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CHAPTER 1

ELECTRICAL CIRCUIT ANALYSIS

1.1 INTRODUCTION

We understand complex integrated circuits (ICs) through simple building blocks. CMOS
transistors have inherent parasitic structures, such as diodes, resistors, and capacitors,
whereas the whole circuit may have inductor properties in the signal lines. We must know
these elements and their many applications since they provide a basis for understanding
transistors and whole-circuit operation.

Resistors are found in circuit speed and bridge-defect circuit analysis. Capacitors are
needed to analyze circuit speed properties and in power stabilization, whereas inductors
introduce an unwanted parasitic effect on power supply voltages when logic gates change
state. Transistors have inherent diodes, and diodes are also used as electrical protective el-
ements for the IC signal input/output pins. This chapter examines circuits with resistors,
capacitors, diodes, and power sources. Inductance circuit laws and applications are de-
scribed in later chapters. We illustrate the basic laws of circuit analysis with many exam-
ples, exercises, and problems. The intention is to learn and solve sufficient problems to
enhance one’s knowledge of circuits and prepare for future chapters. This material was se-
lected from an abundance of circuit topics as being more relevant to the later chapters that
discuss how CMOS transistor circuits work and how they fail.

1.2 VOLTAGE AND CURRENT LAWS

Voltage, current, and resistance are the three major physical magnitudes upon which we
will base the theory of circuits. Voltage is the potential energy of a charged particle in an
electric field, as measured in units of volts (V), that has the physical units of Newton ·
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m/coulomb. Current is the movement of charged particles and is measured in coulombs
per second or amperes (A). Electrons are the charges that move in transistors and inter-
connections of integrated circuits, whereas positive charge carriers are found in some spe-
cialty applications outside of integrated circuits. 

Three laws define the distribution of currents and voltages in a circuit with resistors:
Kirchhoff’s voltage and current laws, and the volt–ampere relation for resistors defined by
Ohm’s law. Ohm’s law relates the current and voltage in a resistor as

V = R × I (1.1)

This law relates the voltage drop (V) across a resistor R when a current I passes through it.
An electron loses potential energy when it passes through a resistor. Ohm’s law is impor-
tant because we can now predict the current obtained when a voltage is applied to a resis-
tor or, equivalently, the voltage that will appear at the resistor terminals when forcing a
current. 

An equivalent statement of Ohm’s law is that the ratio of voltage applied to a resistor to
subsequent current in that resistor is a constant R = V/I, with a unit of volts per ampere
called an ohm (�). Three examples of Ohm’s law in Figure 1.1 show that any of the three
variables can be found if the other two are known. We chose a rectangle as the symbol for
a resistor as it often appears in CAD (computer-aided design) printouts of schematics and
it is easier to control in these word processing tools.

The ground symbol at the bottom of each circuit is necessary to give a common refer-
ence point for all other nodes. The other circuit node voltages are measured (or calculat-
ed) with respect to the ground node. Typically, the ground node is electrically tied through
a building wire called the common to the voltage generating plant wiring. Battery circuits
use another ground point such as the portable metal chassis that contains the circuit. No-
tice that the current direction is defined by the positive charge with respect to the positive
terminal of a voltage supply, or by the voltage drop convention with respect to a positive
charge. This seems to contradict our statements that all current in resistors and transistors
is due to negative-charge carriers. This conceptual conflict has historic origins. Ben
Franklin is believed to have started this convention with his famous kite-in-a-thunder-
storm experiment. He introduced the terms positive and negative to describe what he
called electrical fluid. This terminology was accepted, and not overturned when we found
out later that current is actually carried by negative-charge carriers (i.e., electrons). Fortu-
nately, when we calculate voltage, current, and power in a circuit, a positive-charge hy-
pothesis gives the same results as a negative-charge hypothesis. Engineers accept the pos-
itive convention, and typically think little about it.
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V BB

1 MΩ10 nA
+

-

VBB = (10 nA)(1 M�) = 10 mV IBB = 3 V/6 k� = 500 �A R = 100 mV/4 �A = 25 k�

Figure 1.1. Ohm’s law examples. The battery positive terminal indicates where the positive charge
exits the source. The resistor positive voltage terminal is where positive charge enters.
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An electron loses energy as it passes through a resistance, and that energy is lost as
heat. Energy per unit of time is power. The power loss in an element is the product of volt-
age and current, whose unit is the watt (W):

P = VI (1.2)

1.2.1 Kirchhoff’s Voltage Law (KVL)

This law states that “the sum of the voltage drops across elements in a circuit loop is
zero.”  If we apply a voltage to a circuit of many serial elements, then the sum of the volt-
age drops across the circuit elements (resistors) must equal the applied voltage. The KVL
is an energy conservation statement allowing calculation of voltage drops across individ-
ual elements: energy input must equal energy dissipated.

Voltage Sources. An ideal voltage source supplies a constant voltage, no matter the
amount of current drawn, although real voltage sources have an upper current limit. Fig-
ure 1.2 illustrates the KVL law where VBB represents a battery or bias voltage source. The
polarities of the driving voltage VBB and resistor voltages are indicated for the clockwise
direction of the current. 

Naming V1 the voltage drop across resistor R1, V2 that across resistor R2, and, subse-
quently, V5 for R5, the KVL states that

VBB = V1 + V2 + V3 + V4 + V5 (1.3)

Note that the resistor connections in Figure 1.2 force the same current IBB through all re-
sistors. When this happens, i.e., when the same current is forced through two or more re-
sistors, they are said to be connected in series. Applying Ohm’s law to each resistor of Fig-
ure 1.2, we obtain Vi = Ri × IBB (where i takes any value from 1 to 5). Applying Ohm’s law
to each voltage drop at the right-hand side of Equation (1.3) we obtain

VBB = R1IBB + R2IBB + R3IBB + R4IBB + R5IBB

= (R1 + R2 + R3 + R4 + R5)IBB (1.4)

= ReqIBB

where Req = R1+ R2+ R3 + R4 + R5. The main conclusion is that when a number of resistors
are connected in series, they can be reduced to an equivalent single resistor whose value is
the sum of the resistor values connected in series.
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Figure 1.2. KVL seen in series elements.
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�� EXAMPLE 1.1

Figure 1.3(a) shows a 5 V source driving two resistors in series. The parameters
are referenced to the ground node. Show that the KVL holds for the circuit.

The voltage drop across RA is 

VA = RA × I = 12 k� × 156.25 �A = 1.875 V 

Similarly, the voltage across RB is 3.125 V. The applied 5 V must equal the series
drops across the two resistors or 1.875 V + 3.125 V = 5 V. The last sentence is a
verification of the KVL. �

The current in Figure 1.3(a) through the 12 k� in series with a 20 k� resistance is
equal to that of a single 32 k� resistor (Figure 1.3(b)). The voltage across the two resistors
in Figure 1.3(a) is 5 V and, when divided by the current (156.25 �A), gives an equivalent
series resistance of (5 V/156.25 �A) = 32 k�. Figure 1.3(b) is an equivalent reduced cir-
cuit of that in Figure 1.3(a).

Current Sources. We introduced voltage power sources first since they are more fa-
miliar in our daily lives. We buy voltage batteries in a store or plug computers, appliances,
or lamps into a voltage socket in the wall. However, another power source exists, called a
current source, that has the property of forcing a current out of one terminal that is inde-
pendent of the resistor load. Although not as common, you can buy current power sources,
and they have important niche applications.

Current sources are an integral property of transistors. CMOS transistors act as current
sources during the crucial change of logic state. If you have a digital watch with a micro-
controller of about 200k transistors, then about 5% of the transistors may switch during a
clock transition, so 10k current sources are momentarily active on your wrist.

Figure 1.4 shows a resistive circuit driven by a current source. The voltage across the
current source can be calculated by applying Ohm’s law to the resistor connected between
the current source terminals. The current source as an ideal element provides a fixed cur-
rent value, so that the voltage drop across the current source will be determined by the el-
ement or elements connected at its output. The ideal current source can supply an infinite
voltage, but real current sources have a maximum voltage limit.

6 CHAPTER 1 ELECTRICAL CIRCUIT ANALYSIS

A

B

RA = 12 kΩ

RB = 20 kΩ

156.25 µA

5 V

Figure 1.3. (a) Circuit illustrating KVL. (b) Equivalent circuit. The power supply cannot
tell if the two series resistors or their equivalent resistance are connected to the power
source terminals.

(a) (b)

5 V 32 kΩ156.25 µA
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1.2.2 Kirchhoff’s Current Law (KCL)

The KCL states that “the sum of the currents at a circuit node is zero.” Current is a mass
flow of charge. Therefore the mass entering the node must equal the mass exiting it. Fig-
ure 1.5 shows current entering a node and distributed to three branches. Equation (1.5) is
a statement of the KCL that is as essential as the KVL in Equation (1.3) for computing
circuit variables. Electrical current is the amount of charge (electrons) Q moving in time,
or dQ/dt. Since current itself is a flow (dQ/dt), it is grammatically incorrect to say that
“current flows.” Grammatically, charge flows, but current does not.

I0 = I1 + I2 + I3 (1.5)

The voltage across the terminals of parallel resistors is equal for each resistor, and the
currents are different if the resistors have different values. Figure 1.6 shows two resis-
tors connected in parallel with a voltage source of 2.5 V. Ohm’s law shows a different
current in each path, since the resistors are different, whereas all have the same voltage
drop.

IA = �
1

2

0

.

0

5

k

V

�
� = 25 �A

(1.6)

IB = �
1

2

5

.

0

5

k

V

�
� = 16.675 �A

Applying Equation (1.5), the total current delivered by the battery is

IBB = IA + IB = 25 �A + 16.67 �A = 41.67 �A (1.7)
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I1

I0

I2 I3

Figure 1.5. KCL and its current summation at a node.

1 µA 400 kΩ

Vo = 400 mV

Figure 1.4. A current source driving a resistor load.
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and

= = 60 k� (1.8)

Notice that the sum of the currents in each resistor branch is equal to the total current
from the power supply, and that the resistor currents will differ when the resistors are un-
equal. The equivalent parallel resistance Req in the resistor network in Figure 1.6 is VBB =
Req(IA + IB). From this expression and using Ohm’s law we get

= IA + IB

IA = (1.9)

IB = 

and

= + 

= + (1.10)

Req = = = 60 k�

This is the expected result from Equation (1.8). Req is the equivalent resistance of RA and
RB in parallel, which is notationly expressed as Req = RA||RB. In general, for n resistances
in parallel,

Req = (R1||R2|| · · · ||Rn) = (1.11)

The following examples and self-exercises will help you to gain confidence on the con-
cepts discussed.

1
���

�
R

1

1

� + �
R

1

2

� + · · · + �
R

1

n

�

1
���

�
100

1

k�
� + �

150

1

k�
�

1
�

�
R

1

A

� + �
R

1

B

�

1
�
RB

1
�
RA

1
�
Req

VBB
�
RB

VBB
�
RA

VBB
�
Req

VBB
�
RB

VBB
�
RA

VBB
�
Req

2.5 V
��
41.67 �A

VBB
�
IBB
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2.5 V

RA
100 kΩ

RB
150 kΩ

VBB
IBB

Figure 1.6. Parallel resistance example.
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Self-Exercise 1.1

Calculate V0 and the voltage drop Vp across the parallel resistors in Figure 1.7.
Hint: Replace the 250 k� and 180 k� resistors by their equivalent resistance and
apply KVL to the equivalent circuit.

Self-Exercise 1.2

Calculate R3 in the circuit of Figure 1.8.

When the number of resistors in parallel is two, Equation (1.11) reduces to

Rp = (1.12)

�� EXAMPLE 1.2

Calculate the terminal resistance of the resistors in Figures 1.9(a) and (b).

Req = 1 M�||2.3 M�

= 

= 697 k�

(106)(2.3 × 106)
��
106 + 2.3 × 106

RA × RB
�
RA + RB
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950 Ω R31200 ΩReq = 250 Ω

Figure 1.8. Equivalent parallel resistance.

500 µA 3.3 kΩ

Vo

180 kΩ

250 kΩ

Figure 1.7.
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The equivalent resistance at the network in Figure 1.9(b) is found by combining
the series resistors to 185 k� and then calculating the parallel equivalent:

Req = 75 k�||185 k�

= 

� = 53.37 k�

Self-Exercise 1.3

Calculate the resistance at the voltage source terminals Rin, IBB, and V0 at the ter-
minals in Figure 1.10. If you are good, you can do this in your head.

(75 × 103)(185 × 103)
���
75 × 103 + 185 × 103
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1 MΩ 2.3 MΩ

Figure 1.9. Parallel resistance calculations and equivalent circuits.

2 kΩ

6 kΩ
10 V

IBB

Vo

Figure 1.10.

75 kΩ

150 kΩ

35 kΩ

125 kΩ75 kΩ 53.37 kΩ

(a)

(b)
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Self-Exercise 1.4

Use Equations (1.11) or (1.12) and calculate the parallel resistance for circuits in
Figures 1.11(a)–(d). Estimates of the terminal resistances for circuits in (a) and
(b) should be done in your head. Circuits in (c) and (d) show that the effect of a
large parallel resistance becomes negligible.

Self-Exercise 1.5

Calculate Rin, IBB, and V0 in Figure 1.12. Estimate the correctness of your answer
in your head.

Self-Exercise 1.6

(a) In Figure 1.13, find I3 if I0 = 100 �A, I1 = 50 �A, and I2 = 10 �A. (b) If R3 =
50 k�, what are R1 and R2?
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4 kΩ

 VBB
12 kΩ 20 kΩ

Vo

1 V

Figure 1.12.

4 kΩ 4 kΩRin

1 kΩ 100 kΩRin 1 kΩ 1 MΩRin

1 kΩ 2 kΩRin

Figure 1.11.

(a)                                                                            (b)

1 kΩ 100 kΩRin 1 kΩ 1 MΩRin

(c)                                                                            (d)

c01.qxd  2/5/2004  4:47 PM  Page 11



Self-Exercise 1.7

Calculate R1 and R2 in Figure 1.14. 

Self-Exercise 1.8

If the voltage across the current source is 10 V in Figure 1.15, what is R1?

Resistance Calculations by Inspection. A shorthand notation for the terminal re-
sistance of networks allows for quick estimations and checking of results. The calcula-
tions are defined before computing occurs. Some exercises below will illustrate this. So-
lutions are given in the Appendix.
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I1

I0
I2 I3

R1 R2 R3

Figure 1.13.

R1

3.3 V R2 R3 = 8 kΩ

IO = 650 µA Vo

I3 = 200 µA

Figure 1.14.

5 kΩ R1

6 kΩ

3 kΩ

10 kΩ
1 mA

Figure 1.15.
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Self-Exercise 1.9

Write the shorthand notation for the terminal resistance of the circuits in Figures
1.16(a) and (b). 

Self-Exercise 1.10

Write the shorthand notation for the terminal resistance of the three circuits in
Figure 1.17.
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R1 R2

R4R3

VBB

VBB

VBB

R1 R2

R5

R4R3

R1

R2

R5R4

R3

Figure 1.17. Terminal resistance using shorthand notation.

75 kΩ

150 kΩ

35 kΩ

Figure 1.16.

1 MΩ 2.3 MΩ

(a) (b)
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Self-Exercise 1.11

In the lower circuit of Figure 1.17, R1 = 20 k�, R2 = 15 k�, R3 = 25 k�, R4 = 8
k�, R5 = 5 k�. Calculate Req for these three circuits.

Dividers. Some circuit topologies are repetitive and lend themselves to analysis by in-
spection. Two major inspection techniques use voltage divider and current divider concepts
that take their analysis from the KVL and KCL. These are illustrated below with derivations
of simple circuits followed by several examples and exercises. The examples have slightly
more elements, but they reinforce previous examples and emphasize analysis by inspection. 

Figure 1.18 shows a circuit with good visual voltage divider properties that we will il-
lustrate in calculating V3. 

The KVL equation is

VBB = IBB(R1) + IBB(R2) + IBB(R3) = IBB(R1 + R2 + R3)
(1.13)

IBB = = 

and

V3 = VBB (1.14)

Equation (1.14) is a shorthand statement of the voltage divider. It is written by inspection,
and calculations follow. The voltage dropped by each resistor is proportional to their frac-
tion of the whole series resistance. Figure 1.18 is very visual, and you should be able to
write the voltage divider expression by inspection for any voltage drop. For example, the
voltage from node V2 to ground is

V2 = VBB (1.15)

Self-Exercise 1.12

Use inspection and calculate the voltage at V0 (Figure 1.19). Verify that the sum
of the voltage drops is equal to VBB. Write the input resistance Rin by inspection
and calculate the current IBB.

R2 + R3
��
R1 + R2 + R3

R3
��
R1 + R2 + R3

V3
�
R3

VBB
��
R1 + R2 + R3
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VBB

R1 R2

R3IBB

V2 V3

Figure 1.18. Voltage divider circuit.
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Self-Exercise 1.13

Write the expression for Rin at the input terminals, V0, and the power supply cur-
rent (Figure 1.20).

Current divider expressions are visual, allowing you to see the splitting of current as it
enters branches. Figure 1.21 shows two resistors that share total current IBB.

KVL gives

VBB = (R1||R2)IBB = IBB = (I1)(R1) = (I2)(R2) (1.16)

then

I1 = IBB and I2 = IBB (1.17)
R1

�
R1 + R2

R2
�
R1 + R2

R1 × R2
�
R1 + R2

1.2 VOLTAGE AND CURRENT LAWS 15

8 kΩ

2.5 V

18 kΩ 30 kΩ

Vo

45 kΩ
VBB

Figure 1.20.

4 kΩ

 VBB
12 kΩ 20 kΩ

Vo

1 V

Figure 1.19. Voltage divider analysis circuit.

I1 I2

R1 R2

IBB

Figure 1.21. Current divider.
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Currents divide in two parallel branches by an amount proportional to the opposite leg re-
sistance divided by the sum of the two resistors. This relation should be memorized, as
was done for the voltage divider.

Self-Exercise 1.14

Write the current expression by inspection and solve for currents in the 12 k�
and 20 k� paths in Figure 1.22.

Self-Exercise 1.15

(a) Write the current expression by inspection and solve for currents in all resis-
tors in Figure 1.23, where IBB = 185.4 �A. (b) Calculate VBB.

Self-Exercise 1.16

(a) Solve for current in all resistive paths in Figure 1.24 using the technique of
inspection. (b) Calculate a new value for the 20 k� resistor so that its current is 5
�A.

16 CHAPTER 1 ELECTRICAL CIRCUIT ANALYSIS

4 kΩ

 VBB
12 kΩ 20 kΩ

Vo

1 V

Figure 1.22.

8 kΩ

18 kΩ 30 kΩ

Vo

45 kΩ
VBB

Figure 1.23.

15 kΩ 20 kΩ10 kΩ 100 µA

Figure 1.24.
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Self-Exercise 1.17

In Figure 1.25, calculate V0, I2, and I9. 

Self-Exercise 1.18

(a) Write Rin between the battery terminals by inspection and solve (Figure 1.26).
(b) Write the I1.5k expression by inspection and solve. This is a larger circuit, but
it presents no problem if we adhere to the shorthand style. We write Rin between
battery terminals by inspection, and calculate I1.5k by current divider inspection.

1.3 CAPACITORS

Capacitors appear in CMOS digital circuits as parasitic elements intrinsic to transistors or
with the metals used for interconnections. They have an important effect on the time for a
transistor to switch between on and off states, and also contribute to propagation delay be-
tween gates due to interconnection capacitance. Capacitors also cause a type of noise
called cross-talk. This appears especially in high-speed circuits, in which the voltage at
one interconnection line is affected by another interconnection line that is isolated but lo-
cated close to it. Cross-talk is discussed in later chapters.
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6 Ω

1 mA

Vo

5 Ω

2 Ω

9 Ω

Figure 1.25.

4 kΩ 750 Ω

1.5 kΩ

250 Ω

1 kΩ

250 Ω

2 kΩ3 kΩ
5 V

VO

Figure 1.26.

c01.qxd  2/5/2004  4:47 PM  Page 17



The behavior and structure of capacitors inherent to interconnection lines are signifi-
cantly different from the parasitic capacitors found in diodes and transistors. We introduce
ideal parallel plate capacitors that are often used to model wiring capacitance. Capacitors
inherent to transistors and diodes act differently and are discussed later.

A capacitor has two conducting plates separated by an insulator, as represented in Fig-
ure 1.27(a). When a DC voltage is applied across the conducting plates (terminals) of the
capacitor, the steady-state current is zero since the plates are isolated by the insulator. The
effect of the applied voltage is to store charges of opposite sign at the plates of the capac-
itor.

The capacitor circuit symbol is shown in Figure 1.27(b). Capacitors are characterized
by a parameter called capacitance (C) that is measured in Farads. Strictly, capacitance is
defined as the charge variation �Q induced in the capacitor when voltage is changed by a
quantity �V, i.e.,

C = (1.18)

This ratio is constant in parallel plate capacitors, independent of the voltage applied to the
capacitor. Capacitance is simply the ratio between the charge stored and the voltage ap-
plied, i.e., C = Q/V, with units of Coulombs per Volt called a Farad. This quantity can also
be computed from the geometry of the parallel plate and the properties of the insulator
used to construct it. This expression is

C = (1.19)

where �ins is an inherent parameter of the insulator, called permittivity, that measures the
resistance of the material to an electric field; A is the area of the plates used to construct
the capacitor; and d the distance separating the plates. 

Although a voltage applied to the terminals of a capacitor does not move net charge
through the dielectric, it can displace charge within it. If the voltage changes with time,
then the displacement of charge also changes, causing what is known as displacement cur-
rent, that cannot be distinguished from a conduction current at the capacitor terminals.
Since this current is proportional to the rate at which the voltage across the capacitor
changes with time, the relation between the applied voltage and the capacitor current is

�insA
�

d

�Q
�
�V
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Metal
platesInsulator

d
A

 

         

C

 

(a) (b) 

Figure 1.27. (a) Parallel plate capacitor. (b) Circuit symbol.
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i = C (1.20)

If the voltage is DC, then dV/dt = 0 and the current is zero. An important consequence of
Equation (1.20) is that the voltage at the terminals of a capacitor cannot change instanta-
neously, since this would lead to an infinite current. That is physically impossible. In later
chapters, we will see that any logic gate constructed within an IC has a parasitic capacitor
at its output. Therefore, the transition from one voltage level to another will always have a
delay time since the voltage output cannot change instantaneously. Trying to make these
output capacitors as small as possible is a major goal of the IC industry in order to obtain
faster circuits.

1.3.1 Capacitor Connections

Capacitors, like resistors, can be connected in series and in parallel. We will show the
equivalent capacitance calculations when they are in these configurations.

Capacitors in parallel have the same terminal voltage, and charge distributes according
to the relative capacitance value differences (Figure 1.28(a)). The equivalent capacitor is
equal to the sum of the capacitors:

C1 = , C2 = 

C1 + C2 = + = (1.21)

Ceq = 

where Ceq = C1 + C2, and Qeq = Q1 + Q2. Capacitors connected in parallel simply add their
values to get the equivalent capacitance. 

Capacitors connected in series have the same charge stored, whereas the voltage de-
pends on the relative value of the capacitor (Figure 1.28(b)). In this case, the expression
for the equivalent capacitor is analogous to the expression obtained when connecting re-
sistors in parallel:

Qeq
�

V

Q1 + Q2
�

V

Q2
�
V

Q1
�
V

Q2
�
V

Q1
�
V

dV
�
dt
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V
C1

Q1
C2

Q2

Figure 1.28. Capacitance interconnection. (a) Parallel. (b) Series.

(a)                                                                                    (b)

C1
Q

V

C2

V1

V2

+

-

+

-

Q

c01.qxd  2/5/2004  4:48 PM  Page 19



C1 = , C2 = 

+ = + = (1.22)

Ceq = 

where Veq = V1 + V2, and 

Ceq = 

�� EXAMPLE 1.3

In Figures 1.28(a) and (b), C1 = 20 pF and C2 = 60 pF. Calculate the equivalent
capacitance seen by the voltage source. 

(a) Ceq = C1 + C2 = 20 pF + 60 pF = 80 pF

(b) Ceq = = = 15 pF

��

Self-Exercise 1.19

Calculate the terminal equivalent capacitance for the circuits in Figure 1.29.

1.3.2 Capacitor Voltage Dividers

There are open circuit defect situations in CMOS circuits in which capacitors couple volt-
ages to otherwise unconnected nodes. This simple connection is a capacitance voltage di-

1
��
1/20 pF + 1/60 pF

1
�
�
C
1

1

� + �
C
1

2

�

C1C2
�
C1 + C2

Q
�
Veq

V1 + V2
�

Q

V2
�
Q

V1
�
Q

1
�
C2

1
�
C1

Q
�
V2

Q
�
V1
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vider circuit (Figure 1.30). The voltage across each capacitor is a fraction of the total volt-
age VDD across both terminals.

�� EXAMPLE 1.4

Derive the relation between the voltage across each capacitor C1 and C2 in Figure
1.30 to the terminal voltage VDD. 

The charge across the plates of the series capacitors is equal so that Q1 = Q2.
The capacitance relation C = Q/V allows us to write

Q1 = Q2 C1V1 = C2V2

or

V2 = V1

Since

VDD = V1 + V2

then

V2 = VDD – V1 = V1

Solve for

V1 = VDD

and get

V2 = VDD

C1
�
C1 + C2

C2
�
C1 + C2

C1
�
C2

C1
�
C2
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Figure 1.30. Capacitance voltage divider.
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The form of the capacitor divider is similar to the resistor voltage divider except
the numerator term differs. ��

Self-Exercise 1.20

Solve for V1 and V2 in Figure 1.31. 

Self-Exercise 1.21

If V2 = 700 mV, what is the driving terminal voltage VD in Figure 1.32?

1.3.3 Charging and Discharging Capacitors

So far we have discussed the behavior of circuits with capacitors in the steady state, i.e.,
when DC sources drive the circuit. In these cases, the analysis of the circuit is done as-
suming that it reached a stationary state. Conceptually, these cases are different from situ-
ations in which the circuit source makes a sudden transition, or a DC source is applied to
a discharged capacitor through a switch. In these situations, there is a period of time dur-
ing which the circuit is not in a stationary state but in a transient state. These cases are im-
portant in digital CMOS ICs, since node state changes in ICs are transient states deter-
mining the timing and power characteristics of the circuit. We will analyze charge and
discharge of capacitors with an example.
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�� EXAMPLE 1.5

In the circuit of Figure 1.33, draw the voltage and current evolution at the capac-
itor with time starting at t = 0 when the switch is closed. Assume Vin = 5 V and
that the capacitor is initially at 0 V.

The Kirchoff laws for current and voltage can be applied to circuits with ca-
pacitors as we did with resistors. Thus, once the switch is closed, the KVL must
follow at any time:

Vin = VR + VC

The Kirchoff current law applied to this circuit states that the current through the
resistor must be equal to the current through the capacitor, or

= C

Using the KVL equation, we can express the voltage across the resistor in terms
of the voltage across the capacitor, obtaining

= C

This equation relates the input voltage to the voltage at the capacitor. The solu-
tion gives the time evolution of the voltage across the capacitor, 

VC = Vin(1 – e–t/RC)

The current through the capacitor is

IC = IR = 

IC = e–t/RC

At t = 0, the capacitor voltage is zero (it is discharged) and the current is maxi-
mum (the voltage drop at the resistor is maximum), whereas in DC (for t � �)
the capacitor voltage is equal to the source voltage and the current is zero. This
example shows that the voltage evolution is exponential when charging a capaci-

Vin
�
R

Vin – VC
�

R

dVC
�

dt

Vin – VC
�

R

dVC
�

dt

VR
�
R
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Rt = 0

VC
+

-

Figure 1.33.
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tor through a resistor. The time constant is defined for t = RC, that is, the time re-
quired to charge the capacitor to (1 – e–1) of its final value, or 63%. This means
that the larger the value of the resistor or capacitor, the longer it takes to
charge/discharge it (Figure 1.34). ��

1.4 DIODES

A circuit analysis of the semiconductor diode is presented below; later chapters discuss its
physics and role in transistor construction. Diodes do not act like resistors; they are non-
linear. Diodes pass significant current at one voltage polarity and near zero current for the
opposite polarity. A typical diode nonlinear current–voltage relation is shown in Figure
1.35(a) and its circuit symbol in Figure 1.35(b). The positive terminal is called the anode,
and the negative one is called the cathode. The diode equation is

ID = IS(e – 1) (1.23)

where k is the Boltzmann constant (k = 1.38 × 10–23 J/K), q is the charge of the electron (q
= 1.6 × 10–19 C), and IS is the reverse biased current. The quantity kT/q is called the ther-
mal voltage (VT) whose value is 0.0259 V at T = 300 K; usually, we use VT = 26 mV at that
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temperature. When the diode applied voltage is positive and well beyond the thermal volt-
age (VD � VT = kT/q), Equation (1.23) becomes

ID = ISeqVD/kT (1.24)

The voltage across the diode can be solved from Equation (1.23) as

VD = ln � + 1� (1.25)

For forward bias applications ID/IS � 1 and this reduces to

VD = ln (1.26)

Self-Exercise 1.22

(a) Calculate the forward diode voltage if T = 25°C, ID = 200 nA, and IS = 1 nA.
Compute from Equation (1.25). (b) At what current will the voltage drop be 400
mV?

Diode Equations (1.23)–(1.26) are useful in their pure form only at the temperature at
which IS was measured. These equations predict that ID will exponentially drop as temper-
ature rises which is not so. IS is more temperature-sensitive than the temperature exponen-
tial and doubles for about every 10°C rise. The result is that diode current markedly in-
creases as temperature rises.

1.4.1 Diode Resistor Circuits

Figure 1.36 shows a circuit that can be solved for all currents and node element voltages if
we know the reverse bias saturation current IS. 

�� EXAMPLE 1.6

If IS = 10 nA at room temperature, what is the voltage across the diode in Figure
1.36 and what is ID? Let kT/q = 26 mV.

ID
�
IS

kT
�
q

ID
�
IS

kT
�
q
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ID
2 V

10 kΩ

Figure 1.36. Forward-biased diode analysis.
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Write KVL using the diode voltage expression:

2 V = ID(10 k�) + (26 mV) ln � + 1�
This equation has one unknown (ID), but it is difficult to solve analytically, so an
iterative method is easiest. Values of ID are substituted into the equation, and the
value that balances the LHS and RHS is a close approximation. A starting point
for ID can be estimated from the upper bound on ID. If VD = 0, then ID = 2 V/10
k� = 200 �A. ID cannot be larger than 200 �A. A close solution is ID = 175 �A.

The diode voltage is 

VD = ln 

= 26 mV × ln = 244.2 mV

��

Self-Exercise 1.23

Estimate ID and VD in Figure 1.37 for IS = 1 nA.

�� EXAMPLE 1.7

Figure 1.38 shows two circuits with the diode cathode connected to the positive
terminal of a power supply (IS = 100 nA). What is V0 in both circuits?

175 uA
�
10 nA

ID
�
IS

kT
�
q

ID
�
IS

26 CHAPTER 1 ELECTRICAL CIRCUIT ANALYSIS

ID

500 mV

1 kΩ VDD

Figure 1.37.

Vo

2 V

Figure 1.38.

(a)                                                                               (b)

Vo

2 V

1 MΩ

c01.qxd  2/5/2004  4:48 PM  Page 26



Figure 1.38(a) has a floating node at V0 so there is no current in the diode.
Since ID = 0, the diode voltage drop VD = 0 and

V0 = VD + 2 V = 2 V

Figure 1.38(b) shows a current path to ground. The diode is reversed-biased and
IBB = –ID = 100 nA. Then

V0 = IBB × 1 M� = 100 nA × 1 M� = 100 mV

��

Both problems in Example 1.7 can be analyzed using Equations (1.23) to (1.26) or ob-
serving the process in the I–V curve of Figure 1.35. In Figure 1.38(a), the operating point
is at the origin. In Figure 1.38(b), it has moved to the left of the origin.

Self-Exercise 1.24

The circuit in Figure 1.39 is similar to IC protection circuits connected to the in-
put pins of an integrated circuit. The diodes protect the logic circuit block when
input pin (pad) voltages are accidentally higher than the power supply voltage
(VDD) or lower than the ground voltage. If VPAD > 5 V, then diode D2 turns on and
bleeds charge away from the input pin. The same process occurs through diode
D1 if the input pad voltage becomes less than ground (0 V). An integrated circuit
tester evaluates the diodes by forcing current (100 �A) and measuring the volt-
age. If the protection circuit is damaged, an abnormal voltage is usually read at
the damaged pin.

(a) If diode reverse bias saturation current is IS = 100 nA, what is the expected
input voltage measured if the diodes are good and R1 and R2 are small? Apply
±100 �A to assess both diodes.

(b) If the upper diode has a dead short across it, what is VIN when the test ex-
amines the upper diode? 
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Self-Exercise 1.25

Calculate V0 and VD1 in Figure 1.40, where IS = 100 �A and T = 25 °C. 

1.4.2 Diode Resistance

Although diodes do not obey Ohm’s law, a small signal variation in the forward bias can
define a resistance from the slope of the I–V curve. The distinction with linear elements is
important as we cannot simply divide a diode DC voltage by its DC current. That result is
meaningless. 

The diode curve is repeated and enlarged in Figure 1.41. If a small signal variation v(t)
is applied in addition to the DC operating voltage VDC, then the exponential current/volt-
age characteristic can be approximated to a line [given that v(t) is small enough] and an
equivalent resistance for that bias operation can be defined. Bias point 1 has a current
change with voltage that is larger than that of bias point 2; therefore, the dynamic resis-
tance of the diode is smaller at bias point 1. Note that this resistance value depends
strongly on the operating voltage bias value. Each point on the curve has a slope in the
forward bias. Dividing the DC voltage by the current, V1/I1, is not the same as V2/I2.
Therefore, these DC relations are meaningless. However, dynamic resistance concepts are
important in certain transistor applications.

This concept is seen in manipulation of the diode equation, where the forward-biased
dynamic resistance rd is

= = = = (1.27)
qID
�
kT

qISeqVD/kT

�
kT

d[ISeqVD/kT]
��

dVD

dID
�
dVD

1
�
rd
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The diode dynamic resistance is 

rd = = (1.28)

or at room temperature

rd � (1.29)

Self-Exercise 1.26

Find the diode dynamic resistance at room temperature for ID = 1 �A, 100 �A, 1
mA, and 10 mA.

How do we use the concept of dynamic diode resistance? A diode can be biased at a
DC current, and small changes about that operating point have a resistance. A small sinu-
soid voltage (vD) causes a diode current (iD) change equal to vD/rD. The other important
point is that you cannot simply divide DC terminal voltage by DC terminal current to cal-
culate resistance. This is true for diodes and also for transistors, as will be seen later.

1.5 SUMMARY

This chapter introduced the basic analysis of circuits with power supplies, resistors, ca-
pacitors, and diodes. Kirchhoff’s current and voltage laws were combined with Ohm’s law
to calculate node voltages and element currents for a variety of circuits. The technique of
solving for currents and voltages by inspection is a powerful one because of the rapid in-
sight into the nature of circuits it provides. Finally, the section on diodes illustrated analy-
sis with a nonlinear element. The exercises at the end of the chapter should provide suffi-
cient drill to prepare for subsequent chapters, which will introduce the MOSFET
transistor and its simple configurations.
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EXERCISES

1.1. Write the shorthand expression for Req at the open terminals in Figure 1.42.

1.2. Write the shorthand expression for Req at the open terminals in Figure 1.43.

26 mV
�

ID

kT
�
qID

dVD
�
dID
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1.3. For the circuit in Figure 1.44, (a) calculate V0; (b) calculate I2M.

1.4. Calculate V0 by first writing a voltage divider expression and then solving for V0

(Figure 1.45a and b).

1.5. Write the shorthand notation for current I2 in resistor R2 in Figure 1.46 as a function
of driving current I.

1.6. For the circuit in Figure 1.47, (a) solve for V0 using a voltage divider expression; (b)
solve for I2K; (c) solve for I900.
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1.7. Use the circuit analysis technique by inspection, and write the shorthand expression
to calculate I2K for Figure 1.48.

1.8. Given the circuit in Figure 1.49, (a) write the expression for I450 and solve; (b) write
the expression for V800; (c) show that I800 + I400 = 2 mA.
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1.9. Find I6k in Figure 1.50. Hint: when we have two power supplies and a linear (resis-
tive) network, we solve in three steps.

1. Set one power supply to 0 V and calculate current in the 6 k� resistor from the
nonzero power supply.

2. Reverse the role and recalculate I6k.
3. The final answer is the sum of the two currents.

This is known as the superposition theorem and can be applied only for linear ele-
ments.

1.10. Find the equivalent capacitance at the input nodes in Figure 1.51.

1.11. Find C1 in Figure 1.52.

1.12. Solve for ID and VD in Figure 1.53, where the diode has the value IS = 1 �A.

1.13. Calculate V0 in Figure 1.54, given that the reverse-bias saturation current IS = 1 nA,
and you are at room temperature.
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1.14. Diode D1 in Figure 1.55 has a reverse-bias saturation current of I01 = 1 nA, and
diode D2 has I02 = 4 nA. At room temperature, what is V0?

1.15. Calculate the voltage across the diodes in Figure 1.56, given that the reverse-bias
saturation current in D1 is I01 = 175 nA and I02 = 100 nA.
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