KIRK-OTHMER ENCYCLOPEDIA OF

CHEMICAL TECHNOLOGY

Fifth Edition

VOLUME 10

KIRK-OTHMER ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, FIFTH EDITION EDITORIAL STAFF

Vice President, STM Books: Janet Bailey Editorial Director, STM Encyclopedias: Sean Pidgeon Editor: Arza Seidel Managing Editor: Michalina Bickford Director, Book Production and Manufacturing: Camille P. Carter Production Manager: Shirley Thomas Senior Production Editor: Kellsee Chu Illustration Manager: Dean Gonzalez Editorial Assistant: Stephanie Anderson **KIRK-OTHMER ENCYCLOPEDIA OF**

CHEMICAL TECHNOLOGY Fifth Edition

VOLUME 10

Kirk-Othmer Encyclopedia of Chemical Technology is available Online in full color and with additional content at http://www3.interscience.wiley.com/cgi-bin/mrwhome/104554789/HOME.

WILEY-INTERSCIENCE

A John Wiley & Sons, Inc., Publication

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Kirk-Othmer encyclopedia of chemical technology. – 5th ed. p. cm.
Editor-in-chief, Arza Seidel.
"A Wiley-Interscience publication."
Includes index.
ISBN 0-471-48494-6 (set) – ISBN 0-471-48513-6 (v. 10)
1. Chemistry, Technical–Encyclopedias. I. Title: Encyclopedia of chemical technology.
TP9.K54 2004
660'.03–dc22 2003021960

Printed in the United States of America

 $10 \hspace{0.2cm} 9 \hspace{0.2cm} 8 \hspace{0.2cm} 7 \hspace{0.2cm} 6 \hspace{0.2cm} 5 \hspace{0.2cm} 4 \hspace{0.2cm} 3 \hspace{0.2cm} 2 \hspace{0.2cm} 1$

CONTENTS

Embedding	1
Emission Control, Automotive	30
Emission Control, Industrial	67
Emulsions	113
Energy Management	133
Engineering Thermoplastics	168
Environmental Impact Assessment	228
Enzyme Applications, Industrial	248
Enzyme Inhibitors	317
Epoxy Resins	347
Esterification	471
Esters, Organic	497
Ethanol	527
Ethers	567
Ethyl Chloride	584

Ethylene	593
Ethylene Oxide	632
Ethylene Oxide Polymers	673
Ethylene-Acrylic Elastomers	696
Ethylene-Propylene Polymers	704
Explosives and Propellants	719
Extraction, Liquid-Liquid	744
Fats and Fatty Oils	801
Feeds and Feed Additives, Nonruminant Feeds	836
Feeds and Feed Additives, Pet Foods	848
Feeds and Feed Additives, Ruminant Feeds	862

CONTRIBUTORS

Jacqueline Akhavan, Royal Military College of Science, Wiltshire, United Kingdom, Explosives and Propellants

- Mohammad Aslam, Hoechst-Celanese Corporation, Corpus Christi, TX, Esterification
- **Darlene M. Back,** *Dow Chemical Company, Piscataway, NJ*, Ethylene Oxide Polymers
- Malcolm H. I. Baird, McMaster University, Ontario, Canada, Extraction, Liquid-Liquid

Ronald L. Berglund, HBC/Terracon, Kingwood, TX, Emission Control, Industrial

Torben Vedel Borchert, Novozymes A/S, Bagsvaerd, Denmark, Enzyme Applications, Industrial

James Corbin, University of Illinois at Urbana-Champaign, Urbana, IL, Feeds and Feed Additives, Pet Foods

Ture Damhus, *Novozymes A/S*, *Bagsvaerd*, *Denmark*, Enzyme Applications, Industrial

J. P. Dever, Union Carbide Technical Center, South Charleston, WV, Ethylene Oxide

Claus Crone Fuglsang, Novozymes A/S, Bagsvaerd, Denmark, Enzyme Applications, Industrial

Fabio Garbassi, Eni Chem Research Center, Novara, Italy, Engineering Thermoplastics

Kathy F. George, Union Carbide Technical Center, South Charleston, WV, Ethylene Oxide

Tomas Tage Hansen, Novozymes A/S, Bagsvaerd, Denmark, Enzyme Applications, Industrial

Gerard L. Hasenhuettl, Consultant, Port Saint Lucie, FL, Fats and Fatty Oils

W. C. Hoffman, Union Carbide Technical Center, South Charleston, WV, Ethylene Oxide

Lawrence Karas, ARCO Chemical Company, Newtown Square, PA, Ethers

Ole Kirk, Novozymes A/S, Bagsvaerd, Denmark, Enzyme Applications, Industrial

Ed Kostansek, Rohm and Haas Company, Spring House, PA, Emulsions

David P. Lawrence, *Lawrence Environmental*, *B.C.*, *Canada*, Environmental Impact Assessment

Teh C. Lo, T. C. Lo & Associates, Wayne, NJ, Extraction, Liquid-Liquid

John E. Logsdon, Union Carbide Corporation, Texas City, TX, Ethanol

Henrik Lund, Novozymes A/S, Bagsvaerd, Denmark, Enzyme Applications, Industrial Edward McBride, DuPont Company,

Wilmington, DE, Ethylene-Acrylic Elastomers Matt C. Miller, Dow Chemical Company,

Freeport, TX, Ethyl Chloride John J. Mooney, Environmental & Energy

Technology & Policy Institute, Wyckoff, NJ, Emission Control, Automotive

Lone Kierstein Nielsen, Novozymes A/S, Bagsvaerd, Denmark, Enzyme Applications, Industrial

Jacques W. M. Noordermeer, DSM Elastomers, R&D, Geleen, The Netherlands, Ethylene-Propylene Polymers

Hans Sejr Olsen, Novozymes A/S, Bagsvaerd, Denmark, Enzyme Applications, Industrial

E. F. Olszewski, ABB Lummus Global, Inc., Bloomfield, NJ, Ethylene

Maurice J. Parks, Dow Chemical Company, Freeport, TX, Epoxy Resins

Tilden Wayne Perry, *Purdue University* (*Emeritus*), *Van Buren*, *AR*, Feeds and Feed Additives, Ruminant

Ha Q. Pham, Dow Chemical Company, Freeport, TX, Epoxy Resins

W. J. Piel, ARCO Chemical Company, Newtown Square, PA, Ethers

Riccardo Po, Eni Chem Research Center, Novara, Italy, Engineering Thermoplastics

Alan Rossiter, Rossiter & Associates, Bellaire, TX, Energy Management

Raj Sakamuri, Clariant Corporation, Somerville, NJ, Esters, Organic

Hans Erik Schiff, Novozymes A/S, Bagsvaerd, Denmark, Enzyme Applications, Industrial

Robert L. Schmitt, Dow Chemical Company,

Piscataway, NJ, Ethylene Oxide Polymers M. M. Shreehan, ABB Lummus Global, Inc., Bloomfield, NJ, Ethylene

Hwiali Soo, Union Carbide Technical Center, South Charleston, WV, Ethylene Oxide

K. M. Sundaram, ABB Lummus Global, Inc., Bloomfield, NJ, Ethylene

G. Paull Torrence, Hoechst-Celanese Corporation, Corpus Christi, TX, Esterification

Park W. Waldroup, University of Arkansas, Fayetteville, AR, Feeds and Feed Additives, Nonruminant

Chris Whiteley, Rhodes University, Grahamstown, South Africa, Enzyme Inhibitors

viii CONTRIBUTORS

- C. P. Wong, Georgia Institute of Technology, Atlanta, GA, Embedding
- Yun-Tai Wu, DuPont Company, Wilmington, DE, Ethylene-Acrylic Elastomers

Jianwen Xu, Georgia Institute of Technology, Atlanta, GA, Embedding
Edward G. Zey, Hoechst-Celanese Corporation, Corpus Christi, TX, Esterification

CONVERSION FACTORS, ABBREVIATIONS, AND UNIT SYMBOLS

SI Units (Adopted 1960)

The International System of Units (abbreviated SI), is implemented throughout the world. This measurement system is a modernized version of the MKSA (meter, kilogram, second, ampere) system, and its details are published and controlled by an international treaty organization (The International Bureau of Weights and Measures) (1).

SI units are divided into three classes:

BASE UNITS

length	meter † (m)
mass	kilogram (kg)
time	second (s)
electric current	ampere (A)
thermodynamic temperature ‡	kelvin (K)
amount of substance	mole (mol)
luminous intensity	candela (cd)

SUPPLEMENTARY UNITS

plane angle solid angle radian (rad) steradian (sr)

DERIVED UNITS AND OTHER ACCEPTABLE UNITS

These units are formed by combining base units, suplementary units, and other derived units (2–4). Those derived units having special names and symbols are marked with an asterisk in the list below.

 † The spellings "metre" and "litre" are preferred by ASTM; however, "-er" is used in the *Encyclopedia*.

[‡]Wide use is made of Celsius temperature (t) defined by

$$t = T - T_0$$

where T is the thermodynamic temperature, expressed in kelvin, and $T_0 = 273.15$ K by definition. A temperature interval may be expressed in degrees Celsius as well as in kelvin.

FACTORS, ABBREVIATIONS, AND SYMBOLS X

Quantity	Unit	Symbol	Acceptable equivalent
*absorbed dose	gray	Gy	J/Kg
acceleration	meter per second squared	m/s^2	
*activity (of a radionuclide)	becquerel	Bq	1/s
area	square kilometer	km^2	
	square hectometer	hm²	ha (hectare)
·····	square meter	m²	
of substance)	mole per cubic meter	mol/m ^o	
current density	ampere per square meter	A/m^2	
density, mass density	kilogram per cubic meter	kg/m ³	g/L; mg/cm ³
dipole moment (quantity)	coulomb meter	$\mathbf{C}\cdot\mathbf{m}$	
*dose equivalent	sievert	\mathbf{Sv}	J/kg
*electric capacitance	farad	\mathbf{F}	C/V
*electric charge, quantity of electricity	coulomb	С	$A \cdot s$
electric charge density	coulomb per cubic meter	C/m^3	
*electric conductance	siemens	S	A/V
electric field strength	volt per meter	∼ V/m	
electric flux density	coulomb per square	C/m^2	
*electric potential, potential difference, electromotive force	volt	V	W/A
*electric resistance	ohm	Ω	V/A
*energy, work, quantity of heat	megajoule	MJ	
	kilojoule	kJ	
	joule	\mathbf{J}	$\mathbf{N}\cdot\mathbf{m}$
	${ m electronvolt}^{\dagger}$	${ m eV}^{\dagger}$	
	${ m kilowatt} ext{-hour}^{\dagger}$	$\mathbf{k}\mathbf{W}\cdot\mathbf{h}^{\dagger}$	
energy density	joule per cubic meter	J/m^3	
*force	kilonewton	kN	2
	newton	Ν	$\mathrm{kg} \cdot \mathrm{m/s}^2$

 $^{\dagger}\mathrm{This}$ non-SI unit is recognized by the CIPM as having to be retained because of practical importance or use in specialized fields (1).

Vol. 10

FACTORS, ABBREVIATIONS, AND SYMBOLS xi

Quantity	Unit	Symbol	Acceptable equivalent
*frequency	megahertz	MHz	
1 0	hertz	Hz	1/s
heat capacity, entropy	joule per kelvin	J/K	
heat capacity (specific),	joule per kilogram	$J/(kg\cdot K)$	
heat-transfer coefficient	watt per square meter kelvin	$W\!/\!(m^2\cdot K)$	
*illuminance	lux	lx	lm/m^2
*inductance	henry	Н	Wb/A
linear density	kilogram per meter	kg/m	
luminance	candela per square meter	cd/m^2	
*luminous flux	lumen	lm	$\mathbf{cd}\cdot\mathbf{sr}$
magnetic field strength	ampere per meter	A/m	
*magnetic flux	weber	Wb	$\mathbf{V} \cdot \mathbf{s}$
*magnetic flux density	tesla	Т	Wb/m^2
molar energy	joule per mole	J/mol	
molar entropy, molar heat capacity	joule per mole kelvin	$J/(mol \cdot K)$	
moment of force, torque	newton meter	$\mathbf{N}\cdot\mathbf{m}$	
momentum	kilogram meter per second	$kg \cdot m/s$	
permeability	henry per meter	H/m	
permittivity	farad per meter	F/m	
*power. heat flow rate.	kilowatt	kW	
radiant flux	watt	W	J/s
power density, heat flux density, irradiance	watt per square meter	W/m^2	- /
*pressure. stress	megapascal	MPa	
prosecto, seress	kilopascal	kPa	
	pascal	Pa	N/m^2
sound level	decibel	dB	- 1/
specific energy	joule per kilogram	J/kg	
specific volume	cubic meter per kilogram	m ³ /kg	
surface tension	newton per meter	N/m	
thermal conductivity	watt per meter kelvin	$W/(m \cdot K)$	
velocity	meter per second	m/s	
·	kilometer per hour	km/h	
viscosity, dynamic	pascal second	Pa·s	
	millipascal second	mPa·s	
viscosity, kinematic	square meter per second	m^2/s	
	square millimeter per second	$\mathrm{mm}^{2}/\mathrm{s}$	

Quantity	Unit	Symbol	Acceptable equivalent
volume	cubic meter cubic diameter	${ m m}^{ m 3}$ d ${ m m}_{ m q}^{ m 3}$	L (liter) (5)
wavo numbor	cubic centimeter	cm^{3} m^{-1}	mL
wave number	1 per centimeter	cm^{-1}	

In addition, there are 16 prefixes used to indicate order of magnitude, as follows

Multiplication			
factor	Prefix	symbol	Note
10^{18}	exa	Е	
10^{15}	peta	Р	
10^{12}	tera	Т	
10^{9}	giga	G	
10^{6}	mega	Μ	
10^3	kilo	k	
10^{2}	hecto	\mathbf{h}^{a}	^{<i>a</i>} Although hecto, deka, deci, and
10	deka	da^a	centi are SI prefixes, their use
10^{-1}	deci	\mathbf{d}^{a}	should be avoided except for SI
10^{-2}	centi	\mathbf{c}^{a}	unit-multiples for area and
10^{-3}	milli	m	volume and nontechnical use of
10^{-6}	micro	μ	centimeter, as for body and
10^{-9}	nano	n	clothing measurement.
10^{-12}	pico	р	
10^{-15}	femto	f	
10^{-18}	atto	a	

For a complete description of SI and its use the reader is referred to ASTM E380 (4) and the article UNITS AND CONVERSION FACTORS which appears in Vol. 24.

A representative list of conversion factors from non-SI to SI units is presented herewith. Factors are given to four significant figures. Exact relationships are followed by a dagger. A more complete list is given in the latest editions of ASTM E380 (4) and ANSI Z210.1 (6).

Conversion Factors to SI Units

To convert from	То	Multiply by
acre	square meter (m ²)	$4.047 imes10^3$
angstrom	meter (m)	$1.0 imes 10^{-10\dagger}$
are	square meter (m ²)	$1.0 imes 10^{2\dagger}$
astronomical unit	meter (m)	$1.496 imes10^{11}$

 $^{\dagger}Exact.$

FACTORS, ABBREVIATIONS, AND SYMBOLS xiii

	-
Multiply	by

To convert from	То	Multiply by
atmosphere, standard	pascal (Pa)	$1.013 imes 10^5$
bar	pascal (Pa)	$1.0 imes 10^{5\dagger}$
barn	square meter (m^2)	$1.0 imes 10^{-28\dagger}$
barrel (42 U.S. liquid gallons)	cubic meter (m ³)	0.1590
Bohr magneton (μ_B)	J/T	$9.274 imes10^{-24}$
Btu (International Table)	joule (J)	$1.055 imes 10^3$
Btu (mean)	joule (J)	$1.056 imes10^3$
Btu (thermochemical)	joule (J)	$1.054 imes10^3$
bushel	cubic meter(m ³)	$3.524 imes10^{-2}$
calorie (International Table)	joule (J)	4.187
calorie (mean)	joule (J)	4.190
calorie (thermochemical)	joule (J)	4.184^\dagger
centipoise	pascal second (Pa · s)	$1.0 imes 10^{-3\dagger}$
centistokes	square millimeter per second (mm ² /s)	1.0^\dagger
cfm (cubic foot per minute)	cubic meter per second (m ³ s)	$4.72 imes10^{-4}$
cubic inch	cubic meter (m^3)	$1.639 imes10^{-5}$
cubic foot	cubic meter (m ³)	$2.832 imes10^{-2}$
cubic yard	cubic meter (m ³)	0.7646
curie	becquerel (Bq)	$3.70 imes10^{10\dagger}$
debye	coulomb meter $(\mathbf{C} \cdot \mathbf{m})$	$3.336 imes10^{-30}$
degree (angle)	radian (rad)	$1.745 imes10^{-2}$
denier (international)	kilogram per meter (kg/m)	$1.111 imes 10^{-7}$
	tex^{\ddagger}	0.1111
dram (apothecaries')	kilogram (kg)	$3.888 imes10^{-3}$
dram (avoirdupois)	kilogram (kg)	$1.772 imes10^{-3}$
dram (U.S. fluid)	cubic meter (m ³)	$3.697 imes10^{-6}$
dyne	newton (N)	$1.0 imes 10^{-5\dagger}$
dyne/cm	newton per meter (N/m)	$1.0 imes 10^{-3\dagger}$
electronvolt	joule (J)	$1.602 imes10^{-19}$
erg	joule (J)	$1.0 imes 10^{-7\dagger}$
fathom	meter (m)	1.829
fluid ounce (U.S.)	cubic meter (m^3)	$2.957 imes10^{-5}$
foot	meter (m)	0.3048^\dagger
footcandle	lux (lx)	10.76
furlong	meter (m)	$2.012 imes10^{-2}$
gal	meter per second squared (m/s ²)	$1.0 imes 10^{-2\dagger}$
gallon (U.S. dry)	cubic meter (m ³)	$4.405 imes10^{-3}$
gallon (U.S. liquid)	cubic meter (m ³)	$3.785 imes10^{-3}$
gallon per minute (gpm)	cubic meter per second (m ³ /s)	$6.309 imes10^{-5}$
	cubic meter per hour (m ³ /h)	0.2271

[†]Exact. $^{\ddagger}See$ footnote on p. x.

xiv FACTORS, ABBREVIATIONS, AND SYMBOLS

Vol. 10

To convert from	То	Multiply by
gauss	tesla (T)	$1.0 imes10^{-4}$
gilbert	ampere (A)	0.7958
gill (U.S.)	cubic meter (m^3)	$1.183 imes10^{-4}$
grade	radian	$1.571 imes10^{-2}$
grain	kilogram (kg)	$6.480 imes10^{-5}$
gram force per denier	newton per tex (N/tex)	$8.826 imes 10^{-2}$
hectare	square meter (m^2)	$1.0 imes 10^{4\dagger}$
horsepower (550 ft · lbf/s)	watt (W)	$7.457 imes10^2$
horsepower (boiler)	watt (W)	$9.810 imes10^3$
horsepower (electric)	watt (W)	$7.46 imes10^{2\dagger}$
hundredweight (long)	kilogram (kg)	50.80
hundredweight (short)	kilogram (kg)	45.36
inch	meter (m)	$2.54 imes 10^{-2\dagger}$
inch of mercury $(32^{\circ}F)$	pascal (Pa)	$3.386 imes10^3$
inch of water $(39.2^{\circ}F)$	pascal (Pa)	$2.491 imes10^2$
kilogram-force	newton (N)	9.807
kilowatt hour	megajoule (MJ)	3.6^\dagger
kip	newton (N)	$4.448 imes10^3$
knot (international)	meter per second (m/S)	0.5144
lambert	candela per square meter	$3.183 imes10^3$
	(cd/m^3)	
league (British nautical)	meter (m)	$5.559 imes10^3$
league (statute)	meter (m)	$4.828 imes10^3$
light year	meter (m)	$9.461 imes10^{15}$
liter (for fluids only)	cubic meter (m^3)	$1.0 imes 10^{-3\dagger}$
maxwell	weber (Wb)	$1.0 imes 10^{-8\dagger}$
micron	meter (m)	$1.0 imes 10^{-6\dagger}$
mil	meter (m)	$2.54 imes10^{-5\dagger}$
mile (statue)	meter (m)	$1.609 imes10^3$
mile (U.S. nautical)	meter (m)	$1.852 imes 10^{3\dagger}$
mile per hour	meter per second (m/s)	0.4470
millibar	pascal (Pa)	$1.0 imes10^2$
millimeter of mercury $(0^{\circ}C)$	pascal (Pa)	$1.333 imes 10^{2\dagger}$
minute (angular)	radian	$2.909 imes10^{-4}$
myriagram	kilogram (Kg)	10
myriameter	kilometer (Km)	10
oersted	ampere per meter (A/m)	79.58
ounce (avoirdupois)	kilogram (kg)	$2.835 imes10^{-2}$
ounce (troy)	kilogram (kg)	$3.110 imes10^{-2}$
ounce (U.S. fluid)	cubic meter (m^3)	$2.957 imes10^{-5}$
ounce-force	newton (N)	0.2780
peck (U.S.)	cubic meter (m^3)	$8.810 imes10^{-3}$
pennyweight	kilogram (kg)	$1.555 imes10^{-3}$
pint (U.S. dry)	cubic meter (m^3)	$5.506 imes10^{-4}$

 $^{\dagger}Exact.$

Vol. 10

FACTORS, ABBREVIATIONS, AND SYMBOLS

To convert from	То	Multiply by
pint (U.S. liquid)	cubic meter (m ³)	$4.732 imes10^{-4}$
poise (absolute viscosity)	pascal second (Pa · s)	0.10^{\dagger}
pound (avoirdupois)	kilogram (kg)	0.4536
pound (troy)	kilogram (kg)	0.3732
poundal	newton (N)	0.1383
pound-force	newton (N)	4.448
pound force per square inch (psi)	pascal (Pa)	$6.895 imes10^3$
quart (U.S. dry)	cubic meter (m ³)	$1.101 imes10^{-3}$
quart (U.S. liquid)	cubic meter (m ³)	$9.464 imes10^{-4}$
quintal	kilogram (kg)	$1.0 imes10^{-2\dagger}$
rad	gray (Gy)	$1.0 imes10^{-2\dagger}$
rod	meter (m)	5.029
roentgen	coulomb per kilogram (C/kg)	$2.58 imes10^{-4}$
second (angle)	radian (rad)	$4.848 imes10^{-6\dagger}$
section	square meter (m ²)	$2.590 imes10^6$
slug	kilogram (kg)	14.59
spherical candle power	lumen (lm)	12.57
square inch	square meter (m ²)	$6.452 imes10^{-4}$
square foot	square meter (m ²)	$9.290 imes10^{-2}$
square mile	square meter (m ²)	$2.590 imes10^6$
square yard	square meter (m ²)	0.8361
stere	cubic meter (m^3)	1.0^{\dagger}
stokes (kinematic viscosity)	square meter per second (m ² /s)	$1.0 imes 10^{-4\dagger}$
tex	kilogram per meter (kg/m)	$1.0 imes 10^{-6\dagger}$
ton (long, 2240 pounds)	kilogram (kg)	$1.016 imes 10^3$
ton (metric) (tonne)	kilogram (kg)	$1.0 imes10^{3\dagger}$
ton (short, 2000 pounds)	kilogram (kg)	$9.072 imes10^2$
torr	pascal (Pa)	$1.333 imes 10^2$
unit pole	weber (Wb)	$1.257 imes10^{-7}$
yard	meter (m)	0.9144^\dagger

 $^{\dagger}Exact.$

Abbreviations and Unit Symbols

Following is a list of common abbreviations and unit symbols used in the Encyclopedia. In general they agree with those listed in *American National Standard Abbreviations for Use on Drawings and in Text (ANSI Y1.1)* (6) and *American National Standard Letter Symbols for Units in Science and Technology* (ANSI Y10) (6). Also included is a list of acronyms for a number of private and

xv

government organizations as well as common industrial solvents, polymers, and other chemicals.

Rules for Writing Unit Symbols (4):

- 1. Unit symbols are printed in upright letters (roman) regardless of the type style used in the surrounding text.
- 2. Unit symbols are unaltered in the plural.
- 3. Unit symbols are not followed by a period except when used at the end of a sentence.
- 4. Letter unit symbols are generally printed lower-case (for example, cd for candela) unless the unit name has been derived from a proper name, in which case the first letter of the symbol is capitalized (W, Pa). Prefixes and unit symbols retain their prescribed form regardless of the surrounding typography.
- 5. In the complete expression for a quantity, a space should be left between the numerical value and the unit symbol. For example, write 2.37 lm, *not* 2.37 lm, *not* 35 mm. When the quantity is used in an adjectival sense, a hyphen is often used, for example, 35-mm film. *Exception:* No space is left between the numerical value and the symbols of degree, minute, and second of plane angle, degree Celsius, and the percent sign.
- 6. No space is used between the prefix and unit symbol (for example, kg).
- 7. Symbols, not abbreviations, should be used for units. For example, use "A," not "amp," for ampere.
- 8. When multiplying unit symbols, use a raised dot:

 $N\cdot m$ for newton meter

In the case of $W \cdot h$, the dot may be omitted, thus:

Wh

An exception to this practice is made for computer printouts, automatic typewriter work, etc, where the raised dot is not possible, and a dot on the line may be used.

9. When dividing unit symbols, use one of the following forms:

$$m/s$$
 or $m \cdot s^{-1}$ or $\frac{m}{s}$

In no case should more than one slash be used in the same expression unless parentheses are inserted to avoid ambiguity. For example, write:

$$\mathbf{J}/(\mathbf{mol}\cdot\mathbf{K}) \quad \textit{or} \quad \mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1} \quad \textit{or} \quad (\mathbf{J}/\mathbf{mol})/\mathbf{K}$$

but not

J/mol/K

Vol. 10

10. Do not mix symbols and unit names in the same expression. Write:

joules per kilogram or J/kg or J $\cdot\,{\rm kg}^{-1}$

but not

joules/kilogram nor Joules/kg nor Joules $\cdot\,{\rm kg}^{-1}$

ABBREVIATIONS AND UNITS

А	ampere	AOAC	Association of Official
А	anion (eg, HA)		Analytical Chemists
А	mass number	AOCS	American Oil Chemists'
a	atto (prefix for 10^{-18})		Society
AATCC	American Association of Textile Chemists and	APHA	American Public Health
	Colorists	ΔΡΙ	American Petroleum
ABS	acrylonitrile-butadiene-		Institute
	styrene	aq	aqueous
abs	absolute	Ar	aryl
ac	alternating current, <i>n</i> .	ar-	aromatic
a-c	alternating current, <i>adj</i> .	as-	Asymmetric(al)
ac-	alicyclic	ASHRAE	American Society of
acac	acetylacetonate		Heating, Refrigerating,
ACGIH	American Conference of		and Air Conditioning
	Governmental		Engineers
	Industrial Hygienists	ASM	American Society for
ACS	American Chemical		Metals
	Society	ASME	American Society of
AGA	American Gas Association		Mechanical Engineers
Ah	ampere hour	ASTM	American Society for
AIChE	American Institute of		Testing and Materials
	Chemical Engineers	at no.	atomic number
AIME	American Institute of	at wt	atomic weight
	Mining, metallurgical,	av(g)	average
	and Petroleum	AWS	American Welding Society
	Engineers	b	bonding orbital
AIP	American Institute of	bbl	barrel
	Physics	bcc	body-centered cubic
AISI	American Iron and Steel	BCT	body-centered tetragonal
	Institute	Bé	Baumé
alc	alcohol(ic)	BET	Brunauer-Emmett-Teller
Alk	alkyl		(adsorption equation)
alk	alkaline (not alkali)	bid	twice daily
amt	amount	Boc	<i>t</i> -butyloxycarbonyl
amu	atomic mass unit	BOD	biochemical (biological)
ANSI	American National		oxygen demand
	Standards Institute	bp	boiling point
AO	atomic orbital	Bq	becquerel

xviii FACTORS, ABBREVIATIONS, AND SYMBOLS

С	coulomb	dil	dilute
$^{\circ}\mathrm{C}$	degree Celsius	DIN	Deutsche Industrie
<i>C</i> -	denoting attachment to		Normen
	carbon	<i>dl-</i> ; dl-	racemic
с	centi (prefix for 10^{-2})	DMA	dimethylacetamide
c	critical	DMF	dimethylformamide
ca	circa (Approximately)	DMG	dimethyl glyoxime
cd	candela: current density:	DMSO	dimethyl sulfoxide
	circular dichroism	DOD	Department of Defense
CFR	Code of Federal	DOE	Department of Energy
	Regulations	DOT	Department of
cgs	centimeter-gram-second	201	Transportation
CI	Color Index	DP	degree of polymerization
cis-	isomer in which	dn	dew point
000	substituted groups are	DPH	diamond pyramid
	on some side of double	DI II	hardness
	hond between C atoms	dst1(d)	distill(ed)
പ	carload	dta	differential thermal
cm	continutor	uta	analysis
cmil	circular mil	$(\boldsymbol{F})_{-}$	antragan: opposed
cmnd	compound	(12)-	dioloctric constant
CNS	contral norvous system	C	(unitless number)
CoA		0	(unitiess number)
COD	coenzyme A	ECU	electron
coml	commoriaal(ly)	ECU	electrochemical unit
conn	commerical(iy)	eu. ED	effective dece
cp	chemically pure		effective dose
cpn	Conse-packed nexagonal	EDIA	etnylenediaminetetra-
CPSC	Consumer Product Salety	C	
,	Commission	emi	electromotive force
cryst	crystalline	emu	electromagnetic unit
cub	cubic	en	ethylene diamine
D	debye	eng	engineering
D-	relationship	EPA	Agency
d	differential operator	epr	electron paramagnetic
d	day; deci (prefix for 10^{-1})		resonance
d	density	eq.	equation
d-	dextro-, dextrorotatory	esca	electron spectroscopy for
da	deka (prefix for 10^{-1})		chemical analysis
dB	decibel	esp	especially
dc	direct current, n .	esr	electron-spin resonance
d-c	direct current, <i>adj</i> .	est(d)	estimate(d)
dec	decompose	estn	estimation
detd	determined	esu	electrostatic unit
detn	determination	exp	experiment, experimental
Di	didymium, a mixture of all	ext(d)	extract(ed)
	lanthanons	F	farad (capacitance)
dia	diameter	F	fraday (96,487 C)

f	femto (prefix for 10^{-15})	hyd	hydrated, hydrous
FAO	Food and Agriculture	hyg	hygroscopic
	Organization (United	Hz	hertz
	Nations)	$i(eg, Pr^i)$	iso (eg, isopropyl)
fcc	face-centered cubic	<i>i</i> -	inactive (eg, <i>i</i> -methionine)
FDA	Food and Drug	IACS	international Annealed
	Administration		Copper Standard
FEA	Federal Energy	ibp	initial boiling point
	Administration	IĊ	integrated circuit
FHSA	Federal Hazardous	ICC	Interstate Commerce
	Substances Act		Commission
fob	free on board	ICT	International Critical
fp	freezing point		Table
FPC	Federal Power Commission	ID	inside diameter: infective
FRB	Federal Reserve Board		dose
frz	freezing	ip	intraperitoneal
G	giga (prefix for 10^9)	IPS	iron pipe size
\widetilde{G}	gravitational constant	ir	infrared
G	$= 6.67 \times 10^{11} \text{N} \cdot \text{m}^2/\text{kg}^2$	IRLG	Interagency Regulatory
ø	gram	111110	Liaison Group
5 (g)	gas only as in $H_0O(g)$	ISO	International
s g	gravitational acceleration	100	Organization
8 or	gas chromatography		Standardization
gem-	geminal	ITS-90	International
geni	gas_liquid	110 00	Temperature Scale
Bio	chromatography		(NIST)
g-mol wt∙	gram-molecular weight	ΠJ	International Unit
g mor we,	gram morecular weight	IUPAC	International Union of
GNP	gross national product	101110	Pure and Applied
one	gel-nermeation		Chemistry
Spc	chromatography	IV	iodine value
GRAS	Generally Recognized as	iv	intravenous
	Safo	J	ioulo
ard	ground	5 K	kolvin
Gv	arev	k I	kilo (prefix for 10^3)
цу Н	bonry	ka	kilogram
h	hour: hocto (profix for 10^2)	кg	donoting configurational
ho	hour, neeto (prenz ior io)	Г	rolationship
HB	Brinoll hardnoss number	т	liter (for fluids only) (5)
HD Hb	homoglobin	1_ 1_	lavo- lovorotatory
hen	hovegonal close-neckod	<i>ι</i> - (1)	liquid only as in $NH_2(1)$
hov	hovogonal		appa lothal to 50% of the
	Knoon hardnogg number	LC_{50}	animals tosted
hnle	high porformance liquid	ICAO	linear combination of
The	abromatography	LUAU	atomia orbitala
UDC	Poolewall bandroom	10	liquid abromatograph-
IIII	(C coole)		liquid emotel display
TTT7	(U scale)		liquid crystal display
пи	vickers naroness number	101	iess than carload lots

xx FACTORS, ABBREVIATIONS, AND SYMBOLS

LD_{50}	dose lethal to 50% of the	Ν	newton (force)
	animals tested	N	normal (concentration);
LED	light-emitting diode		neutron number
liq	liquid	N-	denoting attachment to
lm	lumen	20	nitrogen
ln	logarithm (natural)	$n \;({\rm as}\;n_{\rm D}^{20})$	index of refraction (for
LNG	liquefied natural gas		$20^{\circ}\mathrm{C}$ and sodium
\log	logarithm (common)		light)
LOI	limiting oxygen index	$^{n}(as Bu^{n}),$	normal (straight-chain
LPG	liquefied petroleum gas	<i>n</i> -	structure)
ltl	less than truckload lots	n	neutron
lx	lux	n	nano (prefix for 10 ⁹)
Μ	mega (prefix for 10 ⁶); metal	na	not available
	(as in MA)	NAS	National Academy of
\underline{M}	molar; actual mass		Sciences
\underline{M}_w	weight-average mol wt	NASA	National Aeronautics and
M_n	number-average mol wt		Space Administration
m	meter; milli (prefix for	nat	natural
	10^{-3})	\mathbf{ndt}	nondestructive testing
m	molal	neg	negative
<i>m</i> -	meta	\mathbf{NF}	National Formulary
max	maximum	NIH	National Institutes of
MCA	Chemical Manufacturers'		Health
	Association (was	NIOSH	National Institute of
	Manufacturing		Occupational Safety
	Chemists Association)		and Health
MEK	methyl ethyl ketone	NIST	National Institute of
meq	milliequivalent		Standards and
mfd	manufactured		Technology (formerly
mfg	manufacturing		National Bureau of
mfr	manufacturer		Standards)
MIBC	methyl isobutyl carbinol	nmr	nuclear magnetic
MIBK	methyl isobutyl ketone	11115	resonance
MIC	minimum inhibiting	NND	New and Nonofficial Drugs
	concentration		(AMA)
min	minute; minimum	no.	number
mL	milliliter	NOI-(BN)	not otherwise indexed
MLD	minimum lethal dose	MAG	(by name)
MO	molecular orbital	NOS	not otherwise specified
mo	month	nqr	nuclear quadruple
mol	mole	NDG	resonance
mol wt	molecular weight	NRC	Nuclear Regulatory
mp	melting point		Commission; National
MK	molar retraction	NDI	Research Council
ms	mass spectrometry	NKI	New King Index
MSDS	material safety data sheet	NSF	National Science
mxt	mixture		Foundation
μ	micro (prefix for 10^{-6})	ΝΊΑ	nitrilotriacetic acid

Vol. 10

NTP	normal temperature and	pwd	powder
	pressure ($25^\circ\mathrm{C}$ and	ру	pyridine
	101.3 kPa or 1 atm)	qv	quod vide (which see)
NTSB	National Transportation	Ŕ	univalent hydrocarbon
	Safety Board		radical
0-	denoting attachment to	(R)-	rectus (clockwise
-	oxvgen	()	configuration)
0-	ortho	r	precision of data
0D	outside diameter	, rad	radian: radius
OPEC	Organization of Petroleum	RCRA	Resource Conservation and
0110	Exporting Countries	100101	Recovery Act
o nhon	a phonon thriding	rda	rate determining stop
OSUA	Operational Sofety and	rus	rate-determining step
USIIA	Uselth Administration	rei.	
C	Health Administration	ri f	radio frequency, n .
owi	on weight of fiber	r-I	radio irequency, <i>daj</i> .
Ω	onm	rn	relative humidity
Р	peta (prefix for 10^{13})	RI	Ring Index
р	pico (prefix for 10^{-12}	rms	root-mean square
<i>p</i> -	para	rpm	rotations per minute
p	proton	rps	revolutions per second
p.	page	\mathbf{RT}	room temperature
Pa	Pascal (pressure)	RTECS	Registry of Toxic Effects
PEL	personal exposure limit		of Chemical Substances
	based on an 8-h	$s(eg, Bu^s);$	secondary (eg, secondary
	exposure	SPC-	hutvl)
	chpostare	000	Duby1)
pd	potential difference	S	siemens
pd pH	potential difference negative logarithm of the	S (S)-	siemens sinister (counterclockwise
pd pH	potential difference negative logarithm of the effective hydrogen ion	S (S)-	siemens sinister (counterclockwise configuration)
pd pH	potential difference negative logarithm of the effective hydrogen ion concentration	S (S)- S-	siemens sinister (counterclockwise configuration) denoting attachment to
pd pH phr	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin	S (S)- S-	siemens sinister (counterclockwise configuration) denoting attachment to sulfur
pd pH phr	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber)	S (S)- S- s-	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al)
pd pH phr <i>p-i-n</i>	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative	s (S)- S- s- S	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second
pd pH phr <i>p-i-n</i> pmr	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance	S (S)- S- S (s)	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s)
pd pH phr <i>p-i-n</i> pmr <i>p-n</i>	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative	S (S)- S- S (s) SAE	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive
pd pH phr <i>p-i-n</i> pmr <i>p-n</i> po	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral)	S (S)- S- s- S (s) SAE	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers
pd pH phr <i>p-i-n</i> pmr <i>p-n</i> po POP	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene	S (S)- S- S (s) SAE SAN	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile
pd pH phr <i>p-i-n</i> po POP pos	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive	S (S)- S- S (s) SAE SAN sat(d)	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d)
pd pH phr <i>p-i-n</i> pmr <i>p-n</i> po POP pos pn	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive nages	S (S)- S- S (s) SAE SAN sat(d) satn	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation
pd pH phr <i>p-i-n</i> pmr <i>p-n</i> po POP pos pp. pnb	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per hillion (10 ⁹)	S (S)- S- S (s) SAE SAN sat(d) satn SBS	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation
pd pH phr <i>p-i-n</i> po POP pos pp. ppb ppm	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per milion (10 ⁶)	S (S)- S- S- S(s) SAE SAN sat(d) satn SBS SC	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation styrene-butadiene-styrene
pd pH phr <i>p-i-n</i> po POP pos pp. ppb ppm	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per million (10 ⁶) parts per million by volume	S (S)- S- S- S (s) SAE SAN sat(d) satn SBS sc SCE	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation styrene-butadiene-styrene subcutaneous solf-consistent field:
pd pH phr <i>p-i-n</i> po POP pos pp. ppb ppm ppmv	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per million (10 ⁶) parts per million by volume parts per million by volume	S (S)- S- S- SAE SAE SAN sat(d) satn SBS sc SCF	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation styrene-butadiene-styrene subcutaneous self-consistent field; ctandard gubia foot
pd pH phr <i>p-i-n</i> por POP pos pp. ppb ppm ppmv ppmvt PDP	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per million (10 ⁶) parts per million by volume parts per million by weight	S (S)- S- S- S (s) SAE SAN sat(d) satn SBS sc SCF Sch	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation styrene-butadiene-styrene subcutaneous self-consistent field; standard cubic feet
pd pH phr <i>p-i-n</i> po POP pos pp. ppb ppm ppmv ppmvt PPO pos(d)	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per million (10 ⁶) parts per million by volume parts per million by volume parts per million by weight poly(phenyl oxide)	S (S)- S- S (s) SAE SAN sat(d) satn SBS sc SCF Sch	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturate(d) saturation styrene-butadiene-styrene subcutaneous self-consistent field; standard cubic feet Schultz number gaaaning electror
pd pH phr <i>p-i-n</i> pmr <i>p-n</i> po POP pos pp. ppb ppm ppmv ppmv PPO ppt(d)	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per million (10 ⁶) parts per million by volume parts per million by volume parts per million by weight poly(phenyl oxide) precipitate(d)	S (S)- S- S (s) SAE SAN sat(d) satn SBS sc SCF Sch sem	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturate(d) saturation styrene-butadiene-styrene subcutaneous self-consistent field; standard cubic feet Schultz number scanning electron
pd pH phr <i>p-i-n</i> po POP pos pp. ppb ppm ppmv ppmv ppmvt PPO ppt(d) pptn	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per million (10 ⁶) parts per million by volume parts per million by volume parts per million by weight poly(phenyl oxide) precipitate(d) precipitation	S (S)- S- S (s) SAE SAN sat(d) satn SBS sc SCF Sch sem	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation styrene-butadiene-styrene subcutaneous self-consistent field; standard cubic feet Schultz number scanning electron microscope(y)
pd pH phr <i>p-i-n</i> pmr <i>p-n</i> po POP pos pp. ppb ppm ppmv ppmv ppmvt PPO ppt(d) pptn Pr (no.)	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per million (10 ⁶) parts per million by volume parts per million by volume parts per million by weight poly(phenyl oxide) precipitate(d) precipitation foreign prototype (number)	S (S)- S- S (s) SAE SAN sat(d) satn SBS sc SCF Sch sem SFs	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation styrene-butadiene-styrene subcutaneous self-consistent field; standard cubic feet Schultz number scanning electron microscope(y) Saybolt Furol seconds
pd pH phr <i>p-i-n</i> pmr <i>p-n</i> po POP pos ppb ppb ppm ppmv ppmv ppmv PPO ppt(d) pptn Pr (no.) pt	potential difference negative logarithm of the effective hydrogen ion concentration parts per hundred of resin (rubber) positive-intrinsic-negative proton magnetic resonance positive-negative per os (oral) polyoxypropylene positive pages parts per billion (10 ⁹) parts per million (10 ⁶) parts per million by volume parts per million by volume parts per million by weight poly(phenyl oxide) precipitate(d) precipitation foreign prototype (number) point; part	S (S)- S- S (s) SAE SAN sat(d) satn SBS sc SCF Sch sem SFs sl sol	siemens sinister (counterclockwise configuration) denoting attachment to sulfur symmetric(al) second solid, only as in H ₂ O(s) Society of Automotive Engineers styrene-acrylonitrile saturate(d) saturation styrene-butadiene-styrene subcutaneous self-consistent field; standard cubic feet Schultz number scanning electron microscope(y) Saybolt Furol seconds slightly soluble

xxii FACTORS, ABBREVIATIONS, AND SYMBOLS

soln soly sp sp gr sr	solution solubility specific; species specific gravity steradian	trans-	isomer in which substituted groups are on opposite sides of double bond between C atoms
std	standard	TSCA	Toxic Substances Control
STP	standard temperature and		Act
	pressure $(0^{\circ}C \text{ and }$	TWA	time-weighted average
	101.3 kPa)	Twad	Twaddell
sub	sublime(s)	UL	Underwriters' Laboratory
SUs syn	Saybolt Universal seconds synthetic	USDA	United States Department of Agriculture
$t^{t}(eg, Bu^{t}),$	tertiary (eg, tertiary	USP	United States
t-, tert-	butyl)		Pharmacopeia
Т	tera (prefix for 10^{12}); tesla	uv	ultraviolet
	(magnetic flux density)	V	volt (emf)
t	metric to (tonne)	var	variable
t	temperature	vic-	vicinal
TAPPI	Technical Association of	vol	volume (not volatile)
	the Pulp and Paper	vs	versus
	Industry	v sol	very soluble
TCC	Tagliabue closed cup	W	watt
tex	tex (linear density)	Wb	weber
T_g	glass-transition	Wh	watt hour
0	temperature	WHO	World Health Organization
tga	thermogravimetric		(United Nations)
	analysis	wk	week
THF	tetrahydrofuran	yr	year
tlc	thin layer chromatography	(Z)-	zusammen; together;
TLV	threshold limit value		atomic number

Non-SI (Unacceptable and Obsolete) Units

Å	angstrom	nm
at	atmosphere, technical	Pa
atm	atmosphere, standard	Pa
b	barn	cm^2
\mathbf{bar}^{\dagger}	bar	Pa
bbl	barrel	\mathbf{m}^3
bhp	brake horsepower	W
Btu	British thermal unit	\mathbf{J}
bu	bushel	m^3 ; L
cal	calorie	\mathbf{J}
cfm	cubic foot per minute	m^3/s
Ci	curie	Bq
cSt	centistokes	mm^2/s
c/s	cycle per second	Hz
cu	cubic	exponential form

 $^\dagger Do$ not use bar $(10^5~Pa)$ or millibar $(10^2~Pa)$ because they are not SI units, and are accepted internationally only in special fields because of existing usage.

Use

		~
D	debye	$\mathbf{C} \cdot \mathbf{m}$
den	denier	tex
dr	dram	kg
dyn	dyne	Ν
dyn/cm	dyne per centimeter	mN/m
erg	erg	\mathbf{J}
eu	entropy unit	J/K
٦°	degree Fahrenheit	°C: K
fc	footcandle	lx
A	footlambert	lv
fl oz	fuid ourco	m ³ · I
11 02 ft	fact	ш, ц т
11 ff 11.f	foot nound form	T
	loot pound-lorce	J NT/L
gi den	gram-force per denier	N/tex
G	gauss	Т
Gal	gal	m/s^2
gal	gallon	m^3 ; L
Gb	gilbert	A
gpm	gallon per minute	$(m^3/s); (m^3/h)$
gr	grain	kg
ĥp	horsepower	W
ihp	indicated horsepower	W
in.	inch	m
in. Hg	inch of mercury	Pa
in H ₀ O	inch of water	Pa
in -lbf	inch pound-force	J
kenl	kilo galorio	I
kcai	kilogram foreo	J N
kgi hilo	for bilogram	IN Ince
KIIO T	for knogram	кg
	lambert	1X
lb	pound	kg
lbf	pound-force	N
mho	mho	S
mi	mile	m
MM	million	Μ
mm Hg	millimeter of mercury	Pa
$\mathbf{m}\mu$	millimicron	nm
mph	miles per hour	km/h
μ	micron	μm
Öe	oersted	A/m
OZ	ounce	kg
ozf	ounce-force	N
n	noise	Pais
יי ד	noise	Pare
nh	phot	la s
pii	pilot pounda force por square inch	Do
paio	pounds force per square men ab-	ra Do
psia	pounds-force per square inch absolute	га Д-
psig	pounds-force per square inch gage	ra 3 t
qt	quart	m°; L
ĸ	degree Kankine	ĸ
rd	rad	Gy
sb	stilb	lx
SCF	standard cubic foot	m^3
sq	square	exponential form
thm	therm	J
		-

BIBLIOGRAPHY

- 1. The International Bureau of Weights and Measures, BIPM (Parc Saint-Cloud, France) is described in Ref. 4. This bureau operates under the exclusive supervision of the International Committee for Weights and Measures (CIPM).
- 2. Metric Editorial Guide (ANMC-78-1), latest ed., American National Metric Council, 900 Mix Avenue, Suite 1 Hamden CT 06514-5106, 1981.
- SI Units and Recommendations for the Use of Their Multiples and of Certain Other Units (ISO 1000-1992), American National Standards Institute, 25 W 43rd St., New York, 10036, 1992.
- 4. Based on IEEE/ASTM-SI-10 Standard for use of the International System of Units (SI): The Modern Metric System (Replaces ASTM380 and ANSI/IEEE Std 268-1992), ASTM International, West Conshohocken, PA., 2002. See also www.astm.org
- 5. Fed. Reg., Dec. 10, 1976 (41 FR 36414).
- 6. For ANSI address, see Ref. 3. See also www.ansi.org