
CHAPTER 1

Introduction

It’s all around us.

In this book we will be examining how statistical principles and methods can be

used to study environmental problems. Our concern will be directed to:

. probabilistic, stochastic and statistical models;

. data collection, monitoring and representation;

. drawing inferences about important characteristics of the problem;

. using statistical methods to analyse data and to aid policy and action.

The principles and methods will be applicable to the complete range of environ-

mental issues (including pollution, conservation, management and control,

standards, sampling and monitoring) across all fields of interest and concern

(including air and water quality, forestry, radiation, climate, food, noise, soil

condition, fisheries, and environmental standards). Correspondingly, the prob-

abilistic and statistical tools will have to be wide-ranging. Inter alia, we will

consider extreme processes, stimulus response methodology, linear and gener-

alized linear models, sampling principles and methods, time series, spatial

models and methods, and, where appropriate within these themes, give atten-

tion to appropriate multivariate techniques and to design considerations in-

cluding, for example, designed experiments.

Any models or methods applicable to situations involving uncertainty and

variability will be relevant in one guise or another to the study and interpret-

ation of environmental problems and will thus be part of the armoury of

environmental statistics or environmetrics. Environmental statistics is a vast

subject. In an article in the journal Environmetrics, Hunter (1994) remarked:

‘Measuring the environment is an awesome challenge, there are so many things

to measure, and at so many times and places’. But, however awesome, it must

be faced! The recently published four-volume Encyclopaedia of Environmetrics

(El-Shaarawi and Piegorsch, 2002) bears witness to the vast coverage of our

theme and to its widespread following.

Environmental Statistics V. Barnett
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1.1 TOMORROW IS TOO LATE!

As we enter the new millennium the world is in crisis – in so many respects we

are placing our environment at risk and not reacting urgently enough to reverse

the effects. Harrison (1992) gives some graphic illustrations (see also Barnett,

1997):

. The average European deposits in a lifetime a monument of waste

amounting to about 1000 times body weight; the average North American

achieves four times this.
. Sea-floor sediment deposits around the UK average 2000 items of plastic

debris per square metre.
. Over their lifetime, each person in the Western world is responsible for

carbon dioxide emissions with carbon content on average 3500 times the

person’s body weight.

The problems of acid rain, accumulation of greenhouse gases, climate change,

deforestation, disposal of nuclear waste products, nitrate leaching, particulate

emissions from diesel fuel, polluted streams and rivers, etc., have long been

crying out for attention. Ecological concerns and commercial imperatives

sometimes clash when we try to deal with the serious environmental issues.

Different countries show different degrees of resolve to bring matters under

control; carbon emission is a case in point, with acclaimed wide differences of

attitude and practice between, for example, the United States and the European

Union. Environmental scientists, and specialists from a wide range of discip-

lines, are immersed in efforts to try to understand and resolve the many

environmental problems we face.

Playing a major role in these matters are the statisticians, who are uniquely

placed to represent the issues of uncertainty and variation inevitably found in

all environmental issues. This is vital to the formulation of models and to the

development of specific statistical methods for understanding and handling

such problems.

1.2 ENVIRONMENTAL STATISTICS

Environmental statistics is a branch of statistics which has developed rapidly

over the past 10–15 years, in response to an increasing concern among individ-

uals, organizations and governments for protecting the environment. It differs

from other applications topics (e.g. industrial statistics, medical statistics) in the

very wide range of emphases, models and methods needed to encompass such

broad fields as conservation, pollution evaluation and control, monitoring of

ecosystems, management of resources, climate change, the greenhouse effect,

forests, fisheries, agriculture and food. It is also placing demands on the

statisticians to develop new approaches (e.g. to spatial-temporal modelling)

or new methods (e.g. for sampling when observations are expensive or elusive
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or when we have specific information to take into account) as well as to adapt

the whole range of existing statistical methodology to the challenges of the new

environmental fields of application.

Environmental statistics is indeed becoming a major, high-profile, identified

theme in most of the countries where statistical analysis and research are

constantly advancing our understanding of the world we live in. Its growing

prominence is evident in a wide range of relevant emphases throughout the

world.

Almost all major international statistical or statistically related conferences

now inevitably include sessions on environmental statistics. The International

Environmetrics Society (TIES), which originated in Canada, has, over more

than a decade, held in excess of ten international conferences on environmental

statistics and has promoted the new journal Environmetrics (published by John

Wiley & Sons, Ltd). The SPRUCE organization, established in 1990, is con-

cerned with Statistics in Public Resources and Utilities, and in Care of the

Environment and has also held major international conferences. Four resulting

volumes have appeared under the title Statistics for the Environment (Barnett

and Turkman, 1993, 1994, 1997; Barnett et al., 1999). A further volume on

Quantitative Methods for Current Environmental Issues covers the joint

SPRUCE–TIES conference in Sheffield, UK, held in September 2000 (Ander-

son et al., 2002).

Other expressions of concern for environmental statistics are found in the

growing involvement of national statistical societies, such as the Royal Statis-

tical Society in the UK and the American Statistical Association, in featuring

the subject in their journals and in their organizational structure. Specific

organizations such as the Center for Statistical Ecology and Environmental

Statistics at Penn State University, US, and the broader-based US Environ-

mental Protection Agency (USEPA) are expanding their work in environmen-

tal statistics. Other nations also express commitment to the quantitative study

of the environment through bodies concerned with environmental protection,

with environmental change networks and with governmental controls and

standards on environmental emissions and effects. Many universities through-

out the world are identifying environmental statistics within their portfolios of

applications in statistical research, education and training.

Of course, concern for quantitative study of environmental issues is not a

new thrust. This is evidenced by the many individuals and organizations that

have for a long time been involved in all (including the statistical) aspects of

monitoring, investigating and proposing policy in this area. These include

health and safety organizations; standards bodies; research institutes; water

and river authorities; meteorological organizations; fisheries protection agen-

cies; risk, pollution, regulation and control concerns, and so on.

Such bodies are demanding more and more provision of sound statistical

data, knowledge and methods at all levels (from basic data collection and

sampling to specific methodological and analytic procedures). The statistician

is of course ideally placed to represent the issues of uncertainty and variation

inevitably found in all environmental problems. An interesting case in point
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was in relation to the representation of uncertainty and variation in the setting

of environmental pollution standards in the 1997 UK Royal Commission on

Environmental Pollution study (see Royal Commission on Environmental

Pollution, 1998; Barnett and O’Hagan, 1997).

Environmental statistics is thus taking its place besides other directed speci-

alities: medical statistics, econometrics, industrial statistics, psychometrics, etc.

It is identifying clear fields of application, such as pollution, utilities, quality of

life, radiation hazard, climate change, resource management, and standards.

All areas of statistical modelling and methodology arise in environmental

studies, but particular challenges exist in certain areas such as official statistics,

spatial and temporal modelling and sampling. Environmentally concerned

statisticians must be pleased to note the growing public and political acceptance

of their role in the environmental debate.

Many areas of statistical methodology and modelling find application in

environmental problems. Some notable emphases and needs are as follows:

. The study of extremes, outliers and robust inference methods is relevant to

so many fields of inquiry, none more so than environmental issues.
. Particular modern sampling methods have special relevance and potential

in many fields of environmental study; they are important in monitoring

and in standard-setting. For example, ranked-set sampling aims for high-

efficiency inference, where observational data are expensive, by exploiting

associated (concomitant, often ‘expert-opinion’) information to spread

sample coverage. Composite sampling seeks to identify rare conditions

and form related inferences again where sampling is costly and where

sensitivity issues arise, whilst adaptive sampling for elusive outcomes and

rare events modifies the sampling scheme progressively as the sample is

collected.
. Other topics such as size-biasing, transect sampling and capture–recapture

also find wide application in environmental studies.
. Linear and generalized linear models play a central role in statistical investi-

gations across all areas of environmental application. Further developments

are needed, particularly in relation to multivariate correlated data, random

dependent variables, extreme values, outliers, complex error structure, etc.,

with special relevance to environmental, economic and social issues.
. Risk evaluation and uncertainty analysis are modern thrusts which still

need more careful definition and fuller investigation to formalise their

pivotal roles and to elucidate distinctions with conventional statistical

concepts and methods (see Barnett and O’Hagan, 1997; Barnett, 2002d).

Applications of special relevance occur across the environmental spectrum.
. Temporal and spatial models have clear and ubiquitous relevance; all

processes vary in time and space. Time-series methods have been widely

applied and developed for environmental problems but more research is

needed on non-stationary and multivariate structures, on outliers and on

non-parametric approaches. Spatial methods need further major research

development, including concern for the highly correlated and multivariate
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base of most applications fields. Conjoint spatial-temporal models and

methods are not well developed and are ripe for major advances in research.

In this book we will seek to review and represent the wide range of applica-

tions and of statistical topics in environmental statistics. This is facilitated by

dividing the coverage into a number of thematic parts as follows:

Part I Extremal stresses: extremes, outliers, robustness (Chapters 2 and 3);

Part II Collecting environmental data: sampling and monitoring (Chapters

4, 5 and 6);

Part III Examining environmental effects: stimulus–response relationships

(Chapters 7 and 8);

Part IV Standards and regulations (Chapter 9);

Part V A many-dimensional environment: spatial and temporal processes

(Chapters 10 and 11).

Each part is, as indicated, divided into separate chapters covering different

appropriate aspects of the respective theme.

1.3 SOME EXAMPLES

We will start our study of environmental statistics by considering briefly some

practical examples, from different fields, which also illustrate various models

and methods which will be developed more formally and in more detail as the

book progresses.

1.3.1 ‘Getting it all together’

Collecting data in an effective and efficient manner is of central importance in

studying environmental problems. Often we need to identify those members of

a population who possess some rare characteristic or condition or to estimate

the proportion of such members in the population. Sometimes the condition is

of a ‘sensitive’ form, and individuals may be loath to reveal it. Alternatively, it

may be costly or difficult to assess each member separately.

One possibility might be to obtain material or information from a large

group of individuals, to mix it all together and to make a single assessment

for the group as a whole. This assessment will reveal the condition if any one of

the group has the condition. If it does not show up in our single test we know

that all members are free of the condition. A single test may clear 1000

individuals!

This is the principle behind what is known as composite sampling (or com-

posite testing). It is also known as aggregate sampling or in some contexts as

grab sampling. For example, we might use a dredger to grab a large sample of

soil deposit from a river bed and conduct a single test to show there is no

contamination.
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Of course, our composite sample might show the condition to be present. We

then know nothing about which, or how many, individuals are affected. But

that is another matter to which we will return later. If the condition is rare, the

single composite sample will often be ‘clear’ and we will be able to clear all

members of the sample with a single test.

Such an approach is not new – early examples of such group testing were

concerned with the prevalence of insects carrying a plant virus (Watson, 1936)

and of testing US servicemen for syphilis in the Second World War (Dorfman,

1943). An informative elementary review of composite sampling applications is

given by USEPA (1997).

So how does this method operate? Typically a (usually large) number of

random samples of individuals are chosen from the population. The material

collected from each member of a sample is pooled, and a single test carried out

to see if the condition is present or absent; for example, blood samples of

patients might be mixed together and tested for the presence of the HIV virus.

Thus, suppose that our observational samples are of sizes n1, n2, n3, . . . (often
all ni are equal) and that our corresponding composite test outcomes are 0, 0, 1,

. . . (where 0 means negative and 1 means positive). From these data, we can

develop an estimator ~pp of the crucial parameter

p ¼ P (individual has the condition)

which expresses the rate of incidence of the condition in the population at large.

Further, we will be able to derive the statistical properties of the estimator (i.e.

to examine whether it is biased, to determine what is its variance or mean

square error, etc.).

An interesting situation arises when, rather than estimating p, our interest is

in identifying which specific members of a sample actually have the condition.

If the test does not show the condition, all members are free of it. But if it is

present, we must then do more testing to find out which members have the

condition. Different strategies are possible. Suppose we start with n individuals.

The most obvious possibility is full retesting (Figure 1.1). Here we do the overall

composite test and if it is positive we then proceed to retest each individual, so

Test all n IF Negative

IF Positive
End

Test all items separately

Figure 1.1 Full retesting.
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that we either do one test (if the first test result is negative) or nþ 1 tests

(otherwise) to uncover the complete situation. If the condition is rare ( p is

small) the expected number of tests will be just a little larger than 1, compared

with the n needed if we just tested all individuals separately at the outset. For

example, if n ¼ 20 and p ¼ 0:0005 the expected number of tests turns out to be

just 1.2!

An alternative approach (illustrated in Figure 1.2) is group retesting. Here the

sample group of size n is divided into k subgroups of sizes n1, n2, . . . , nk if the

first overall composite test is positive, and each of the subgroups is treated as a

second-stage composite sample. Each subgroup is then tested as for full retest-

ing and the process terminates.

Different strategies for choice of the number k and sizes n1, n2, . . . , nk of

subgroups have been considered, yielding crucial differences in efficiency of

identification of the ‘positives’ in the overall sample. It is interesting to examine

this by trying out different choices of k and n1, n2, . . . , nk.
A special, useful modification of group retesting is cascading, where we adopt

a hierarchical approach, dividing each positive group or subgroup into pre-

cisely two parts and continuing testing until all positives have been identified.

Figure 1.3 shows how this might operate.

These three strategies provide much scope for trying to find effective means

of identifying the positive individuals – and also for some interesting combina-

torial probability theory calculations.

Composite sampling can also be used to estimate characteristics of quantita-

tive variables in appropriate circumstances, such as the mean density of pollut-

ing organisms in a water supply, as we shall find in our later, more detailed

discussion of the approach (Section 5.3). This intriguing method of composite

sampling is just one example of the many modern sampling methods that are

being used to obtain data on environmental matters.

Test all n IF negative

IF positive

Test group of n1
IF  negative
IF positive

Test group of n2
IF negative
IF positive

Test group of nk
IF  negative
IF positive

End End End

End

Test all
n1

Test all
n2

Test all
nk

Figure 1.2 Group retesting.
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1.3.2 ‘In time and space’

Environmental effects involve uncertainty and need to be represented in

terms of random variables. They frequently also exhibit systematic effects

related to concomitant variables. For example, the extent of nitrate leaching

through fertilized agricultural land may well depend on the concentration of

recently applied nitrogenous fertilizer. Thus we will need to study relationships

between variables. These may be expressed in simple linear regression

model terms, or may require more complicated models such as the generalized

linear model or speific non-linear models.

As an example, we might consider how the mid-day temperature on a specific

day, at different sites in the UK, varies with the northings and eastings of the

sites, which specify where they are located. Perhaps we might feel that the

temperature will tend to be lower the more northerly the site (and perhaps

the more easterly). This could be expressed in terms of a regression model with

two regressor variables representing northing and easting. But what about

altitude? This could also be influential.

In this example we see a variable which varies over space – spatial models will

need to be a feature of our studies and will go beyond simple regression

structures. Again, we have considered just a single day. Clearly the time of

Test all n  IF Negative
 IF Positive

End

Test n/2  IF Negative
IF Positive Test n/2  IF Negative

IF Positive

End

Test n/4  IF Negative
IF Positive 

Test n/4  IF Negative
IF Positive 

Test n/4  IF Negative
IF Positive

TEST n/4  IF Negative
IF Positive

End

Test in groups of n/8  
Etc, Etc, Etc

Figure 1.3 Cascading.
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the year, even the time of the day (if not just noon) will be crucial to the levels of

temperature we might expect to encounter. So there will also be a temporal

component, and we will need to model the temperature in terms which allow for

the effect of time. Time-series methods are designed to do this, and we will

examine their principles and procedures. The practical example discussed in

Section 1.3.3 below also needs precisely such a spatial and temporal basis for its

study and raises the prospect of whether we could contemplate a joint spatial-

temporal model. This is a largely uncharted area.

Regression models are widely used for spatial variation (as are prediction or

mapping procedures such as kriging – see Section 11.2), while time-series

models are used represent time variation; but how are we to combine the spatial

and temporal components?

For the moment we notice that a linear (regression) model for the mid-day

temperature which expresses the temperature as a linear combination of space

and time variables could in principle provide such a joint model, but it would

have clear limitations.

Consider another atmospheric variable. It is important for various purposes

to monitor the amount of ground-level ozone as an environmental health

indicator. But where should we measure it (on the roof of the local railway

station?) and when (Tuesday, at noon?). In fact we want to know (and to

economically represent) how the ozone level is varying from place to place

over a defined region and from time to time over a specified time period, as we

did for the temperature.

That is, we need realistic models for Z(t, s) (ozone level at time t and

location s) which ideally would reflect levels and intercorrelations from time

to time and place to place. We need then to develop statistical methods to fit

such models, to test their validity, to estimate parameters, to predict future

outcomes, etc.

A basic approach to this might be an augmented regression (linear) model.

With data for 36 locations on a 6�6 rectangular grid measured monthly over

several years, a model for log ozone level Z might take the form

zijk ¼ mijk þ ai þ gjk þ eijk

for location ( j, k) at time i (for a fixed discrete set of times and a prespecified

and fixed grid of locations). Here mijk is a regression component, with added

random components (a,g, e) which we would need to test for zero means,

independence, stationarity, no cross-correlations etc. The a (and e) might need

to be assumed to have common time-series representations, etc. In turn, this

may not suffice. Thus we are effectively ‘patching’ together the space (regres-

sion) and time (time-series) approaches to produce a hybrid spatial/temporal

analysis, but many other approaches could be (and have been) used even for

this single and relatively straightforward problem. Landau and Barnett (1996)

used such methods for interpolating several meteorological variables; see the

discussion in the next subsection and Examples 11.5.
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1.3.3 ‘Keep it simple’

Environmental problems are usually highly complex. We understand certain

aspects of them, but almost never the whole picture. Thus general scientific

considerations may suggest how a system should respond to a specific stimulus;

observed data may show how it did react to some actual conditions. Examples

include changes in river stocks of Chinook salmon over time (Speed, 1993) and,

on a larger scale, the growth characteristics of winter wheat, a problem exam-

ined statistically by Landau et al. (1998).

Models for winter wheat growth could easily involve tens, hundreds or even

thousands of parameters, including those representing weather characteristics

throughout the growth period as well as the many relevant plant physiological

features. Such highly parameterized models are quite intractable – we would be

unable to fit parameters or interpret results. Occam’s razor says ‘in looking for

an explanation, start with the simplest prospect’; such parsimony is vital in the

complex field of environmental relationships.

Consider the wheat problem in more detail. Complicated, elaborate mechan-

istic models have been proposed (AFRCWHEAT2 for the UK, CERES for the

USA and SIRIUS for New Zealand). These are based on claimed scientific

(plant-growth) knowledge and simulated day-to-day growth and climatological

conditions (but no actual data from real life). They attempt to represent the

physical environmental system by means of a deterministic model, based on

differential equations, which usually does not incorporate probabilistic or

variational components, although it may in some applications be subjected to

a ‘sensitivity analysis’. A review of such modelling considerations in the context

of the wheat models is given by Landau et al. (1998)

In global warming, the vast global circulation models for predicting climate

change play a similar role – again they are essentially mechanistic (determinis-

tic) in form.

Do they work? Some recent results by Landau et al. (1998) cast doubt on this,

for the winter wheat models at least. A major data-assembly exercise was

carried out to compile a database of wheat yields for about 1000 sites over

many years throughout the UK where wheat was grown under controlled and

well-documented conditions. These data constituted the ‘observed yields’ which

were to be compared, for validation purposes, with the corresponding yields

which the wheat models would predict. Crucial inputs for the models were daily

maximum and minimum temperatures, rainfall and radiation as well as growth

characteristics. These climatological measures were available for all relevant

days and for 212 meteorological stations. But these meteorological stations

were not, of course, located at the sites at which the wheat yields were measured

(the wheat trial sites are shown in Figure 1.4). So it was necessary to carry out a

major interpolation exercise for the meteorological variables. This is described

by Landau and Barnett (1996) and was highly successful (see Figure 1.5, which

shows actual versus interpolated minimum temperatures, where the fit accounts

for 94% of the variation in observed values).
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Figure 1.4 Sites of Wheat trials.
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When all culture and weather information was entered in the wheat models,

they produced ‘predicted yields’ to compare with the ‘observed’ ones – the

results were very surprising, as is shown by the plot (Figure 1.6, from Landau et

al., 1998) of actual versus predicted yields for the AFRCWHEAT2 model. Such

conspicuous lack of association arose with all the models!

At the opposite extreme of sophistication from mechanistic models (see

discussion in Barnett et al., 1997), purely statistical (empirical) fits of regres-

sion-type models to real data may often predict environmental outcomes rather

well but are sometimes criticized for not providing scientific understanding of

the process under study. The ideal would presumably be to seek effective

parsimonious data-based mechanistic models. Landau et al. (1998) went on to

show how a parsimonious mechanistically motivated regression model pre-

dicted wheat yields with correlation in excess of 0.5.

1.3.4 ‘How much can we take?’

A range of environmental problems centre on the pattern of responses of

individuals (or of systems) to different levels of stimulus – of patients to levels

of a drug, of citizens to levels of pollution, of physical environment to ‘levels’ of

climate (rain, wind, etc.). In such cases we might be interested in trends, in dose–

response relationships, in extremes, and a variety of models and methods will be

needed to address such questions as the maximum safe level for particulate
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Figure 1.5 Actual and interpolated minimum temperatures.

12 ENVIRONMENTAL STATISTICS



matter from diesel fuel emissions, or how big a particular dam must be if it is

not to overflow more than once in a hundred years?

Consider, as one specific example, a problem in the biomedical field where

we are concerned with the control of harmful insects found on food crops by

means of an insecticide, and wish to know what ‘dose’ needs to be used. One

model for this is the so-called logit model ( probit models are also used). The

logit model expresses the proportion, p(x), of insects killed in terms of the dose,

or perhaps the log dose, x, of the applied ‘treatment’ in the form

ln
p(x)

1� p(x)
¼ aþ bx:

In practice, we observe a binomial random variable Y � B(n(x), p(x) ) at each

dose xwhich represents the number killed out of n(x) observed at that dose level

(with possibly different numbers of observations n(x) at different doses). The

general shape of this relationship – which is in the broad class of the generalized

linear model (see Section 7.3) – is ogival (Figure 1.7). Of interest are such matters

as the lethal effective doses needed to achieve 50% or 95% elimination of the

insects; these are referred to as the LD50 and LD95, respectively.

In a development of such interests another relevant topic is bioassay. This is

concerned with evaluating the relative potency of two forms of stimulus by

analysing the responses they produce in biological organisms at different doses.

Typical data for what is called a parallel-line assay are shown in Table 1.1 (from

Tsutakawa, 1982) in the context of examining the relative potencies of two

treatment regimes applied at a range of dose levels to laboratory subjects. What
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Figure 1.6 Observed versus predicted yields for AFRCWHEAT2 (Landau et al., 1998

with permission from Elsevier).
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would be of interest here is whether the two treatments show similar relation-

ships with dose – apart, perhaps, from a scale factor. We pursue such matters

further in Chapter 8.

1.3.5 ‘Over the top’

In the design of reservoirs to hold drinking water, it is important to contain and

control the water by means of dams which are high and sound enough not to

regularly overflow and thus cause loss of resource, and possible serious damage

in the outflow area (Figure 1.8). In any year, the major threat of such

damage occurs at the annual maximum water level X. If this exceeds the dam

height h, we will have overflow and spillage on at least one occasion. It might

seem sensible to design the dam to be of great height, h0, with no realistic

p(x)

1.0

0.5

LD50 LD95 Dose x

Figure 1.7 A dose–response curve.

Table 1.1 Bioassay data on rats: uterine weights (coded).

Standard treatment New treatment

Dose 0.2 0.3 0.4 1.0 2.5

73 77 118 79 101

69 93 85 87 86

71 116 105 71 105

91 78 76 78 111

80 87 101 92 102

110 86 92 107

101 102

104 112

Source: Tsutakawa (1982).
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prospect that we will ever haveX > h0. But this would be unjustifiably expensive

and we must seek a compromise dam height, h1, where P X > h1ð Þ ¼ g is

designed to be acceptably small. A crucial feature of a dam’s design is its return

period, g�1. Thus if g ¼ 0:01, we would have a return period of 100 years.

Of course, X is a random variable describing the annual maximum water

level. It will depend on a variety of features of the prevailing climate and the

run-off terrain which drains into the reservoir. We do not know the distribution

of X and at the design stage we may not even have any sample data from which

to draw references about this distribution. But we do have some structural

information about X from which to model it. It is an annual maximum. Thus,

for example, if Yi is a random variable describing the highest water level

on day i, then X ¼ maxYi ¼ Y(n), with n ¼ 365. Here, Y(i) is an order

statistic – the ith largest of a set of identically distributed random variables

Yi (i ¼ 1, 2, . . . , n). For the dam problem, Y(n) is the potential overall yearly

maximum, and in a particular year it will take some specific value, y(n). Thus we

have an example of a class of environmental problems where we are interested

in ordered random variables and in particular in the largest, or upper extreme, of

a set of more basic random variables. Such problems lead to an interest in the

theory and methodology of extremal processes, a topic which we will examine in

some detail in Section 2.3.

The reservoir problem exemplifies some of the features of this interesting

area of study. We are unlikely to have much useful information about the

characteristics of even our basic random variable Y: the assumed common

random variable describing the daily maximum level. So what can we hope to

say about the random variable of major interest, namely Y(n)?

Interestingly, we can say something useful as a result of general limit-law

behaviour of random variables which comes to our aid. If Y1,Y2, . . . ,Yn are

independent and identically distributed random variables then, whatever their

distribution, it turns out that the distribution of the maximum Y(n) approaches,

as n ! 1, just one of three possible forms – the so-called extreme value

distributions. One of these, the Gumbel extreme-value distribution, has a distri-

bution function (d.f.) in the family

Fn(y) ¼ exp {� exp [� (y� a)=b ]}:

Water
X h

Figure 1.8 A reservoir and dam.
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So, in spite of some departures from this structure (the Yi may not necessarily

be identically distributed, n is not infinite but is very large), it may be that we

can model X for the dam problem by Fn(x) above reducing our uncertainty to

just the values of the two parameters a and b.
Consider another problem with similar features, where we are interested in a

random variable Z describing the winter minimum temperature at some loca-

tion. Here Z is a minimum rather than a maximum. So Y ¼ �Z is the maximum

negative winter temperature, and we might again adopt a model which says that

Y has d.f. exp {� exp [� (y� a)=b]}.
So

P(Z > z) ¼ P(� Y > z) ¼ P(Y < �z) ¼ exp {� exp [(zþ a)=b]}:

If we had observations z1, z2, . . . , zn, for n years, we could estimate P(Z > z) by

the empirical d.f. (#zi > z)=(nþ 1). So if we order our observations as

z(1), z(2), . . . , z(n) then we have the approximate relationship

n� i

nþ 1
� exp exp

z(i) þ a
b

� �� �

or

� ln ln
nþ 1

n� 1

� �� �
� z(i) þ a

b
:

So we could plot a graph of z(i) against� ln ln [(nþ 1)=(n� i)] and expect to find

a linear relationship. Such a probability plotting method was illustrated by

Barnett and Lewis (1967) in the context of a problem concerned with the deteri-

oration of diesel fuel at low winter temperatures. It was necessary to model the

variation in Winter minimum temperatures from year to year at different loca-

tions. Figure 1.9 (from Barnett and Lewis, 1967) uses the above plotting tech-

nique to confirm the extreme-value distribution for three locations: Kew,

Manchester Airport and Plymouth. The linearity of the plots provides compel-

ling empirical evidence of the usefulness of the above extreme-value distribution.

1.4 FUNDAMENTALS

The notation and terminology used throughout the book will conform to the

following pattern. A univariate random variable X will take a typical value x.

The distribution of X will be represented in terms of a probability density

function (p.d.f.) fy(x) (if X is continuous) or a probability function py(x) (if X

is discrete), or in either case by a distribution function Fy(x), where y is a scalar

or vector parameter indexing the family of distributions in which that of X

resides.Thus for discrete X, for example, we have

py(x) ¼ P(X ¼ x),

Fy(x) ¼ P(X � x);
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where P(�) denotes probability. Common families of distribution of X include

the discrete binomial and Poisson distributions and the continuous normal,

exponential and gamma distributions. If X follows these respective distribu-

tions, this will be indicated in the following manner:

X � B(n, p), X � P(m)

and

X � N(m, s2), X � Ex(l), X � G(r, l);

where the arguments (n, p),m, p, (m, s2), l and (r, l) are the symbols used in the

distinct cases for the generic family parameter y.
A random sample x1, x2, . . . , xn of observations of X has mean

�xx ¼ 1

n

Xn
i¼1

xi,

which is an unbiased estimator of the population parameter m ¼ E(X) where

E( � ) is the expectation operator. The sample variance,

s2 ¼ 1

n� 1

X
(xi � �xx)2,

is unbiased for the population variance s2 ¼ E[(X � m)2] ¼ Var(X ). If we

order sample observations as x(1) � x(2) � . . . � x(n), the x(i) are observations

of the order statistics X(1),X(2), . . . ,X(n), We refer to x(1) and x(n) as the sample

-0.2
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15T
em

p.
 (

�F
). 20

25

30

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Manchester Airport

Kew
Plymouth

-log log (n+1/n-i)

Figure 1.9 Low-temperature plots for typical locations (Barnett and Lewis, 1967).
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minimum and sample maximum (or lower and upper extremes); x(n) � x(1) is the

sample range and x(1) þ x(n)
� �

=2 is the mid-range. We will denote the sample

median by m.

A multivariate random variable X of dimension p has components

X1,X2, . . . ,Xp; a random sample x1, x2, . . . , xn is an n� p array

x11 x21 . . . xp1
x12 x22 . . . xp2

..

. ..
.

x1n x2n . . . xpn

The distribution of X will be described, as appropriate, in terms of joint

probability, or probability density, functions py(x), or Fy(x), or by its d.f.

Fy(x). For a bivariate random variable X it is often more convenient to

represent its components as (X, Y).

It will be assumed that the reader is familiar with basic concepts and methods

of probability theory and statistical inference, including correlation, regression,

estimation, hypothesis testing, the maximum likelihood method, the maximum

likelihood ratio test, etc., at a level covered by standard intermediate texts such

as Mood et al. (1974) or Garthwaite et al. (1995).

1.5 BIBLIOGRAPHY

Throughout our discussion of the statistical models and methods and of

practical examples of their use, in the different areas of environmental interest,

we will need to consider important recent contributions in the literature. At all

stages, references will be given to published papers in professional journals and

to books or occasional publications. These will always be of specific relevance

to the statistical topic or environmental application being studied or will enable

it to be considered in a broader methodological or applications review setting.

However, it is useful even at this early stage to refer to a small group of

publications of general applicability and relevance.

Firstly, there are a few books which purport to cover the general theme of

this book. These include elementary texts or sets of examples whose titles or

descriptions indicate coverage of environmental statistics. These include Hewitt

(1992), Berthouex and Brown (1994), Cothern and Ross (1994), Ott (1995),

Pentecost (1999), Millard and Neerchal (2000) and Townend (2002). They are

of varying level and range but do not usually go beyond basic statistical

concepts and methods, with corresponding constraints on the types of applica-

tions and examples that can be discussed. A set of case studies on environ-

mental statistics are presented in the edited volume by Nychka et al. (1998).

As indicated by the breakdown of topics into parts I–V explained in Section

1.2, we will be concerned with distinct areas of statistical principle and method.

More detailed treatments are available of many of the areas and include the

following:
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Part I Galambos (1987) on extremes; David (1981) on order statistics;

Barnett and Lewis (1994) on outliers; and Huber (1981) on robust-

ness.

Part II Barnett (2002a) on survey sampling; Thompson (2002) and Wheater

and Cook (2000) on general sampling methodology; and Thompson

and Seber (1996) on adaptive sampling.

Part III Stapleton (1995) on linear models and regression; and McCullagh

and Nelder (1989) on generalized linear models.

Part IV Barnett and O’Hagan (1997) on standards and regulations.

Part V Bloomfield (2000) on Fourier analysis of time series; Fuller (1995) on

time series in general; Cressie (1993) on spatial models and methods;

and Upton and Fingleton (1985, 1989) and Webster and Oliver

(2001) on spatial data analysis.

Review papers can provide informative resumes or encapsulations of our

theme: see, for example Barnett (1997). The Encyclopaedia of Statistical Sci-

ences (Kotz et al., 1982–1988) provides crisp and informative explanations of

many of the statistical topics discussed below, whilst the recent Encyclopaedia

of Environmentrics (El-Shaarawi and Piegorsch, 2002) is to be welcomed for its

comprehensive coverage of so much of the field of environmental statistics.
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