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2.1 Introduction

Since the early developments in the 1950s and 1960s by Drucker and Prager and by the
Cambridge school, plasticity theory has become an established framework for modeling
the inelastic behavior of soils. Nowadays, it has earned a broad interest and acceptance
(Drucker et al., 1957; Roscoe and Burland, 1968; Matsuoka and Nakai, 1974; Lade,
1977; Desai, 1980). The Cam-Clay model (Roscoe and Schofield, 1963) has become
widely accepted as a constitutive model that pairs a relative simplicity — and therefore
a limited number of parameters — to a description of the essential mechanical proper-
ties of clays. For sand under monotonic loading, double-hardening models (Lade, 1977)
have become popular. In these models, a shear yield surface is complemented by a cap,
which limits the hydrostatic stresses and enables capturing the inelastic straining under
pure compaction. Typically, these sand models are furnished with a non-associative flow
rule, a hardening curve with a hyperbolic shape, and elastic moduli that are stress-level
dependent.

Both classes of constitutive models — Cam-Clay models and double-hardening
models — have a yield surface that is dependent on the hydrostatic stress level and are
equipped with stress-level dependent elastic moduli. Furthermore, the Cam-Clay model
possesses a non-associative hardening rule, while double-hardening models typically are
furnished with a non-associative flow rule. In either case, this leads to a non-symmetric
tangential matrix for the incremental relation between stress rate and strain rate. Because
of this lack of symmetry, and because of the highly nonlinear nature of both classes of
constitutive models, an explicit integration will only be conditionally stable. Nonetheless,
most integration procedures utilize an explicit procedure (Britto and Gunn, 1989; Desai
et al., 1991; Hicks, 1995). Since the early 1990s, a few attempts have been made to
apply implicit integration to plasticity models for soils (Borja, 1991; Hofstetter et al.,
1993; Simo et al., 1993). Such an integration procedure allows for much larger loading
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steps. Moreover, the resulting algorithm is, in general, amenable to exact linearization,
which ensures quadratic convergence when a Newton—Raphson strategy is applied on
structural level.

This contribution is ordered as follows. After a brief introduction into plasticity theory,
we shall formulate a fully implicit Euler backward return-mapping algorithm originally
proposed by Borja (1991) which incorporates the use of stress invariants as primary
variables and a secant update for the elastic properties. The algorithm will be applied
for the integration of the Modified Cam-Clay model and a double-hardening model for
sand. The numerical performance and robustness will be demonstrated by simulation of
common laboratory tests and realistic boundary value problems, i.e. the simulation of a
guided pipe-jacking in soft clay and an analysis of the Leaning Tower of Pisa.

2.2 A Note on Stress and Strain Definitions

In almost all soil mechanics applications, only compressive stresses are present. Therefore,
it would be convenient to use a sign convention in which compressive stresses are positive
(Figure 2.1(a)). On the other hand, in a general purpose finite element code, tensile stresses
are usually regarded positive (Figure 2.1(b)). As the objective is to demonstrate how
elasto-plastic soil models can be conveniently implemented into a general-purpose finite
element code, it is assumed that tensile stresses are positive.

The stress tensor o and the strain tensor € are introduced in a vector format as

T
o0 = [0, Ovyys Ozz5 Oxy, Oyz,s O] 2.1)
T
&€= [SJOM 8yy, Szza 28Xy3 28}713 282)(] (22)

in which the engineering shear strains have been utilized instead of the tensorial shear
strains. The hydrostatic pressure and the volumetric strain are defined as
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Figure 2.1 Possible sign conventions for the stress tensor. (a) Sign convention normally utilized
in soil mechanics. Compression is regarded positive. (b) Sign convention normally
utilized in finite element codes and utilized in this contribution. Tension is regarded
positive
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p= %(O'xx + oy +0y) (2.3)
&y = Exx T &y + & 2.4)

in which p is the hydrostatic tensile component and ¢, is the volumetric strain. Upon
introduction of the projection vector # = [1, 1, 1, 0, 0, 0]T, one can define the deviatoric
stresses (&) and strains (y),

E=0— pn (2.5)
y=¢—1em (2.6)

The effective deviatoric stress (¢q) is defined according to

q=1/3"RE; R =diag[l1,1,1,2,2,2] 2.7)
The Lode angle 6 is defined as

2775

cos 30 = _76]_3’ J3 = Exx%_yy‘i:zz + %—xy%—yzgzx - 2(5)0(551 + Eyyézz,x + Ezz‘i:fy) (2.8)

2.3 Computational Plasticity

A fundamental notion in plasticity theory is the existence of a yield function that bounds
the elastic domain. Plasticity can only occur if the stresses o satisfy the general yield
criterion

flo,k)=0 2.9)

where the hardening variable x controls the amount of hardening or softening. Plastic
behavior is characterized by the presence of irreversible strains upon load removal. These
are introduced via the usual decomposition of the strain rate vector & in an elastic,
reversible contribution &° and a plastic, irreversible contribution £P:

=648 (2.10)
The elastic strain rate is related to the stress rate by an elastic constitutive law
o =E"' ()& (2.11)

It is assumed that the tangential elastic stiffness matrix E'(¢°) is solely dependent on the
elastic strain field €°. The assumption of a non-associative flow rule yields

og(a, k)
do

&P =1 (2.12)

where g(o, ) is the plastic potential function and 4 is the (rate of the) plastic multiplier.
The hardening variable « is defined in a rate form as

k = k(a, &) (2.13)
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on the basis of which a number of different measures for « can be postulated. This
contribution is restricted to strain hardening

Kk = k(&P) (2.14)

which is integrated along the loading path to give

t
Kz/ dt 2.15)
0

Loading/unloading is conveniently established in Kuhn—Tucker form
A>0; f<0;, Af=0 (2.16)

Neither the yield function in Eq. (2.9) nor the plastic potential g(o, k) in Eq. (2.12) need
to be C; continuous. In fact, the assumption of only piecewise C; continuous yield func-
tions and plastic potentials allows for an independent description of different irreversible
phenomena within one material. For example, tensile failure and compressive crushing
can be treated independently for concrete (Feenstra, 1993), or for masonry (Lourengo,
1996). In this contribution, piecewise C; continuous yield functions and plastic potentials
will be adopted for modeling shear failure and irrecoverable compression independently.
Before elaborating the details of the constitutive modeling, a possible description of plas-
ticity with only piecewise C; continuous yield functions and plastic potentials will be
presented.

Assume that the yield function is described by a set of C; continuous yield functions

filo, ki) <0 (2.17)

in which «; is the hardening variable representative for plastic flow on that C; contin-
uous yield surface. The additive decomposition of the strain rate given by Eq. (2.10) is
generalized to (Koiter, 1953)

=n
=84 & (2.18)
i=1

with
& =i 0gi(o, ki)

2.1
! do (2.19)

gi(o, k;) is a C; continuous plastic potential, which governs the flow direction on each
C) continuous yield function f;. Like in single surface plasticity, «; is integrated along
the loading path

K = / k(&) dr (2.20)
0

The Kuhn—Tucker conditions defined by Eq. (2.16) are generalized to

hi=0; fi<0; Aifi=0 (2.21)
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2.3.1 Return-mapping via invariants with use of elastic secant moduli

The integration of the rate equations resulting from flow theory can be regarded as follows.
At stage n the stresses, the total and elastic strains and the hardening parameter(s) are
known. The objective is to determine the update of these parameters

{0'”, &n, 82» Ki,n} - {o'n+l sy En41s 82+17 Ki,n+1} (222)

in which the subscript n + 1 refers to the new, yet unknown state. In the remainder,
the subscript n + 1 will be dropped where convenient. Within the framework of a finite
element code based on the displacement method, the total strains are updated according to

Ent1 = &y + At (2.23)

in which the incremental strain Ae is determined from the strain-displacement relation
Ae = B Aa, with Aa the nodal displacement increments for the respective element and B
the strain-displacement operator in a typical integration (sampling) point for the respective
element®. Henceforth, an integration algorithm based on Eq. (2.23) will be referred to as
‘strain-driven’. What remains is to determine {0, 11, &}, , |, ki,,+1} With the constraint given
by the update of ¢, in Eq. (2.23).

The additive decomposition of the strain rate in Eq. (2.18) is now generalized to strain

increments
i=n

Ae = Ae+ ) A (2.24)
i=1

The elastic contribution to the strain increment is determined by the elastic constitutive law

o1 =0, +E(s), &, )Ae® (2.25)

in which E is the secant elastic stiffness matrix. The plastic contribution to the strain
increment is determined by the flow rule

08i(0n+1, Kint1)

Aed = A);
a¢""}'1+1

(2.26)

in which the hardening variable k; ,; at the end of a step is determined by generalization
of the integral in Eq. (2.20) for a finite increment

Kin41 = Kin + Dk;(Ag]) 2.27)

It has been shown by Simo ef al. (1988) that an Euler backward integration algorithm
is equivalent to a constrained optimization problem governed by discrete Kuhn-Tucker
conditions:

AXi > 0;  filontt1, Kiny1) <05 AL fi(Opg1, Kins1) =0 (2.28)

* Applicable to standard isoparametric elements. For B-elements (Hughes, 1980) the strain-displacement
relation takes a slightly different form. The strain increment Ae is then determined as Ae = B Aa.
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Algorithmically, it is assumed that initially all deformations are elastic,

Erial = & + A8 Al it = 0 (2.29)

trial
which results in the elastic ‘trial’ stress

Ouial = 0, + E (65, 65,,)) A (2.30)
and in an estimate for the hardening variable(s)

Ak gial = 0 = K wial = Kin (2.31)

Violation of any of the yield functions f;(0ial, ki uia1) < O determines which flow system
is active. Then, Egs. (2.24)—(2.28) are solved for these active flow systems under condition
of Eq. (2.23) with the requirement that the yield function representative for the active flow
system is enforced rigorously

fi(@ut1, K1nr1) =0 (2.32)

and with initial conditions defined by Egs. (2.29)—(2.31). If none of the yield functions is
violated then the trial stress state in Eq. (2.30) lies in the elastic domain and the update in
Eq. (2.22) is given by the initial state in Egs. (2.29)—(2.31) and condition in Eq. (2.23).

Rigorous enforcement of the active yield function(s) given by Eq. (2.32) combined
with the initial state defined by Egs. (2.29)—(2.31) can be interpreted as an elastic ‘trial’
stress being ‘mapped back’ onto the yield surface(s) representative for the active flow
system(s). Therefore, the name ‘Euler backward return-mapping’ has been coined. It has
been shown in different studies (e.g. Ortiz and Popov, 1985; and Simo and Taylor, 1986)
that the implicit Euler backward return-mapping algorithm is unconditionally stable and
accurate for J,-plasticity. However, even when the yield surface is highly distorted, the
Euler Backward algorithm is stable (Ortiz and Popov, 1985) and accurate (de Borst and
Feenstra, 1990; Schellekens and de Borst, 1990).

For convenience in soil mechanics, the stresses and strains are decomposed into volu-
metric and deviatoric contributions. The additive decomposition in Eq. (2.24) is separated
into a volumetric and a deviatoric part

i=n 1=n
Ae, = AeS+> A Ay=Ay+> Ay (2.33)
i=1 i=1

The volumetric and deviatoric plastic strain increments are determined by

a .
AY = A0S (2.34)

9

in which it is assumed that the plastic potential g; is solely a function of the first and the
second stress invariants and of the hardening variable, i.e.

& = 8&(p,q,Kki) (2.35)

Equation (2.35) covers a wide range of plastic potentials that are applicable to soils,
including for example the Modified Cam-Clay model (Roscoe and Burland, 1968). Note
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that still f; = fi(p, g, cos 30, k;). With the assumption of isotropy, the volumetric and
deviatoric elastic strain increment are determined by

p=p.+KA; E=§,+2GR'AY (2.36)

in which K and G are the secant elastic bulk modulus and shear modulus, respectively.
For computational convenience, it is assumed that both K and G are solely dependent on
the elastic volumetric strain &. This restriction yields the following form for the elastic
secant moduli

i=n
_ 0gi
K=K\ ,e + Ag,— AN —— 2.37
< ; ap) 237)
G=G | ,& + Ag, — i;” Ak-@ (2.38)
v,n’ “u,n v o tap

Combination of Egs. (2.33), (2.34) and (2.36) allows the evolution of the hydrostatic
pressure to be written as

i=n

Ag, — Z A,\i%

op (2.39)

p=pn+K

i=1
Similarly, combination of Egs. (2.33), (2.34) and (2.36) gives for the deviatoric part

o i=n 9 ;
E=& +2GR |Ay-Y M,-a—‘g; (2.40)
i=1

The assumption for the plastic potential in Eq. (2.35) leads to the following convenient
form for the plastic flow direction in the deviatoric plane

0gi
=L — m;RE (2.41)
0§
in which m; = m;(p, q, k;) is a scalar function. Equations (2.40) and (2.41) now yield an
explicit expression for the deviatoric stress update

-1

i=1

The actual integration algorithm as proposed by Borja (1991) can now be written in the
following way:

r=r(a(e), éa,e)e¢)) (2.43)
with @ = [p, g, cos 36, G, Ak;, AX;]T. The set of residuals r is defined by

rt =r, r,rs,rl" (2.44)
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In ry, the update of the stress invariants is collected

- i=n 8g -
—plAe,— ) AL

r = q— /%éTRS (2.45)

27 gxxé:yyézz + gxyéyz‘szx - 2(§xx§§z + Syy sz + ‘Szz ;%y)
cos360 + —

L 2 7 J
in which & is determined from the explicit update presented in Eq. (2.42). r, contains the
evolution of the secant shear modulus

. . i=n 9o
n=G-G (Asv -3 Axia;‘; (2.46)
i=1

r3 contains the evolution of the increment of the hardening variables

8 .
r = Ak — A | AL AjmRE (2.47)
ap

and r4 represents the active/inactive flow systems
ry = fi(p, g, cos 36, Ak;) or ry = AA; (2.48)

in which r4 = f; when the representative flow system is active and r4 = AX; when the
representative flow system is inactive. The determination of which flow system is active
will be addressed at the end of this section.

Under the condition that & is constant, the set in Eq. (2.43) can be solved with a
Newton—Raphson iterative scheme

5 or , or 617 (2.49)

a=—|—+—— r .
da  0& da

To complete the return-mapping algorithm, it is assumed that the initial conditions for

the solution of system of Eqs. (2.45)—(2.48) and the deviatoric stress update in Eq. (2.42)

are defined by the elastic ‘trial’ state, c.f. Eqs. (2.29)—(2.31). In terms of the governing

quantities this yields

p(Aegy)
prat ) _ \/2EL RE
ria -
(COS 39)tria] _g {%_xxé:yygzz + gxy‘i:yz%_zx - 2(5)0(532 + %_yy‘i'_?x + %_zzg)%y)}trial

2 3

Fiia (2.50)
in which &, is determined by

Evial = [&0 + 2GaR ' AYl:  Guia = G(Ag,) (2.51)

Furthermore,
Ak gial = 05 A gia =0 (2.52)
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A problem that remains is how to determine which flow system (cf. Eq. (2.48)) is active.
In this chapter, a trial and error procedure has been adopted. It is assumed that the initial
active flow systems are defined by the trial state (f; g > 0). If, after completion, any
AXx; > 0 or f; <0 is found, the number of active flow systems is adjusted accordingly
and the return-mapping algorithm is restarted.

Remarks
e The algorithm presented can easily be adapted for explicit coupling effects (Feenstra,
1993; Lourenco, 1996). The set of residuals r3 in Eq. (2.47) is then modified to

0gi
r; = AK,’ — C,’,’AK]' <A)\,ii, A)\,ﬂ]’l,’R&) (253)

in which C;; is a set of coupling terms, for example discussed in Lourengo (1996)
regarding tensile and shear failure in masonry joints.

e The shear and bulk moduli indicated in Egs. (2.37) and (2.38) may lead to a non-
conservative elastic contribution, in which energy may be extracted from certain
loading cycles (Zytinsky et al., 1978). However, this fact may not be too important
when monotonic loading is considered (Borja, 1991).

2.3.2 Tangential linearization

On basis of the integration algorithm, a consistent tangential operator is formulated. For
this purpose, the stress update following from the solution of system of Eqs. (2.45)—(2.48)
and the deviatoric stress update in Eq. (2.42) is written as

oc=o0,+&@ae),e)+npla(e)) (2.54)
which can be differentiated straightforwardly as

do 0 € da op da a 0 dap| da
_£+j_+_£__£+PL_£y_

— = T = 4 (2.55)
de de Oa de oa de o€ oa oa | de

Equation (2.55) contains only partial derivatives except for da/de. The latter quantities
can be determined implicitly from the fact that the strain is constant during integration.
Thus,

dr or Or 0| da Or o or
—=|l—t | -+ =+ —=0—
de da 0Eda| de 0E0de  Oe
da {w maﬂ‘lvr% w]

— —— — 2.56
de oa + o€ da ( )

%96 e
in which the inverse term between brackets is available from the return-mapping algo-
rithm, Eq. (2.49). Substitution of da /de according to Eq. (2.56) into Eq. (2.55) gives the
desired form for the consistent tangential operator

m_g_P&_@Hg+g%yTw%+ﬂ

@9 _ p = — (2.57)
de 0Oe¢ oa oa | |da 0§ da

8_{-'% o€
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2.4 Modeling of Clay

Cam-Clay models originate from the work of Roscoe and his co-workers at the University
of Cambridge (Roscoe and Schofield, 1963; Schofield and Wroth, 1968). The original idea
was further developed by Roscoe and Burland (1968) to the Modified Cam-Clay model,;
nowadays, the most widely used elasto-plastic model for the description of the mechanical
behavior of clay.

The advantage of the Modified Cam-Clay model lies in its apparent simplicity and its
capability to represent (at least qualitatively) the strength and deformation properties of
clay realistically. Commonly observed properties such as an increasing stiffness as the
material undergoes compression, hardening/softening and compaction/dilatancy behavior,
and the tendency to eventually reach a state in which the strength and volume become
constant are all captured by the Modified Cam-Clay model. Moreover, calibration of the
model requires only a few conventional laboratory tests.

The material description starts most conveniently with the hydrostatic components. The
increasing bulk stiffness for increasing compression is modeled by

b= —%év — K., loading (2.58)
. p. . .
p=——b = K&, unloading (2.59)
K

A* and «* will be referred to as the ‘modified compression index’ and the ‘modi-
fied swelling index’, respectively (Figure 2.2(a)). As unloading is assumed to be elastic
Eq. (2.59) can be expressed using elastic components only

(2.60)

For three-dimensional stress states also deviatoric components have to be specified. When
Eq. (2.60) is taken as a point of departure the assumption of isotropy, together with a
constant Poisson’s ratio v, gives

_31—21)
T2 1+4v

K, (2.61)

t

—P.

(@) (b)

Figure 2.2 Material description for Modified Cam-Clay. (a) Compressive behavior. (b) Yield
function and plastic potential
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The yield function (f) is given by the expression

f=q¢+Mp(p+p) (2.62)

in which p. is the preconsolidation pressure (Figure 2.2(b)). Associative plasticity is
assumed so that Eq. (2.62) also defines the plastic potential. Consequently, the plastic
volumetric strain rate £ is given by

af

& = ;\87 = AM*Q2p + p.) (2.63)
p

The deviatoric plastic strain rate P is given by

yP = ,&% = 3AiRE (2.64)

3
At this point, it is convenient to define the isotropic Over Consolidation Ratio (OCR)),
which reflects the relationship between the initial preconsolidation pressure p. and the
current compressive pressure — p

Pe
OCR, = ——<
p

(2.65)
Combination of definition in Eq. (2.65) with the plastic flow direction in Eq. (2.63) leads
to the observation that when OCR,, < 2 compaction is predicted while when OCR, > 2
dilatancy is predicted by Eq. (2.63).

Hardening/softening is determined from combination of Eqs. (2.60) and (2.58) and the
condition that during loading a stress point remains on the yield surface. This results in
the following form for the evolution of p,

bo_ =i
pC )\’* — K—*

(2.66)

Equation (2.66) shows that compaction leads to an increase of p. (hardening) and dilatancy
leads to a decrease of p. (softening). This behavior is most conveniently illustrated with a
conventional drained triaxial compression test. The stress path in the Rendulic plane, which
is representative for this test, is shown in Figures 2.3 and 2.4. It is observed that when
the initial value of the Over Consolidation Ratio is smaller than two (p.o/po < 2) plastic
compaction, and subsequently hardening behavior is observed (Figure 2.3). If, on the other
hand, the initial Over Consolidation Ratio is significantly larger than two (p.o/po > 2),
plastic dilatancy and subsequently softening is predicted (Figure 2.4).

Figures 2.3 and 2.4 show that, for constant stress paths, eventually a state is reached
where purely deviatoric flow is predicted. Subsequently, Eq. (2.66) predicts ideal plastic
flow. Such a state is called the critical state and is identified by

I=-M (2.67)
p

The Modified Cam-Clay model is most suitable for lightly overconsolidated clays, for

which the compaction and hardening behavior are well predicted. A possible improvement

which gives more accurate predictions for the coefficient of lateral earth pressure Ky =
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Figure 2.3 Drained triaxial compression p.o/po < 2. The associative flow rule predicts
compaction. Hence, Eq. (2.66) predicts hardening. Eventually, monotonic loading

leads to a stress ratio q/p = —M, where purely deviatoric ideal plastic flow is
predicted
po+\23q, ¢,

q q, &

Stress path
P | alp=M .-

pPo—™" -— Do

Po t

po+\V2/3q, &, A\ \
PRl ) £ \
& £

Initial yield surface

Final yield surface
Shrinking yield surface

Figure 2.4 Drained triaxial compression p.o/po > 2. The associative flow rule predicts

dilatancy. Hence, Eq. (2.66) predicts softening. Eventually, monotonic loading leads
to a stress ratio ¢/ p = —M, where purely deviatoric ideal plastic flow is predicted

oy /0, can be found in Van Eekelen and Van den Berg (1994). For heavily overconsolidated
clays, the prediction of the material behavior is less accurate (Wood, 1990).

2.4.1 Performance in laboratory tests

The deformation characteristics and the numerical performance are evaluated with four
commonly known laboratory tests: Triaxial Compression (TC), Triaxial Extension (TE),
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Pure Shear (PS) and Plane Strain Compression (PSC) (Figure 2.5). Instead of following
the sign convention defined before, the sign convention for the stress components oy, 03
and for the strain component ¢; is defined by Figure 2.5. All four tests have been simu-
lated with a lightly overconsolidated material (initial isotropic Over Consolidation Ratio
OCR,0 = 1.25), and with a heavily over-consolidated material (initial isotropic Over
Consolidation Ratio OCR, o = 5) with a cell pressure 03 = 0.2 MPa. The material para-
meters are adapted from Borja (1991) for Boston Blue Clay and are given by A* = 0.032,
k* =0.013, M = 1.05 and a Poisson’s ratio v = 0.2.

The calculations have been performed with three different step sizes. The load-
deformation and volume production-deformation curves are shown in Figure 2.6. As
expected, all elementary tests predict hardening and compaction. The computed responses
are nearly step size independent, which demonstrates the accuracy of the applied return-
mapping algorithm. In Table 2.1, the average number of iterations required to reach an
L-norm of 10~% with respect to the initial L;-norm of system of Egs. (2.45)—(2.48) is
displayed. Table 2.2 shows the convergence behavior in the equilibrium-finding iterative
scheme for OCR, o = 1.25. It is observed that the convergence behavior is quadratic.
Figure 2.7 shows the computed responses for OCR, o = 5. Except for the Plane Strain
Compression test in Figure 2.7(d), which has a highly compressive stress path, all
calculations show softening and dilatancy. As in the lightly overconsolidated case
(OCR,,0 = 1.25) the computed responses are nearly step size independent. Table 2.3
shows the average number of iterations required to reach an L,-norm of 10~% with respect
to the initial L,-norm of system of Egs. (2.45)—(2.48) for OCR, o = 5. Table 2.4 shows
the convergence behavior in the equilibrium-finding iterative scheme for OCR, ¢ = 5.
Again, quadratic convergence is observed for the four laboratory tests.

03
l”l!gl T‘Tlvgl ¢ T Vl»sl
Foo-eme -
o S iy T B
93 3 TS~ ! : '
Ve ~ o ! ! o3 )
3 FY ' (e JE ) 03
o3 -— 03 (73-—> -~ 0y —_— H ! 3 ! !
) - t 1 ] ]
93 03 nl / i .
-—
} T !
oy, € oy, € Ta3 o1 €
Triaxial Compression  Triaxial Extension Pure Shear Plane Strain Compression

Figure 2.5 Four common laboratory tests. In the pure shear test and the plane strain compression
test the out-of-plane strains are zero

Table 2.1 Average number of iterations required to reach
an Ly-norm 10~® with respect to the initial L,-
norm of the system (2.45)—(2.48) per equilib-
rium iteration, OCR, o = 1.25

CTC TE SS PSC
10 steps 9 8.95 8.05 9
20 steps 7.91 7.87 7.02 7.93

200 steps 5.94 5.86 4.9 5.94
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Figure 2.6 Simulation of laboratory tests with lightly overconsolidated material OCR, o = 1.25.
(a) Triaxial compression (b) Triaxial Extension. (c) Pure Shear. (d) Plane Strain
Compression

Table 2.2 Force norm in the equilibrium equations for 20 steps, OCR, o = 1.25

CTC TE SS PSC
2.49 x 1072 2.93 x 107! 1.36 x 107! 2.79 x 1072
Step 1 6.16 x 107 525 x 1073 1.47 x 1073 1.24 x 1074
3.69 x 10710 1.77 x 107° 2.42 x 1077 2.63 x 107°
2.02x 10713
Step 7 2.06 x 1073 434 x 107° 1.28 x 107* 1.70 x 1074
2.13 x 10710 3.05 x 10712 2.48 x 107 3.73 x 1078
Step 20 7.50 x 107° 2.10 x 10712 1.00 x 107° 7.85 x 1077

2.4.2 Analysis of a guided pipe-jacking

In The Netherlands, the Drinking Water Service Company of the province of South
Holland has constructed a pipeline system of approximately 60 km using a guided pipe-
jacking method. The resulting surface settlements have been measured (van der Broek
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Figure 2.7 Simulation of laboratory tests with heavily overconsolidated material OCR, o = 5.
(a) Triaxial compression. (b) Triaxial Extension. (c) Pure Shear. (d) Plane Strain
Compression

Table 2.3 Average number of iterations required to reach
an L,-norm 10~% with respect to the initial L,-
norm of system (2.45)—(2.48) per equilibrium
iteration, OCR, o =5

CTC TE SS PSC

10 steps 8.43 8.56 7.43 8.44

20 steps 7.62 7.35 6.63 7.57

200 steps 5.58 5.2 4.56 5.63

et al., 1996). A three-dimensional analysis is utilized for the prediction of the surface

settlements.

Two top deposits have been modeled. The tunnel has a diameter of two meters, and
is located in the lower deposit with its center at seven meters below the surface. The
interface between the upper deposit and the lower deposit is located two meters below

the surface.
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Table 2.4 Force norm in the equilibrium equations for 20 steps, OCR, o =5

CTC TE ss PSC

1.30 x 102 8.03 x 102 137 x 10~! 250 x 103

Step 3 142 x 10~ 2.96 x 103 113 x 102 115 x 10°5

1.64 x 10~ 3.64 x 10~ 9.98 x 10~ 250 x 10-10
5.54 x 10~12 7.97 x 10~

Sep10 246x10° 1.44 x 10-5 9.95 x 10~ 1.45 x 10”7
372 x 1012 3.42 x 10~ 3.91 x 10-°

Swpoo | 375x 107 6.78 x 10~10 8.38 x 10~ 3.80 x 10~
P 1.93 x 101!

For the upper deposit, a compression index A* = 0.15 and a swelling index «* = 0.015
have been assumed. For the lower deposit * = 0.15 and «* = 0.03 are adopted. Further-
more, M = 0.877, a density of 15kN/m?, an initial isotropic Over Consolidation Ratio
OCR, = 1.1 and a Poisson’s ratio v = 0.2 are adopted for both deposits. B-elements
(Hughes, 1980) have been applied.

Two types of analysis have been performed: (a) a drained analysis, in which it is
assumed that the soil skeleton is completely responsible for the deformation behavior of
the structure; (b) an undrained analysis, in which it is assumed that the deformations are
determined by parallel action of soil and water content. Under undrained conditions the
water content enforces a zero volume change upon the deformations, both in the elastic
and in the plastic regime.

The calculation has been performed in three phases:

(1) Drained, one step The gravity load is applied. It has been assumed that the tunnel
lining is already present but has no weight yet. The tunnel lining has been assumed
as rigid. The weight of the soil is modeled by a point-load downwards. Moreover,
it is assumed that the Tunnel Boring Machine is in-line with the tunnel lining. After
the gravity load is applied, the horizontal stresses are calculated with a coefficient
of lateral earth pressure Ky = oy,/0, = 0.6.

(2) Drained/undrained, four steps The weight of the tunnel lining is applied
simultaneously with the removal of the weight of the soil in the tunnel in four
steps. This has been simulated by application of a net load [WEIGHT TUNNEL
LINING — WEIGHT SOIL] downwards. As the tunnel lining is lighter than the
removed soil this results in an uplift of the tunnel lining and Tunnel Boring Machine
(Figure 2.8(a)).

(3) Drained/undrained, twenty-five steps Pregrouting loss around the tunnel lining is
simulated by contraction of the tunnel lining which has been assumed to be ten
percent of the volume of the tunnel. Loss due to the boring process is simulated by
a contraction of seven percent of the volume of the tunnel around the Tunnel Boring
Machine (TBM) (Figure 2.8(b)). The tunnel boring front has been supported by an
overburden pressure of 0.1 bar, typical for the guided pipe-jacking method.
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Figure 2.9 Surface settlements after the removal of soil and addition of the tunnel lining for
the undrained analysis. (a) Settlements parallel to the tunnel. (b) Settlements 22.5 m
behind the front of the Tunnel Boring Machine

Not all factors that influence the deformation have been taken into account; for instance,
consolidation effects, the stiffness of tunnel lining and Tunnel Boring Machine and steering
effects of the Tunnel Boring Machine have not been considered. However, the primary
objectives of this simulation are: (a) to give at least a qualitative representation of the
surface settlements; and (b) to assess the performance of the return-mapping algorithm
presented before.

Figure 2.9 shows the surface settlements after phase two (removal of the soil and addition
of the tunnel lining), and Figure 2.10 shows the surface settlements after phase 3 (contrac-
tion of the tunnel lining and Tunnel Boring Machine). It is observed from Figure 2.9 that
the surface settlements under drained conditions are larger than under undrained condi-
tions. This can be attributed to the fact that under undrained conditions the water content
acts parallel to the soil skeleton which results in a stiffer behavior. From Figure 2.10, it is
observed that the surface settlements under drained conditions are also larger than under
undrained conditions. Since the loading in this phase is deformation controlled, this cannot
be attributed to an increased stiffness due to the water content. Here, the smaller surface
settlement under undrained conditions can be attributed to the fact that the water content
enforces volume preserving deformations upon the soil skeleton. Since very lightly over-
consolidated material has been adopted, drained conditions result in compaction and thus
in larger surface settlements.
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Figure 2.10 Surface settlements resulting from pregrouting loss and loss over the Tunnel Boring
Machine. (a) Settlements parallel to the tunnel. (b) Settlements 22.5 m behind the
front of the Tunnel Boring Machine

2.5 Modeling of Sand

While the Modified Cam-Clay model is able to capture a large number of phenomena that
occur in clayey soils with only a few parameters, it cannot describe typical phenomena
that occur in sands such as simultaneous hardening and dilatancy. A possible extension
would be to assume that the plastic behavior in shear is independent from the behavior in
compression. This approach was first suggested by Drucker et al. (1957), who suggested a
spherical cap on the Drucker—Prager yield surface. Later, Dimaggio and Sandler (1971),
Lade (1977), Molenkamp (1980) and Vermeer (1980) followed the same approach in
which, in addition to shear failure, compressive deformations were modeled by a cap.
More recent models integrate the shear and compressive behavior into a single surface
(Desai, 1980, Kim and Lade, 1988, Lade and Kim, 1988a,b).

Here, the plastic behavior in shear and in compression will be modeled independently.
This allows the formulation of a model which remains close to established concepts such
as Rowe’s stress-dilatancy theory (Rowe, 1962), and the formulation of the compressive
behavior similar to the Modified Cam-Clay model.

Analogous to the Modified Cam-Clay model, an increasing bulk stiffness for increasing
compression is modeled by

b= _,\_p*é“ — K,£, loading (2.68)

. p . . .

p=——& = K&, unloading (2.69)
K

with A* the ‘modified compression index’ and «* the ‘modified swelling index’
(Figure 2.11(a)). As elastic unloading is assumed Eq. (2.69) can be expressed in elastic
components only

(2.70)
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Figure 2.11 Material description for the double-hardening model. (a) Compressive behavior.

(b) Yield function and plastic potential

Equation (2.70), together with the assumption of isotropy and a constant Poisson’s ratio
v, gives the following expression for the tangent shear modulus G,

_31—21)
T2 14

K, (2.71)

1

Shear failure is assumed to occur on a Drucker—Prager type failure surface

1 —acos30\ " 6sin ¢
fi=\——>"—| a+57——=—p (2.72)
-« 3 —sing

in which ¢ is the friction angle, and « and n are parameters which include the effect
of the Lode angle 6. A projection of the yield function in Eq. (2.72) on the deviatoric
plane is shown in Figure 2.12. Optimal properties regarding convexity are obtained when
n = —0.229 (van Eekelen, 1980). Convexity is then retained for « < 0.7925, which corre-
sponds to a fit through all the corners of the Mohr—Coulomb criterion for a friction angle
of 46.55°.

- Fit for ¢ =35°
— — - Fitfor ¢ = 15°
Drucker-Prager

—03

Figure 2.12 Yield function (2.72) in the deviatoric plane
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Plastic flow on the shear failure surface given by Eq. (2.72) is assumed to be non-
associative, and is determined by the Drucker—Prager plastic potential

6 sin Y

Y 2.73
%3 sy ? @.73)

81 =
in which 1 is the dilatancy angle. This assumption of a Drucker—Prager plastic potential
is motivated by experimental results from Kim and Lade (1988) which indicate a plastic
potential close to a Drucker—Prager contour in the deviatoric plane.

During compaction, plastic straining is described by the compression cap

fa=p*+ B4 — (2.74)

where associative plasticity is assumed. In Eq. (2.74), B is a shape parameter (van Langen,
1991) which is used to fit the prediction of the coefficient of lateral earth pressure Ky =
op/0,. pe 1s a measure for the current degree of over-consolidation and can be determined
from an isotropic Over Consolidation Ratio (OCR,) similar to the Modified Cam-Clay
model

OCR, = — ¢ (2.75)
p

or alternatively, from an Over Consolidation Ratio (OCR) which is based on the size of
the cap in Eq. (2.74), and thus includes the effect of the effective deviatoric stress:

Dc
vV P+ Bg
The yield functions given by Eqgs. (2.72) and (2.74) and the plastic potential in Eq. (2.73)
have been plotted in Figure 2.11(b).
The plastic strain rates are assumed to be an additive decomposition of plastic strain

rates 8[1) on the shear failure surface given by Eq. (2.72) and plastic rates sg on the
compression cap in Eq. (2.74).

OCR = — (2.76)

& =& +& 2.77)
This leads to the following expression for the volumetric plastic strain rates

1) . 0 .6 .
_ g, 08 0 g sV, (2.78)
ap ap 3 —siny

and for the deviatoric plastic strain rates

dg1 . df2 . 3RE

P=jy— + A== =i =— + 3R 2.79
14 ey + A2 08 137 + A23R§ (2.79)

Friction hardening is assumed according to
sin¢ = sin ¢(ypy) (2.80)

in which yg,f is defined as the effective deviatoric plastic strain on the failure surface
(Vermeer, 1980), and is defined in a rate form as

‘}:\/zpr 14 (2.81)
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Equation (2.81) leads to a convenient relationship between the rate of the plastic multiplier
on the failure surface A; and )'/57

)’/e’} = (2.82)
Dilatancy is assumed to obey Rowe’s stress-dilatancy theory in triaxial compression

siny = w (2.83)
1 — sin ¢ sin ¢,
in which ¢, is identified as the so-called ‘friction angle at constant volume’ (Vermeer
and de Borst, 1984). The evolution of hardening on the cap defined by Eq. (2.74) is
derived from the loading function in Egs. (2.68) and (2.70) and the condition that during
compressive loading a stress point is located on the cap in Eq. (2.74). This results in the
following form for the evolution of p,:
e —Ehs

= —>2 2.84
Pc A — K* ( )

in which &}, is the plastic volumetric strain rate on the cap.

2.5.1 Performance in laboratory tests

The numerical performance of the proposed integration algorithm has been evaluated
for four elementary tests, namely Conventional Triaxial Compression (CTC), Triaxial
Extension (TE), Simple Shear (SS) and Plane Strain Compression (PSC) (Figure 2.13).

The adopted material parameters are «* = 0.00573, A* = 0.00693, v =0.18, B =2/9
and ¢, = 30.66°. Furthermore, the specimens are isotropically consolidated with a cell
pressure o3 = 0.2 MPa and the shape factor « = 0.689, which corresponds to a smooth fit
through all the corners of the Mohr—Coulomb yield surface for a friction angle ¢ = 35°.
A multi-linear friction hardening diagram is used (Table 2.5).

The calculations have been performed with three different step sizes. The load-
deformation curves are shown in Figure 2.14. It is observed that the solution is practically
independent of the step size.

Table 2.6 shows the average number of iterations required to reach an L,-norm of 1078
with respect to the initial Ly-norm of system of Egs. (2.45)—(2.48). Table 2.7 shows the

03
0y, € o1, &y ¢ ), &
| 1 =
L2 h
; 1+ l, T Lol e | A
Pt »~ % ey / '
O3 oy ‘ O3 03 ' 03
Oy —» - O Or ~—- - O Tl ' ' —-— 1 | ——
3 3 3 3 ; ; . i
;
o3 3 / L -
T s,
T ! ’ {
oy, &1 oy, &1 ng 01, €1
Triaxial Compression Triaxial Extension Pure Shear Plane Strain Compression

Figure 2.13 Four common laboratory tests. In the pure shear test and the plane strain compression
test the out-of-plane strains are zero
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Table 2.5 Multi-linear friction hardening diagram
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Figure 2.14 Simulation of laboratory tests. (a) Triaxial Compression. (b) Triaxial Extension.
(c) Pure Shear. (d) Plane Strain Compression

Table 2.6 Average number of iterations required to reach
an L-norm 10~% with respect to the initial L,-
norm of the system (2.45)—(2.48) per equilib-
rium iteration

CTC TE SS PSC
5 steps X 8.36 8.38 10.14
10 steps 7.8 5.75 8.88 8.5

100 steps 4.31 393 3.97 4
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Table 2.7 Force norm in the equilibrium equations for ten steps

CTC TE SS PSC
1.30 x 107! 5.61 x 107! 8.87 x 1072 4.94 x 1072
1.67 x 1072 1.81 x 107! 3.52x 1073 8.43 x 1073
Step 1 3.84 x 107* 8.80 x 1073 6.27 x 1076 3.25 x 1074
2.16 x 1077 2.37 x 107 1.07 x 1071 5.17 x 1077
1.75 x 10710

3.82 x 1073 1.54 x 1073 3.19 x 102 4.06 x 1073
Step 3 1.99 x 107> 6.07 x 1077 7.29 x 107* 7.32 x 1073
5.49 x 10710 3.59 x 1077 1.13 x 1077
-7 —10 —6 —8

Step 10 3.60 x 10 3.59 x 10 8.31 x 10711 6.12 x 10

7.51 x 10

convergence in the force norm of the equilibrium equations. Except for the CTC test with
the largest step size, for which no convergence could be obtained, excellent convergence
behavior is observed both in the solution of the system of Egs. (2.45)—(2.48) as well as
in the solution of the equilibrium equations.

2.5.2 Analysis of the Leaning Tower of Pisa

The Leaning Tower of Pisa is one of the most challenging problems in geomechanics. The
geotechnical profile and the essentially three-dimensional deformation behavior makes
it an excellent test case to verify the applicability of the double-hardening model and
the robustness and performance of the applied integration algorithm. A three-dimensional
numerical simulation has been carried out in order to investigate the effect of the lead blocks
that have been applied on the high-side of the tower in 1993 to reduce the inclination.

It is not the objective to give a quantitative representation of the deformations under the
tower. The geotechnical conditions as well as the loading conditions on the foundation
of the tower are simply too complicated. Moreover, the uncertainty in the constitutive
parameters is too large to give any realistic prediction of the true deformations that
occur in the subsoil under the tower. However, the three-dimensional character as well
as the relatively clear classification of the constitutive parameters makes the Leaning
Tower of Pisa an excellent benchmark for assessment of the performance of the adopted
double-hardening model.

Calabresi et al. (1993) have performed triaxial tests on the soil deposits underneath
the tower and have proposed Modified Cam-Clay parameters for the clayey deposits
and Mohr—Coulomb frictional parameters for the sandy deposits. The material parameters
proposed by Calabresi et al. (1993) are adapted to the double-hardening model (Table 2.8).

It is assumed that the respective friction angles do not change during the loading
process. The parameter « is adjusted such that a fit through all the corners of the
Mohr—Coulomb yield function is obtained for each deposit. Furthermore, a dilatancy
angle ¢ = 0 and a Poisson’s ratio v = (.12 are assumed for all deposits.

The foundation of the tower is assumed to have a density p = 21.43 kN/m>, a Young’s
modulus of E = 1.5 x 10° kPa, a Poisson’s ratio v = 0.12 and a coefficient of lateral earth
pressure Ko = 0.9231.
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Table 2.8 Material properties for the respective deposits under the tower. The material parameters
proposed by Calabresi et al. (1993) are adapted to the double-hardening model

Depth [m] E[kPa] K" A* sin(@)  OCR Ko p[kN/m’]
0-1.4 - 0.00486  0.0481  0.555 4.2 0.9231 21.43
1.4-5.4 - 0.00495  0.049 0.554 3.0 0.7857 19.17
54-74 1.25 x 10* - - 0.559 - 0.4493 15.40
74-17.8 - 0.014 0.107 0446 135  0.6949 18.49
17.8-22 - 0.0151 00722 0479 1.8 0.6667 19.64
22244 1.8 x 10* - - 0.564 - 0.4286 20.40
24.4-37 - 0.0106 00851 0424 1.1 0.5625 21.66

Table 2.9 Material properties for the respective deposits under
the tower. The compressive indices in Calabresi et al.
(1993) are approximated by a linear elastic compres-
sive stiffness based on the initial stress state (Grashuis,

1993)

Depth [m] E[kPa] sin(¢) Ky p[kN/m?]
0-1.4 3x 103 0.555 0.9231 21.43
14-5.4 3x 103 0.554 0.7857 19.17
5.4-7.4 1.25 x 10* 0.559 0.4493 15.40
7.4-17.8 8 x 103 0.446 0.6949 18.49
17.8-22 1.4 x 10* 0.479 0.6667 19.64
22-24.4 1.8 x 10* 0.564 0.4286 20.40
24.4-37 2.5 x 10* 0.424 0.5625 21.66

Alternatively, a set of material properties has been used with a linear elastic approxi-
mation for the compressive behavior (Grashuis, 1993) (Table 2.9).

As for the guided pipe-jacking, the analysis has been performed with B-elements
(Hughes, 1980).

The vertical stress state under the tower is initialized with the self-weight of the soil
skeleton. The horizontal stresses are then calculated with the coefficient of lateral earth
pressure Ky = 0,/0,. Drained conditions have been assumed (i.e. no influence of the
ground water on the deformation behavior). Hereafter, the loading history is simulated by
three phases:

The weight of the tower is applied in twenty-nine steps under drained conditions.

2. The moment on the foundation due to the inclination of the tower is applied in twenty
steps under drained conditions.

3. The weight and the moment due to the lead-blocks are applied in eight steps. Both
drained conditions and undrained conditions are simulated.

Figure 2.15 shows the incremental deformations after each loading phase for the mate-
rial properties in Table 2.8. Figure 2.16 shows the applied moment versus the inclination
of the tower. From Figure 2.16 it is observed that the material parameters listed in
Table 2.8 give an inclination of approximately 1.2°, while the simulation with the material
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Incremental deformations for the material properties listed in Table 2.8 (double-
hardening model for the clayey layers). (a) After application of the weight of the
tower. (b) After application of the moment due to the inclination of the tower.
(c) After application of the lead-blocks on the high side of the tower under drained
conditions. (d) After application of the lead-blocks on the high side of the tower

under undrained conditions
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Figure 2.16 Moment versus inclination of the tower. (a) Utilizing the material parameters from
Table 2.8. (b) Utilizing the material parameters from Table 2.9

parameters listed in Table 2.9 gives a much softer response (an inclination of approxi-
mately 3.5°). A salient feature which can be observed both from Figure 2.15(c), as well as
from Figure 2.16(a) is that the material properties listed in Table 2.8 result in an increase
of the inclination of the tower under drained conditions during application of the lead

blocks.
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2.6 Conclusions

A fully implicit Euler backward integration rule has been developed with the use of
stress invariants and elastic secant moduli. The algorithm is conveniently implemented
within a finite element framework and is applicable to a wide range of models that
are representative for soils. Elementary tests under different monotonic loading condi-
tions demonstrate the numerical performance and accuracy of the proposed integration
algorithm. The robustness has been assessed by the analysis of realistic boundary value
problems which indicate that indeed solutions can be obtained for relatively large loading
steps.
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