1.33)

These distances for n = 2 (here the c-variety reduces to a straight line) are
illustrated in Figure 1.10.

The geometry of fuzzy clusters becomes of paramount importance when we
use clustering for image processing, that is, processing of geometric objects such
as circles, ovals, boxes, elongated edges of machine parts, and the like. While in
this domain we are generally confined to two-dimensional spaces (digital images),
it is apparent that the diversity of geometric shapes poses a serious challenge.
If we are interested in searching for a specific geometric form, then this search
should be driven by the geometry in question. For example, if we are interested
in circular shapes, the distance function of the form d(x; v, r) = |||x − v|| − r|
would reflect our interest in looking for these type of clusters (see Figure 1.11).
Its minimal values are distributed on the circle we are interested in revealing in
the data.

The number of clustering studies in this area is extensive. The research mono-
graph by Hoppner et al. (1999) forms a comprehensive compendium.

1.7.2. Possibilistic Clustering

Possibilistic clustering arose as a challenge to the probabilistic-like character
required for the membership grades in clusters. The limitation of the form does
not allow us to distinguish between a situation in which a pattern is shared
between clusters and one in which it is simply atypical and we would like to
see this effect quantified in some way. The unity constraint does not allow this.
Possibilistic clustering, as advocated by Krishnampuram and Keller (1993, 1996),
drops the requirement that the sum of membership grades must equal 1. This is
reflected in the form of the augmented objective function:

Q =
c∑

i=1

N∑
k=1

um
ik||xk − vi ||2 +

c∑
i=1

βi

N∑
k=1

(1 − uik)
m (1.34)

EXTENSIONS OF OBJECTIVE FUNCTION-BASED FUZZY CLUSTERING 21

(a)
(b)

(c)

1 × 104

5000

20

10

20

1 × 104

5000

20

10
0 10

0

20

2 × 104

1 × 104

20
10

20

Figure 1.10. Three-dimensional and contour plots of the distance for the c-variety for
selected values of e: (a) e = [1.0 5.0]T ; (b) e = [3.0 3.0]T ; (c) e = [7.0 0.5]T . In all
cases v = [1 2]T .

Note that in addition to the standard term, the second sum expresses our desire
to have the membership grades sum to 1 (but this is not the constraint articulated
in the standard FCM algorithm). The positive weight factor βi (which depends
on a specific cluster) helps us set up a suitable balance between the structure-
seeking term and the departures from the unity requirement of the membership
grades. From the standpoint of the second term, we prefer the membership grades
to be closer to 1; this may have led to very high values of the first sum. This
weighted sum is critical when we want to articulate a sound balance. Because of
the character of the membership constraint, we refer to the resulting algorithm as
a possibilistic fuzzy C-Means (P-FCM). The derivations of the partition matrix
lead to the following expression:

uik = 1

1 +
(||xk − vi ||2

βi

) 1
m−1

(1.35)

22 CLUSTERING AND FUZZY CLUSTERING

10

5

−5

−5

0

0

5

−10

−10

Figure 1.11. Expressing the distance between x and a circle with center v (= [1 1]T) and
radius r(= 5); ||. || is specified as the Euclidean distance.

The formula for the prototypes is the same as that used the FCM method.
The choice of an optimal value of βk impacts the results; a sound selection of
these weight factors was proposed by Krishnampuram and Keller (1996) to be
in the form

βi =

N∑
k=1

um
ik||xk − vi ||
N∑

k=1

um
ik

(1.36)

1.7.3. Noise Clustering

The method used to cope with noisy data is another important application-driven
issue in searching for structure in experimental data. The technique of Ohashi
(1984) and Dave (1991) is to introduce a special cluster, the noise cluster, whose
role is to “localize” the noise and place it in a single auxiliary cluster. By
assigning patterns to this noise cluster, we declare them to be outliers in the
data set. The objective function that helps capture this effect is represented in
the form

Q =
∑∑

um
ik||xk − vi ||2 +

N∑
k=1

δ2

(
1 −

c∑
i=1

uik

)m

(1.37)

The weight coefficient δ2 reflects the distance between all data and the noise
cluster. Note that we end up with c + 1 clusters, with the extra cluster serving
as the noise cluster. The difference in the second term of the objective function
expresses the degree of membership of each pattern in the noise cluster. The sum
over the first c is less than or equal to 1. The derivation of the partition matrix

SELF-ORGANIZING MAPS 23

produces the following expression:

uik = 1

c∑
j=1

(||xk − vi ||
||xk − vj |

) 2
m−1 +

c∑
j=1

(||xk − vi ||
δ

) 2
m−1

(1.38)

1.8. SELF-ORGANIZING MAPS AND FUZZY OBJECTIVE
FUNCTION-BASED CLUSTERING

Objective function-based clustering forms one of the main optimization paradigms
of data discovery. To put this in a broader perspective, we elaborate on the alter-
native arising in neurocomputing, namely, self-organizing maps. This helps us
contrast the underlying optimization mechanisms and look at various formats of
results generated by different methods.

The term self-organizing map (SOM) was coined by Kohonen (1982, 1989,
1995 Kohonen et al, 1996). As usually emphasized in the literature, SOMs are
regarded as regular neural structures (neural networks) composed of a grid of
artificial neurons that attempt to visualize highly dimensional data in a low-
dimensional structure, usually in the form of a two- or three-dimensional map.
To make such visualization meaningful, this low-dimensional representation of
the originally high-dimensional data has to preserve the topological properties
of the data set. This means that two data points (patterns) that are close to each
other in the original feature space should retain this similarity (or closeness) in
their representation (mapping) in the reduced, low-dimensional space in which
they are visualized. And, reciprocally, two distant patterns in the original feature
space should retain their distant location in the low-dimensional space. Put it
differently, we can state that the SOM acts as a computer eye that helps us
gain insight into the structure of the data set and observe relationships occurring
between the patterns originally located in a highly dimensional space. In this way,
we can confine ourselves to the two-dimensional map that apparently reveals all
essential relationships between the data, as well as dependencies between the
software measures themselves. In spite of the existing variations, the generic
SOM architecture (as well as the learning algorithm) remains basically the same.
Below we summarize the essence of the underlying self-organization algorithm
that achieves a certain form of unsupervised learning (Kohonen et al., 1996;
Vesanto and Alhoniemi, 2000).

Before proceeding with the detailed computations, we introduce the necessary
notation. Here n software measures are organized in a vector X of real numbers
situated in the n-dimensional space of real numbers, Rn. The SOM is a collection
of linear neurons organized in the form of a regular two-dimensional grid (array)
(Figure 1.12).

In general, the grid may consist of p rows and r columns; commonly we
confine ourselves to the square array of p × p elements (neurons). Each neuron

24 CLUSTERING AND FUZZY CLUSTERING

…x(2)x(1)

X

i

j

p-rows

Figure 1.12. A basic topology of the SOM constructed as a grid of identical processing
units (neurons).

is equipped with modifiable connections w(i,j) that form an n-dimensional vector
of connections w(i, j) = [w1(i, j)w2(i, j) . . . wn(i, j)]. It completes computing
of the distance function d(. , .) between its connections and the corresponding
input x

y(i, j) = d(w(i, j), x) (1.39)

where the pair (i,j) denotes a certain (i,j) position of the neuron in the array. x is
an input to all neurons. The distance can be chosen from the list of alternatives
presented earlier. The same input x affects all neurons. The neuron with the
shortest distance between the input and the connections becomes activated to the
highest extent and is called the winning neuron. Let us denote its coordinates by
(i0, j0). More precisely, we have

(i0, j0) = arg min(i,j) d(w(i, j), x) (1.40)

The winning neuron matches (responds to) x. Because it is the winner of this
competition, we reward the neuron and allow it to modify the connections so
that they are even closer to the input data. The update mechanism is governed
by the expression

w new(i0, j0) = w(i0, j0) + α(x − w(i0, j0)) (1.41)

where α denotes a learning rate, α > 0. The higher the learning rate, the more
intensive the updates of the connections. In addition to the changes of the

CONCLUSIONS 25

connections of the winning node (neuron), we allow this neuron to affect its
neighbors (viz., the neurons located at similar coordinates of the map). The way
in which this influence is quantified is expressed via a neighbor function �(i,
j , i0, j0). In general, this function satisfies two intuitively appealing conditions:
(a) it attains a maximum equal to 1 for the winning node, i = i0, j = j0, and
(b) when the node is apart from the winning node, the value of the function gets
lower (in other words, the updates are less vigorous). Evidently, there are also
nodes where the neighbor function equals 0. Considering the above, we rewrite
(1.41) in the following form:

w new(i, j) = w(i0, j0) + α�(i, j, i0, j0)(x − w(i, j)) (1.42)

The typical neighbor function comes in the form

�(i, j, i0, j0) = exp(−β((i − i0)2 + (j − j0)2)) (1.43)

with the parameter β usually assuming small positive values.
The above update expression (1.42) applies to all the nodes (i,j) of the map.

As we iterate (update) the connections, the neighbor function shrinks: at the
beginning of updates, we start with a large region of updates, and when the learn-
ing settles down, we start reducing the size of the neighborhood. For instance,
its size may decrease linearly.

The number of iterations is specified in advance or the learning terminates
once there are no significant changes in the connections of the neurons.

SOM and FCM are complementary, and so are their advantages and shortcom-
ings. FCM requires the number of groups (clusters) to be defined in advance. It
is guided by a certain performance index (objective function), and the solu-
tion comes in the clear form of a certain partition matrix. In contrast, SOM is
more user-oriented. No specific number of clusters (group) needs to be specified
in advance.

1.9. CONCLUSIONS

We have reviewed the paradigm of clustering, and fuzzy clustering in particular,
and have discussed its role in revealing structure in data sets. Fuzzy cluster-
ing leads to information granulation in terms of fuzzy sets or fuzzy relations.
Membership grades are important indicators of the typicality of patterns or their
borderline character. We discussed various categories of fuzzy clustering and
extensions of the underlying objective functions. The cluster indexes are use-
ful in identifying the most relevant number of clusters. Each objective function
implies a search for structure in data driven by some superimposed geometry, and
we have shown that different distance functions emphasize a certain geometry
we intend to find in the data set. Stated differently, clustering predisposes the
search toward a certain geometry that is favored when the clusters are built. For

26 CLUSTERING AND FUZZY CLUSTERING

instance, the Euclidean distance focuses the search on spherical shapes of the
clusters. The Mahalanobis distance expands this search by allowing hyperellip-
soidal shapes in the data set. Having said that, we should interpret the notion of
unsupervised learning (which is often synonymous with clustering) in a suitable
manner. There is no direct supervision (as encountered, for example, in classifier
design), but there is still a mechanism of implicit supervision in the form of the
geometric bias of search accompanying the accepted distance function.

REFERENCES

M.R. Anderberg, Cluster Analysis for Applications, Academic Press, New York, 1973.

G.P. Babu, M.N. Murthy, Clustering with evolutionary strategies, Pattern Recognition,
27, 1994, 321–329.

J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum
Press, New York, 1981.

J.C. Bezdek, C. Coray, R. Guderson, J. Watson, Detection and characterization of cluster
substructure, SIAM Journal of Applied Mathematics, 40, 1981, 339–372.

J.C. Bezdek, J. Keller, R. Krishnampuram, N.R. Pal, Fuzzy Models and Algorithms for
Pattern Recognition and Image Processing, Kluwer Academic Publishers, Dordercht,
1999.

R.N. Dave, Fuzzy shell clustering and application to circle detection in digital images,
Int. J. General Systems, 16, 1990, 343–355.

R.N. Dave, Characterization and detection of noise in clustering, Pattern Recognition
Letters, 12, 1991, 657–664.

R.N. Dave, K. Bhaswan, Adaptive c-shells clustering and detection of ellipses, IEEE
Trans. on Neural Networks, 3, 1992, 643–662.

P.A. Devijver, J. Kittler (eds.), Pattern Recognition Theory and Applications, Springer-
Verlag, Berlin, 1987.

R. Dubes, How many clusters are the best?—an experiment, Pattern Recognition, 20, 6,
1987, 645–663.

R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edition, John Wiley, New
York, 2001.

J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact
well-separated clusters, J. of Cybernetics, 3, 3, 1974, 32–57.

H. Frigui, R. Krishnapuram, A comparison of fuzzy shell clustering methods for the detec-
tion of ellipses, IEEE Trans. on Fuzzy Systems, 4, 1996, 193–199.

K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd edition, Academic Press,
London, 1990.

F. Hoppner, F. Klawonn, R. Kruse, T. Runkler, Fuzzy Cluster Analysis, John Wiley,
Chichester, England, 1999.

A.K. Jain, R.P.W. Duin, J. Mao, Statistical pattern recognition: a review, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 22, 1, 2000, 4–37.

A.K. Jain, M.N. Murthy, P.J. Flynn, Data clustering: a review, ACM Comput. Survey, 31,
3, 1999, 264–323.

REFERENCES 27

L. Kaufmann, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Anal-
ysis, John Wiley, New York, 1990.

P.R. Kersten, Fuzzy order statistics and their applications to fuzzy clustering, IEEE Trans.
on Fuzzy Systems, 7, 7, 1999, 708–712.

F. Klawonn, A. Keller, Fuzzy clustering with evolutionary algorithms, Int. J. of Intelligent
Systems, 13, 1998, 975–991.

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological
Cybernetics, 43, 1982, 59–69.

T. Kohonen, Self-organization and Associative Memory, Springer-Verlag, Berlin, 1989.

T. Kohonen, Self-organizing Maps, Springer-Verlag, Berlin, 1995.

T. Kohonen, S. Kaski, K. Lagus, T. Honkela, Very large two-level SOM for the browsing
of newsgroups, in: Proceedings of ICANN96, Lecture Notes in Computer Science, 1112,
Springer-Verlag, Berlin, 1996, 269–274.

R. Krishnapuram, J. Keller, A possibilistic approach to clustering, IEEE Trans. on Fuzzy
Systems, 1, 1993, 98–110.

R. Krishnapuram, J. Keller, The possibilistic C-Means algorithm: insights and recommen-
dations, IEEE Trans. on Fuzzy Systems, 4, 1996, 385–393.

K. Mali, S. Mitra, Clustering of symbolic data and its validation, in: N.R. Pal
and M. Sugeno (eds.), Advances in Soft Computing—AFSS 2002, Springer-Verlag,
Heidelberg, 2002, 339–344.

Y. Ohashi, Fuzzy Clustering and robust estimation, Proceedings of 9th Meeting SAS User
Group Int, Hollywood Beach, Florida, 1984.

J. Vesanto, A. Alhoniemi, Clustering of the self-organizing map, IEEE Trans. on Neural
Networks, 11, 2000, 586–600.

A. Webb, Statistical Pattern Recognition, 2nd edition, John Wiley, Hoboken, NJ, 2002.

M.P. Windham, Cluster validity for fuzzy clustering algorithms, Fuzzy Sets and Systems,
3, 1980, 1–9.

M.P. Windham, Cluster validity for the fuzzy C-Means clustering algorithms, IEEE Trans.
on Pattern Analysis and Machine Intelligence, 11, 1982, 357–363.

X.L. Xie, G. Beni, A validity measure for fuzzy clustering, IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, 13, 1991, 841–847.

