
EDITOR’S INTRODUCTION TO
CHAPTER 1

Fusion of soft-computing (SC) and hard-computing (HC) methodologies is a well-

known approach for practicing engineers. Since the utilization of evolutionary com-

putation, fuzzy logic, and neural networks began to emerge in various applications,

also complementary unions of SC and HC have been in common use. Nevertheless,

the actual term “Fusion of Soft Computing and Hard Computing” was invented as

recently as 1998. But why do we need such a term now if the basic ideas have

been in applications use already for more than a decade? We will return to this rel-

evant question at the end of the following discussion.

Soft computing is sometimes called—particularly in Japan—“human-like infor-

mation processing.” This is a somewhat misleading description, because the human

brain has two specialized hemispheres, the left one (logic, mathematics, analysis,

serial processing, etc.) and the right one (creativity, recognition, synthesis, parallel

processing, etc.), and they are connected closely to one another through the corpus

callosum, which consists of over 200 million nerves [1]. Each hemisphere is conti-

nually supporting and complementing the activity of the other. Roger W. Sperry

shared the 1981 Nobel Prize in Medicine for his discoveries concerning “the func-

tional specialization of the cerebral hemispheres” [2]. Based on his brilliant work

that enhanced our comprehension of the higher functions of human brain, obvious

analogies have been established between the left brain and HC, as well as

between the right brain and SC. Furthermore, the massive bundle of connecting

nerves corresponds to the fusion interface between the two computing paradigms;

this crucial communications extension to the above brain analogy is hardly ever

mentioned in the literature.
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The aims of human-like hybrid information processing are directed toward

developing either computationally intelligent (CI) or artificially intelligent (AI)

systems—that is, computer-based implementations with high machine IQ. The key

distinction between these two common terms was defined by Bezdek in 1994 [3]. In

his practical definition, CI is a subset of AI; and the term “artificially intelligent” is

reserved for systems where computational intelligence is augmented by “incorpor-

ating knowledge (tidbits) in a non-numerical way.”

Hayashi and Umano published a seminal article on fusing fuzzy logic and neural

networks in 1993 [4]. Their pragmatic discussion on different fusion categories was

an activator for the fuzzy-neuro boom of the late 1990s. By explicitly emphasizing

the complementary fusion approach, they stimulated the (Japanese) engineering

community to develop hybrid intelligent systems. Besides, they wisely pointed out

that to combine individual methodologies effectively, considerable attention

should be paid to the interface section; it is generally not effective to force two algor-

ithms together.

Chapter 1 of the present book, “Introduction to Fusion of Soft Computing and

Hard Computing,” is authored by Seppo J. Ovaska. It forms a solid basis for the

complementary fusion of soft computing and hard computing methodologies by

introducing a representative set of fusion architectures and defining their functional

mappings. In addition, it gives a concise definition of “Fusion of Soft Computing

and Hard Computing” and offers a rationale for the term. Most of the reviewed

real-world examples contain loose connections of SC and HC algorithms, while

the more intimate connections offer future research and development (R&D) poten-

tial. As an interpretation of Chapter 1, the principal R&D challenges of this fusion

field can be summarized as follows:

. Interface sophistication beyond the current means

. True symbiosis of soft computing and hard computing techniques

. Fusion implementations at different levels of hierarchy (algorithm, subsystem,

system, and entity)

Let us now return to the question, Why do we need the term “Fusion of Soft Com-

puting and Hard Computing”? This concept needs to be recognized explicitly,

because in that way we can highlight that there is a lot of unused R&D potential

in the interface section between SC and HC methodologies. In the highly successful

human brain, the left and right hemispheres are linked closely together. By follow-

ing such an analogy, it could be anticipated that a high degree of interaction between

soft and hard computing would lead to better implementation economy of CI and AI

systems, improved tolerance against incomplete or uncertain sensor data, enhanced

learning and adaptation capabilities, and increased machine IQ. All those character-

istics are needed for developing autonomously intelligent systems. Furthermore, the

fuzzy-neuro era of the 1990s started after Hayashi and Umano summarized the prin-

cipal fusion structures with an insightful discussion on the entire fusion approach [4].
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A similar boost in the R&D of computationally or artificially intelligent hybrid

systems could follow the present book.
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CHAPTER 1

INTRODUCTION TO FUSION OF
SOFT COMPUTING AND HARD
COMPUTING

SEPPO J. OVASKA
Helsinki University of Technology, Espoo, Finland

1.1 INTRODUCTION

The roots of this book on the fusion of soft computing and hard computing method-

ologies can be traced back to the IEEE International Conference on Systems,

Man, and Cybernetics that was held in San Diego, California, in 1998. One of the

highlights of that conference was the panel discussion on “New Frontiers in

Information/Intelligent Systems.” Lotfi A. Zadeh, the father of fuzzy logic and

soft computing, was the moderator of the panel, and the panelists were all world-

class scholars in the field of soft computing. While the discussion was surely stimu-

lating and provided inspiring visions, something was missing—the dominating and

continuing role of conventional hard computing in developing successful products

and profitable services was not recognized at all—and that caused us to focus

our research interests on the complementary fusion of these two principal

methodologies.

1.1.1 Soft Computing

From the practicing engineer’s point of view, a large amount of real-world

problems can be solved competitively by hard computing. The term “hard comput-

ing” is not nearly as widely accepted or known as “soft computing,” but Zadeh used

it already in his original definition of soft computing (quoted from a memo [1]

written in 1991 and updated in 1994; references 2–4 added by the author of the

present chapter):
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Soft computing differs from conventional (hard) computing in that, unlike hard com-

puting, it is tolerant of imprecision, uncertainty, partial truth, and approximation.

In effect, the role model for soft computing is the human mind. The guiding principle

of soft computing is: Exploit the tolerance for imprecision, uncertainty, partial

truth, and approximation to achieve tractability, robustness and low solution cost.

The basic ideas underlying soft computing in its current incarnation have links to

many earlier influences, among them Zadeh’s 1965 paper on fuzzy sets [2]; the

1973 paper on the analysis of complex systems and decision processes [3];

and the 1981 paper on possibility theory and soft data analysis [4]. The

inclusion of neural computing and genetic computing in soft computing came at a

later point.

At this juncture, the principal constituents of soft computing (SC) are fuzzy logic

(FL), neural computing (NC), genetic computing (GC) and probabilistic reasoning

(PR), with the latter subsuming belief networks, chaos theory and parts of learning

theory. What is important to note is that soft computing is not a mélange. Rather, it

is a partnership in which each of the partners contributes a distinct methodology for

addressing problems in its domain. In this perspective, the principal constituent

methodologies in SC are complementary rather than competitive. Furthermore, soft

computing may be viewed as a foundation component for the emerging field of con-

ceptual intelligence.

In the present chapter, however, we use consistently the term “neural networks”

(NN) instead of “neural computing,” and we use the more general “evolutionary

computation” (EC) as a replacement for “genetic computing.” Otherwise, we

follow strictly Zadeh’s original definition of soft computing (SC). Furthermore, it

should be pointed out that many people actually use the word “computing” when

they mean hard computing (HC) and that they use “computational intelligence” as

a substitute of soft computing. Soft computing is a low-level cognition in the

style of the human mind as well as evolution of species in the nature, and it is in

contrast to symbolic artificial intelligence (AI) that consists of expert systems,

machine learning, and case-based reasoning. The mainstream AI is firmly com-

mitted to hard computing instead of soft computing.

SC is already a significant field of research and development; nearly 64,000 soft

computing-related journal and conference papers were published between 1989 and

2002 by the IEEE and IEE together. Figure 1.1 illustrates the growth of published

journal and conference articles on soft computing during those 14 years (based on

the IEEE XploreTM database; data collected on December 10, 2003). From 1989

to 1994, the number of conference papers was growing rather linearly, while the

five-year period 1994–1998 was surprisingly flat. The year 2002 set a new record

of conference publishing—nearly 6000 publications in one year. On the other

hand, the number of journal articles has remained practically constant (around

1100) during the past few years. Therefore, it can be stated that soft computing

has an established position in the research community, as well as a stabilizing

publishing volume. It should be remembered, however, that in parallel with the

recognized IEEE and IEE journals, there is a growing number of new journals on

soft computing and its constituents.
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Soft computing methods are penetrating gradually to industrial applications:

They are no longer just in Japan and South Korea, but also in the United States

and Europe. In the majority of such applications, SC is hidden inside systems or sub-

systems, and the end user does not necessarily know that soft computing methods

are used in control, fault diagnosis, pattern recognition, signal processing, and so

on. This is the case when SC is mainly utilized for improving the performance of

conventional HC algorithms or even replacing them. Another class of applications

uses soft computing for implementing computationally intelligent and user-friendly

features that could not be realized competitively by HC. One important reason

behind the growing industrial acceptance of SC is the existence of advantageous

combinations of individual SC methods, such as fuzzy-neuro, genetic algorithm

(GA) like fuzzy, and neuro-GA [5,6]. From the applications point of view, those

combined constituents of SC are often more efficient than pure evolutionary compu-

tation, fuzzy logic, or neural networks.

1.1.2 Fusion of Soft-Computing and Hard-Computing
Methodologies

Soft-computing methods are also commonly fused to more conventional hard-

computing techniques in industrial products, instead of using SC unaccompanied.

While academic researchers typically prefer either SC or HC methodologies, the

complementary fusion of SC and HC is, increasingly, a natural way of thinking

Figure 1.1. Growth of the number of IEEE/IEE journal and conference articles on soft

computing and its applications.
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for practicing engineers, who are facing demanding real-world problems to be

solved competitively. Recently, Goldberg presented three principal requirements

that are essential in making SC widespread among different applications [7]:

. Scalable results

. Practicality

. Little models or theory

Besides, he emphasized the importance of more complex integration of individual

SC methods in developing autonomously intelligent systems. We would definitely

include the complementary fusion of SC and HC in that requirements list.

There exist several vague ideas and informal definitions of the new concept

“Fusion of Soft Computing and Hard Computing” in the researchers’ and engineers’

minds, but none of the used ones has yet obtained a dominating position. Our

specific definition of this emerging concept can be stated as follows:

An algorithm- or system-level union of particular soft computing and hard computing

methodologies, in which either methodology is signal-, parameter-, or structure-wise

dependent upon and receives functional reinforcement from the other.

The noteworthy role of the fusion of SC and HC was highlighted in a recent

special issue, edited by Ovaska and VanLandingham, on “Fusion of Soft Computing

and Hard Computing in Industrial Applications” that was published in the IEEE

Transactions on Systems, Man, and Cybernetics—Part C: Applications and

Reviews [8]. A summarizing overview article [9] and eight original contributions

[10–17], discussing advanced applications, were presented in that pioneering

special issue. The feedback from the research and development community that

the guest editors received during and after the editing process was mostly positive

but also somewhat negative. This negative feedback was consistently related to

the vagueness of the entire fusion concept, because, at that time, there was not avail-

able any systematic treatment on different fusion categories or their characteristic

features in the context of integrated SC and HC. The qualitative work of Agarwal

on combining neural and conventional paradigms for modeling, prediction, and

control is a partial attempt toward that direction [18]. On the other hand, in the

context of pure SC, a landmark discussion on various fusion categories was pre-

sented by Hayashi and Umano in 1993 [19] (in Japanese), and a discussion on the

characteristic features for knowledge acquisition was presented by Furuhashi in

2001 [20]. An extended discussion of Hayashi’s and Umano’s fusion categories,

including also genetic algorithms, is available in reference 5 (in English).

To establish a theoretical framework for the fusion of SC and HC, we will

analyze below both the structural categories and characteristic features of the core

fusion topologies, and thus provide a similar basis for the fusion of SC and HC

that already exists for the fusion or hybridization of individual SC methods

[5,20]. It is crucial for the successful development of computationally intelligent
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hybrid systems to pay particular attention to the integration and interaction of SC

and HC constituents. Our aim is to remove the criticized vagueness aspect that

was mentioned above. In this way, the fusion of SC and HC may obtain a similar

solid position in the research and development community as the fusion of individ-

ual SC methods attained already in the middle of the 1990s. The ultimate motivation

behind our fusion discussion is naturally to advance the global use of SC in real-

world applications.

This chapter is organized as follows. In Section 1.2, we introduce the structural

categories of the fusion of SC and HC, as well as provide a brief discussion on the

procedure how these categories were identified. Next, in Section 1.3, we discuss the

characteristic features of SC and HC constituents in a few representative fusion

applications. Section 1.4 gives a demonstrative categorization of several published

fusions of SC and HC in industrial applications. Finally, Section 1.5 closes this

chapter with a conclusion and a brief discussion on the acceptance of SC methods

to industrial use.

1.2 STRUCTURAL CATEGORIES

By following the original and pragmatic thinking of Hayashi and Umano [19] and

after analyzing a substantial number of application articles, we will next introduce

12 core categories for the complementary fusion of SC and HC. They belong to the

class of “little models or theory” that was emphasized by Goldberg in the keynote

address of reference 7. In his practical view, only little but sufficient models or

theory are advancing the spread of SC, because research and development engineers

prefer plain and straightforward solutions. Our core fusion categories are first sum-

marized in Table 1.1. The adopted qualitative measure, fusion grade [5], describes

the strength of a particular connection between SC and HC constituents. Table 1.2

gives brief definitions of the employed fusion grades: low, moderate, high, and very

TABLE 1.1. Structural Fusion Categories

# Acronym Description Fusion Grade

1 SC&HC SC and HC are isolated from each other Low

2 SC/HC SC and HC are connected in parallel Moderate

3 SC\HC SC with HC feedback Moderate

4 HC\SC HC with SC feedback Moderate

5 SC-HC SC is cascaded with HC Moderate

6 HC-SC HC is cascaded with SC Moderate

7 HC¼SC HC-designed SC High/very high

8 SC¼HC SC-designed HC High/very high

9 HCþSC HC-augmented SC Very high

10 SCþHC SC-augmented HC Very high

11 HC//SC HC-assisted SC Very high

12 SC//HC SC-assisted HC Very high
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high. Below is a description of each core fusion category, as well as an introductory

discussion on six supplementary categories.

1.2.1 Soft Computing and Hard Computing Are Isolated from
Each Other

In SC&HC-type systems (Fig. 1.2), both the SC and HC constituents have their

independent roles, and there is no explicit connection between them. A descriptive

example of such a loose union is an advanced elevator group dispatcher, where the

primary call allocation algorithm is usually based on SC methods (NN, FL, or EC),

while the backup algorithm, which becomes effective should the hall call interface

have a serious failure, is typically a simple HC procedure (finite-state machine). In

such cases, the fusion grade is naturally low, because there is no direct information

exchange between the individual SC and HC blocks. The mathematical mappings

realized by SC&HC are formulated below:

y1(n) ¼ fSC(uSC;x1(n))

y2(n) ¼ fHC(uHC;x2(n))
(1:1)

TABLE 1.2. Definitions of Fusion Grades

Fusion Grade Qualitative Definition

Low SC and HC in simultaneous or alternative use without explicit

connections

Moderate Connections on input/output signal level only

High SC or HC used for determining values of internal parameters

Very high HC or SC used for determining internal structure or generating/
manipulating internal data

Figure 1.2. Partnership of soft computing and hard computing without explicit connection.

All the arrow lines may contain several individual signals or data/parameter elements.
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where fSC(�;�) and fHC(�;�) are arbitrary SC and HC algorithms (mapping func-

tions), respectively; x(n) is the input and y(n) the output of such an algorithm;

and uSC and uHC are the corresponding system parameters (coefficients, weights,

etc.). All the boldface symbols represent vectors in this discussion; multiple inputs

and outputs are identified by a subscript; and n is a discrete-time index. Although we

are assuming that the SC and HC blocks are discrete-time systems, the presented

fusion structures could straightforwardly be modified for continuous-time systems

as well.

1.2.2 Soft Computing and Hard Computing Are Connected
in Parallel

The second category, SC/HC, is presently of moderate practical interest. It offers

possibilities for creating versatile combinations of SC and HC. In this parallel-

connected topology, SC is complementing the behavior and capabilities of a

primary HC system, or vice versa (Fig. 1.3). A typical example of such a configur-

ation is an augmented linear controller (HC-type), where the nonlinearities and poss-

ible uncertainties of a plant are compensated by a parallel-connected SC-type

controller. Such a closed-loop system could often be stabilized even without the

supplementary SC controller, and the role of SC is merely to fine-tune the control

performance and provide additional robustness. Besides, such parallel SC and HC

systems are often considerably easier to design and more efficient to implement

than pure HC systems with comparable performance. In this important category,

the fusion grade is moderate. The characteristic function of SC/HC is defined as

y(n) ¼ fSC(uSC;x1(n))� fHC(uHC;x2(n)) (1:2)

where the merging operator, �, denotes either addition or combining of data/signal

vectors, that is, a� b is either aþ b or ½a b�, where a and b are arbitrary row/
column vectors.

Figure 1.3. Soft computing and hard computing in parallel. Dotted line shows a typical

connection.
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1.2.3 Soft Computing with Hard-Computing Feedback and
Hard Computing with Soft-Computing Feedback

Also the feedback parallel connections, SC\HC and HC\SC, are currently of some

applications use. In these cases, the output of HC feedback or SC feedback is

added to the input of the primary SC and HC blocks, respectively (Fig. 1.4).

Notice that all fusion structures containing feedback must have a delay element D

on the feedback loop to make the system realizable. The reversed parallel connec-

tions are used in a variety of control applications—for example, for improving

the transient performance of a closed control loop. As with the forward parallel con-

nection, SC/HC, the feedback parallel connections have also moderate fusion

grades. The input–output mappings of SC\HC and HC\SC can be expressed in

the following compact form:

y(n) ¼ fSC(uSC;½x1(n) � fHC(uHC;x2(n))�) (1:3)

y(n) ¼ fHC(uHC;½x1(n) � fSC(uSC;x2(n))�) (1:4)

1.2.4 Soft Computing Is Cascaded with Hard Computing or
Hard Computing Is Cascaded with Soft Computing

There are two obvious alternatives to form hybrid cascades of SC and HC algor-

ithms, SC-HC or HC-SC, depending on the sequential order of those functional

blocks (Fig. 1.5). In these widespread configurations, the first block is usually a

kind of pre-processor and the second one acts as a post-processor. A typical

example of the SC-HC configuration is a dual-stage optimization procedure,

where the initial optimization phase is carried out by evolutionary computation

(global search), and the intermediate result is then refined by some gradient-based

algorithm (local search) to yield the final optimum. This kind of complementary

fusion leads to computationally efficient “global” optimization. It should be

pointed out, however, that such a hybrid method cannot be applied if the local gra-

dient of the criterion function is incalculable or difficult to obtain. Besides, when the

Figure 1.4. Soft computing with hard computing feedback and hard computing with soft

computing feedback. Dotted line shows a typical connection.
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surface of the criterion function is very complicated, local gradient plays a smaller

role even in the local search. Therefore, the dual-stage optimization procedure may

offer clear advantages in specific applications, but is not as general-purpose a tech-

nique as EC alone. Moreover, instead of using a gradient-based algorithm in the

second optimization stage, also other local-information-based algorithms (e.g., the

simplex algorithm [21]) are applicable. On the other hand, a typical HC-SC con-

figuration is an SC-based pattern recognition system, where the feature vectors

are first constructed by HC-based linear/nonlinear filters or interdomain transforms.

Soft computing techniques are then used for automatic pattern recognition or classi-

fication tasks. Also these cascade configurations have moderate fusion grades.

Equations (1.5) and (1.6) describe the cascade structures SC-HC and HC-SC,

respectively:

y(n) ¼ fHC(uHC; fSC(uSC;x(n))) (1:5)

y(n) ¼ fSC(uSC; fHC(uHC;x(n))) (1:6)

1.2.5 Soft-Computing-Designed Hard Computing and
Hard-Computing-Designed Soft Computing

The next two combinations, SC¼HC and HC¼SC, have high or very high fusion

grades. This is because SC is explicitly assisting the design or configuring of a

HC system, or vice versa (Fig. 1.6). A usual example of SC¼HC is a simple

linear controller with SC-based gain scheduling for improved handling of varying

dynamical characteristics. Such a hybrid controller could be tuned coarsely by

experienced human operators; and the gain scheduling extension is further adjusting

the control parameters within the predefined stability and performance range. In

contrast, the conventional back-propagation training of layered neural networks is

actually an HC¼SC-type fusion. Another example of the HC¼SC-type fusion is

a dynamic neural network model with the computational structure and possibly

Figure 1.5. Cascades of soft computing and hard computing.
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some physical parameters taken from a traditional differential or difference

equations-based model. The SC¼HC and HC¼SC mappings can be expressed

conveniently by the following formulae:

y(n) ¼ fSC ũuSC, fHC(uHC;z(n))
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Parameters

;x(n)

0
B@

1
CA (1:7)

y(n) ¼ fHC ũuHC, fSC(uSC;z(n))
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{Parameters

;x(n)

0
B@

1
CA (1:8)

Here, the principal SC (or HC) algorithm has two classes of parameters: internal par-

ameters, ũu.C , and externally supplied parameters, f .C(u . C,z(n)). They both are

needed for providing the final output. In some applications, however, the principal

SC (or HC) algorithm may not have any internal parameters, but all the necessary

parameters are provided by an external HC (or SC) algorithm.

1.2.6 Hard-Computing-Augmented Soft Computing and
Soft-Computing-Augmented Hard Computing

The next intimate structures, HCþSC and SCþHC, have very high fusion grades

(Fig. 1.7). In the former case, the HC block is first extracting some internal data,

z(n), from the SC algorithm and, after some further processing, the resulting HC

output is added or combined to the principal SC output. Moreover, in the latter

case, the SC block is processing certain internal data from the HC algorithm, and

the final output is the sum or combination of the individual HC and SC outputs.

These two categories are not widely used in real-world applications, but they

offer great potential for developing advanced fusions of SC and HC methodologies.

Figure 1.6. Hard-computing-designed soft computing and soft-computing-designed hard

computing.
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In Section 1.3, we will identify one promising HCþSC-type fusion with emerging

application interest. HCþSC and SCþHC structures are formulated as

y(n) ¼ fSC(uSC;x(n)) � fHC(uHC;z(n)) (1:9)

y(n) ¼ fHC(uHC;x(n)) � fSC(uSC;z(n)) (1:10)

1.2.7 Hard-Computing-Assisted Soft Computing and
Soft-Computing-Assisted Hard Computing

HC-assisted SC and SC-assisted HC are master–slave-type structures that are used

moderately/sparsely in real-world applications. In HC/SC, some internal data are

first extracted from the SC algorithm (master), processed by the specific HC algor-

ithm (slave), and fed back into the SC algorithm, which completes the primary task.

Thus, the HC constituent is an integral part of the computational procedure. An

example of this kind of fusion is a hybrid genetic algorithm with Lamarckian or

Baldwinian local search strategies [22], where a local search is following the selec-

tion–crossover–mutation chain in the repeated evolution loop; and the role of local

search is to refine the chromosome population yielding to a new population for

fitness evaluation and further genetic manipulations. SC//HC, on the other hand,

is an analogous symbiosis between a principal HC algorithm and an assisting SC

algorithm. Both of these structures (Fig. 1.8) have very high fusion grades, and

they carry out the following input–output mappings:

y(n) ¼ fSC ũuSC; x(n), fHC(uHC;z(n))
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Inputs

0
@

1
A (1:11)

y(n) ¼ fHC ũuHC; x(n), fSC(uSC;z(n))
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Inputs

0
@

1
A (1:12)

Figure 1.7. Hard-computing-augmented soft computing and soft-computing-augmented

hard computing.
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1.2.8 Supplementary Categories

In classifying the different kind of fusions of neural networks and fuzzy logic,

Hayashi et al. proposed 11 structural categories [5]. This is about the same as our

12 core categories for the fusion of SC and HC. On the other hand, Agarwal ident-

ified only the three most obvious fusion structures of neural networks and conven-

tional paradigms (i.e., NN/HC, NN-HC, and HC-NN) in his article that was

published in 1995 [18]. Another relevant discussion on integration architectures,

related to symbolic artificial intelligence (SA), FL, GA, and NN, was presented

by Fu in his 1996 conference tutorial [23]. He identified five integration architec-

tures with three coupling strengths. Those hybrid architectures share obvious simi-

larities with our core categories.

Because the field of HC is much wider and more heterogeneous than the field

of SC, we decided to classify only the universal categories. If the very details

of specific HC algorithms were taken into consideration, the number of fusion

categories could be increased considerably. Since the fusion structures of Figs.

1.2–1.8 have the minimum number of SC and HC blocks—only one of each

type—they are said to be canonic. It should be pointed out that more complex,

large-scale systems are naturally modeled as interconnections of these canonic

building blocks.

Most of the fusion categories discussed above were created following the synergy

between the fusion of SC and HC and the fusion of individual SC methods [5,19]. In

addition, numerous journal and conference articles were thoroughly analyzed to

verify the coverage of intermediate category sets. After identifying a relevant struc-

tural category, like HC\SC, its reverse category, SC\HC, was also carefully con-

sidered for the final category set. This particular reverse category, although not in

wide use among practicing engineers, offers apparent potential for developing

advantageous fusions of SC and HC. Moreover, Fig. 1.9 illustrates the reverse cat-

egories of HCþSC and SCþHC. Due to the small number of existing applications,

these two categories were not included in the core category set of Table 1.1.

Equations (1.13) and (1.14) give the mappings of the reversed SCþHC and

Figure 1.8. Hard-computing-assisted soft-computing and soft-computing-assisted hard

computing.
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HCþSC structures, respectively:

y(n) ¼ fSC uSC; x(n), fHC(uHC;y(n � D))
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Inputs

0
@

1
A (1:13)

y(n) ¼ fHC uHC; x(n), fSC(uSC;y(n � D))
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Inputs

0
@

1
A (1:14)

It should be noted that here the fusion structures contain a feedback loop and, there-

fore, the value of y(n) must be delayed at least by one sampling period—that is,

D � 1—to make the systems realizable. These reversed structures have two kinds

of inputs: the primary input, x(n), and the auxiliary input, f .C(u . C;y(n � D)).

Structural transposition or flow-graph reversal of the defined core categories

leads to two additional structures (Fig. 1.7 ! Fig. 1.10) that may offer innovation

potential. Their mathematical mappings are formulated in Eqs. (1.15) and (1.16).

However, to our best knowledge, they are not commonly in applications use and,

Figure 1.9. Reversed HCþSC and SCþHC structures.

Figure 1.10. Transposed HCþSC and SCþHC structures.
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therefore, we decided to omit them from Table 1.1. On the other hand, the fusion

categories of Fig. 1.10 could be used at least for initializing the internal states or

memory of SC or HC models.

y(n) ¼ fSC uSC; x(n), fHC(uHC;x(n))
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Inputs

0
@

1
A (1:15)

y(n) ¼ fHC uHC; x(n), fSC(uSC;x(n))
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Inputs

0
@

1
A (1:16)

For completeness of this category presentation, reversed versions of the transposed

HCþSC and SCþHC are depicted in Fig. 1.11. Both of these structures have also a

feedback loop that must contain a delay element D. Moreover, they can be expressed

mathematically as

y(n) ¼ fSC(uSC;½x(n)� f DHC(uHC;z(n))�) (1:17)

y(n) ¼ fHC(uHC;½x(n)� f DSC(uSC;z(n))�) (1:18)

In Eqs. (1.17) and (1.18), the necessary loop delay, D, is shown as a superscript of

the HC and SC algorithms, respectively.

It should be pointed out that similar to the core HCþSC and SCþHC structures

of Fig. 1.7, the six supplementary fusion structures of Figs. 1.9–1.11 are also

intimate fusions of SC and HC and, therefore, have very high fusion grades. In

Section 1.4, we will classify a representative collection of application papers on

the fusion of SC and HC according to the structural categories of Table 1.1.

Figure 1.11. Transposed-reversed HCþSC and SCþHC structures.
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1.2.9 General Soft-Computing and Hard-Computing
Mapping Functions

We will next define mathematically the general mapping functions (algorithms),

fSC(�;�) and fHC(�;�), used in Eqs. (1.1)–(1.18). Our compact definition follows the

operational structure and notations of Fig. 1.12. It should be noticed, however,

that only SC¼HC- and HC¼SC-type fusions use the externally supplied parameters

that are shown in Fig. 1.12. The nonlinear or linear mapping function,

F [ { fSC, fHC}, from the primary input vector, x [ R
N , and the auxiliary input

vector (optional), xA [ R
K , to the internal output vector (optional), z [ R

L, and

the primary output vector, y [ R
M , can be expressed as

F:kx [ R
N , xA [ R

Kl �! kz [ R
L, y [ R

Ml (1:19)

where x ¼ ½x1, x2, . . . , xN �
T, xA ¼ ½xA,1, xA,2, . . . , xA,K �

T, z ¼ ½z1, z2, . . . , zL�
T, and

y ¼ ½ y1, y2, . . . , yM�
T. Here, the auxiliary input vector, xA, and the internal output

vector, z, can be considered as partial- or full-state data of the dynamical

mapping function, F. All the input and output spaces may naturally have different

dimensions; therefore, this general definition covers both single-input single-

output (SISO)-type and multiple-input multiple-output (MIMO)-type systems.

1.3 CHARACTERISTIC FEATURES

The central motivation behind fusing elemental SC and HC methods is the aim to

overcome the limitations of individual methods. This applies to all fusion categories;

the resulting hybrid systems are expected to have such valuable characteristics that

would not be either possible or practical to obtain by using a single methodological

class only. Table 1.3 contains the most important characteristic features of evol-

utionary computation [24], fuzzy logic [25], and neural networks [26]. All these con-

stituents of SC have useful functional characteristics that are potentially needed in

Figure 1.12. Generic SC or HC system with signal/data inputs and outputs, as well as

externally supplied system parameters.
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real-world applications, because the conceptual structure of HC is overly precise in

relation to the imprecision of the world around us, and there is a growing demand for

computationally intelligent hybrid systems.

The HC field, on the other hand, is more diverse than the SC field, and thus it is

not feasible to create a comprehensive table that would contain the characteristic

features of all specific classes of hard computing methods. Therefore, we built

Table 1.4, which lists only five representative HC methods with their primary

characteristic features. The fusion needs and potential of these HC methods are

discussed below.

1.3.1 Proportional Integral Derivative Controllers

Proportional integral derivative (PID) controllers are certainly the most widely used

control algorithms in industrial applications. Thus, practicing engineers favor them

also in developing future products and systems. However, the requirements of

control performance are continuously increasing, and they cannot always be met

by using a fixed linear approximation unaccompanied. This problem has been

solved successfully, for example, by complementary EC¼HC-, FL¼HC-, and

NN¼HC-type fusions of SC and HC [27–29]. In such hybrid systems, the SC con-

stituent is tuning the PI(D) control parameters either incrementally or continuously.

To ensure the stability of auto-tuning PI(D) systems, the range and tuning interval of

control parameters must be constrained appropriately.

1.3.2 Physical Models

A variety of process models for estimation, prediction, control, and simulation is

developed by modeling the entire physical system using its characteristic differential

TABLE 1.3. Characteristic Features of EC, FL, and NN Methods

SC Method Characteristic Features

EC . Search methods inspired by the Neo-Darwinian paradigm

. No gradient of the error surface needed

. Avoidance of local optima through random perturbations

. Computationally intensive

FL . Rule-based approach

. Tolerance for imprecision, partial truth, and uncertainty

. Capability to approximate any continuous function or system

. Possibility to utilize human intuition

NN . Black box approach

. Massively parallel distributed structure

. Supervised or unsupervised learning from data

. Generalization ability

. Capability to approximate any continuous function or system
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or difference equations. This requires a thorough understanding of the entire system

to be modeled. On the other hand, such core knowledge is usually available in

matured research and development organizations. Nevertheless, differential equation

models and their s-domain counterparts become cumbersome to deal with if the

system to be modeled is considerably nonlinear or time-variant, or a high-order

model, including also critical secondary effects, is needed to obtain the required

accuracy. In these demanding cases, the physics-originated low- or moderate-

order linear models have been complemented by neural networks or fuzzy logic-

based nonlinear models [30]. The linear approximation remains the “backbone,”

and its behavior is enhanced by NN/HC- or FL/HC-type fusions, where the SC

constituent compensates for system nonlinearities, parameter uncertainty, or other

inadequacies of the primary HC model.

1.3.3 Optimization Utilizing Local Information

The Fletcher–Powell optimization algorithm [31] is a widely used unconstrained

optimization method that makes use of derivatives of the error surface. This kind

of variable-metric algorithm works usually well when the error surface is moder-

ately difficult. However, with highly peaky error landscapes that are typical for

complex nonlinear optimization problems, all the derivatives-based methods have

a notable possibility of getting stuck on some (poor) local optimum. This undesired

possibility has been reduced substantially in advanced HC//EC- and EC-HC-type

hybrid optimization procedures [17,32].

TABLE 1.4. Characteristic Features of Specific HC Methods

HC Method Characteristic Features

PID controller . Simplified linear approximation

. Manual tuning possible

. Computationally efficient

s-domain models with . Solid physical basis (differential equations)

physical origin . Sensitivity to parameter variation

. Tedious derivation of high-order models

Fletcher–Powell . Makes use of derivatives of the error surface

optimization algorithm . Variable metric method

. Efficient unconstrained optimization

General parameter . Reduced-rank adaptation

adaptation method . Computationally efficient

. Applicable with many computational structures

Stochastic system . Suitable for various kind of complex systems

simulation . Demanding phase of model building

. Time-consuming brute force technique
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1.3.4 General Parameter Adaptation Algorithm

Various neural network models are used frequently for time-series prediction in

embedded real-time systems—for example, in automatic fault detection and

systems’ state estimation. In many applications, however, the predicted time

series has specific time-varying characteristics that would actually need an adaptive

model for maximizing the prediction accuracy. Unfortunately, fully adaptive neural

network implementations have high computational burden. Thus, they are rarely

used in real-time applications. With radial basis function networks (RBFNs), such

a disturbing time-variance problem was relieved considerably by introducing an

intimate HCþNN-type fusion structure [33]. In that hybrid structure, the HC con-

stituent is a simple reduced-rank adaptation scheme, the general parameter (GP)

method, which tunes the behavior of the RBFN model around a nominal operation

point. The desired input–output mapping at the nominal operation point is

represented accurately by the fixed RBFN part, and the simple general parameter

extension is able to compensate for reasonable time-varying characteristics in the

time series. Similar intimate fusion schemes could also be applied with other

layered neural networks that are used in predictive configurations. For example,

the fixed output layer of multilayer perceptron (MLP) networks could be comple-

mented by a least-mean-square (LMS)-type adaptive linear combiner [34].

1.3.5 Stochastic System Simulators

Stochastic system simulation is a widely applied technique for analyzing and opti-

mizing complex systems that do not have tractable analytical models. There are

several commercial simulation packages available with efficient model building

functions and versatile visualization capabilities of simulation results. Monte

Carlo-method-based stochastic simulation is considered as a “brute force” technique

for optimizing parameters of complex systems. From the computation time point

of view, it would be desired to keep the number of simulation cycles at a

minimum. On the other hand, that would affect directly the statistical reliability

of the simulation results. Such a problem could be reduced by combining evolution-

ary computation with stochastic system simulation. In an HC//EC-type fusion, the

stochastic system simulator is used to compute the values of the fitness function

needed in evolutionary optimization [17], and the EC constituent provides an intel-

ligent search of the enormous solution base.

1.3.6 Discussion and Extended Fusion Schemes

Table 1.5 summarizes the principal characteristic features of the fusions of SC and

HC that were discussed above. The constructive fusion approaches have provided

improved results over nonhybrid techniques. These improvements are chiefly

in such areas as computational efficiency, design cost, robustness, and tractability.

In addition, the SC-enhanced HC algorithms form a natural intermediate step on

the methodological evolution path from pure HC toward dominating SC. Such an
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evolutionary multistep path is highly preferred in industrial R&D organizations and

among practicing engineers.

As mentioned earlier in this chapter, our structural categorization is based on a

little model approach. In this approach, each SC or HC constituent is represented

by a compact model, and the categorization is based on the types of interconnections

of these models. However, the fusion of SC and HC could further be extended into

“Soft Computing in a Hard Computing Framework” or “Hard Computing in a Soft

Computing Framework.” In such extended fusion schemes, the resulting system

contains only SC constituents that are being implemented in an HC framework,

or only HC constituents that are being embedded in an SC framework. Representa-

tive examples of such fusions are: genetic algorithms formulated in an object-

oriented framework [35]; fuzzy rules coded in a Petri net [36]; neural networks

embedded in inverse-model-based control techniques [37]; and various mathemat-

ical programming methods combined in a genetic algorithm architecture [38].

TABLE 1.5. Characteristic Features of Representative Fusions

HC Constituent Characteristic Features of the Fusion

PID controller General

. Automatic tuning of control parameters

. Manual tuning still possible

. Stability predictable

EC¼HC

. Global search of control parameters

FL¼HC

. Possibility to utilize human intuition

NN¼HC

. Learning from data

s-domain models with physical origin General

. Solid physical basis

. Ability to handle nonlinearities

FL/HC

. Possibility to utilize human intuition

NN/HC

. Learning from data

Fletcher–Powell optimization algorithm EC-HC

. Global search

. Efficient unconstrained optimization

General parameter adaptation method HCþNN

. Partially adaptive neural network model

. Computationally efficient

Stochastic system simulation HC//EC

. Optimization method for complex systems

. Global search

. Demanding phase of model building
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1.4 CHARACTERIZATION OF HYBRID APPLICATIONS

In Table 1.6, we list a demonstrative collection of reference articles that contain

some fusion structure(s) belonging to one of the core categories of Table 1.1

[10,17,27,32,33,39–54]. To make the reference table more instructive, the SC con-

stituent was divided into three subconstituents: evolutionary computation, fuzzy

logic, and neural networks. Because the first category, SC&HC, was not included

in this consideration, Table 1.6 contains all together 33 possible fusions of SC

and HC methodologies. The carefully selected reference articles, as well as the

TABLE 1.6. Fusion Examples from the Literature

Category SC HC Reference

SC/HC EC Mixed-integer linear programming 39

FL P-type controller 40

NN Two PI controllers with cascaded notch filters 41

SCnHC EC Linear combination of visual perception 42

FL First-order linear filter 43

NN Noise filter 44

HCnSC EC Spacecraft navigation and control 45

FL Feedback linearization controller 46

NN Linearizing control 47

SC-HC EC Powell’s unconstrained optimization method 32

FL Linear quadratic Gaussian-type controller 48

NN Narrow-band lowpass filters (integrators) 49

HC-SC EC Linear programming for initial population 50

FL Extended Kalman filter 48

NN Feature extraction algorithm 10

HC¼SC EC Constraint satisfaction techniques 51

FL Gradient-descent method 40

NN Newton–Gauss optimization algorithm 52

SC¼HC EC Two PI controllers with cross-coupling 27

FL Dynamic programming algorithm 53

NN Optimizing long-range predictive controller 54

HCþSC EC — —

FL — —

NN General parameter adaptation algorithm 33

SCþHC EC — —

FL — —

NN — —

HC//SC EC Stochastic system simulator 17

FL — —

NN — —

SC//HC EC — —

FL — —

NN — —
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recent overview article [9], guide the reader to the realm of specific fusion

implementations. Besides, advanced implementation aspects are discussed system-

atically in the subsequent chapters of the present book.

As shown in Table 1.6, the number of reported applications with respect to

HCþSC, SCþHC, HC//SC, and SC//HC is still very limited. However, as research

and development on various applications with respect to the fusion of SC and HC

further evolve, these intimate structures will likely become a promising area to be

explored.

One noticeable trend in the fusion of SC and HC is the simultaneous partnership

of HC and multiple SC methodologies as illustrated in Fig. 1.13 [6]. Here, the fused

SC methodologies are targeted to provide intelligent behavior or high machine IQ

(MIQ) for a variety of advanced systems and products. This attractive goal of intel-

ligent behavior was defined by Fogel et al. in 1965 [55]:

. . . intelligent behavior can result from an ability to predict the environment coupled

with the selection of an algorithm which permits the translation of each prediction

into a suitable response.

Already in that early definition, intelligent behavior was seen as a coupling of some

reliable predictor and a robust translator; and these individual units could be realized

efficiently and competitively using the constructive fusion of SC and HC.

1.5 CONCLUSIONS AND DISCUSSION

We introduced 12 structural core categories for the fusion of SC and HC. Figure 1.14

shows a qualitative diagram, where each of these categories is positioned according

Figure 1.13. Fusion of hard-computing and individual/fused soft-computing methods.
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to its fusion grade and current use in engineering applications. By comparing our

core categories to those related to the fusion of individual SC methods and after

reviewing a large amount of application articles, it can be concluded that the

fusion of SC and HC is already a well-defined concept for developing computation-

ally intelligent hybrid systems that largely overcome the shortages and limitations of

individual SC and HC methods. In addition to those 12 core categories, we also

identified six supplementary categories that offer considerable innovation potential

for future applications.

Although the HC and SC research communities are quite separated, it is good to

observe that many SC-oriented researchers and engineers are openly favoring the

various fusion opportunities. However, the HC community generally seems to be

more reluctant in applying the complementing SC techniques. This situation may

change progressively following positive experiences, along with the associated evol-

ving emphasis in various engineering curricula. Currently, there is usually an unfor-

tunate division between HC- and SC-oriented courses related to major application

topics like electric power systems, industrial electronics, systems engineering, and

telecommunications. This separation is clearly hindering the industrial acceptance

of SC, because those separated courses do not typically consider the methodological

fusion approach at all, but mostly neglect totally the other class of available

methodologies.

As a final thought, this fusion discussion is closely related to Zadeh’s original

aims of fuzzy logic providing an advanced interface between imprecise human

reasoning and the highly precise calculations of digital computers.

Figure 1.14. Qualitative classification of core fusion categories.
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