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Introduction

1.1 Introductory Remarks

A fundamental goal of theoretical ecology is to understand how the interactions of
individual organisms with each other and with the environment determine the distribution of
populations and the structure of communities. Empirical evidence suggests that the spatial
scale and structure of environments can influence population interactions (Gause, 1935;
Huffaker, 1958) and the composition of communities (MacArthur and Wilson, 1967). In
recent decades the role of spatial effects in maintaining biodiversity has received a great
deal of attention in the literature on conservation; see for example Soulè (1986) or Kareiva
et al. (1993). One of the most common ways that human activities alter environments is
by fragmenting habitats and creating edges. Some habitat fragments may be designated as
nature reserves, but they are fragments nonetheless.

One way to try to understand how spatial effects such as habitat fragmentation influence
populations and communities is by using mathematical models; see Tilman and Kareiva
(1997), Tilman (1994), Molofsky (1994), Holmes et al. (1994), Goldwasser et al. (1994).
In this book we will examine how one class of spatial population models, namely reaction-
diffusion equations, can be formulated and analyzed. Our focus will be primarily on models
for populations or communities which occupy an isolated habitat fragment. There are several
other types of spatial population models, including cellular automata, interacting particle
systems, metapopulation models, the ideal free distribution, and dispersal models based on
integral kernels. Each type of model is based on some set of hypotheses about the scale
and structure of the spatial environment and the way that organisms disperse through it. We
describe some of these types of models a bit later in our discussion of model formulation;
see also Tilman and Kareiva (1997). Some of the ideas used in analyzing reaction-diffusion
systems also can be applied to these other types of spatial models. We also describe a few
of the connections between different types of models and some unifying principles in their
analysis.

Reaction-diffusion models provide a way to translate local assumptions or data about
the movement, mortality, and reproduction of individuals into global conclusions about the
persistence or extinction of populations and the coexistence of interacting species. They can
be derived mechanistically via rescaling from models of individual movement which are
based on random walks; see Turchin (1998) or Durrett and Levin (1994). Reaction-diffusion
models are spatially explicit and typically incorporate quantities such as dispersal rates, local
growth rates, and carrying capacities as parameters which may vary with location or time.
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Thus, they provide a good framework for studying questions about the ways that habitat
geometry and the size or variation in vital parameters influence population dynamics.

The theoretical advances in nonlinear analysis and the theory of dynamical systems
which have occurred in the last thirty years make it possible to give a reasonably complete
analysis of many reaction-diffusion models. Those advances include developments in
bifurcation theory (Rabinowitz 1971, 1973; Crandall and Rabinowitz 1971, 1973), the
formulation of reaction-diffusion models as dynamical systems (Henry 1981), the creation
of mathematical theories of persistence or permanence in dynamical systems (Hofbauer and
Sigmund 1988, Hutson and Schmitt 1992), and the systematic incorporation of ideas based
on monotonicity into the theory of dynamical systems (Hirsch 1982, 1985, 1988a,b, 1989,
1990, 1991; Hess 1991; Smith 1995). One of the goals of this book is to show how modern
analytical approaches can be used to gain insight into the behavior of reaction-diffusion
models.

There are many contexts in which reaction-diffusion systems arise as models, many
phenomena that they support, and many ways to approach their analysis. Existing books on
reaction-diffusion models reflect that diversity to some extent but do not exhaust it. There
are three major phenomena supported by reaction-diffusion models which are of interest in
ecology: the propagation of wavefronts, the formation of patterns in homogeneous space,
and the existence of a minimal domain size that will support positive species density
profiles. In this book we will focus our attention on topics related to the third of those three
phenomena. Specifically, we will discuss in detail the ways in which the size and structure
of habitats influence the persistence, coexistence, or extinction of populations. Some other
treatments of reaction-diffusion models overlap with ours to some extent, but none combines
a specific focus on issues of persistence in ecological models with the viewpoint of modern
nonlinear analysis and the theory of dynamical systems. The books by Fife (1979) and
Smoller (1982) are standard references for the general theory of reaction-diffusion systems.
Both give detailed treatments of wave-propagation, but neither includes recent mathematical
developments. Waves and pattern formation are treated systematically by Grindrod (1996)
and Murray (1993). Murray (1993) discusses the construction of models in considerable
detail, but in the broader context of mathematical biology rather than the specific context
of ecology. Okubo (1980) and Turchin (1998) address the issues of formulating reaction-
diffusion models in ecology and calibrating them with empirical data, but do not discuss
analytic methods based on modern nonlinear analysis. Hess (1991) uses modern methods
to treat certain reaction-diffusion models from ecology, but the focus of his book is mainly
on the mathematics and he considers only single equations and Lotka-Volterra systems for
two interacting species. The book by Hess (1991) is distinguished from other treatments of
reaction-diffusion theory by being set completely in the context of time-periodic equations
and systems. The books by Henry (1981) and Smith (1995) give treatments of reaction-
diffusion models as dynamical systems, but are primarily mathematical in their approach and
use specific models from ecology or other applied areas mainly as examples to illustrate the
mathematical theory. Smith (1995) and Hess (1991) use ideas from the theory of monotone
dynamical systems extensively. An older approach based on monotonicity and related ideas
is the method of monotone iteration. That method and other methods based on sub- and
supersolutions are discussed by Leung (1989) and Pao (1992) in great detail. However,
Leung (1989) and Pao (1992) treat reaction-diffusion models in general without a strong
focus on ecology, and they do not discuss ideas and methods that do not involve sub- and
supersolutions in much depth. One such idea, the notion of permanence/uniform persistence,
is discussed by Hofbauer and Sigmund (1988, 1998) and in the survey paper by Hutson and
Schmitt (1992). We will use that idea fairly extensively but our treatment differs from those
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given by Hofbauer and Sigmund (1988, 1998) and Hutson and Schmitt (1992) because we
examine the specific applications of permanence/uniform persistence to reaction-diffusion
systems in more depth, and we also use other analytic methods. Finally, there are some
books on spatial ecology which include discussions of reaction-diffusion models as well
as other approaches. Those include the volumes on spatial ecology by Tilman and Kareiva
(1997) and on biological invasions by Kawasaki and Shigesada (1997). However, those
books do not go very far with the mathematical analysis of reaction-diffusion models on
bounded spatial domains.

We hope that the present volume will be interesting and useful to readers whose
backgrounds range from theoretical ecology to pure mathematics, but different readers
may want to read it in different ways. We have tried to structure the book to make that
possible. Specifically, we have tried to begin each chapter with a relatively nontechnical
discussion of the ecological issues and mathematical ideas, and we have deferred the
most complicated mathematical analyses to Appendices which are attached to the ends
of chapters. Most chapters include a mixture of mathematical theorems and ecological
examples and applications. Readers interested primarily in mathematical analysis may want
to skip the examples, and the readers interested primarily in ecology may want to skip
the proofs. We hope that at least some readers will be sufficiently interested in both the
mathematics and the ecology to read both.

To read this book effectively a reader should have some background in both mathematics
and ecology. The minimal background needed to make sense of the book is a knowledge of
ordinary and partial differential equations at the undergraduate level and some experience
with mathematical models in ecology. A standard introductory course in ordinary differential
equations, a course in partial differential equations from a book such as Strauss (1992),
and some familiarity with the ecological models discussed by Yodzis (1989) or a similar
text on theoretical ecology would suffice. Alternatively, most of the essential prerequisites
with the exception of a few points about partial differential equations can be gleaned from
the discussions in Murray (1993). Readers with the sort of background described above
should be able to understand the statements of theorems and to follow the discussion of
the ecological examples and applications.

To follow the derivation of the mathematical results or to understand why the examples
and applications are of interest in ecology requires some additional background. To be
able to follow the mathematical analysis, a reader should have some knowledge of
the theory of functions of a real variable, for example as discussed by Royden (1968)
or Rudin (1966, 1976), and some familiarity with the modern theory of elliptic and
parabolic partial differential equations, as discussed by Gilbarg and Trudinger (1977)
and Friedman (1976), and dynamical systems as discussed by Hale and Koçak (1991).
To understand the ecological issues behind the models, a reader should have some
familiarity with the ideas discussed by Tilman and Kareiva (1997), Soulè (1986),
Soulè and Terborgh (1989), and/or Kareiva et al. (1993). The survey articles by
Tilman (1994), Holmes et al. (1994), Molofsky (1994), and Goldwasser et al. (1994)
are also useful in that regard. For somewhat broader treatments of ecology and
mathematical biology respectively, Roughgarden et al. (1989) and Levin (1994) are good
sources.

1.2 Nonspatial Models for a Single Species

The first serious attempt to model population dynamics is often credited to Malthus (1798).
Malthus hypothesized that human populations can be expected to increase geometrically
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with time but the amount of arable land available to support them can only be expected
to increase at most arithmetically, and drew grim conclusions from that hypothesis. In
modern terminology the Malthusian model for population growth would be called a density
independent model or a linear growth model. In nonspatial models we can describe
populations in terms of either the total population or the population density since the total
population will just be the density times the area of the region the population inhabits. We
will typically think of the models as describing population densities since that viewpoint
still makes sense in the context of spatial models. Let P (t) denote the density of some
population at time t . A density independent population model for P (t) in continuous time
would have the form

dP

dt
= r(t)P (t); (1.1)

in discrete time the form would be

P (t + 1) = R(t)P (t). (1.2)

These sorts of models are linear in the terminology of differential or difference equations,
which is why they are also called linear growth models. In the discrete time case we
must have R(t) ≥ 0 for the model to make sense. If r is constant in (1.1) we have
P (t) = ertP (0); if R(t) is constant in (1.2) we have P (t) = RtP (0). In either case, the
models predict exponential growth or decay for the population. To translate between the
models in such a way that the predicted population growth rate remains the same we would
use R = er or r = ln R.

The second major contribution to population modeling was the introduction of population
self-regulation in the logistic equation of Verhulst (1838). The key element introduced
by Verhulst was the notion of density dependence, that is, the idea that the density of
a population should affect its growth rate. Specifically, the logistic equation arises from
the assumption that as population density increases the effects of crowding and resource
depletion cause the birth rate to decrease and the death rate to increase. To derive the logistic
model we hypothesize that the birthrate for our population is given by b(t)−a(t, P ) and the
death rate by d(t)+e(t, P ) where b, a, d, and e are nonnegative and a and e are increasing
in P . The simplest forms for a and e are a = a0(t)P and e = e0(t)P with a0, e0 ≥ 0. The
net rate of growth for a population at density P is then given by

dP

dt
= ([b(t) − a0(t)P ] − [d(t) + e0(t)P ])P

= ([b(t) − d(t)] − [a0(t) + e0(t)]P )P

= (r(t) − c(t)P )P,

(1.3)

where r(t) = b(t) − d(t) may change sign but c(t) = a0(t) + e0(t) is always nonnegative.
We will almost always assume c(t) ≥ c0 > 0. If r and c are constant we can introduce the
new variable K = r/c and write (1.3) as

dP

dt
= r

(
1 −

[
P

K

])
P. (1.4)

Equation (1.4) is the standard form used in the biology literature for the logistic equation.
The parameter r is often called the intrinsic population growth rate, while K is called
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the carrying capacity. If r(t) > 0 then equation (1.3) can be written in the form (1.4)
with K positive. However, if K is a positive constant then letting r = r(t) in (1.4) with
r(t) negative some of the time leads to a version of (1.3) with c(t) < 0 sometimes,
which contradicts the underlying assumptions of the model. We will use the form (1.4)
for the logistic equation in cases where the coefficients are constant, but since we will
often want to consider situations where the intrinsic population growth rate r changes
sign (perhaps with respect to time, or in spatial models with respect to location) we will
usually use the form (1.3). Note that by letting p = P/K and τ = rt we can rescale
(1.4) to the form dp/dτ = p(1 − p). We sometimes assume that (1.4) has been rescaled
in this way. A derivation along the lines shown above is given by Enright (1976). The
specific forms a = a0(t)P , e = e0(t)P are certainly not the only possibilities. In fact,
the assumptions that increases in population density lead to decreases in the birth rate
and increases in the death rate may not always be valid. Allee (1931) observed that
many animals engage in social behavior such as cooperative hunting or group defense
which can cause their birth rate to increase or their death rate to decrease with population
density, at least at some densities. Also, the rate of predation may decrease with prey
density in some cases, as discussed by Ludwig et al. (1978). In the presence of such
effects, which are typically known as Allee effects, the model (1.3) will take a more
general form

dP

dt
= g(t, P )P (1.5)

where g may be increasing for some values of P and decreasing for others. A simple case
of a model with an Allee effect is

dP

dt
= r(P − α)(K − P )P (1.6)

where r > 0 and 0 < α < K . The model (1.6) implies that P will decrease if 0 < P < α

or P > K but increase if α < P < K .
The behavior of (1.4) is quite simple. Positive solutions approach the equilibrium K

monotonically as t → ∞ at a rate that depends on r , so that the equilibrium P = 0 is
unstable and P = K is stable. The behavior of (1.6) is slightly more complicated. Solutions
which start with 0 < P < α will approach 0 as t → ∞; solutions starting with P > α will
approach K monotonically as t → ∞. Thus, the equilibrium P = α is unstable but P = 0
and P = K are stable.

There are various ways that a logistic equation can be formulated in discrete time. The
solution to (1.4) can be written as P (t) = ertP /(1 + [(ert − 1)/K]P ). If we evaluate P (t)

at time t = 1 we get P (1) = erP (0)/(1 + [(er − 1)/K]P (0)); by iterating we obtain the
discrete time model

P (t + 1) = erP (t)/(1 + [(er − 1)/K]P (t)). (1.7)

The model (1.7) is a version of the Beverton-Holt model for populations in discrete time
(see Murray (1993), Cosner (1996)). A different formulation can be obtained by integrating
the equation dP/dt = r[1−(P (0)/K)]P (t); that yields P (1) = exp(r[1−(P (0)/K)])P (0)

and induces an iteration

P (t + 1) = exp(r[1 − (P (t)/K)])P (t). (1.8)
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This is a version of the Ricker model (see Murray (1993), Cosner (1996)). The difference in
the assumptions behind (1.7) and (1.8) is that in (1.7) intraspecific competition is assumed to
occur throughout the time interval (t, t1) while in (1.8) the competitive effect is only based
on conditions at time t . The behaviors of the models (1.7) and (1.8) are quite different.
Model (1.7) behaves much like the logistic model (1.4) in continuous time. Solutions that
are initially positive converge to the equilibrium P = K monotonically (see Cosner (1996)).
On the other hand, (1.8) may have various types of dynamics, including chaos, depending
on the parameters (see Murray (1993)). In most of what follows we will study continuous
time models which combine local population dynamics with dispersal through space, and
we will describe dispersal via diffusion. Some of the ideas and results we will discuss can
be extended to models in discrete time, but the examples (1.7), (1.8) show that models
in discrete time may or may not behave in ways that are similar to their continuous time
analogues, so some care is required in going from continuous to discrete time.

In many populations individuals are subject to different levels of mortality and have
different rates of reproduction at different ages or stages in their lives. Models which
account for these effects typically classify the population by developmental stage, age,
or size and specify the rates at which individuals move from one stage to another, what
fraction survive each stage of their life history, and the rates at which individuals at each
of the stages produce offspring. The type of models which have been used most frequently
to describe age or stage structured populations are discrete time matrix models of the sort
introduced by Leslie (1948) and treated in detail by Caswell (1989). These models divide a
population into n classes, with the population in each class denoted by Pi . Usually the class
P0 represents eggs, seeds, or recently born juveniles. The total population is then given by
n∑

i=0

Pi . The models typically specify the fraction Si of individuals in class i that survive

and enter class i + 1 at each time step, the fraction Sn+1 that survive and remain in class n,
and the number of offspring Ri of class i = 0 produced in each time step by an individual
of class i. The models then take the form

�P (t) = M �P (t) (1.9)

where �P = (P0, . . . , Pn) and M is the matrix

M =




R0 R1 R2 . . . Rn

S1 0 0 . . . 0

0 S2
. . .

. . . . . .

...
. . .

. . . 0 0

0 . . . 0 Sn Sn+1




.

Models of the form (1.9) are discussed at length by Caswell (1989). In general the entries
in the matrix M may depend on �P in various ways. A key property of matrices of the
form shown for M with constant positive entries is that Mn has all its entries positive.
It follows from the theory of nonnegative matrices that M has a positive eigenvalue λ1
whose corresponding eigenvector �v is componentwise positive. (This is a consequence of
the Perron-Frobenius theorem. See Caswell (1989), Berman and Plemmons (1979), or the
discussion of positivity in Chapter 2.) The eigenvalue λ1 is called the principal eigenvalue
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of M , and it turns out that λ1 is larger than the real part of any other eigenvalue of M .
If λ1 > 1 then the population will increase roughly exponentially; specifically, if �v is
the componentwise positive eigenvector of unit length corresponding to λ1 we will have
P (t) ≈ λt

1(
�P (0) · �v)�v for t large. (See Caswell (1989).) Similarly, if λ1 < 1 then the

population will decline roughly exponentially. Thus, λ1 plays the same role as R plays in

(1.2). If we viewed λ1 as giving an overall growth rate for the entire population
n∑

i=0

Pi ,

which is reasonable in view of the asymptotic behavior of (1.9), we would use r = ln λ1
in the corresponding continuous model. In this case r > 0 if and only if λ1 > 1. Because
they break down the life history of an organism into simpler steps, models of the form
(1.9) are useful in deriving population growth rates from empirical data on survivorship
and fecundity; again, see Caswell (1989). The principal eigenvalue of M in effect averages
population growth rates over the age or stage classes of a structured population. The use
of eigenvalues to obtain something like an average growth rate for a structured population
will be a recurring theme in this book. However, the populations we consider will usually
be structured by spatial distribution rather than age, and the eigenvalues will generally
correspond to differential operators rather than matrices. If the entries in the matrix M

depend on �P then the model (1.9) can display the same types of behavior as (1.7) and
(1.8). See Caswell (1989) or Cosner (1996) for additional discussion of density dependent
models of the form (1.9).

It is also possible to formulate age structured population models in continuous time. The
simplest formulation of such models describes a population in terms of P (a, t) where a is
a continuous variable representing age, so that the number of individuals in the population

at time t whose ages are between a1 and a2 is given by
∫ a2

a1

P (a, t)da. The basic form of

a linear (or density independent) model for a population with a continuous age structure
consists of an equation describing how individuals age and experience mortality, and another
equation describing the rate at which new individuals are born. The equation describing
how individuals age is the McKendrick-Von Foerster equation

∂P

∂t
+ ∂P

∂a
= −d(a)P (1.10)

where d(a) is a age-specific death rate. The equation describing births is the birth law

P (0, t) =
∫ ∞

0
b(a)P (a, t)da (1.11)

where b(a) is an age dependent birth rate. Density dependent models arise if d or b depends
on P . Age structured models based on generalizations of (1.10) and (1.11) are discussed
in detail by Webb (1985).

Our main goal is to understand spatial effects, so we will usually assume that the
population dynamics of a given species at a given place and time are governed by a
simple continuous time model of the form (1.5). We will often consider situations where the
population dynamics vary with location, and we will typically model dispersal via diffusion.
Before we discuss spatial models, however, we describe some models for interacting
populations which are formulated in continuous time via systems of equations analogous
to (1.5).

The population models described above are all deterministic, and all of them can be
interpreted as giving descriptions of how populations behave as time goes toward infinity.
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It is also possible to construct models based on the assumption that changes in population are
stochastic. Typically such models predict that populations will become extinct in finite time,
and often the main issue in the analysis of such models is in determining the expected time
to extinction. We shall not pursue that modeling approach further. A reference is Mangel
and Tier (1993).

1.3 Nonspatial Models For Interacting Species

1.3.1 Mass-Action and Lotka-Volterra Models

The first models for interacting species were introduced in the work of Lotka (1925) and
Volterra (1931). Those models have the general form

dPi

dt
=

ai +

n∑
j=1

bijPj


Pi, i = 1, . . . , n, (1.12)

where Pi denotes the population density of the ith species. The coefficients ai are analogous
to the linear growth rate r(t) in the logistic model (1.3). The coefficients bii represent
intraspecies density dependence, in analogy with the term c(t)P in (1.3), so we have bii ≤ 0
for all i. The coefficients bij , i �= j , describe interactions between different species. The
nature of the interaction–competition, mutualism, or predator-prey interaction–determines
the signs of the coefficients bij . If species i and j compete then bij , bji < 0. If species
i preys upon species j , then bij > 0 but bji < 0. If species i and j are mutualists, then
bij , bji > 0. (In the case of mutualism Lotka-Volterra models may sometimes predict that
populations will become infinite in finite time, so the models are probably less suitable for
that situation than for competition or predator-prey interactions.) Usually Lotka-Volterra
competition models embody the assumption that bii < 0 for each i, so the density of
each species satisfies a logistic equation in the absence of competitors. In the case where
species i preys on species j , it is often assumed that bjj < 0 (so the prey species satisfies
a logistic equation in the absence of predation), but that bii = 0 while ai < 0. Under
those assumptions the predator population will decline exponentially in the absence of
prey (because ai < 0), but the only mechanism regulating the predator population is
the availability of prey (because bii = 0, implying that the growth rate of the predator
population does not depend on predator density). If the predator species is territorial or
is limited by the availability of resources other than prey, it may be appropriate to take
bii < 0. Lotka-Volterra models are treated in some detail by Freedman (1980), Yodzis
(1989), and Murray (1993).

The interaction terms in Lotka-Volterra models have the form bijPiPj . If species i and
species j are competitors then the equations relating Pi and Pj in the absence of other
species are

dPi

dt
= (ai − bijPj − biiPi)Pi

dPj

dt
= (aj − bjiPi − bjjPj )Pj .

(1.13)

In the context of competition, the interaction terms appear in the same way as the self-
regulation terms in the logistic equation. Thus, if bii is interpreted as measuring the extent
to which members of species i deplete resources needed by that species and thus reduce the
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net population growth rate for species i, then bij can be interpreted as measuring the extent
to which members of species j deplete the same resources. This interpretation can be used to
study the amount of similarity in resource utilization which is compatible with coexistence;
see MacArthur (1972) or Yodzis (1989). The interpretation in the context of predator-
prey interaction is more complicated. The interaction rate bijPiPj can be interpreted as
a mass-action law, analogous to mass-action principles in chemistry. The essential idea is
that if individual predators and prey are homogeneously distributed within some region,
then the rate at which an individual predator searching randomly for prey will encounter
prey individuals should be proportional to the density of prey, but predators will search
individually, so that the number of encounters will be proportional to the prey density times
the predator density. Another assumption of the Lotka-Volterra model is that the birth rate
of predators is proportional to the rate at which they consume prey, which in turn is directly
proportional to prey density. Both of these assumptions are probably oversimplifications in
some cases.

1.3.2 Beyond Mass-Action: The Functional Response

A problem with the mass-action formulation is that it implies the rate of prey consumption
by each predator will become arbitrarily large if the prey density is sufficiently high. In
practice the rate at which a predator can consume prey is limited by factors such as the
time required to handle each prey item. This observation leads to the notion of a functional
response, as discussed by Holling (1959). Another problem is that predators and prey
may not be uniformly distributed. If predators search in a group then the rates at which
different individual predators encounter prey will not be independent of each other. Finally,
predators may spend time interacting with each other while searching for prey or may
interfere with each other, so that the rate at which predators encounter prey is affected by
predator density. These effects can also be incorporated into predator-prey models via the
functional response.

We shall not give an extensive treatment of the derivation of functional response terms,
but we shall sketch how functional responses can be derived from considerations of how
individuals utilize time and space. We begin with a derivation based on time utilization,
following the ideas of Holling (1959) and Beddington et al. (1975). Suppose a predator
can spend a small period of time �T searching for prey, or consuming captured prey,
or interacting with other predators. (The period of time �T should be short in the sense
that the predator and prey densities remain roughly constant over �T .) Let P1 denote the
predator density and P2 the prey density. Let �Ts denote the part of �T that the predator
spends searching for prey. Let �T1 denote the part of �T the predator spends interacting
with other predators and let �T2 denote the part of �T the predator spends handling prey.
We have �T = �Ts + �T1 + �T2, but �T1 and �T2 depend on the rates at which the
predator encounters other predators and prey, and on how long it takes for each interaction.
Suppose that during the time it spends searching each individual predator encounters prey
and other predators at rates proportional to the prey and predator densities, respectively
(i.e. according to mass action laws.) The number of prey encountered in the time interval
�T will then be given by e2P2�Ts , while the number of predators encountered will be
e1P1�Ts , where e1 and e2 are rate constants that would depend on factors such as the
predator’s movement rate while searching or its ability to detect prey or other predators.
If h1 is the length of time required for each interaction between predators and h2 is the
length of time required for each interaction between a predator and a prey item, then
�T1 = e1h1P1�Ts and �T2 = e2h2P2�Ts . Using the relation �T = �Ts + �T1 + �T2,
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we have �T = (1 + e1h1P1 + e2h2P2)�Ts . Also, the predator encounters e2P2�Ts prey
items during the period �T , so the overall rate of encounters with prey over the time
interval �T is given by

e2P2�Ts/�T = e2P2�Ts/(1 + e1h1P1 + e2h2P2)�Ts

= e2P2/(1 + e1h1P1 + e2h2P2).
(1.14)

The expression g(P1, P2) = e2P2/(1 + e1h1P1 + e2h2P2) is a type of functional response,
introduced by Beddington et al. (1975) and DeAngelis et al. (1975). Under the assumption
that predators do not interact with each other, so that h1 = 0, it reduces to a form derived
by Holling (1959), known as the Holling type 2 functional response. If we maintain the
assumption that the rate at which new predators are produced is proportional to the per capita
rate of prey consumed by each predator, and assume the prey population grows logistically
in the absence of predators, the resulting model for the predator-prey interaction is

dP1

dt
= ae1P2P1

1 + e1h1P1 + e2h2P2
− dP1

dP2

dt
= r

(
1 −

[
P2

K

])
P2 − e2P1P2

1 + e1h1P1 + e2h2P2
.

(1.15)

(The coefficient a represents the predator’s efficiency at converting consumed prey into
new predators, while d represents the predator death rate in the absence of prey.) Note that
if the prey density is held fixed at the level P ∗

2 the predator equation takes the form

dP1

dt
= AP1

B + CP1
− dP1 =

[
A

B + CP1
− d

]
P1, (1.16)

where A = ae2P
∗
2 , B = 1 + e2h2P

∗
2 , and C = e1h1. If A/B > d and C > 0 the function

[A/(B+CP1)]−d is positive when P1 > 0 is small but negative when P1 is large. Thus, the
model (1.16) behaves like the logistic equation in the sense that it includes self-regulation.

The derivation of the Beddington-DeAngelis (and Holling type 2) functional response in
the preceding paragraph from considerations of time utilization retained the assumption that
the total rate of encounters between searching predators and items of prey should follow
a mass-action law. Other types of encounter rates can arise if predators or prey are not
homogeneously distributed. This point is discussed in some detail by Cosner et al. (1999).
Here we will just analyze one example of how spatial effects can influence the functional
response and then describe the results of other scenarios. Let E denote the total rate of
encounters between predators and prey per unit of search time. The rate at which prey are
encountered by an individual predator will then be proportional to E/P1 where P1 is the
predator density. The per capita encounter rate E/P1 reduces to e2P2 if E = e2P1P2, as
in the case of mass action. Substituting the form E/P1 = e2P2 into the derivation given
in the preceding paragraph yields the Holling type 2 functional response if we assume that
predators do not interact with each other. However, the mass action hypothesis E = e2P1P2
is based on the assumption that predators and prey are homogeneously distributed in space.
Suppose instead that the predators do not search for prey independently but form a group
in a single location and then search as a group. In that case, increasing the number of
predators in the system will not increase the area searched per unit time and thus the
number of encounters with prey will not depend on predator density. (This assumes that
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adding more predators to the group does not significantly increase the distance at which
predators can sense prey or otherwise increase the searching efficiency of the predators.)
In that case we would still expect the rate of encounters to depend on prey density, so
that E = e∗P2. Since E represents the total encounter rate between all predators and all
prey, the per capita rate at which each individual predator encounters prey will be given
by e∗

2P2/P1. (We are assuming that predators and prey inhabit a finite spatial region so
that the numbers of predators and prey are proportional to their densities.) Since we are
assuming that all the predators are in a single group, they will not encounter any other
predators while searching for prey. Using the per capita encounter rate with prey e∗

2P2/P1
instead of e2P2 in the derivation of (1.14) leads to

(e∗
2P2/P1)/(1 + e∗

2h2(P2/P1)) = e∗P2/(P1 + e∗
2hP2). (1.17)

The corresponding predator-prey model is

dP1

dt
= ae∗

2(P2/P1)P1

1 + e∗
2h2(P2/P1)

− dP1 =
[

ae∗
2P2

P1 + e∗
2h2P2

− d

]
P1

dP2

dt
= r

(
1 −

[
P2

K

])
P2 − e∗

2P1P2

P1 + e∗
2h2P2

.

(1.18)

The model (1.18) is said to be ratio-dependent, because the functional response depends
on the ratio P2/P1. Other types of functional responses arise from other assumptions about
the spatial grouping of predators. These include the Hassell-Varley form eP2/(P

γ

1 + ehP2)

where γ ∈ (0, 1), among others; see Cosner et al. (1999). In the ratio-dependent model
(1.18) the functional response is not smooth at the origin. For that reason the model can
display dynamics which do not occur in predator-prey models of the form

dP1

dt
= [

ag(P1, P2) − d
]
P1

dP2

dt
= r

(
1 −

[
P2

K

])
P2 − g(P1, P2)P1

(1.19)

with g(P1, P2) smooth and g(P1, 0) = 0. In particular, the ratio-dependent model (1.18)
may predict that both predators and prey will become extinct for certain initial densities;
see Kuang and Beretta (1998).

There are several other forms of functional response which occur fairly often in predator-
prey models. Some of those arise from assumptions about the behavior or perceptions of
predators. An example, and the last type of functional response we will discuss in detail,
is the Holling type 3 functional response g(P2) = eP 2

2 /(1 + f P 2
2 ). The key assumption

leading to this form of functional response is that when the prey density becomes low
the efficiency of predators in searching for prey is reduced. This could occur in vertebrate
predators that have a “search image” which is reinforced by frequent contact with prey,
or that use learned skills in searching or in handling prey which deteriorate with lack of
practice; i.e. when prey become scarce. It will turn out that the fact that the Holling type
3 functional response tends toward zero quadratically rather than linearly as P2 → 0 can
sometimes be a significant factor in determining the effects of predator-prey interactions.

There are many other forms of functional response terms that have been used in predator-
prey models. Some discussion and references are given in Getz (1994) and Cosner et al.
(1999). The various specific forms discussed here (Holling type 2 and type 3, Beddington-
DeAngelis, Hassell-Varley, etc.) are sometimes classified as prey dependent (g = g(P2) in
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our notation), ratio-dependent (g = g(P2/P1)) and predator dependent (g = g(P1, P2)).
There has been some controversy about the use of ratio-dependent forms of the functional
response; see Abrams and Ginzburg (2000) for discussion and references. In a recent study
of various data sets, Skalski and Gilliam (2001) found evidence for some type of predator
dependence in many cases. In what follows we will often use Lotka-Volterra models for
predator-prey interactions, but we will sometimes use models with Holling type 2 or 3
functional response or with Beddington-DeAngelis functional response, depending on the
context. Our main focus will generally be on understanding spatial effects, rather than
exhaustively exploring the detailed dynamics corresponding to each type of functional
response, and the forms listed above represent most of the relevant qualitative features
that occur in standard forms for the functional response. We will not consider the ratio
dependent case. That case is interesting and worthy of study, but it presents some extra
technical problems, and it turns out that at least some of the scaling arguments which lead
to diffusion models can destroy ratio dependence.

1.4 Spatial Models: A General Overview

The simple models we have described so far assume that all individuals experience the
same homogeneous environment. In reality, individual organisms are distributed in space
and typically interact with the physical environment and other organisms in their spatial
neighborhood. The most extreme version of local interaction occurs among plants or
sessile animals that are fixed in one location. Even highly mobile organisms encounter
only those parts of the environment through which they move. Many physical aspects of
the environment such as climate, chemical composition, or physical structure can vary
from place to place. In a homogeneous environment any finite number of individuals will
necessarily occupy some places and not others. The underlying theoretical distribution of
individuals may be uniform, but each realization of a uniform distribution for a finite
population will involve some specific and nonuniform placement of individuals. These
observations would not be of any great interest in ecology if there were no empirical
reasons to believe that spatial effects influence population dynamics or if simple models
which assume that each individual interacts with the average environment and the average
densities of other organisms adequately accounted for the observed behavior of populations
and structure of communities. However, there is considerable evidence that space can
affect the dynamics of populations and the structure of communities. An early hint about
the importance came in the work of Gause (1935). Gause conducted laboratory experiments
with paramecium and didnium and found that they generally led to extinction of one or
both populations, even though the same species appear to coexist in nature. In a later set of
experiments Huffaker (1958) found that a predator-prey system consisting of two species
of mites could collapse to extinction quickly in small homogeneous environments, but
would persist longer in environments that were subdivided by barriers to dispersal. Another
type of empirical evidence for the significance of spatial effects comes from observations
of natural systems on islands and other sorts of isolated patches of favorable habitat in
a hostile landscape. There are many data sets which show larger numbers of species on
larger islands and smaller numbers of species on smaller islands. These form the basis for
the theory of island biogeography introduced by MacArthur and Wilson (1967); see also
Williamson (1981) or Cantrell and Cosner (1994). A different sort of empirical evidence for
the importance of space is that simple nonspatial models for resource competition indicate
that in competition for a single limiting resource the strongest competitor should exclude
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all others (MacArthur, 1972; Yodzis, 1989), but in natural systems many competitors coexist
(see Hutchinson (1961)). This point has been studied systematically from both empirical
and theoretical viewpoints by Tilman (1994, 1982). Finally, there are some biological
phenomena, such as invasions by exotic species, which are intrinsically spatial in nature
and thus require models that involve space. In recent years the amount of attention given to
issues of biological conservation has greatly increased. A major reason why many species
are threatened or endangered is the destruction or fragmentation of their habitats; see for
example Pimm and Gilpin (1989), Quinn and Karr (1986), McKelvey et al. (1986), Groom
and Schumaker (1990). The goal of understanding how patterns of habitat destruction and
fragmentation affect the persistence of populations provides a strong motivation to develop
models for spatial effects.

There are many ways that space and the organisms inhabiting it can be represented in
models. Some models treat space explicitly, that is, they incorporate something analogous
to a map of a spatial region and they give some sort of description of what is happening
at each spatial location at any given time. Other models treat space implicitly, perhaps by
incorporating parameters that correlate with spatial scale or by describing what fraction
of an environment is occupied by some species without specifying how that fraction
of the environment is actually arranged in physical space. Among the models that treat
space explicitly, some treat space as a continuum and others treat space as a discrete
collection of patches. Similarly, some models explicitly keep track of individuals; others
represent populations in terms of densities, and others describe only the probability
that a given location is inhabited by a given species. Finally, some models treat the
birth, movement, and/or death of individuals as stochastic phenomena, while others are
completely deterministic. (Some models can be viewed as giving deterministic predictions
for the mean, expected value, or some other attribute of a random variable.) We shall
briefly describe a number of representative approaches to spatial modeling before we
narrow our focus to the reaction-diffusion models that are the main topic of this book.
Our goal is not to give a systematic survey of spatial modeling, but rather to place
reaction-diffusion models in a broader context of spatial models and to delineate to some
extent the circumstances under which reaction-diffusion models provide an appropriate
modeling approach. Other discussions of similarities, differences, and relationships among
different types of spatial models are given by Durrett and Levin (1994) and Tilman et al.
(1997).

Models that treat both space and population dynamics implicitly include the MacArthur-
Wilson (1967) models for island biogeography and the classical metapopulation model
of Levins (1969). Both models describe populations strictly in terms of their presence or
absence and account for patterns of occupancy in terms of a balance between colonizations
and extinctions, which are assumed to occur stochastically. The MacArthur-Wilson model
in its simplest form envisions a single island and a collection of species which may colonize
the island or, if already present, may become extinct. Let S0 denote the total number of
species that might colonize the island and let S be the number present on the island.
If species not already on the island immigrate to it at rate I and species inhabiting the
island experience local extinctions at rate E, then an equilibrium value for S is obtained
by balancing immigrations and extinctions so that I (S0 − S) = ES. This leads to the
formula S = IS0/(I + E) (see MacArthur and Wilson 1967). If I and E are assumed to
depend on the area, location, and other attributes of the island then the model can yield
species-area relationships. The model of Levins (1969) describes a species which inhabits an
environment consisting of discrete sites, and which may colonize empty sites or experience
local extinctions in occupied sites. Let p represent the fraction of sites which are occupied
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(so 0 ≤ p ≤ 1). Let c be the rate at which colonists are produced if all sites are occupied,
so if a fraction p of sites are occupied then the rate at which colonists are produced is cp.
All sites are assumed to be equally accessible to colonists, so the fraction of sites which
are unoccupied when colonists reach them is 1 − p; thus the total rate of colonization of
empty sites is cp(1−p). Let e be the rate of local extinctions on occupied sites. The model
for the fraction of sites occupied is then dp/dt = cp(1 − p) − ep = (c − e)p − cp2. This
model behaves just like a logistic equation, predicting that the fraction of sites occupied
will approach zero as t → ∞ if c ≤ e and will approach the equilibrium 1 − (e/c) as
t → ∞ if c > e. (See Levins (1969), Tilman et al. (1997), Tilman (1994).) The model can
be extended to multispecies systems; see Tilman (1994).

The Levins model can be modified to treat space in a more explicit way. That is an
essential theme in recent work by Hanski and his colleagues (Hanski, 1997, 1999; Hanski
and Ovaskainen, 2000, 2001). A key idea is to think of the quantity p as the probability that
a patch is occupied rather than the fraction of patches that are occupied. This interpretation
makes sense because if a patch is chosen at random from a collection of patches where a
fraction p are occupied then the probability of selecting an occupied patch is equal to p.
The important thing about interpreting p as a probability of occupancy is that it can be
allowed to vary from patch to patch, along with probabilities of colonization or extinction.
Thus, Hanski’s formulation of metapopulation models envisions a collection of n patches
and describes the probability pi that each patch is occupied in terms of the occupancy of
other patches. Assume that a patch can only be colonized if it is empty, that when patch
j is occupied colonists from patch j arrive at patch i at a rate cij , and that when patch
i is occupied the population inhabiting it experiences a local extinction in unit time with
probability ei . The formulation of metapopulation models given by Hanski (1997, 1999)
then describes the probability pi that the ith patch is occupied by the equation

dpi

dt
=

n∑
j=1
j �=i

cijpj (1 − pi) − eipi . (1.20)

The terms cij and ei can be used to incorporate some aspects of the spatial structure
of the patch network into the model. Specifically, Hanski and his colleagues use cij =
cAj exp(−αdij ) and ei = e/Ai , where Ai is the area of the ith patch, dij is the distance
between patch i and patch j , exp denotes the natural exponential, α is a parameter describing
the hostility of landscape between patches (which is sometimes called the matrix between
patches), and c and e are parameters describing properties of the species which are related
to the likelihood of colonizations or extinctions.

The model (1.20) incorporates some aspects of space explicitly in the sense that spatial
attributes of the environment appear in the model, but it is not spatially explicit in the sense
of keeping track of the locations of individuals as they move through space or of population
density as a function of spatial location. Following the terminology of fluid mechanics,
models that track the location of individuals within some explicit representation of a
spatial region are sometimes called Lagrangian, while models that describe the variations
of population density over some explicit representation of a spatial region are sometimes
called Eulerian. Lagrangian models are often called individual based because they keep track
of individuals. In practice, individual based models have been used primarily in computer
simulations. They can capture enough details of behavior and life history to make predictions
about the behavior of natural systems, but they do not seem to be amenable to mathematical
analysis via existing analytic methods. For a discussion of individual based models and
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modeling, see DeAngelis et al. (1994). It is sometimes possible to calibrate Eulerian models
precisely enough to make useful predictions, but a major reason for using them is that they
often can be analyzed mathematically in ways that lead to broad insights about general
systems, as opposed to precise predictions about specific systems. Both specific prediction
and general understanding are worthy goals, but it is not always feasible to achieve both
with the same model. Our discussion in most of this book will focus on reaction-diffusion
models, which constitute a particular type of Eulerian model, but for now we will describe
some other types of Eulerian models, and in the next section we will explore connections
between different types of models.

Eulerian models for the dynamics of spatially distributed populations can incorporate
various assumptions about the structure of space, the measurement of time, and the dispersal
of organisms through space over time. Specifically, they can treat space and time as
continuous or discrete, and they can treat dispersal and population dynamics as stochastic
or deterministic.

The simplest widely used population model that can incorporate space explicitly is
probably the ideal free distribution of Fretwell (1972); see also Fretwell and Lucas (1970).
In its original form, the model simply describes the equilibrium distribution of a population
of fixed size dispersing through a spatially discrete environment in a deterministic way.
The essential idea is that in an environment which is spatially heterogeneous, individuals
will position themselves in the most favorable locations, but the favorability of any location
is reduced by crowding. To be more specific, the model envisions an environment divided
into n habitats, with Pi denoting the population in the nth habitat. Let P = ∑n

i=1Pi denote
the total population. Each habitat is assumed to have an intrinsic “fitness” ai which is
reduced logistically by crowding to ai − biPi . The habitats are arranged in order of their
intrinsic fitness, so that a1 > a2 > a3 · · · > an. The model is given by the rule that if
a1 − b1P > a2, then P1 = P , Pi = 0 for i = 2, . . . , n. When P is large enough that
a1 − b1P ≤ a2, individuals distribute themselves so that a1 − b1P1 = a2 − b2P2 with
P1 + P2 = P , and with Pi = 0 for i = 3, . . . , n as long as a1 − b1P1 = a2 − B2P2 > a3,
etc. In words, individuals distribute themselves deterministically so that each individual’s
fitness is maximized. The theory simply describes the equilibrium distribution that develops
when the population follows that rule. The model assumes that individuals can assess
environmental quality and move deterministically in response to it. A version of the
ideal free distribution that treats space as a continuum is formulated in Kshatriya and
Cosner (2002).

A class of models that assume space to be discrete and movement to be deterministic (at
least at the population level) but which include population dynamics are known as discrete
diffusion or island chain models. These models treat space as a discrete set of patches and
describe how the population (or density) Pi on each patch varies with time. These models
can be set in either discrete or continuous time. Suppose that in each patch the population
grows or declines according to a population dynamical equation dPi/dt = fi(Pi), and that
individuals disperse from patch i at a rate Di ≥ 0 and arrive at patch j at a rate dji ≥ 0

with
n∑

j=1
j �=i

dji ≤ Di . (If there is no mortality in transit,
n∑

j=1
j �=i

dji = Di .) The model then takes

the form
dPi

dt
=

n∑
j=1
j �=i

dijPj − DiPi + f (Pi), i = 1, . . . , n. (1.21)
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Models of the form (1.21) can be extended to include density-dependent dispersal and
multispecies interactions. If Qi denotes the population (or density) of another species on
patch i, an extension of (1.21) which allows density-dependent dispersal and describes
interspecific interactions is

dPi

dt
=

n∑
j=1
j �=i

dij (Pi, Pj , Qi, Qj )Pj − Di(Pi, Qi)Pi + fi(Pi, Qi)

dQi

dt
=

n∑
j=1
j �=i

d̃ij (Pi, Pj , Qi, Qj )Qj − D̃i(Pi, Qi)Qi + f̃i (Pi, Qi),

i = 1, . . . , n.

(1.22)

An analogous formulation can be given in discrete time. To see how such a model should
be formulated, consider a two-patch dispersal model

dP1

dt
= D2P2 − D1P1,

dP2

dt
= D1P1 − D2P2.

Adding the two equations shows that for P = P1 + P2 we have dP/dt = 0 so
P1 + P2 = P = P (0) so that P2 = P (0) − P1; then dP1/dt = D2(P (0) − P1) − D1P1.
This is a simple linear first order equation. Solving for P1 and then P2 yields

P1(t) = [(D2 + D1e
−Dt )/D]P1(0) + [D2(1 − e−Dt )/D]P2(0)

P2(t) = [D1(1 − e−Dt )/D]P1(0) + [(D1 + D2e
−Dt )/D]P2(0)

where D = D1 + D2. If we set t = 1, we arrive at a model of the form

P1(1) = d11P1(0) + d12P2(0)

P2(1) = d21P1(0) + d22P2(0)

where d11 + d21 = d12 + d22 = 1 and 0 ≤ dij ≤ 1 for all i, j . This last model can
be interpreted as saying that at each time step a fraction dii of the population of patch i

remains there and a fraction dji move to the other patch. Combining the dispersal models
with population dynamics gives

P1(t + 1) = f1(d11P1(t) + d12P2(t))

P2(t + 1) = f2(d21P1(t) + d22P2(t))

(if we assume that at each time step dispersal occurs first, then population dynamics take
effect) or as

P1(t + 1) = d11f1(P1(t)) + d12f2(P2(t))

P2(t + 1) = d21f1(P1(t)) + d22f2(P2(t))

(if we assume population dynamics act first and dispersal follows). Models of this type can
be extended to systems involving several patches and several interacting species.
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Two other types of spatially explicit models which treat space as a discrete grid are
interacting particle systems (Durrett and Levin, 1994) and cellular automata (Comins et al.
1992; Hassell et al., 1994); see also Tilman and Kareiva (1997). These sorts of models
keep track of what happens at each point of the spatial grid. Typically, the state space for
such models consists of integer valued functions (or vectors of such functions, if the model
describes more than one species) defined on the grid points which give the population at
each grid point at any given time. In some cases the function may take on just the values
zero and one, indicating whether a given site is empty or occupied. A key feature of cellular
automata and interacting particle systems is that the transitions between states at a given
grid point are not described by deterministic equations but by rules which may include
logical alternatives or may be stochastic. This feature allows for a relatively high degree
of realism but can make the mathematical analysis of such models difficult. Interacting
particle systems have stochastic rules for transitions between states and usually are set in
continuous time; cellular automata may have deterministic or stochastic rules for transitions
and often are set in discrete time. We will not try to describe these types of models further
here, but discuss interacting particle systems in more detail in the next section, when we
explore the connections between reaction-diffusion models and other spatial models.

The last major class of spatial models are those that treat space as a continuum and
describe the distribution of populations in terms of densities that vary deterministically
in time (but which may sometimes have close connections to stochastic processes). These
models include the reaction-diffusion models which are the main subject of this book, along
with more general types of models based on partial differential equations and discrete-time
models based on integral kernels. We shall discuss the derivation of such models in more
detail in the next section, but the essential idea is to envision individuals dispersing via
random walks, so that at large spatial scales a collection of dispersing individuals will
behave analogously to a collection of particles diffusing under the action of Brownian
motion. For simplicity, suppose the spatial environment is one dimensional. If we ignore
population dynamics, we can describe the density of a population dispersing via diffusion
as u(x, t) where

∂u

∂t
= d

∂2u

∂x2
. (1.23)

(In (1.23) the coefficient d describes the rate of movement.) To get a full model we augment
(1.23) with population dynamical terms:

∂u

∂t
= d

∂2u

∂x2
+ f (x, t, u). (1.24)

This type of model describes local population interactions in the same way as the nonspatial
models treated in sections 1.2 and 1.3. Models of the form (1.24) were introduced into
ecology by Skellam (1951) and Kierstead and Slobodkin (1953). They extend readily to
more space dimensions and to several interacting species. They can also be extended to
account for dispersal behavior that is more complex than simple diffusion, specifically
advection or taxis, and dispersal in response to densities of conspecifics, prey, or predators;
see for example Belgacem and Cosner (1995), Kareiva and Odell (1987) or the discussion
of chemotaxis and cross-diffusion in Murray (1993). In principle, models such as (1.24)
can be deduced from assumptions about the local dispersal behavior and life history of
individuals and can be analyzed to give insights about the dynamics of a population at a
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larger scale. If we start with the dispersal model (1.23) and allow it to act on an initial
density u(x, 0) for unit time, we obtain

u(x, 1) =
∫ ∞

−∞
K(x − y, 1)u(y, 0)dy (1.25)

where K(x, t) is the integral kernel giving the fundamental solution of the diffusion equation
(1.23): K(x, t) = exp(−x2/4dt)/

√
4πdt (Strauss, 1992). If we assume that a population

engages in reproduction and then disperses via diffusion for a unit time, we can construct
a discrete-time population model

u(x, t + 1) =
∫ ∞

−∞
K(x − y, 1)f (u(y, t))dy. (1.26)

Other forms of the integral kernel K(x, t) can be used to describe models of dispersal other
than simple diffusion. This approach is discussed by Lewis (1997); see also Van Kirk and
Lewis (1997), and Hardin et al. (1988b, 1990).

The sorts of models we have described all combine some description of dispersal with
some type of population dynamics (perhaps only a specification of the probability of local
extinctions) so that they can be used directly to address questions about the persistence of
populations. There are also models that only describe movement, specifically the formation
of schools or swarms. We shall not discuss those further (see Grünbaum (1994, 1999),
Flierl et al. (1999)).

We have described a variety of types of spatial models, but how can we decide
which to use in a given situation? The key factors in choosing a type of model are
the biology of the organisms being modeled and the structure of the spatial environment
they inhabit, the goal of the modeling effort, and the spatial scale of the system. For
organisms which have nonoverlapping generations (such as animals that breed once a
year) or which disperse only as seeds or juveniles and then remain in one place, so
that dispersal occurs via reproduction, models that operate on short to moderate time
scales should generally be cast in discrete time. Over longer time scales and for large
populations, even these types of organisms can often be adequately described via continuous
time models. Different types of models make different assumptions about dispersal.
The ideal free distribution assumes that individuals assess environmental quality and
locate themselves deterministically to maximize their fitness. Thus, it is suitable as a
model only for fairly complex organisms that can monitor environmental quality and
move in response to it. In contrast, reaction-diffusion models and interacting particle
systems, and many models based on integral kernels, assume that dispersal has a
random component. (These types of models can incorporate some directed movement
along with random dispersal.) Individual based models can incorporate essentially any
type of dispersal, so they may be needed for organisms with highly complex dispersal
behavior. At the other extreme, metapopulation models do not describe dispersing
individuals at all, only the probability that a patch will be colonized given the current
pattern occupancy of patches. Since plants occupy fixed sites and disperse by colonizing
empty sites, metapopulation models may be especially suitable for plant populations; see
Tilman (1994).

A single patch of habitat, possibly with some internal heterogeneity, can often be viewed
as a continuum, so that it is appropriate to use reaction-diffusion models or models based
on integral kernels to describe the density of a population inhabiting it. A landscape viewed
at a moderately large scale may also be a continuum, or it may be better described as a
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network of discrete habitat patches within a (possibly hostile) matrix of habitat of other
types. In the first case, a reaction-diffusion or integral kernel model might be appropriate,
but in the second a patch model such as (1.21) or some type of metapopulation model
would probably be more suitable. If a network of patches is viewed on a sufficiently large
scale, patch models such as (1.21) may be well approximated by reaction-diffusion models,
so those may again be appropriate at large spatial scales.

The scale of the underlying spatial environment can affect the choice of models. So
can scaling by the level of detail a model should capture. Interacting particle systems can
capture a large amount of detail but are difficult to analyze. Moving to a larger spatial scale
reduces the resolution of the models, but in some cases interacting particle systems can be
rescaled into reaction-diffusion models which are easier to analyze.

Usually models that incorporate a significant level of detail or account for many factors
that might affect population dynamics are difficult to analyze mathematically, although
they can often be used in computer simulations. Thus we encounter a trade-off between
the resolution of models in making specific predictions and their amenability to analytic
approaches which can lead to general insights. Individual based models, cellular automata,
and interacting particle systems provide a significant level of detail but are hard to analyze.
Thus, they are good choices for doing computer experiments. Metapopulation models,
reaction-diffusion models, discrete diffusion or patch models, and models based on integral
kernels all provide less detail but are easier to analyze, so they are good candidates for
mathematical analysis aimed at gaining general insights. Finally, there is the issue of
robustness of conclusions. If similar conclusions follow from diverse models, we can be
somewhat confident that those conclusions describe some actual phenomenon that might
occur in biological systems. (Clearly, deciding whether or not phenomena that might occur
actually do occur and determining how important they are require data as well as models.)
On the other hand, if different models lead to different results, that suggests that the
phenomena they propose to describe are not adequately understood and that new empirical
data or a different conceptual framework will be needed for the theory to progress further.

1.5 Reaction-Diffusion Models

1.5.1 Deriving Diffusion Models

Diffusion models can be derived as the large scale limits of dispersal models based on
random walks. Such derivations are discussed by Okubo (1980) and Turchin (1998). They
can also be derived from Fick’s law (which describes the flux of a diffusing substance
in terms of its gradient), as discussed by Okubo (1980) and Murray (1993), or from
stochastic differential equations, as discussed by Gardiner (1985). Finally, they can be
derived from interacting particle systems. We will describe the derivation from interacting
particle systems in some detail later in this section, but first we sketch some of the other
derivations. As we shall see, scaling turns out to be a crucial issue in the derivation of
diffusion models.

Suppose we think of an individual (organism or particle) that moves along a line in
discrete time steps by jumping one spatial step to the right with probability α or one step
to the left with probability (1 − α). Let �t denote the time step and �x denote the space
step, and let p(x, t) denote the probability that the individual is at location x at time t . The
probability p(x, t +�t) that the individual is at location x at time t +�t can be computed
by observing that to get to position x at time t +�t the individual must either be at position
x − �x at time t and move to the right or be at position x + �x at time t and move to the
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left. Thus, we have

p(x, t + �t) = αp(x − �x, t) + (1 − α)p(x + �x, t) (1.27)

which we can also write as

p(x, t + �t) − p(x, t)

�t
= 1

2�t
[p(x + �x, t) − 2p(x, t) + p(x − �x, t)]

+ β

�t
[p(x + �x, t) − p(x − �x, t)]

(1.28)

where β = (1/2) − α. To obtain a diffusion equation from (1.28) we must relate (1/2�t)

and (β/�t) to �x via scaling. If we let d = (�x)2/2�t and let v = −2β�x/�t then
1/2�t = d/(�x)2 and β/�t = −v/2�x so that (1.28) becomes

p(x, t + �t) − p(x, t)

�t
= d

[
p(x + �x, t) − 2p(x, t) + p(x − �x, t)

(�x)2

]

− v

[
p(x + �x, t) − p(x − �x, t)

2�x

]
.

(1.29)

We can now pass to the limit as �t and �x approach zero as in (Okubo, 1980, p. 68) to
obtain

∂p

∂t
= d

∂2p

∂x2
− v

∂p

∂x
. (1.30)

If there is no preferred direction of motion then β = 0, so v = 0. Thus, the term d∂2p/∂x2

describes the aspect of movement coming from symmetric random displacements, i.e.
the aspect due to diffusion. If we return to equation (1.27) and let α = 1 we obtain
p(x, t + �t) = p(x − �x, t) which reflects a deterministic movement to the right. We

can rewrite this last relation as
p(x, t + �t) − p(x, t)

�t
= p(x − �x, t) − p(x, t)

�t
. When

α = 1, β = −1/2, so the scaling −2β�x/�t = v becomes v = �x/�t , so that

(1.28) becomes

[
p(x, t + �x) − p(x, t)

�t

]
= −v

[
p(x, t) − p(x − �x, t)

�x

]
which has the

limiting equation

∂p

∂t
= −v

∂p

∂x
. (1.31)

The equation (1.31) has solution p(x, t) = p0(x − vt) where p(x, 0) = p0(x). Thus, it
indeed describes motion to the right with velocity �x/�t = v. The interpretation of the
coefficient d in (1.30) is more subtle, but the relation (�x)2/�t = 2d suggests that d can
be viewed as being half of the square of the distance that is traversed by an individual in
unit time by symmetric random movements to the left or right.

The random walk described above can also be analyzed in terms of probability
distributions. For simplicity, assume that an individual starts at x = 0 and at each time step
�t the individual moves a distance �x to the right with probability 1/2 or moves to the left
with a distance �x with probability 1/2. After n time steps, the probability that the object
has moved to the right r times (and thus to the left n − r times) is (1/2)nn!/r!(n − r)!.
Assume, again for simplicity, that −n ≤ m ≤ n and that m and n are both even or both odd.
To arrive at position m�x at time n�t , the individual must move so that r − (n − r) = m,
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that is, the difference in the numbers of steps to the right and to the left must be m. Thus,
r = (n + m)/2 so n − r = (n − m)/2, so the probability p(m�x, n�t) that the object is
at position m�x at time n�t is

p(m�x, n�t) = (1/2)nn!/[(n + m)/2]![(n − m)/2]!. (1.32)

The distribution in (1.32) is a type of binomial distribution. This distribution can be well
approximated by the normal (i.e. Gaussian) distribution for n and m large; see for example
Dwass (1970). To determine the coefficients in the limiting Gaussian distribution for (1.32),
we observe that the position of the individual at time n�t is the sum of n jumps to
the right or left, each with probability 1/2. Thus, we can describe the position of the
individual at time n�t as arising from the sum X1 + · · · + Xn of n independent random
variables, each having the value −�x with probability 1/2 or �x with probability 1/2.
Thus, Xk has mean 0 and variance σ 2 = (1/2)(−�x)2 + (1/2)(�x)2 = (�x)2. Let
Yn = (X1 + · · · + Xn)/σ

√
n = (X1 + · · · + Xn)/�x

√
n, and let P (X ≤ z) denote the

probability that X ≤ z, where X is any random variable. By the central limit theorem
(Dwass 1970) (and using the fact that the mean of Xk is 0 for each k) we have

lim
n→∞P (Yn ≤ z) = 1√

2π

∫ z

−∞
e−r2/2dr. (1.33)

Since t = n�t is the total time for n steps,

P (X1 + · · · + Xn ≤ x) = P (Yn ≤ x/�x
√

t/�t) = P (Yn ≤ x/
√

2dt) (1.34)

where we have used the scaling (�x)2/�t = 2d, as before. Thus, we obtain from (1.33)
and (1.34),

lim
n→∞P (X1 + · · · + Xn ≤ x) = 1√

2π

∫ x/
√

2dt

−∞
e−r2/2dr. (1.35)

Making the substitution y = (
√

2dt)r in (1.35) yields

lim
n→∞P (X1 + · · · + Xn ≤ x) = 1√

4πdt

∫ x

−∞
e−y2/4dt dy. (1.36)

The expression (1/
√

4πdt)e−y2/4dt on the right side of (1.36) is the fundamental solution
of the diffusion equation (1.30) in the case v = 0, i.e. in the case where there is no bias in
the direction of motion; see Strauss (1992). If we use that as a model for the probability
distribution p(y, t) for the position of an individual at time t , then p(y, 0) = δ(y), that is,
p(y, 0) is a point-mass or delta distribution at zero. Furthermore, ∂p/∂t = d∂2p/∂x2.
If a single particle starts at a point z then the distribution after time t should be
(1/

√
4πdt)e−(y−z)2/4dt . If we start with a collection of particles with density at time zero

given by u0(x) then at time t the density should be given by

u(x, t) = 1√
4πdt

∫ ∞

−∞
e−(y−x)2/4dtu0(y)dy, (1.37)

which is equivalent to

∂u

∂t
= d

∂2u

∂x2
, u(x, 0) = u0(x). (1.38)
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The notion of a random walk can be extended to more space dimensions and to more
complex types of movement. We shall not explore those extensions further here, except to
note that if there is no bias in the direction of a random walk and no correlation between
successive steps, the distribution for an individual starting at the origin in IRn after time

t is well approximated by (1/(4πdt)n/2)e−r2/4dt , where r =
√

x2
1 + · · · + x2

n; this form is
the fundamental solution to the equation

∂u

∂t
= d

(
∂2u

∂x2
1

+ · · · + ∂2u

∂x2
n

)
= d∇ · ∇u (1.39)

which is the n-dimensional diffusion equation. In any dimension, d = σ 2/2 where σ 2 is
the variance of the distribution (1/(4πdt)n/2)e−r2/4dt when t = 1. Since the distribution
at t = 1 describes the probability that an individual has moved a distance r from its
starting point at time 1, the quantity σ 2 can be calculated from data obtained, e.g., via
mark-recapture experiments. See Okubo et al. (1989), Andow et al. (1990) and Turchin
(1998) for more discussion of how to calibrate diffusion models from data.

Random walks can be described in other ways. One approach is to describe movement
in terms of stochastic differential equations, where the position x(t) of an individual is
determined by

dx = b(x, t)dt + σ(x, t)dW (1.40)

where dx and dt can be viewed as ordinary differentials and dW = ξ(t)dt , where ξ(t) is
a random variable describing white noise. One typically requires ξ(t) to have mean zero
and ξ(t1), ξ(t2) to have covariance δ(t1 − t2). The diffusion equation can be obtained
as a partial differential equation for the distribution of x at time t , known as the Fokker-
Plank equation. See Gardiner (1985), Okubo (1980) or Belgacem (1997) for some additional
discussion of stochastic differential equations. (Note that the stochastic differential equation
is a Lagrangian description of movement; the Fokker-Plank equation translates it into an
Eulerian form.) A reason to mention stochastic differential equations is that they make
explicit the notion that steps are not correlated. If one assumes that the probability of
moving a given direction at a certain time step is correlated with the direction moved in
the previous time step, derivations similar to those given above lead to the equation

a
∂2u

∂t2
+ b

∂u

∂t
= c

∂2u

∂x2
(1.41)

where a, b, and c are positive constants related to the spatial and temporal scales of the
random walk; see Okubo (1980). Equation (1.41) is called the telegraph equation. It has
some features that differ from those of the diffusion equation, but it turns out that for our
purposes the differences usually will not be too important. We return to that point later.

A completely different approach to deriving diffusion equations is based on Fick’s law
and the notion of flux. This approach is analogous to some standard derivations of the heat
equation. Fick’s law, in the one-dimensional case, is the empirically derived hypothesis
that diffusion transports particles or individuals across a specified point at a rate which is
proportional to the spatial derivative of the concentration or density at that point, and in the
direction of decreasing concentration. In higher space dimensions the situation is slightly
more complicated, because the transport rate across a surface element is proportional to
the directional derivative of the concentration or density in the direction normal to the
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surface, that is, the component of the gradient of the concentration or density in the normal
direction. Again, the direction of transport is in the direction of decreasing concentration,
so the constant of proportionality is negative. This leads to the formulation of the diffusive
flux as �JD = −d∇u, where u represents a density or concentration. If S is a flat surface
element, such as a line segment in the plane or a finite subset of a plane in three-dimensional
space, and �N is a unit normal vector to S, the total rate of diffusive transport across S is
|S|( �JD · �N) where |S| is the size (length, area, etc. depending on dimension) of S. If � is a
region with boundary ∂� and �n denotes the outer unit normal vector to ∂�, the total rate
of transport into � by diffusion is given by the surface integral∫

∂�

[(−�n) · �JD]dS =
∫

∂�

d∇u · �ndS.

The rate of transport into � equals the rate of change in the total number of individuals
(or amount of diffusing substance) in �, so we have

∂

∂t

∫
�

udx =
∫

∂�

d∇u · �ndS. (1.42)

Assume that u and ∂� are smooth enough that we can bring the derivative inside the
integral on the left side of (1.42) and apply the divergence theorem to the right side; doing
those things and dividing by |�| (the volume of �) we obtain

1

|�|
∫

�

(
∂u

∂t

)
dx = 1

|�|
∫

�

(∇ · d∇u)dx. (1.43)

Equation (1.43) says that the average of ∂u/∂t over any set � is the same as the average
of ∇ · d∇u, which we often denote as d∇2u if d is constant. Since � could be any set,
we can try to take the limit of those averages as |�| → 0, and if ∂u/∂t and d∇2u are
continuous we obtain

∂u

∂t
= d∇2u, (1.44)

which is the diffusion equation. The notion of flux extends to advective transport or directed
motion; the flux �J�v arising from advective or directed motion with velocity �v is simply
�J�v = �vu, where u is the concentration or density. If we let �J = �JD + �J�v , and allow d and
�v to depend on x and repeat the calculations (1.42), (1.43) leading to (1.44) we obtain

∂u

∂t
= ∇ · [d(x)∇u − �vu] = ∇ · d(x)∇u − ∇ · (�vu). (1.45)

(We could also allow d and �v to depend on t , but then we would have to go through a
similar calculation based on taking integrals over � × (t, t + �t).)

Finally, diffusion equations can be derived via scaling of deterministic spatially discrete
models. If we begin with the model

dUi

dt
= D(Ui+1 − 2Ui + Ui−1), (1.46)

use D = d/(�x)2, let x = m�x, and make the identification u(x, t) = u(m�x, t) = Um(t),
then taking the limit as �x → 0 of (1.46) yields the diffusion equation (1.38). The same
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is true if we identify u(m�x, n�t) = Um,n and let �x, �t → 0 with (�x)2/�t = s <

1/2 in

Um,n+1 − Um,n

�t
= d

[
Um+1,n − 2Um,n + Um−1,n

(�x)2

]
. (1.47)

(See Strauss (1992) and John (1982)). The same sort of results apply to systems in more
space dimensions. If the plane is divided into a square grid and the density at point
(i�x, j�y) is denoted Uij , the system

∂Uij

∂t
= D

(
Ui+1j + Ui−1j + Uij+1 + Uij−1 − 4Uij

)
(1.48)

will approximate the diffusion equation (1.44) under an appropriate scaling as the mesh
size �x, �y → 0. If (1.46) is modified to dUi/dt = D1U1+i − (D1 + D2)ui + D2ui−1
with D1 �= D2, the limiting equation will have a drift term as in (1.30) or (1.45).

It follows from the above discussion that island chain models such as (1.21) where
the dispersal coefficients dij are zero unless patches i and j are nearest neighbors will
behave approximately like reaction-diffusion models if viewed on a sufficiently large
spatial scale. The same turns out to be true for some interacting particle systems, but
for those systems the scaling can also affect the interaction terms. We discuss that topic in
detail next.

1.5.2 Diffusion Models Via Interacting Particle Systems: The Importance
of Being Smooth

Interacting particle systems treat space as a discrete set of points upon which particles
move and interact stochastically. Typically they keep track of the presence or absence of
a particle at each point, or the number of particles at each point. The formulation we
present here is essentially the one given by Durrett and Levin (1994); various mathematical
treatments are given by Liggett (1985), Spohn (1991), DeMasi and Presutti (1991), and
Kipnis and Landim (1999). In the systems we consider, space is identified with ZZ2, i.e.
the set of points in the plane with integer coordinates. The state space for the model is
the set of nonnegative integer valued functions on ZZ2, so the states specify the number
of individuals at each point on the lattice. The dynamics of the model are specified by the
rates at which individuals move and die or reproduce. (To say that something happens at
a given rate R in this context typically means that it occurs at times which are determined
by an exponentially distributed random variable with mean 1/R.) The rates at which an
individual gives birth or dies may be affected by the presence of other individuals at or
near its location. If we rescale the grid ZZ2 by ε (so that each grid point has the form
(mε, nε) for integers m and n) and rescale the movement rate appropriately, solutions
to the interacting particle system can sometimes be shown to converge to solutions to
a related reaction-diffusion model via a process known as taking hydrodynamic limits
(Durrett and Levin, 1994; DeMasi and Presutti, 1991; Spohn, 1991; Levin and Pacala,
1997; Kipnis and Landim, 1999). There are many technical difficulties connected with
proving that interacting particle systems do indeed converge to reaction-diffusion models,
but since we are primarily interested in reaction-diffusion models we limit our discussion
to calculations of what the hydrodynamic limits would be for certain systems if the limits
do indeed exist.
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To specify an interacting particle system model we need to describe dispersal, interactions
between individuals at a given location, and interactions between individuals in a local
neighborhood. The distinction between location and neighborhood makes it possible to
account for interactions between individuals at neighboring sites. The nearest neighbors of
a point (m, n) are (m+1, n), (m−1, n), (m, n+1), and (m, n−1). A local neighborhood
would consist of all points (m, n) + (p, q) where (p, q) belongs to some neighborhood N
of (0, 0). The neighborhood N might consist only of (0, 0), or of (0, 0) and its nearest
neighbors, or might be larger. We denote the number of grid points in N by |N |. Suppose
that individuals

(i) move to a randomly chosen nearest neighbor of their location at rate D, and

(ii) reproduce or die at rates which depend on the number of individuals at the same
location, or in the local neighborhood of that location.

To give a specific example for ii), let ηt (x) denote the number of individuals at point
x = (m, n) at time t . Suppose that for each individual the birth rate is decreased (or death
rate increased) logistically by other individuals at the same location; then the per capita
birth/death rate is given by a − b(ηt (x) − 1). (The fact that b multiplies η − 1 instead of η

reflects the idea that individuals do not compete with themselves.) The overall birth/death
rate at location x and time t is then ηt (x)(a−b(ηt (x)−1)). The hydrodynamic limit for the
system defined above arises by scaling the grid as (εm, εn) and scaling D = 4d/ε2. (The
4 enters the scaling because each site has 4 nearest neighbors, so that the rate of dispersal
into a given neighboring site is D/4.) Notice that 1/D represents a time scale and that 1/D

scales as ε2, where ε represents the spatial scaling. Thus, once again, the diffusion model
arises from a scaling where �t is proportional to (�x)2. Let ηε

t (x) denote the number of
individuals at point x at time t in the scaled system, and let uε(x, t) = E(ηε

t (x)), that
is, let uε(x, t) be the mean of ηε

t (x). If the hydrodynamic limit can indeed be taken, then
uε(x, t) → u(x, t) where the dispersal equation for u(x, t) is

∂u

∂t
= d∇2u. (1.49)

Under some technical assumptions (see Durrett and Levin (1994), Spohn (1991), DeMasi
and Presutti (1991), Kipnis and Landim (1999)), the joint distribution for the number of
individuals at any finite set of sites converges to independent Poisson distributed random
variables at each point, each with mean u(x, t). Thus, to compute the reaction terms, we
would calculate the expected birth or death rate by computing E([a−b(U −1)]U) where U

is a Poisson distributed random variable with mean u. The Poisson distribution with mean

u has P (U = k) = e−uuk/k! so that E(f (U)) =
∞∑

k=0

e−uf (k)uk/k!. If we compute this

expression for aU we simply recover au since u = E(U) is the mean of U . For U(U − 1)

we have

E(U(U − 1)) = e−u

∞∑
k=0

k(k − 1)uk/k! = e−u

∞∑
k=2

uk/(k − 2)!

= u2e−u

∞∑
k=2

uk−2/(k − 2)! = u2e−u

∞∑
j=0

uj /j ! = u2.

(1.50)
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Thus, E(aU − bU(U − 1)) = au − bu2, so the hydrodynamic limit for this system is the
diffusive logistic model

∂u

∂t
= d∇2u + (a − bu)u. (1.51)

This hydrodynamic limit can be derived rigorously; see DeMasi and Presutti (1991).
If we wanted to consider interactions between two species and to allow interactions

to occur in the local neighborhood of each point, we would need to introduce variables
ξt (x) and ξ̂t (x), where ξt (x) denotes the number of individuals of the second species
at location x at time t , and ξ̂t (x) denotes the numbers of individuals in the local
neighborhood of x at time t . In the hydrodynamic limit, these quantities would converge
to independent Poisson random variables with the means corresponding to ξ, η̂, and ξ̂

being v, |N |u, |N |v respectively, where v represents a density of the second species
and |N | the size of the interaction neighborhood. If a birth (or death) rate is given by
f (ξ, η, ξ̂ , η̂) in the interacting particle system, the corresponding term in the reaction-
diffusion model arising as the hydrodynamic limit should be E(f (U, V, Û, V̂ )) where
U, V, Û , and V̂ are independent Poisson random variables with means u, v, |N |u, and
|N |v. In principle this expectation can be calculated via computations along the lines of
(1.50); however, in practice, the result can be represented in terms of elementary functions
only for certain fairly simple forms of f . A consequence of the independence of the random
variables is that, for example, E(ÛV ) = E(Û)E(V ) = |N |uv. It follows that scaling by
hydrodynamic limits has no qualitative effect on the interaction terms in Lotka-Volterra
models. It turns out that if f (U) = U/(U + 1), as might be encountered in a model
with a Holling type 2 functional response, E(f (U)) = 1 − [(1 − e−u)/u]. On the other
hand, E(U/(U + 2)) = 1 − 2[u − 1 + e−u]/u2 and E(U/(U + √

2)) does not appear
to have a simple representation. Some properties can be deduced from the general form

E(f (U)) =
∞∑

k=0

e−uf (k)uk/k!. Clearly if |f (k)| ≤ Mk for some M then E(f (U)) is an

analytic function, since the power series for E(f (U)) will converge. It is less obvious but
still true that if f (U) is increasing then so is E(f (U)) as a function of u. These and other
properties are derived in Cantrell and Cosner (in press). Because most of the models we
will consider involve Lotka-Volterra interactions, or other smooth interaction terms such as
the Holling type 2 response, we usually simply augment the original interaction terms with
diffusion rather than attempting to calculate hydrodynamic limits. This is certainly justified
in the Lotka-Volterra case, since in that case the hydrodynamic limit is still Lotka-Volterra.
In most of the other models we will consider, we will be concerned with qualitative effects
that depend more on general properties of interaction terms such as monotonicity rather
than on details of their algebraic form. Thus, using the original form of a Holling type
2 functional response rather than the form arising from hydrodynamic limits (which may
not have a representation in terms of elementary functions) usually would not affect the
qualitative properties of a model very much. There are, however, some important classes of
models where the smoothing property of hydrodynamic limits, i.e. the fact that E(f (U))

is an analytic function as long as f (U) does not grow faster than exponentially in U , has
significant qualitative effects. These include ratio-dependent models and the hawk-dove
game discussed by Durrett and Levin (1994). We will discuss the hawk-dove game in some
detail and then describe briefly the analogous effects in ratio-dependent models.

The hawk-dove game is a model for evolution of a pair of strategies that individuals might
use for interacting with conspecifics, in a context where the results of using a given strategy
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depend on the fraction of the local population that is using each of the two strategies. The
payoff in this case is interpreted as a birth/death rate. The interactions between individuals
using different strategies are assumed to occur in the local neighborhood of each location.
Recall that we denoted the number of individuals of each type at x by ηt (x) and ξt (x), and
the numbers in the local neighborhood of x by η̂t (x) and ξ̂t (x). For the moment we refer to
the first type as “hawks” and the second as “doves”. Let p̂t (x) = η̂t (x)/(η̂t (x)+ ξ̂t (x)), that
is, p̂t (x) is the fraction of hawks among individuals in the local neighborhood of x at time t .
Suppose that hawks at the location x have the birth (or death) rate ap̂t (x) + b(1 − p̂t (x));
similarly, suppose that doves at x have birth (death) rate cp̂t (x) + d(1 − p̂t (x)). Finally,
suppose that all individuals at x have a logistic death rate proportional to the total number
of individuals at x; that is, the death rate is k(ηt (x) + ξt (x)). If we simply treat η, η̂, ξ ,
and ξ̂ as densities u, v then a nonspatial model with interaction terms corresponding to the
rates shown above would be

du

dt
=
[

au

u + v
+ bv

u + v
− k(u + v)

]
u

dv

dt
=
[

cu

u + v
+ dv

u + v
− k(u + v)

]
v.

(1.52)

The traditional way to obtain a spatial model from (1.52) would be to simply add diffusion
to obtain

∂u

∂t
= d∇2u +

[
au

u + v
+ bv

u + v
− k(u + v)

]
u

∂v

∂t
= d∇2v +

[
cu

u + v
+ dv

u + v
− k(u + v)

]
u.

(1.53)

In the case a = −0.6, b = 0.9, c = −0.9, d = 0.7, both (1.52) and (1.53) can be shown
to predict that (u, v) → (0, 0) as t → ∞; see Durrett and Levin (1994). On the other hand,
the interacting particle system itself predicts that the hawks and doves will coexist (Durrett
and Levin, 1994). Computing the hydrodynamic limit for the interacting particle system
via computations analogous to (1.50) yields the system

∂u

∂t
= d∇2u +

[
a

(
h + (1 − h)

u

u + v

)
+ b(1 − h)

u

u + v
− k(1 + u + v)

]
u

∂u

∂t
= d∇2v +

[
c

(
h + (1 − h)

u

u + v

)
+ d(1 − h)

v

u + v
− k(u + v + 1)

]
v

(1.54)

where h(u, v) = [1 − e−|N |(u+v)]/|N |(u + v); recall that |N | is the size of the local
neighborhood. See Durrett and Levin, (1994), and Perrut (2000). (If we were to assume
that individuals do not interact with themselves, then the rate terms in the original interacting
particle system would be modified and the form of the hydrodynamic limit would be slightly
different, but the general qualitative features of the models would be very similar.) It turns
out that (1.54) has an equilibrium with u and v both positive which is globally attracting for
positive solutions (Durrett and Levin, 1994). Thus, in this case, taking the hydrodynamic
limit of the interacting particle system yields a prediction which is opposite to what is
obtained by just using the rates in that system directly, with or without diffusion. This
is quite different form the cases of logistic or Lotka-Volterra models. For those, taking
hydrodynamic limits typically has no effect at all on the form of the interaction terms,
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and the only quantitative effect is that some terms may be multiplied by |N | (Cantrell
and Cosner in press.) What is the difference between these cases? The key observation is
that the terms u2/(u + v), uv/(u + v), etc. in (1.52) and (1.53) are not smooth at (0, 0);
that is, they have partial derivatives which are not continuous at (0, 0). The corresponding
terms in the hydrodynamic limit are smooth. (This can be seen by expanding h(u, v) in a
power series or by recalling that all hydrodynamic limits arise from convergent power series
as in (1.50), and that functions with convergent power series representations are smooth.)
When the interaction terms are not smooth, pairs of ordinary differential equations can have
equilibria of types that are different than the usual stable and unstable nodes, saddles, spiral
points, etc. which occur in smooth systems. This point has been explored in some detail in
the context of ratio-dependent predator-prey models (Kuang and Berreta, 1998). In smooth
systems with two components, there is only a single direction along which a trajectory can
approach a saddle point. In predator-prey models the origin is often a saddle point, and in
smooth systems the only direction from which trajectories approach the origin is generally
along the predator axis. In similar models with ratio-dependent interaction terms there can
be a whole sector, that is, a range of values of the ratio of the two components, within
which trajectories can enter the origin. Taking the hydrodynamic limit of such a ratio-
dependent system generally leads to a smooth system where the region is again an ordinary
saddle point. It is not surprising that the model (1.52) supports phenomena similar to those
seen in ratio-dependent predator-prey models, because the terms u/(u + v) and v/(u + v)

are ratio dependent. If we derive a reaction-diffusion model for a system where the local
interaction rates are given by functions that are not smooth, then the results obtained by
simply adding diffusion may not accurately reflect the behavior of the interacting particle
system. Deriving the reaction-diffusion model via hydrodynamic limits smooths out the
interaction terms and thus seems to capture more accurately the behavior of the original
system in some cases.

Many of the systems we will study are based on Lotka-Volterra models, and essentially
all of them are based on smooth interaction terms whose key properties (e.g. monotonicity)
are preserved by hydrodynamic limits. Thus, we usually just add diffusion to the terms
describing local interactions, because in the cases we will consider taking hydrodynamic
limits has few if any qualitative effects on the structure of the model. This approach would
not be appropriate for deriving diffusion models for systems where the local interactions
are not smooth, such as ratio-dependent models or variations on the hawk-dove game. For
those systems it may be necessary to use hydrodynamic limits if the resulting reaction-
diffusion model is supposed to display the same behavior as the underlying interacting
particle system.

1.5.3 What Can Reaction-Diffusion Models Tell Us?

Reaction-diffusion models can explain three types of spatial phenomena that are relevant
in ecology: waves of invasion by exotic species, the formation of patterns in homogeneous
space, and the effects of the size, shape, and heterogeneity of the spatial environment on
the persistence of species and the structure of communities. These ideas were introduced
in four classic papers on diffusion theory. The idea that reaction-diffusion models can
support traveling waves was introduced by Fisher (1937) in the context of models for the
spatial spread of an advantageous gene. The idea that adding diffusion to a nonspatial
model (with two or more components) can destabilize spatially homogenous equilibria
and lead to the formation of patterns was introduced by Turing (1952) in the context of
models for morphogenesis. The idea that reaction-diffusion models predict the minimal
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patch size needed to sustain a population was introduced by Skellam (1951) and Kierstead
and Slobodkin (1953), specifically in the context of spatial ecology. (Skellam also extended
Fisher’s idea of a traveling wave to the spread of populations, as opposed to genes
within a population.) In what follows we focus our attention almost exclusively on
the effects of habitat geometry and heterogeneity on the persistence, coexistence, and
extinction of species in finite habitats. We have chosen to pursue that topic in this
book (and the research leading to it) in part because some good treatments of traveling
waves (and invasions in general) and pattern formation are already available. Traveling
waves in reaction-diffusion models are discussed from a mathematical viewpoint by Fife
(1979), Smoller (1982), and Grindrod (1996). They are discussed from the viewpoint of
biological applications by Murray (1993). Models for biological invasions, including but
not limited to reaction-diffusion models, are discussed by Kawasaki and Shigesada (1997).
Pattern formation is discussed by Grindrod (1996) and, again in the biological context,
by Murray (1993). There are some general treatments of reaction-diffusion systems in
bounded spatial domains, including Lotka-Volterra models with diffusion, for example
Leung (1989) and Pao (1992), and in the time periodic case (Hess, 1991), but those
treatments are essentially mathematical in nature and generally do not attempt to make close
connections with specific applications in ecology. Also, the material we present includes a
number of methods and applications which to our knowledge have only appeared in journal
articles.

The phenomena that can be described via reaction-diffusion models can often be
treated via other types of models. If highly detailed specific predictions are required,
it is probably best to use simulations, perhaps via individual based models, cellular
automata, or interacting particle systems. Some of these sorts of approaches are discussed
by Tilman et al. (1997). A limitation of simulation models is that it is usually difficult
to analyze them mathematically and extract general properties which can provide insights
into the mechanisms underlying their predictions. However, they can be used in numerical
experiments to construct artificial data sets from which general properties can be inferred.
In particular, cellular automata models have been observed to generate spatial patterns
analogous to those produced by reaction-diffusion models (Comins et al., 1992; Hassell
et al., 1994). It is sometimes possible to obtain information about the rate at which a
population expands its range from interacting particle systems; see Ellner and et al. (1998).
Traveling waves can be shown to exist in island chain models; see Zinner (1991,1992).
A limitation of reaction-diffusion models for the propagation of traveling waves is that
diffusion equations on unbounded domains predict that an initial density which is zero
except on some bounded set will be positive everywhere for all positive times. This
seems to be at odds with the notion that organisms move with finite speed. That could
be resolved by replacing reaction-diffusion models with models based on the telegraph
equation ε2∂2u/∂t2 + ∂u/∂t = d∂2u/∂x2 + f (u). However, it turns out that for parameter
values that occur in natural systems, the predictions of the telegraph equation are very
close to those of the corresponding reaction diffusion model (Holmes, 1993). A more
serious problem is that diffusion models do not account for long-distance movement, e.g.
for the movement of an insect that “hitch-hikes” on a car or truck instead of crawling on its
own. More generally, diffusion predicts that a population which is initially concentrated at a
single point will develop a normal (i.e. Gaussian) distribution in space as time passes. Other
patterns are certainly possible, and these can be examined by using models based on integral
kernels. It turns out that the details of how the kernel decays at infinity can have profound
effects on wave propagation; see Lewis (1997). Thus, there are sometimes good reasons to
use such models instead of reaction-diffusion models in the study of biological invasions.
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However, in a finite habitat patch the issue of long distance dispersal is much less important,
especially if the primary goal is to understand the long term effects of local dispersal and
habitat geometry on population dynamics. Thus, while it is possible to use integral kernels
to study long term persistence in habitat patches (Hardin et al., 1988a,b 1990; VanKirk and
Lewis, 1997, 1999), it is also reasonable to use reaction-diffusion models. Metapopulation
models, especially as formulated by Hanski and his co-workers (1997, 1999) and Tilman
(1994) can address the issue of persistence in finite habitats, but those models treat networks
of patches and treat local population dynamics implicitly, in terms of presence or absence of
populations. Thus, they are typically appropriate models for spatial effects on a different set
of spatial scales than reaction-diffusion models. Discrete diffusion models, i.e. island chain
models, can also be used to model patch networks. To describe systems where different
species operate on different spatial scales, it may be necessary to combine reaction-diffusion
models and patch network models. An example is discussed in Cantrell and Cosner (1996).

The phenomena of traveling waves and pattern formation differ from that of minimal
patch in a fundamental way: they can occur in homogeneous space, while the very notion
of “patch” requires at least enough spatial heterogeneity to distinguish the patch from
its surroundings. A defining feature of any finite habitat is that it has a boundary, or
edge. Edges can mediate numerous effects in population dynamics (Fagan et al., 1999).
Habitat edges can be created by physical features such as rivers, roads, or (for aquatic
systems) shorelines; they can also arise from interfaces between different types of ecological
communities such as forests and grasslands. Edges can influence population dynamics in
various ways. They can affect movement patterns, act as a source of mortality or resource
subsidy, or function as a unique environment with its own rules for population interactions
(Fagan et al., 1999). Edges can have different effects on different species; for example,
a road may act as a barrier for some species and a source of mortality for others. Thus,
because edges can exert different effects on different species, the presence of edges can
influence community structure in ways that are not completely obvious from the ways in
which they affect each species. Reaction-diffusion models provide a natural framework for
the study of edge effects, because to correctly formulate a reaction-diffusion model in a
finite patch it is necessary to specify boundary conditions. In other words, we must describe
not only how individuals disperse throughout a patch, but also what they do when they
reach the edge of the patch. An advantage of reaction-diffusion models is that they can
readily incorporate simple rules about the effects of edges. They can also incorporate effects
of internal heterogeneity within a patch. We will use those features of reaction-diffusion
models to study how environmental heterogeneity affects populations.

1.5.4 Edges, Boundary Conditions, and Environmental Heterogeneity

The simplest way to formulate boundary conditions for reaction-diffusion models is
probably via Fick’s law. Recall that Fick’s law is based on the idea that the rate of
diffusion across an interface is given by �J · �n where �n is the unit normal vector to the
interface. If we are describing the density u of a population of individuals that diffuse
at a rate d(x) and are advected or engage in directed movement with velocity �v(x),
then �J = −d(x)∇u + �v(x)u and the diffusion equation for u is (1.45), repeated here
for convenience: ∂u/∂t = −∇ · �J = ∇ · d(x)∇u − ∇ · (�v(x)u). The standard boundary
conditions for (1.45) relate the flux of individuals across a boundary to the density at the
boundary. Specifically, let � be a bounded region with smooth boundary ∂�, and let �n
denote the outward pointing unit normal. Then the flux across the boundary ∂� at any given
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point is proportional to the density with constant of proportionality β(x) if �J · �n = βu, i.e.
[−d(x)∇u+ �v(x)u] · �n = β(x)u. The quantity ∇u · �n is the directional derivative of u in the
direction of the outward normal vector to ∂�; it is often denoted by ∂u/∂ �n, and we will
use that notation. The boundary condition for the diffusion model (1.45) would typically
be expressed as

d(x)
∂u

∂ �n + [β(x) − �v(x) · �n(x)]u = 0. (1.55)

To understand what the boundary condition means, it is useful to return to the form
�J · �n = βu. If β = 0 then the condition says that there is no flux across ∂�, so that
∂� acts as a perfect barrier to dispersal. As β increases, a larger proportion of individuals
who encounter the boundary will cross it in the outward direction. Finally, if we write the
condition as u = (1/β) �J · �n, then as β → ∞ the boundary condition becomes u = 0 on ∂�,
indicating that individuals who encounter the boundary cross it immediately and thereby
maintain the density on the boundary at zero. It we want to compare boundary conditions
within a single model it may be convenient to write the boundary condition as

α[d(x)∂u/∂ �n − �v · �nu] + (1 − α)u = 0 (1.56)

with 0 ≤ α ≤ 1. In that formulation, α measures the fraction of individuals which do not
cross the boundary when they encounter it. Thus, α = 1 corresponds to a situation where
no individual crosses ∂�, α = 0 corresponds to one where all individuals who encounter
∂� cross it, and 0 < α < 1 corresponds to intermediate situations. The boundary conditions
(1.55) or (1.56), along with other sorts of boundary conditions, can be obtained from the
theory of stochastic processes (Gardiner, 1985). The interpretation of conditions (1.55),
(1.56) is the same as in the derivation from Fick’s law, but cast in terms of the probability
of an individual crossing ∂� as opposed to the rate at which individuals cross. There is some
standard terminology that is used to specify boundary conditions. The condition u = 0 on
∂� is sometimes called “absorbing” because under that condition ∂� effectively absorbs all
individuals encountering it. That boundary condition is typically called a Dirichlet condition
in the mathematical literature. In population dynamics, the boundary condition u = 0 is
sometimes said to correspond to a lethal boundary, because it can be interpreted as meaning
that all individuals who encounter ∂� die. (For purposes of analyzing what happens inside
� it doesn’t usually matter whether individuals encountering ∂� die or simply leave and
don’t return.) The boundary condition d(x)∂n/∂ �n − �v · �nu = 0 is called a no-flux or
reflecting boundary condition, since it means that individuals encountering ∂� are always
“reflected” back into � so they do not leave. In the mathematical literature the boundary
condition ∂u/∂ �n = 0 is called a Neumann condition. It corresponds to a reflecting or
no-flux boundary condition if �v = 0, but not otherwise. Boundary conditions of the form
α(x)∂u/∂ �n + β(x)u = 0 with both α and β positive are called Robin conditions in the
mathematical literature.

In some cases individuals may have a preference for crossing a habitat edge in a particular
direction. Models for movement which incorporate a preferred direction of motion at an
interface have been studied in the context of stochastic processes under the name “skew
Brownian motion.” The basic process of skew Brownian motion is formulated as a random
walk in one dimension, analogous to those described in (1.27)–(1.30), but with α = 1/2
except at a single point where in general α �= 1/2; see Walsh (1978), and Harrison and
Shepp (1981). (Recall that α is the probability that an individual moves to the right at any
given time step.) According to Walsh (1978) and Harrison and Shepp (1981), the scaling
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used in (1.27)–(1.30) where �x, �t → 0 with (�x)2/2�t = d can be applied to this type
of motion. If α = 1/2 except at x = 0, the process is described by a diffusion equation of
the form

∂u

∂t
= d

∂2u

∂x2
on (−∞, 0) ∪ (0, ∞)

lim
x→0+

α
∂u

∂x
(x, t) = lim

x→0−
(1 − α)

∂u

∂x
(x, t)

lim
x→0+

∂2u

∂x2
(x, t) = lim

x→0−
∂2u

∂x2
(x, t);

(1.57)

see Walsh (1978). The first equation in (1.57) is the same diffusion equation we derived
earlier in this section. The next equation implies a discontinuity in the flux at the point
zero if α �= 1/2 and lim

x→0+
∂u/∂x or lim

x→0−
∂u/∂x is nonzero. The third equation requires

that ∂2u/∂x2 can be extended continuously across the interface at x = 0. In Cantrell and
Cosner (1998, 1999) we considered models based on skew Brownian motion. In Chapter 2
we discuss them in some detail. The models are set on an interval containing 0; they have
the form

∂u

∂t
= D1

∂2u

∂x2
+ su for x < 0

∂u

∂t
= D2

∂2u

∂x2
+ ru for x > 0

lim
x→0+

αD2
∂u

∂x
= lim

x→0−
(1 − α)D1

∂u

∂x

lim
x→0+

D2
∂2u

∂x2
+ ru = lim

x→0−
D1

∂2u

∂x2
+ su.

The equations above extend those of Walsh (1978) in a fairly natural way, but the model
has some peculiar features. In Cantrell and Cosner (1998) we show that to conserve total
population in Walsh’s model, which has no explicit birth or death rate, the population
distribution must sometimes include a multiple of the Dirac delta, i.e. a point mass, at
x = 0. In other words, the pure dispersal model for skew Brownian motion derived by
Walsh (1978) implies that there may be a nonzero number of individuals on the interface
at x = 0. There are other possible formulations for models with a preferred direction
of movement at an interface. One that involves a discontinuity in density but keeps flux
continuous has been derived by Ovaskainen (preprint). The general problem of correctly
formulating and analyzing models where individuals have a directional preference at an
interface deserves further study.

Once we have specified a patch �, the dispersal properties and local population dynamics
of a species inhabiting �, and the behavior (or fate) of individuals encountering the
boundary of �, we can assemble a complete reaction-diffusion model. A typical example
would be a model for the density u of a population whose members disperse throughout �

by diffusion at a rate d(x) which may vary in space, reproduce (or die) logistically with a
net birth or death rate a(x) − b(x)u, and leave � when they encounter ∂�. The model for
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the population density would then be

∂u

∂t
= ∇ · d(x)∇u + [a(x) − b(x)u]u in � × (0, ∞)

u = 0 on ∂� × (0, ∞).

To obtain a specific solution, we would also have to know the initial state of the system as
given by the initial density u(x, 0). In his pioneering work on diffusion models in ecology,
Skellam (1951) said of models such as the preceding that “orthodox analytical methods
appear inadequate.” Much of the remainder of this book is devoted to the presentation of
“analytical methods” which have been developed in the half century since Skellam made
that remark, and to discussions of how to apply those methods to such models. Although
many questions remain open, the new mathematical methods are somewhat closer to being
adequate for the treatment of such models than those available in 1951.

1.6 Mathematical Background

1.6.1 Dynamical Systems

The basic units of information about a group or collection of species that we will keep
track of in this volume are population counts or population densities for the species in
question. The very simplest example imaginable would be to keep track of either the total
population of some species over some spatial region or its average population density over
the region as time varies. In this case a single nonnegative number y(t) is adequate to
designate the total population or the average population density at time t . However, if we
want to subdivide the population in some way (e.g., by life stages) and track the total
population or average density for each of the divisions over time, or if we want to track the
total population or average population density for more than one species simultaneously, a
single number for each value of time is inadequate to convey this information. Obviously,
a nonnegative number is needed for each distinct subdivision we want to consider in the
first instance and for each individual species in question in the second. The most suitable
way to encode such information mathematically is to use an ordered n-tuple or vector of
numbers (y1(t), y2(t), . . . , yn(t)) for each value of time.

There are three basic properties of n-vectors that pertain to the analyses of this
volume. First of all, two n-vectors (y1, y2, . . . , yn) and (y∗

1 , y∗
2 , . . . , y∗

n) may be added
by adding components and an n-vector (y1, . . . , yn) may be multiplied by a scalar c

componentwise; i.e.,

(y1, y2, . . . , yn) + (y∗
1 , y∗

2 , . . . , y∗
n) = (y1 + y∗

1 , y2 + y∗
2 , . . . , yn + y∗

n) (1.58)

c(y1, . . . , yn) = (cy1, . . . , cyn). (1.59)

We say that (1.58) and (1.59) endow the collection of all such n-tuples of real numbers with
a linear structure, and this structure permits us to do arithmetic on the collection. Of course,
since for our purposes the components are always nonnegative, we usually want c in (1.59)
to be nonnegative. The second feature of n-vectors that we employ is that we can measure
the distance between (y1, . . . , yn) and (y∗

1 , . . . , y∗
n). To this end, we have the formula

d((y1, . . . , yn), (y∗
1 , . . . , y∗

n)) =
(

n∑
i=1

(yi − y∗
i )2

)1/2

, (1.60)
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where d in (1.60) stands for distance and the formula is the natural extension of the
Pythagorean theorem to n-vectors. It is immediate from (1.60) that

d((y1, . . . , yn), (y∗
1 , . . . , y∗

n)) ≥ 0 with d((y1, . . . , yn), (y∗
1 , . . . , y∗

n))

= 0 only if (y1, . . . , yn) = (y∗
1 , . . . , y∗

n),
(1.61)

and

d((y1, . . . , yn), (y∗
1 , . . . , y∗

n)) = d((y∗
1 , . . . , y∗

n), (y1, . . . , yn)). (1.62)

It may not be so immediate but it is nevertheless also the case that if (y∗∗
1 , . . . , y∗∗

n )

represents some other n-vector, then

d((y1, . . . , yn), (y∗
1 , . . . , y∗

n)) ≤ d((y1, . . . , yn), (y∗∗
1 , . . . , y∗∗

n ))

+ d((y∗∗
1 , . . . , y∗∗

n ), (y∗
1 , . . . , y∗

n)).
(1.63)

Note that (1.63) can be interpreted as saying that the length of one side of a triangle is
less than or equal to the sum of the lengths of the other two sides and hence is known as
the triangle inequality. Being able to equip the collection of n-vectors with (1.58)–(1.60)
enables us to employ methods of real analysis such as calculus on the collection. The third
feature of significance in the collection of n-vectors is that there is sometimes a natural
way to order two vectors. The most usual choice is to say that

(y1, . . . , yn) ≤ (y∗
1 , . . . , y∗

n) ⇔ yi ≤ y∗
i for i = 1, . . . , n, (1.64)

i.e., the ordering between components of the n-vectors is consistent from one component
of the n-tuple to the next. Of course, not all n-vectors are so ordered once n > 1 (e.g., (1,2)
and (2,1)). Consequently, (1.64) is called a partial ordering on the collection of n-vectors.

Of course, our principal aim in this volume is to employ reaction-diffusion models to
model and analyze the interaction of biological species in isolated bounded spatial habitats.
To do so, we must consider pointwise population densities in place of average densities. So
our state spaces are now n-tuples of nonnegative functions (y1(x), . . . , yn(x)), where x ∈ �,
the habitat patch in question, instead of n-tuples of nonnegative numbers (y1, . . . , yn). Of
course, to track changes over time in an n-tuple of population densities requires us to
consider n-tuples of the form (y1(x, t), . . . , yn(x, t)).

Now two functions y(x) and y∗(x) on � may be added together in a natural way to
form a function (y + y∗)(x) via the formula

(y + y∗)(x) = y(x) + y∗(x) (1.65)

and a function y(x) may be multiplied by a scalar c to form a function (c · y)(x) in a
natural way via the formula

(c · y)(x) = c · y(x). (1.66)

It follows from (1.65) and (1.66) that just as in the case of the collection of n-tuples
of average population densities we can impose a linear structure on the collection of n-
tuples of pointwise population densities on the habitat � so that we can do arithmetic
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on the collection. So the first of the three aforementioned features of the collection of n-
tuples of average population densities carries over to the collection of n-tuples of pointwise
population densities on � in a straightforward manner.

The second feature of the collection of n-tuples of average population densities,
namely the ability to measure the distance between two such n-tuples, also carries
over to the collection of n-tuples (y1(x), . . . , yn(x)) of pointwise population densities.
However, the inclusion of explicit spatial structure complicates the issue. Should having
(y1(x), . . . , yn(x)) be close to (y∗

1 (x), . . . , y∗
n(x)) mean that the two n-tuples are close

in some sense at every point x ∈ � or need they only be close in some way on the
average over �? Should only the values of the population densities matter or should we
take into account their spatial derivatives to some order and, if so, to what order? All these
possibilities give rather different but nevertheless valid notions of “closeness” in the context
of n-tuples of pointwise population densities on the habitat �. Consequently, we should
define distance in enough generality so as to accommodate any of them. We do so via the
notion of metric space from topology. By a metric space, we mean a collection or set Y of
objects or points y and a distance function or metric d to measure distance between points
of Y . Mathematically, d is a map that assigns a nonnegative number d(y, y∗) to every
ordered pair (y, y∗) of points y, y∗ in Y . We require that d satisfy (1.61)–(1.63); i.e., two
points at zero distance from each other must coincide, the distance from y to y∗(d(y, y∗))
must be the same as the distance from y∗ to y(d(y∗, y)), and the triangle inequality must
hold.

For our purpose, Y will usually be some collection of n-tuples of pointwise population
densities on �. The most appropriate collection of such n-tuples in any given situation
depends on the choice of the metric d. We will be tracking configurations of population
densities as they evolve over time and necessarily will be interested in their limits. We will
frequently want a limiting configuration of population densities to inherit the properties
of the configurations that approach it. For instance, we may want to insist that all the
densities that we consider be continuous on �. To see why there is an issue as regards
the choice of metric, let us look at a specific example. For simplicity, we will consider
just a single species distributed across the one-dimensional habitat [0, 2]. A possible family
of continuous population densities for the species is given by the sequence of functions
fk(x), x ∈ [0, 2], where

fk(x) =

 xk 0 ≤ x ≤ 1

1 1 ≤ x ≤ 2.

Clearly the pointwise limit of this family of densities is the function f0(x) with

f0(x) =

0 0 ≤ x < 1

1 1 ≤ x ≤ 2

which is clearly not continuous on [0, 2]. If we define d1(f, g) for real valued functions
f, g defined on [0, 2] by

d1(f, g) =
∫ 2

0
|f (x) − g(x)|dx,
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then it is easy to establish that d1 satisfies (1.61)–(1.63). So d1 is a perfectly acceptable
metric. Moreover, the sequence {fk} converges to f0 under this metric since d1(fk, f0) =∫ 1

0
xk = 1/(k+1) → 0 as k → ∞. So under the metric d1 the limit of continuous densities

on [0, 2] need not be continuous. If preserving continuity in the limiting density is important
to us, we need to change the metric. If d1 is the metric we want, we need to expand the
class of density functions we consider beyond continuous ones. The mathematical method of
dealing with this issue is to refine the notion of metric space by defining the term complete
metric space. A metric space Y is complete if all sequences in Y whose elements become
arbitrarily close together converge to an element in Y . The technical word mathematicians
use for a sequence whose elements become arbitrarily close together is Cauchy. A Cauchy
sequence {yn} ⊆ Y is one so that given any positive number ε, there will correspond an
index N so that for indices n, m ≥ N the distance d(yn, ym) < ε. Completeness of Y is
the property that all Cauchy sequences have limits in Y . In our example, if we switched
from d1 to d∞ where d∞(f, g) is defined by

d∞(f, g) = max
x∈[0,2]

|f (x) − g(x)|

for continuous real valued functions f, g defined on [0, 2], a basic result in real analysis
(see, e.g., Rudin 1976) is that a Cauchy sequence of such functions converges to a unique
continuous real value function defined on [0, 2]. So under d∞, the continuous real-valued
functions on [0, 2] are complete. The sequence {fk} simply fails to be Cauchy under the
metric d∞.

A metric space Y does not require a linear structure, only a means of measuring distances
between points that satisfies (1.61)–(1.63). However, when there is a linear structure on Y ,
this feature can be employed in the construction of the metric. To this end, if y and y∗ are
vectors in Y , y − y∗ can be viewed either as a point or vector in its own right or as a line
segment joining y and y∗. Consequently, it is natural to suppose that d(y, y∗) = d(y−y∗, 0).
In such a case, one need only measure distance to the zero vector of Y . The notation ||y||
is usually used for this purpose. If ||y|| has the properties that

||y|| ≥ 0 and ||y|| = 0 ⇔ y = 0,

||cy|| = |c|||y|| for all scalars c, (1.67)

||y + y∗|| ≤ ||y|| + ||y∗|| for all y, y∗ ∈ Y,

then d(y, y∗) = ||y − y∗|| defines a metric on Y . The number ||y|| is referred to as the
norm of the vector. A linear space Y which is complete as a metric space under such a
metric is called a Banach space.

The n-tuples of pointwise population densities on the habitat patch � that are the primary
concern of this volume all belong to Banach spaces. Later in this section we discuss the
various Banach spaces that arise in our discussion, including the definition of the norm in
each case. For now, we want to make two additional observations. First, Banach spaces are
primary objects of study in the branch of mathematics known as functional analysis, which
provides a collection of very powerful mathematical results for use in analyzing models
for several interacting biological species in an isolated bounded habitat. Secondly as noted
previously, since our interest is in population densities, we will usually confine ourselves to
n-tuples the components of which are nonnegative functions. As a result, we will usually be
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examining closed subsets of a Banach space rather than the entire space. It is a basic result
of functional analysis that closed subsets of Banach spaces are complete metric spaces.

As noted, our primary interest in this volume is to track the predictions of reaction-
diffusion models about the long term behavior of the densities for several interacting
biological species on an isolated bounded habitat �. If ui denotes the density of species i

(say i runs from 1 to n), then in most of the models we consider, the time rate of change
∂ui

∂t
does not explicitly depend upon time; i.e. the growth law is autonomous. (Of course,

∂ui

∂t
does depend upon ui and its spatial derivatives and may also depend explicitly upon

the spatial coordinate x and some or all of the remaining densities.) In the next subsection,
we review the basic theory of systems of reaction-diffusion equations. We note there that in
all the examples of such systems that we consider, the time evolution of species densities
so governed is uniquely determined for all times t ≥ 0 by the initial configuration of the
densities; i.e. (u1(x, t), . . . , un(x, t)) = ϕ(u1(x, 0), . . . , un(x, 0), t) for t ≥ 0. Moreover,
ϕ is continuous when viewed as a function from Y × [0, ∞) into Y , where the complete
metric space Y is some suitable prespecified collection of n-tuples of possible species
densities on an underlying habitat �. When the reaction-diffusion system is autonomous,
the basic theory then guarantees that the configuration to which (u1(x, 0), . . . , un(x, 0))

evolves after t + t ′ units of time where t, t ′ > 0 is the same configuration as arises when
ϕ(u1(x, 0), . . . , un(x, 0), t) is viewed as an initial configuration and then evolves for t ′
units of time; i.e.,

ϕ(u1(x, 0), . . . , un(x, 0), t + t ′) = ϕ(ϕ(u1(x, 0), . . . , un(x, 0), t), t ′). (1.68)

These features mean that the solution trajectories to such autonomous reaction-diffusion
models are examples of continuous time semi-dynamical systems.

A (continuous time) dynamical system or flow is a continuous function π defined on
Y × IR and taking values in Y , where for our purposes Y is a metric space, so that

π(u, 0) = u (1.69)

for all u ∈ Y and

π(u, t + t ′) = π(π(u, t), t ′) (1.70)

for all t, t ′ in IR so that π(u, t + t ′) and π(u, t) are defined. (We refer to (1.70) as the
semi-group property.) When the set of real numbers IR in the preceding is replaced by the
set [0, ∞), π is called a semi-dynamical system or semiflow.

If π is a dynamical system and u ∈ Y , then the solution π(u, t) exists for all t in some
maximal open interval (t−(y), t+(y)), with −∞ ≤ t−(y) < 0 < t+(y) ≤ ∞. The set of
points

γ (u) = {π(u, t) : t−(y) < t < t+(y)} (1.71)

is called the orbit of π through u. The set of points

γ +(u) = {π(u, t) : 0 ≤ t < t+(y)} (1.72)

is called the positive semi-orbit of π through u. Of course, in case π is a semi-dynamical
system that does not extend to be a dynamical system, only positive semi-orbits are
guaranteed to exist for all u ∈ Y .
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In order to consider long term behavior of a dynamical or semi-dynamical system, it is
legitimate to require at a minimum that the system be such that

t+(u) = +∞ in (1.71) or (1.72) for all u ∈ Y. (1.73)

Of course, not all dynamical or semi-dynamical systems have this property. For example,
in the ordinary differential equation

dy

dt
= (y − K)2

with K > 0, t+(m) = 1

m − K
for all m > K , and the corresponding orbit “blows up” in

finite time.
Certainly most ecological models for interacting biological species do not envision orbits

that “blow up” in finite time. Moreover, when ecological models are used to describe the
long-term interactions for biological species (we are specifically excluding linear models at
this point), they usually include mechanisms which preclude unbounded growth in species
densities in the long term. Consequently, the hypotheses that we impose on a dynamical
or semi-dynamical system to obtain (1.73) will actually restrict the systems much more
stringently. Namely, we require that the systems be dissipative, by which we mean that
there is a bounded subset U of Y so that for any u ∈ Y , π(u, t) ∈ U for all sufficiently
large t . (Recall that Y will usually be a closed subset of a Banach space with norm || · ||.
Having U be bounded means that there is a positive number M so that if v ∈ U, ||v|| ≤ M .
For an individual element u ∈ Y , how large t must be in order for π(u, t) ∈ U is allowed
to depend on u.)

Let us now note a consequence of the dissipativity assumption in the context of the most
basic example of a continuous time dynamical system, namely the collection of all solution
trajectories (based at t = 0) of a system or ordinary differential equations of the form

y′
i = fi(y1, . . . , yn), (1.74)

i = 1, 2, . . . , n. Let (y0
1 , . . . , y0

n) represent an arbitrary initial configuration for, say, the
average population densities of species 1 to n. Assuming (1.74) is dissipative, then the
sequence of configurations {π((y0

1 , . . . , y0
n), tj )} for j = 1, 2, 3, . . . is contained in the

bounded set UR = {(y1, . . . , yn) : ||(y1, . . . , yn)|| ≤ R} for some R > 0 for any
collection of distinct times tj such that tj → +∞ as j → +∞. If UR is expressed
as the union of some finite collection of subsets of itself, at least one of these subsets
must contain π((y0

1 , . . . , y0
n), tj ) for infinitely many distinct values of tj . It follows from

this observation that there must be at least one point (y1, . . . , yn) ∈ UR so that some
subsequence π((y0

1 , . . . , y0
n), tjk

) of π((y0
1 , . . . , y0

n), tj ) converges to (y1, . . . , yn) as the
index k → ∞. (This result is one of the main results of advanced calculus and is
known as the Bolzano-Weierstrass Theorem (see, e.g., Apostol (1974)). A set P with
the property that any sequence of points in P has a convergent subsequence is called
precompact. If the limit of the subsequence is always actually in P , then P is said to
be compact. In particular {π((y0

1 , . . . , y0
n), tj )} is precompact for any distinct collection of

times tj such that tj → ∞.) Consequently, dissipativity in the context of (1.74) means
there will be a bounded subset that attracts the orbits of (1.74) as time tends toward
+∞. In the semi-dynamical system context of reaction-diffusion models for interacting
biological species in an isolated bounded habitat, the underlying state space Y is infinite
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dimensional. Consequently, dissipativity by itself does not guarantee precompactness of
positive semi-orbits. Rather, dissipativity must be used in conjunction with the smoothing
action associated to the elliptic operators in the system to draw this conclusion. This issue
is discussed in detail in the next subsection.

In the preceding example (1.74) dissipativity allowed us to conclude that orbits tend
toward a bounded attracting set. Of course, if we want to interpret (1.74) as a model
describing the temporal evolution of the average population densities of species 1 to n, it
must be the case for all t �= 0 that if (y1(t), . . . , yn(t)) = π((y0

1 , . . . , y0
n), t), then yi(t) is

nonnegative. A condition on (1.74) that guarantees such is the case is for fi to satisfy

fi(y1, . . . , yn) = yi f̃i(y1, . . . , yn) (1.75)

for i = 1, . . . , n. If (1.75) holds, then the principle of the uniqueness of solutions to initial
value problems guarantees that yi(t) ≥ 0 for all t �= 0 and i = 1, . . . , n so long as
y0
i ≥ 0 for i = 1, . . . , n. Moreover, it also guarantees that yi(t) can equal 0 for some

i ∈ {1, . . . , n} and some t �= 0 only when y0
i = 0 and that in such case yi(t) = 0 for all

t ∈ IR. We then say that the sets {(y1, . . . , yn) : yi ≥ 0 for i = 1, . . . n}, {(y1, . . . , yn) :
yi > 0 for i = 1, . . . , n} and {(y1, . . . , yn) : yi ≥ 0 for i = 1, . . . , n and yi =
0 for at least one i ∈ {1, . . . , n}} are invariant under π .

Precompactness of orbits or positive semi-orbits and invariance of a set under π are
essential notions in the analysis of the asymptotic behavior of dynamical and semi-
dynamical systems. In general, if we assume that (Y, π) is a dissipative dynamical or semi-
dynamical system, we say that a subset U of Y is forward invariant under π if γ +(u) ⊆ U

for all u ∈ U . If t−(u) = −∞ in (1.71) and γ (u) ⊆ U for all u ∈ U , we say that U is
invariant under π . (Notice that in the case that (Y, π) is a semi-dynamical system but not a
dynamical system Y may nevertheless contain invariant subsets. In general, when backward
continuation of an orbit is possible, the continuation may not be uniquely determined.
However, it is in the case of the semi-dynamical systems associated with reaction-diffusion
models for several interacting biological species on an isolated bounded habitat, so we shall
not delve further into this topic.) Now if for u ∈ Y, γ +(u) is precompact, then there is a
bounded set in Y which attracts points on the positive semi-orbit of u. This set is referred
to as the omega limit set of u, denoted by ω(u) and is defined by

ω(u) =
⋂
t≥0

⋃
s≥t

{π(u, r) : r ≥ s} (1.76)

where V denotes the closure of set V . The set ω(u) consists of all limits of all sequences
{π(u, tn)} where tn → +∞ as n → ∞. It is well-known (e.g. Saperstone, 1981) that ω(u)

is nonempty, compact, connected and invariant under π . (The term alpha limit set of u,
denoted α(u), consists of all limits of all sequences {π(u, tn)} where tn → −∞ as n → ∞.)
If now for a set U , the set {π(u, r) : u ∈ U, r ≥ s for some s ≥ 0} is precompact, there
is a companion notion of the omega limit set of U , denoted ω(U), with ω(U) defined by

ω(U) =
⋂
t≥0

⋃
s≥t

{π(u, r) : u ∈ U, r ≥ s}.

The set ω(U) is the set of all limits of all sequences {π(un, tn)} where un ∈ U and
tn → ∞ as n → ∞. Notice that

⋃
u∈U

ω(u) ⊆ ω(U), but that in general ω(U) is much
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larger. However, we shall need to use
⋃
u∈U

ω(u) at several places in our discussion. At those

places, we denote this set as ω(U) but make clear that the usage is nonstandard.
A global attractor for a dynamical or semi-dynamical system π on the metric space

(Y, d) is a set A which is compact, invariant under π and such that for all bounded subsets
V of Y

lim
t→∞ sup

v∈V

inf
u∈A

d(π(v, t), u) = 0. (1.77)

A fundamental result of Bilotti and La Salle (1971) (see Theorem 4.1) says that if (Y, d)

is complete, π is dissipative and for all t > t0 ≥ 0, the set π(U, t) = {π(u, t) : u ∈ U}
is precompact if U is bounded, then π has a nonempty global attractor. (The function
π(·, t) : Y → Y is said to be compact if π(U, t) is precompact whenever U is bounded. In
particular, the image {π(un, t)} of a bounded sequence {un} is precompact if π(·, t) : Y → Y

is compact.) Notice that if A is a global attractor, ε > 0 is given and B(A, ε) is defined
by B(A, ε) = {y ∈ Y : d(y, u) < ε for some u ∈ A}, then (1.77) implies that if V ⊆ Y

is bounded,

π(V, t) ⊆ B(A, ε)

for all t ≥ t0, where t0 depends upon V .
A point u ∈ Y such that π(u, t) = u for t ∈ IR is called an equilibrium or equilibrium

point for π . Equilibria play a large role in our discussion of the asymptotic predictions of
reaction-diffusion models for interacting biological species in an isolated bounded habitat.
Indeed, the most basic example of a global attractor is a globally attracting equilibrium.
There are two special classes of dynamical or semi-dynamical systems in which the omega
limit set ω(u) for all or almost all u ∈ Y is an equilibrium. These are gradient systems
and monotone dynamical systems. (We pause to note that a system can be both of gradient
type and monotone.) Suppose that π is dissipative and γ +(u) is precompact for every u in
Y , where Y is a closed subset of a Banach space. Then π is a gradient system (see, e.g.,
Henry 1981, Hale (1988)) if there is a Lyapunov function for π . By a Lyapunov function
we mean a continuous function V : Y → IR so that

(i) V is bounded below;

(ii) V (u) → +∞ as ||u|| → +∞;

(iii) V (π(u, t)) is nonincreasing in t for each u ∈ Y ;

(iv) If V (π(u, t)) = V (u) for all t ∈ IR, then u is an equilibrium for π.

(1.78)

We show in Section 3.1 that many of the reaction-diffusion models for a single biological
species an isolated bounded habitat that we consider in this volume may be formulated as
gradient systems. In a gradient system, ω(u) is an equilibrium for all u ∈ Y . (See, e.g.,
Hale (1988).)

The third feature of the collection of n-tuples of average population densities for species
1 to n that we noted earlier was the partial ordering given by (1.64). The notion of a
monotone dynamical or semi-dynamical system is a possibility when Y admits a partial
ordering. In the examples we consider Y is a closed subset of a Banach space, and the
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partial ordering in Y is induced by a closed subset K of the Banach space called a positive
cone via the equivalence

u1 ≤ u2 in Y ⇔ u2 − u1 ∈ K. (1.79)

To be a positive cone K must satisfy

(i) If c is a nonnegative scalar and

u ∈ K, then cu ∈ K;
(ii) If u1, u2 ∈ K, then u1 + u2 ∈ K;
(iii) If u, −u ∈ K, then u = 0.

(1.80)

In the case where Y is the collection of all n-tuples of nonnegative numbers partially
ordered via (1.64), K may be taken equal to Y , and it is then clear that (1.80) holds and
that (1.64) is equivalent to (1.79). However, if we consider the collection of all ordered
pairs of nonnegative numbers (y1, y2) we may define a partial ordering via

(y1, y2) ≤ (y∗
1 , y∗

2 ) ⇔ y1 ≤ y∗
1 but y2 ≥ y∗

2 .

In this case (1.79) holds provided we define the positive cone K by

K = {(u1, u2) : y1 ≥ 0, y2 ≤ 0}.

So Y need not equal K . This last example will be relevant when we consider two species
competition in Sections 4.4 and 5.2.

Once a partial ordering has been established in Y , π will be monotone provided

u1 ≤ u2 in Y ⇒ π(u1, t) ≤ π(u2, t) in Y (1.81)

for all t �= 0 when π is a dynamical system and for all t > 0 when π is a semi-dynamical
system. A positive semi-orbit γ +(u) of π is said to be increasing provided

π(u, t1) ≤ π(u, t2) for 0 ≤ t1 < t2 (1.82)

with an analogous definition of decreasing positive semi-orbit. Increasing and decreasing
positive semi-orbits are at the heart of the examinations we make of monotone dynamical
systems. To that end, suppose π admits an increasing positive semi-orbit γ +(u1) and a
decreasing positive semi-orbit γ +(u2) and that u1 ≤ u2. Then any positive semi-orbit
γ +(u) with u1 ≤ u ≤ u2 must lie above the increasing positive semi-orbit γ +(u1) but
below the decreasing positive semi-orbit γ +(u2). Moreover, if positive semi-orbits for π

are precompact, an important result in the theory of monotone dynamical systems (see,
e.g., Smith (1995), Theorem 2.1) asserts that ω(u1) and ω(u2) are equilibria for π . Since
π(u1, t) ≤ π(u2, t) for all t > 0, ω(u1) ≤ ω(u2). So the omega limit set ω(u) for any u

with u1 ≤ u ≤ u2 is contained in the set

{v : ω(u1) ≤ v ≤ ω(u2)}

which is called the order interval from ω(u1) to ω(u2) and denoted [ω(u1), ω(u2)].
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In the preceding scenario, the positive semi-orbit γ +(u2) can be viewed as providing a
“ceiling” for both the transient and asymptotic phases of the positive semi-orbit γ +(u),
while the positive semi-orbit γ +(u1) can be viewed as providing a “floor”. We shall
see that in many instances such semi-orbits can be interpreted as representing best and
worst case scenarios for the dynamical or semi-dynamical system π . In the context of
reaction-diffusion models for interacting biological species in isolated bounded habitats,
positive semi-orbits that originate at configurations which are so-called lower solutions to
the corresponding steady-state elliptic system are increasing, while positive semi-orbits that
originate at configurations which are upper solutions to the corresponding elliptic systems
are decreasing. We discuss upper and lower solutions in the context of ODEs, elliptic and
parabolic PDEs and systems thereof in the next subsection.

The utility of the notions of monotonicity and comparison extends beyond systems which
preserve a partial ordering. For example, in many systems of reaction-diffusion equations
for interacting species in an isolated bounded habitat, the growth law for some species
density may be such that for t ≥ t0 ≥ 0 the density is a parabolic upper or lower solution
to some single equation reaction-diffusion model. For specificity, assume that the density
of the system component is given by u and that v denotes the density in the comparison
single equation model. Then if u is an upper solution for the v equation and the density
v is chosen so that v(t0) = u(t0), u(t) ≥ v(t) for all t ≥ t0. Likewise, if u is a lower
solution, u(t) ≤ v(t). Consequently, v(t) provides a “floor” for the density u(t) in the first
case and a “ceiling” in the second. Such information can be very useful in obtaining best
and worst case scenarios for the density u. We explore this idea in Sections 5.3 and 5.4
and throughout Chapter 7.

Since reaction-diffusion models for interacting biological species in an isolated bounded
habitat are continuous time models, the dynamical and semi-dynamical systems we consider
in this volume are primarily continuous time dynamical or semi-dynamical systems.
However, we do have occasion to employ discrete time systems and consequently we
include a few remarks regarding discrete time dynamical and semi-dynamical systems. As
in the case of continuous time dynamical or semi-dynamical systems, one would want the
underlying state space Y to be a metric space. (For our purposes, Y is a closed subset of a
Banach space and hence a complete metric space.) A discrete time dynamical system π on
Y is a continuous function π : Y ×ZZ → Y , where ZZ denotes the integers, so that discrete
time analogues to (1.69) and (1.70) hold. Namely, we require

π(u, 0) = u for all u ∈ Y (1.83)

and

π(u, k + k′) = π(π(u, k), k′) (1.84)

for all k, k′ ∈ ZZ so that π(u, k+k′) and π(u, k) are defined. If π is to be a semi-dynamical
system, the integers ZZ in the preceding are replaced with the nonnegative integers ZZ+∪{0}.

Suppose now that S : Y → Y is given by

S(u) = π(u, 1).

Then S is continuous and for k > 0 it follows from (1.84) that

π(u, k) = Sku
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where Sk is the composition S ◦ S ◦ · · · ◦ S (k times). Likewise, if π(u, −1) is defined,
π(u, −1) = S−1 and

π(u, −k) = S−ku.

Of course, the restriction of a continuous time dynamical or semi-dynamical system to
the integers or nonnegative integers, respectively, is a discrete time dynamical or semi-
dynamical system. In the case of an autonomous system of ordinary differential equations
of the form (1.74) or reaction-diffusion equations, the associated discrete-time systems track
the value along solution trajectories after every 1 unit of time.

An alternative way of viewing such trajectories in the ODE case (1.74), say, is to think of
π((y0

1 , . . . , y0
n), k+1) as the value at time 1 of the solution to the system (1.74) with initial

configuration π((y0
1 , . . . , y0

n), k). Such is always possible since the system is autonomous.
Now suppose that (1.74) is replaced with

y′
i = fi(t, y1, . . . , yn) (1.85)

i = 1, . . . , n where fi(t + 1, y1, . . . , yn) = fi(t, y1, . . . , yn) for all t ∈ IR, i = 1, . . . , n

and all (y1, . . . , yn) ∈ IRn. Let φ((y0
1 , . . . , y0

n), t) denote the unique solution to (1.85) so
that

φ((y0
1 , . . . , y0

n), 0) = (y0
1 , . . . , y0

n).

Now define π : IRn × ZZ → IRn by

π((y0
1 , . . . , y0

n), k) = φ((y0
1 , . . . , y0

n), k). (1.86)

Since fi is 1-periodic for all i ∈ {1, . . . , n}, φ((y0
1 , . . . , y0

n), k+1) is the value after 1 time
unit of the solution to (1.85) which has the value φ((y0

1 , . . . , y0
n), k). This fact makes π as

given in (1.86) into a dynamical system, although φ : IRn × IR → IRn is not. To convert
(1.85) into a continuous time dynamical system, we would need to employ a construction
called a skew product flow which tracks the state of the system (1.85) as well as φ. We
discuss this construction in detail in the periodic reaction-diffusion setting in Section 5.5.

Understanding the asymptotic behavior of discrete time dynamical and semi-dynamical
systems involves the same concepts as in the continuous time case. One still has the
notions of omega limit set, invariance and so forth. However, there are some subtleties
that we should point out. First, if a discrete time dynamical or semi-dynamical system is
associated to a system of ODEs or reaction-diffusion equations in the manner we have
described, an equilibrium of the discrete dynamical system corresponds to a point on a
periodic orbit of the system of differential equations, but need not be an equilibrium to the
continuous time system. This observation will be employed when we analyze single species
reaction-diffusion models with time-periodic coefficients in Section 3.6. Of course, there are
discrete dynamical or semi-dynamical systems which arise in ways other than sampling the
solution to a system of differential equations successively at times 0, �t, 2�t, 3�t, . . . for
some prespecified length of time �t . As an example, consider the so-called discrete logistic
equation, which arises from discretizing a potential solution y to the logistic equation

y′ = ry
(

1 − y

K

)
(1.87)
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by y′
j = y(j�t) and approximating y′(j�t) by the forward difference y′(j�t) =

yj+1 − yj

�t
. So doing one arrives at the equation

yj+1 = r̃yj

(
1 − yj

K̃

)
(1.88)

j = 0, 1, 2, 3, . . . where r̃ = 1 + r�t and K̃ = K

(
1 + r�t

r�t

)
. It is immediate that (1.88)

defines a discrete semi-dynamical system. However, if for some value of j , it is the case that
yj exceeds K̃ , then yj+1 < 0. Consequently, the invariance of positivity that solutions of
(1.87) enjoy does not carry over to solutions of (1.88). The reason for this rather profound
difference between the two systems is simple. Positive solutions to the differential equation
would have to pass through 0 before they can take on negative values. However, 0 is an
equilibrium solution to (1.87) and solutions to initial value problems for (1.87) are unique.
Consequently, no solution to (1.87) which is positive at 0 can be negative at some later
time. On the other hand, in the discrete model (1.88) solutions may jump across 0, and the
only possibility for an invariant set with a meaningful ecological interpretation is [0, K̃].
Note that [0, K] is invariant for (1.87) regardless of the value of r . In (1.88), however, it is

not hard to verify that [0, K̃] is invariant only when r̃ ≤ 4 (which is equivalent to r <
3

�t
in (1.87)). In (1.87), any solution with y(0) ∈ (0, K) increases monotonically over time
toward the equilibrium K , regardless of the value of r , whereas in (1.88), orbits can be
very complicated, even chaotic, depending on the value of r̃ . For more detail, see Murray
(1993, Section 2.3.).

There are discrete analogues to (1.87) other than (1.88) whose solutions track those to
(1.87) more closely. One possibility is just to sample solutions to (1.87) at discrete time
intervals. The resulting model is known as the Beverton-Holt model (Beverton and Holt,
1957). Another is the model

yj+1 = yj exp
(
r
(

1 − yj

K

))
(1.89)

which results from solving the initial value problem

dy

dt
= r

(
1 − yj

K

)
y

y(0) = yj

and evaluating the solution at time 1. The model (1.89) is sometimes referred to as a Ricker
model (Ricker, 1954, 1975), and is widely used in the study of fisheries (Quinn and Deriso,
1999). Both alternates to (1.88) leave (0, ∞) invariant and are such that

yj < yj+1 if 0 < yj < K

while

yj > yj+1 if yj > K,

just as is the case with solutions to (1.87). However, only the Beverton-Holt model is
such that (0, K) and (K, ∞) are invariant, as is the case with solutions to (1.87). Indeed,
solutions to (1.89) can be very complicated, even chaotic. For more details, see May (1975).
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1.6.2 Basic Concepts in Partial Differential Equations: An Example

The reaction-diffusion models that are the subject of this book are partial differential
equations which describe how population densities in space change over time. Since they
describe the way that things change over time, it is natural to think of them as dynamical
systems; however, as noted, the state space for a reaction-diffusion model will be a set of
functions representing the possible spatial densities of a spatially distributed population.
Thus, to formulate reaction-diffusion models as dynamical systems we need to define
appropriate state spaces of functions and determine how the models act on them. In general
we will not be able to solve reaction-diffusion models explicitly, but that is also the case
with many nonlinear systems of ordinary differential equations. What we can do in many
cases is determine when a model predicts persistence and when it predicts extinction, and
perhaps describe some features of its dynamics, by using methods from the theory of
dynamical systems. However, there are some new technical issues that arise in formulating
reaction-diffusion models as dynamical systems. Many of those are related to the fact
that the state spaces for reaction-diffusion models are infinite dimensional. Others have
to do with problems such as verifying that the set of nonnegative densities is invariant.
(Since negative population densities don’t make sense, good models should predict that
densities which are initially nonnegative remain so.) To illustrate some of the issues related
to formulating reaction-diffusion models as dynamical systems and to introduce some ideas
that will be important in their analysis, we briefly review the explicit solutions of some
simple linear models and derive a few of their basic properties.

The discussion that follows is a quick review of some standard ideas in the theory
of partial differential equations. A complete treatment of this material is given in many
standard texts, for example, Strauss (1992). Consider the model

∂u

∂t
= d

∂2u

∂x2
+ ru on (0, 1) × (0, ∞)

u(0, t) = u(1, t) = 0 on (0, ∞),

(1.90)

with initial condition u(x, 0) = f (x). Equation (1.90) can be interpreted as a linear growth
model for a population that diffuses at rate d, increases in numbers locally at rate r ,
and inhabits a one-dimensional patch of unit length with an absorbing boundary (i.e. the
boundary is lethal to the population). To solve (1.90) one typically looks for solutions in
the form u(x, t) = X(x)T (t) and then constructs a general solution as a series of such
special solutions. (This is the method of separation of variables; it is discussed in many
standard references, again, for example, Strauss (1992).) Substituting u = X(x)T (t) into
(1.90) and dividing through by X(x)T (t) yields

T ′(t)
T (t)

= dX′′(x) + rX(x)

X(x)
. (1.91)

The right side of (1.91) depends only on X; the left side only on t . Thus, the only way that
(1.91) can hold is if both sides are constant. Suppose that both sides of (1.91) are equal to
the constant σ . Then we have

dX′′ + rX = σX (1.92)

and

T ′(t) = σT (t). (1.93)
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There are no further restrictions on T , but the boundary conditions u(0, t) = u(1, t) = 0
require that

X(1) = X(0) = 0. (1.94)

It is possible to solve (1.92) explicitly for any given choice of σ , but it turns out that there
are nonzero solutions satisfying (1.94) only if σ = r − dn2π2 for some positive integer n.
In that case we have Xn(x) = k1 sin(nπx) and Tn(t) = k2e

(r−dn2π2)t , where k1 and k2 are
arbitrary constants, so un(x, t) = e(r−n2π2)t sin(nπx) is a solution of (1.90).

Notice that (1.92) can be written as

[
d

(
∂2

∂x2

)
+ r

]
X = σX. (1.95)

The differential operator L = d(∂2/∂x2) + r is linear, so that L(c1X1 + x2X2) =
c1L(X1)+ c2L(x2) for any constants c1 and c2. Thus, (1.95) is analogous to an eigenvalue
problem for a matrix, with σ as the eigenvalue and L playing the same role as the matrix, but
with the eigenvector being replaced by the eigenfunction X(x). The notion of eigenvalues
for differential operators will play a central role in our analysis of reaction-diffusion models.
To continue the process of solving (1.90), we write u(x, t) as a Fourier series

u(x, t) =
∞∑

n=1

bne
(r−dn2π2)t sin(nπx). (1.96)

To satisfy the initial condition u(x, 0) = f (x) we need to choose the constants bn so that

f (x) =
∞∑

n=1

bn sin(nπx). (1.97)

It turns out that if it is possible to express f (x) in the form (1.97) then we must have

bn = 2
∫ 1

0
f (x) sin(nπx)dx (see Strauss (1992)). At this point a new problem arises: (1.96)

and (1.97) involve infinite series of functions which may fail to converge for some (perhaps
all) values of x and t , depending on the coefficients bn. In the case of (1.96) there is another
problem: the series must converge to a function that can be differentiated once in t and
twice in x if it is to satisfy (1.90). We can impose conditions on f (x) (or equivalently on
{bn}) so that (1.97) converges, but there are a number of possible choices for what is meant

by convergence. For example, if we require that
∫ 1

0
[f (x)]2dx is finite, then it turns out

that (1/2)

∞∑
n=1

b2
n =

∫ 1

0
[f (x)]2dx (this is a version of Parseval’s equality), and the series in

(1.97) converges in the sense that

lim
m→∞

∫ 1

0

[
f (x) −

m∑
n=1

bn sin(nπx)

]2

dx = 0. (1.98)
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However, we could have
∫ 1

0
f (x)2dx < ∞ even if f (x) is not continuous, and (1.98)

does not guarantee that lim
m→∞

m∑
n=1

bn sin(nπx) = f (x) for all x. On the other hand,

suppose that f (x) is continuous, f (0) = f (1) = 0, and
∫ 1

0
f ′(x)2dx < ∞. Let

an = 2
∫ 1

0
f ′(x) cos(nπx)dx. Parseval’s relation applies to cosine series as well as sine

series, so (1/2)

∞∑
n=1

a2
n =

∫ 1

0
f ′(x)2dx < ∞. On the other hand, integration by parts shows

that nbn = an so bn = (1/n)an. In that case, we have |bn| ≤ (1/2)[(1/n)2 + a2
n] so that

∞∑
n=1

|bn| < ∞ (because
∞∑

n=1

1/n2 < ∞). If
∞∑

n=1

|bn| < ∞ then since |bn sin(nπx)| ≤ |bn|, the

series in (1.97) is majorized by the convergent series
∞∑

n=1

|bn| so it converges uniformly,

that is,

lim
m→∞ sup

x∈[0,1]

∣∣∣∣∣f (x) −
m∑

m=1

bn sin(nπx)

∣∣∣∣∣ = 0. (1.99)

In general the condition
∞∑

n=1

|bn| < ∞ is stronger than the condition
∞∑

n=1

b2
n < ∞;

for example
∞∑

n=1

1/n diverges even though
∞∑

n=1

1/n2 converges. Similarly, the conditions

∫ 1

0
f ′(x)2dx < ∞, f (x) is continuous, f (0) = f (1) = 0 are stronger than the condition∫ 1

0
[f (x)]2dx < ∞.

The point here is that to make sense out of (1.90) we need to define a state space for the
initial data f (x), and the way we choose a metric on the state space actually determines
what the space is. We could interpret (1.97) as an expansion of f (x) in terms of “basis
vectors” sin(nπx), in analogy with expressing �v ∈ IR3 as �v = v1�i + v2 �j + v3�k where �i, �j ,
and �k are the standard unit vectors in the x, y, and z directions. However, in IR3 the only
restriction on v1, v2 and v3 is that they are finite, and v2

1 + v2
2 + v2

3 < ∞ if and only if
|v1|+|v2|+|v3| < ∞, which is true if and only if v1, v2, and v3 are finite. On the other hand,

requiring that each bn is finite, that
∞∑

n=1

b2
n < ∞, and that

∞∑
n=1

|bn| < ∞ in (1.97) impose

different conditions on {bn}, and thus define different subsets of the set of infinite sequences.
Thus, in formulating models such as (1.90) we need to choose a metric that allows us to
measure the “distance” between functions (or alternatively between sequences {bn}), and
the way we measure distance actually determines what the space is. The standard metrics
corresponding to the notions of convergence shown in (1.98) and (1.99), respectively, are
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d(f, g) =
[∫ 1

0
|f (x) − g(x)|2dx

]1/2

and d(f, g) = sup
x∈[0,1]

|f (x)−g(x)|, respectively. The

standard spaces of functions corresponding to those metrics are denoted by L2([0, 1]) and
C([0, 1]), respectively. The space L2([0, 1]) consists of all functions f (x) on [0, 1] such
that the Lebesgue integral of [f (x)]2 over [0, 1] exists and is finite. The space C([0, 1])
consists of all continuous functions on [0, 1]. (The subspace of C([0, 1]), consisting of
continuous functions with f (0) = f (1) = 0 is denoted C0([0, 1]).) All of these are Banach
spaces. In our analysis of reaction-diffusion models we will need to use those spaces (and
various others) as state spaces. In many cases the choice of a state space will depend on
technical aspects of the mathematics involved in dealing with whatever features are built
into a particular model. For example, if a model has coefficients that depend on x, we might
need to use different state spaces depending on whether the coefficients were continuous
or not.

To verify that L2([0, 1]) and C0([0, 1]) might be legitimate state spaces for (1.90)

we must consider (1.96). We could rewrite (1.96) as u(x, t) =
∞∑

n=1

un(t) sin(nπx) where

un(t) = bne
(r−dn2π2)t . Notice that for n >

√
r/d/π we have |un(t)| ≤ |bn| for all t ≥ 0,

so that if
∞∑

n=1

b2
n < ∞ then

∞∑
n=1

|u2
n(t)| < ∞ for all t . Thus, it is reasonable to use either

L2([0, 1]) or the space of all functions f (x) on [0, 1] whose Fourier coefficients {bn} satisfy
∞∑

n=1

|bn| < ∞ as state spaces for (1.90). Note also that for n >
√

r/d/π we have un(t) → 0

as t → ∞. Thus, for large t , only the coefficients bn with n ≤ √
r/dπ are important. The

model (1.90) in effect squeezes state space down toward the finite dimensional subspace
spanned by {sin(nπx) : n ≤ √

r/d/π}.
If we want u(x, t) to satisfy (1.90) we need to verify that ∂u/∂t and ∂2u/∂x2 make

sense. Suppose that the coefficients bn satisfy |bn| ≤ B0 for some finite B0. (This will

be true if
∞∑

n=1

b2
n < ∞ or

∞∑
n=1

|bn| < ∞.) If we differentiate the series in (1.96) by x

term by term we obtain the series
∞∑

n=1

bnnπe(r−dn2π2)t cos(nπx). The series is majorized

by the series
∞∑

n=1

Bn(t) where Bn(t) = B0nπe(r−dn2π2)t . We have lim
n→∞|Bn+1/Bn| =

lim
n→∞

([
(n + 1)/n

]
e(n2−(n+1)2)dπ2t

)
= 0 for any t > 0, since n2−(n+1)2 < 0, so

∞∑
n=1

Bn(t)

converges for all t > 0 by the ratio test. Hence, the series
∞∑

n=1

bnnπe(r−dn2π2)t cos(nπx)

converges uniformly for any given t > 0. Similar analysis show that the series obtained by
differentiating (1.96) term by term any number of times in x or t still converge uniformly.
Thus, all of those series converge to continuous functions which are the derivatives of
u(x, t).

The key point here is that the model (1.90) has the effect of smoothing out solutions
to (1.90). Even if f (x) is discontinuous, u(x, t) will be differentiable infinitely many
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times in both x and t for t > 0. This smoothing property is a key feature of reaction-
diffusion models. It often implies that the model maps bounded sets in state space into
compact sets. To see how that works, let B0 be a fixed constant and let F0 be the subset

of L2([0, 1]) consisting of functions satisfying
∫ 1

0
[f (x)]2dx ≤ B2

0 . Let Ft be the set of

solutions w(x, t) to (1.90), evaluated at time t , such that w(x, 0) ∈ F0. Fix a value of t > 0
and suppose that {wk} is a sequence in Ft , so that wk(x, 0) = fk(x) ∈ B0 for each k. If

fk(x) ∈ B0 then we may write fk(x) =
∞∑

k=1

bnk sin(nπx), with coefficients {bnk} satisfying

∞∑
k=1

b2
nk ≤ B2

0 . It follows that |bnk | ≤ B0 for each coefficient bnk. Furthermore, we can write

wk(x, t) =
∞∑

n=1

bnke
(r−dn2π2)t sin(nπx) and ∂wk/∂x =

∞∑
n=1

bnknπe(r−dn2π2)t cos(nπx),

provided those series converge. The series are majorized by the series
∞∑

n=1

B0e
(r−dn2π2)t

and
∞∑

n=1

B0nπe(r−dn2π2)t , which are both convergent for any given t > 0; thus, {wk} and

{∂wk/∂x} are bounded uniformly in k and x. Since {∂wk/∂x} is bounded uniformly in x

and k, the set of functions {wk} is also equicontinuous by the mean value theorem. Ascoli’s
theorem (see Rudin (1976)) then implies that the sequence {wk(x, t)} has a subsequence
{wki

(x, t)} which converges uniformly on [0, 1] to some continuous function w(x). Uniform

convergence implies
∫ 1

0
(wki

(x, t) − w(x))2dx → 0 as i → ∞ so that wki
(x, t) converges

to w(x) in L2([0, 1]). This feature of always being able to extract a convergent subsequence
is the essence of compactness. Thus, the set Ft of solutions to (1.90) at time t whose initial
data belong to the bounded set F0 is compact. Note that F0 is not compact. The functions

fk(x) = √
B0 sin(kπx) belong to F0 (since

∫ 1

0
[fk(x)]2dx = B0/2), but no subsequence

of {fk} converges in L2([0, 1]) because
∫ 1

0
|fk(x) − f�(x)|2dx = B0 for any k �= �. The

compactness of Ft arises from the smoothing property of (1.90).
The solution (1.96) to (1.90) predicts that all solutions to (1.90) will decay to zero if

r/d < π2, while at least some solutions will grow exponentially if r/d > π2. Thus, the
model gives a criterion for the growth rate r needed to balance the loss of individuals across
the boundary if they disperse by diffusion at rate d. However, before drawing too many
conclusions, we should check that solutions to (1.90) which correspond to positive initial
densities at least remain nonnegative. Suppose that w(x, t) satisfies (1.90) on (0, 1)×(0, T ]
and is continuous on [0, 1] × [0, T ] with w(x, 0) ≥ 0. Let v(x, t) = e−atw(x, t); then by
(1.90) we have

∂v

∂t
= −av + e−at ∂w

∂t
= d

∂2v

∂x2
+ (r − a)v. (1.100)

Choose a large enough so that r − a < 0. Suppose w(x, t) < 0 for some (x, t). Then
v(x, t) < 0 at the same point, so the minimum of v is negative. (Since v is continuous on
[0, 1] × [0, T ], it must have a minimum.) Since v ≥ 0 for x = 0 or 1 and for t = 0, the
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minimum must occur at a point (x0, t0) in (0, 1)×(0, T ] where (1.90) and hence (1.100) are
satisfied. If (x0, t0) ∈ (0, 1) × (0, T ) then ∂v/∂t = 0 and ∂2v/∂x2 ≥ 0 at (x, t) = (x0, t0),
so at this point (1.100) implies 0 ≥ (r − a)v(x0, t0). Since r − a < 0 and v(x0, t0) < 0,
this is a contradiction. If the minimum occurs on (0, 1) × {T }, we have ∂v/∂t ≤ 0 at
(x0, t0), but otherwise the analysis is the same. Thus, if w(x, t) < 0 somewhere, we
obtain a contradiction, so we must have w(x, t) ≥ 0 for all (x, t) ∈ [0, 1] × [0, T ]. This
type of result is called a maximum principle, although in this case we applied it to a
minimum. Suppose now w1 and w2 are solutions to (1.90) with w1(x, 0) ≥ w2(x, 0).
Then w = w1 − w2 is also a solution to (1.90), and w(x, 0) ≥ 0, so w(x, t) ≥ 0
for all t > 0, and hence w1(x, t) ≥ w2(x, t) for all t . Thus, the model (1.90) is order
preserving.

In the simple case described above we could solve the model (1.90) explicitly by
using some calculus, and we could then analyze the solution by using some basic
results from real analysis. In general it is not possible to give explicit solutions to
reaction-diffusion equations. It is possible to show that they have solutions which depend
continuously on initial conditions, and that those solutions are smooth (so that reaction-
diffusion models send bounded sets of initial data into sets with compact closures).
In models where the reaction term for the density ui of the ith species has the form
fi(x, t, u1, . . . , uN)ui , it is possible to show that the set of �u = (u1, . . . , uN) with ui ≥ 0
for all i is positively invariant; that is, if ui(x, t1) ≥ 0 for all i then ui(x, t) ≥ 0
for all i and all t > t1. Thus, we will be able to formulate reaction-diffusion models
as dynamical systems on state spaces analogous to L2([0, 1]) or C0([0, 1]). Once we
have formulated the models properly, we can obtain criteria for persistence analogous
to the criterion r/d > π2 for persistence in (1.90). To prove that reaction-diffusion
models have the properties described above requires many technicalities. In general
we simply state the results we need, and refer the reader to other sources for the
details. However, we will try to be precise and accurate in our statements of results
about reaction-diffusion models, and in some cases we must use technical terms in
definitions and the statements of theorems. One context where this is an issue is in
the construction of appropriate state spaces. We have already seen that (1.90) could
be formulated in L2([0, 1]) or in C0([0, 1]), and there are many more spaces like
those that occur in reaction-diffusion theory. For the reader who is more interested in
biological applications than mathematical precision, the good news is that it is often
unnecessary to know all the details about the state space to understand the predictions
of the model.

1.6.3 Modern Approaches to Partial Differential Equations: Analogies with Linear
Algebra and Matrix Theory

The classical approach to partial differential equations is to attempt to find explicit solutions
such as (1.96) and then to observe the properties of those solutions. This approach can be
very useful but it is limited by the fact that many partial differential equations cannot
be solved explicitly, at least in terms of standard functions such as sines and cosines or
exponentials. The modern approach to partial differential equations is to prove that solutions
exist without computing them explicitly and then to deduce their properties, often by using
methods quite different than those used to show their existence. For reaction-diffusion
models the basic existence theory can be understood by analogy with systems of ordinary
differential equations. For the equilibria of reaction-diffusion equations the basic existence
theory is somewhat analogous to the theory of algebraic equations; in particular, in the
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linear case the theory closely resembles matrix theory. More specifically, recall that for any
n × n matrix the dimension of the nullspace plus the rank of the matrix must equal n. The
rank of the matrix is the dimension of the image of IRn under multiplication by the matrix,
so if the dimension of the nullspace is zero (i.e. only the zero vector is mapped to zero by
the matrix), then the matrix maps IRn onto IRn. Also, if the dimension of the nullspace is
zero, the mapping of IRn onto IRn is one-to-one. Thus, if M is an n×n matrix, I the identity
matrix, and λ a real number, then the matrix M −λI is invertible unless (M −λI)�v = 0 for
some nonzero vector �v, i.e. M−λI is invertible unless λ is an eigenvalue of M . If it happens
that M is symmetric and positive definite (that is, M �v · �v ≥ m0|�v|2 for all �v ∈ IRn, where
m0 > 0 is a constant), then M �v = �0 implies 0 = M �v · �v ≥ m0|�v|2, which is possible only if
�v = �0. It follows that if M is symmetric and positive definite then M is invertible, and we
can draw this conclusion without computing M−1. Now consider the system of differential
equations d �y/dt = M �y. We have d|�y|2/dt = 2�y · d �y/dt = 2(�y · M �y) ≥ 2m0|�y|2, so
|�y|2 ≥ e2m0t |�y(0)|2. Hence |�y| grows exponentially with rate m0 unless �y(0) = �0. Again,
we did not actually compute �y(t), but we still could draw conclusions about how �y(t)

behaves. We could represent �y(t) as �y(t) = etM �y(0), where etM =
∞∑

j=0

(tj /j !)Mj is the

matrix exponential (see Brauer and Nohel (1969), for example.) To show that the related
nonlinear system

d �y/dt = M �y + �f (�y) (1.101)

has solutions, we might write it as

�y(t) = �y(0) +
∫ t

0
[M �y(s) + �f (�y(s))]ds (1.102)

and use Picard iteration or a fixed point theorem (again, see Brauer and Nohel (1969)) to
conclude that solutions exist. An alternate formulation would be to write the equation as

d(e−tM �y)/dt = e−tM(d �y/dt − M �y)

= e−tM �f (�y(t))

so that

e−tM �y − �y(0) =
∫ t

0
e−sM �f (�y(s))ds

and hence

�y(t) = etM �y(0) +
∫ t

0
e(t−s)M �f (�y(s))ds. (1.103)

It turns out that in the context of reaction-diffusion models the formulation analogous to
(1.103) is preferable to (1.102). That is because the operator analogous to M will be a
differential operator, while the operator analogous to etM will be the solution operator
for a linear diffusion equation. For example, in (1.90), the operator analogous to M is
d∂2/∂x2 + r , while the operator analogous to etM is the solution operator that maps
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u(x, 0) =
∞∑

n=1

bn sin(nπx) to u(x, t) =
∞∑

n=1

bne
(r−dn2π2)t sin(nπx). As we noted in the

discussion of (1.90), the solution operator makes sense if
∫ 1

0
[u(x, 0)]2dx < ∞, and

because of its smoothing properties it maps bounded sets into compact sets. The operator
d∂2/∂x2 + r , however, may not even make sense when applied to an arbitrary function

u(x, 0) with
∫ 1

0
[u(x, 0)]2dx < ∞, and when it does make sense it can map bounded sets

of functions into unbounded sets. (For example, the operator d∂2/∂x2+r maps the bounded
sequence {sin(nπx)} to the unbounded sequence {(−dn2π2 + r) sin(nπx)}.)

Reaction-diffusion models are a subclass of a more general class of equations known as
quasilinear parabolic systems. All the models we consider will be second order. The most
general type of single species models we study are of the form

∂u

∂t
= ∇ · [d(x, t, u)∇u − �b(x, t)u] + f (x, t, u), (1.104)

the most general type of multispecies models we will study are of the form

∂ui

∂t
= ∇ · [di(x, t)∇ui − �bi(x, t)ui] + fi(x, t, �u), (1.105)

i = 1 . . . n. In most cases of (1.104) we will have d = d(x, t), so that the nonlinear terms
in (1.104) will only involve u but not its derivatives, as in (1.105). Such models are called
semilinear. In (1.105) the equations are coupled only in the undifferentiated terms; such
systems are called weakly coupled. Most of the models we study will have coefficients
that do not depend on t , and in those that do have time-dependent coefficients we usually
assume that the coefficients are periodic in t . The analysis of systems such as (1.105) will
often require rather detailed information about single equations involving the operators that
occur in the system. In the subsections that follow we sketch out the modern theory for
single equations, and then state some of the corresponding results for systems. The relevant
theory for single equations is usually formulated in a setting which is slightly more general
than that of diffusion models. Specifically, the theory is usually formulated for equations
of the form

∂u

∂t
=

n∑
i,j=1

aij (x)
∂2u

∂xi∂xj

+
n∑

i=1

bi(x)
∂u

∂xi

+ c(x)u (1.106)

where the operator

L =
n∑

i,j=1

aij (x)
∂2

∂xi∂xj

+
n∑

i=1

bi(x)
∂

∂xi

+ c(x) (1.107)

is elliptic. We generally assume that the operator L is uniformly strongly elliptic, that is,
there are constants A1 ≥ A0 > 0 such that

A0|�ξ |2 ≤
n∑

i,j=1

aij (x)ξiξj ≤ A1|�ξ |2 (1.108)
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for any �ξ ∈ IRn and any x for which L is defined. In the case of a diffusion operator
Lu = ∇ · [d(x)∇u − �b(x)u] + r(x)u, the ellipticity condition (1.108) reduces to 0 < d0 ≤
d(x) ≤ d1 for some constants d0 and d1. We also assume that aij = aji . This is reasonable
because ∂2u/∂xi∂xj = ∂2u/∂xj ∂xi for any smooth function u. (In the case of diffusion
operators we have aij = 0 for i �= j .)

1.6.4 Elliptic Operators: Weak Solutions, State Spaces, and Mapping Properties

To understand the issues involved in analyzing elliptic operators it is instructive to consider
the problem

d2u

dx2
= g(x) 0 < x < 1

u(0) = u(1) = 0.

(1.109)

If g(x) is continuous, then taking

u(x) = ax +
∫ x

0

∫ y

0
g(z)dzdy (1.110)

with a = −
∫ 1

0

∫ y

0
g(z)dzdy yields a function u(x) which is twice continuously

differentiable on (0, 1), continuous on [0, 1], and which satisfies (1.109) on (0, 1). On the
other hand, if g(x) is discontinuous, the situation becomes a bit more delicate. (Problems
involving discontinuous terms arise in ecological models if the environment changes
drastically across some interface and we will want to consider scenarios where that happens.)
Suppose for example that g(x) = 0 for 0 ≤ x < 1/2 while g(x) = 1 for 1/2 ≤ x ≤ 1. In
that case (1.110) yields u(x) = (−x/8) for 0 ≤ x < 1/2 and u(x) = (x2/2)− (5x/8)+1/8
for 1/2 ≤ x ≤ 1. The derivative u′(x) is given by u′(x) = −1/8 for 0 < x < 1/2,
u′(x) = x − 5/8 for 1/2 ≤ x < 1, so u′(x) is well defined and continuous. However, if we
try to compute u′′(x) for x = 1/2, we find that at x = 1/2 the limit from the right for the
difference quotient [u′(x +h)−u′(x)]/h is lim

h→0+
[(1/2)+h)− 5/8)− (1/2− 5/8)]/h = 1,

while the limit from the left is lim
h→0−

[(−1/8) − (−1/8)]/h = 0. Thus, u′′(1/2) does

not exist so u(x) cannot satisfy (1.109) at x = 1/2. However, u′′(x) exists and satisfies
(1.109) everywhere else. The point is that u(x) satisfies (1.110), which is the integrated
version of (1.109), but fails to satisfy (1.109) everywhere because u(x) is not smooth
enough. However, u′′(x) exists and equals g(x) everywhere except at a single point, so
we have ∫ 1

0
|u′′(x) − g(x)|2dx = 0. (1.111)

Thus, u′′(x) = g(x) in terms of the norm on L2([0, 1]).
The preceding example brings us to the general notion of weak solutions. Roughly

speaking, a weak solution to a differential equation is a solution to some integrated version
of the equation which has the property that smooth solutions to the integrated equation
are actual solutions to the original equation. A standard way of defining weak solutions is

based on the fact that if f (x) and g(x) are continuous functions such that
∫ 1

0
h(x)f (x)dx =
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0
h(x)g(x)dx for all smooth functions h(x) on [0, 1], then f (x) = g(x) for all x. (To

see that f (x0) = g(x0) for any fixed x0, one would choose a sequence of smooth functions
hn(x) with hn(x) = 0 outside the interval x0 − 1/n < x < x0 + 1/n, hn(x) ≥ 0, and∫ 1

0
hn(x)dx = 1. If f (x) is continuous at x0 then for any ε > 0 there is a number N

such that f (x0) − ε < f (x) < f (x0) + ε for x ∈ (x0 − 1/N, x0 + 1/N); then for n > N

we have
∫ 1

0
hn(x)f (x)dx =

∫ x0+1/n

x0−1/n

hn(x)f (x)dx ≥
∫ x0+1/n

x0−1/n

hn(x)(f (x0) − ε)dx =

(f (x0) − ε)

∫ x0+1/n

x0−1/n

hn(x)dx = f (x0) − ε. Similarly,
∫ 1

0
hn(x)f (x)dx ≤ f (x0) + ε.

Since ε > 0 was arbitrary, we have
∫ 1

0
hn(x)f (x)dx → f (x0) as n → ∞. Likewise,∫ 1

0
hn(x)g(x)dx → g(x0) as n → ∞, so f (x0) = g(x0).) It is possible for the relation∫ 1

0
h(x)f (x)dx =

∫ 1

0
h(x)g(x)dx to hold for all smooth h(x) even if f (x) and g(x) are

discontinuous. However, if f (x) or g(x) is discontinuous, it is no longer necessarily the
case that f (x) = g(x) for all x. Indeed, the relation may still hold even if there are points
where f (x) �= g(x), provided there are not too many such points. If f (x) = 1 for all
x and g(x) = 1 for all x except, say, x = 1/4, 1/2, and 3/4, where g(x) = 0, then∫ 1

0
h(x)f (x)dx =

∫ 1

0
h(x)g(x)dx for all h(x).

We may now define weak derivatives, which provide one way of formulating weak
solutions. If f (x) is differentiable and h(x) is a smooth function with h(0) = h(1) = 0,
then

∫ 1

0
f ′(x)h(x)dx = f (x)h(x)|10 −

∫ 1

0
f (x)h′(x)dx

= −
∫ 1

0
f (x)h′(x)dx

(1.112)

via integration by parts. We can then define a weak derivative of f (x) to be a function
g(x) with the property that for any h(x)

∫ 1

0
g(x)h(x)dx = −

∫ 1

0
f (x)h′(x)dx. (1.113)

If f ′(x) exists as a continuous function then (1.112) and (1.113) imply g(x) = f ′(x), but
(1.113) makes sense in some cases where f ′(x) is not continuous. In the case of (1.109)
with g(x) = 0 for x < 1/2 and g(x) = 1 for x ≥ 1/2, a direct calculation shows that the
function u(x) defined in (1.110) has a weak second derivative v(x) which is equal to g(x)

in the sense that for any smooth h(x),
∫ 1

0
h(x)v(x)dx =

∫ 1

0
h(x)g(x)dx. The formulation

(1.113) is the basis for the theory of distributions; see Strauss (1992). We present it here to
illustrate how the notion of solving a differential equation can be extended to cases where
some of the terms in the equation are not necessarily smooth. Models with discontinuous
coefficients arise naturally in some spatial contexts; moreover, there are some aspects of
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the mathematical theory of reaction-diffusion models that are facilitated by the use of state
spaces such as L2([0, 1]) that contain discontinuous functions.

The example (1.109), (1.110) illustrates some of the mapping properties of the operator
d2/dx2 and its inverse subject to the given boundary conditions. We can now interpret
d2/dx2 as an operator on suitable state spaces, that is, as a function between Banach
spaces. To define an operator we need to specify its domain and tell how it acts on the
elements of its domain. In the case of (1.109) there are a couple of natural choices. The
simplest choice for the domain of d2/dx2 subject to the boundary conditions of (1.109)
is the space of functions on [0, 1] whose first and second derivatives are continuous and
which satisfy the boundary conditions. The space C2([0, 1]) is defined to be the set of all
functions on [0, 1] which are twice continuously differentiable. The norm on C2([0, 1]) is

||u||C2([0,1]) = sup
x∈[0,1]

(|u′′(x)|) + sup
x∈[0,1]

(|u′(x)|) + sup
x∈[0,1]

(|u(x)|), (1.114)

and under that norm C2([0, 1]) is a Banach space. (We discuss that point in more detail in
the next paragraph.) If we let X = {u ∈ C2([0, 1]) : u(0) = u(1) = 0}, retain (1.114) as
the norm on X, and let A = d2/dx2 with the domain of A taken to be X, then A maps X

into C([0, 1]). Furthermore, if u, v ∈ X then we have

||Au − Av||C([0,1]) = ||A(u − v)||C([0,1]) = sup
x∈[0,1]

|u′′(x) − v′′(x)|

≤ ||u − v||C2([0,1])

so that A is continuous. The inverse operator A−1 for A is defined by (1.110), and it is
easy to see that if g ∈ C([0, 1]) then ||A−1g||C2([0,1]) ≤ C||g||C([0,1]) for some constant
C. Thus, A−1 is also continuous as a function from C([0, 1]) into X. Finally, A−1 maps
bounded sets in C([0, 1]) into bounded sets in X, but X ⊆ C([0, 1]) and by Ascoli’s
theorem any set that is bounded in X has compact closure in C([0, 1]). Thus, if we define
E as the operator from X into C([0, 1]) which acts as the identity operator on X, that is,
Eu = u, and combine E with A−1 then the operator EA−1 maps C([0, 1]) into C([0, 1])
continuously, and does so in a way that maps bounded sets into sets whose closures are
compact. This is exactly the type of mapping property that is required for the application
of modern mathematical methods to equilibrium problems for reaction-diffusion models.

The choice of spaces C([0, 1]) and X ⊆ C2([0, 1]) above is not the only possibility.
We could also choose to work in the space Y of functions which are square integrable and
which have weak first and second derivatives in the sense of (1.113) which are also square
integrable, with norm

||u||Y =
[∫ 1

0
(|u′′(x)|2 + |u′(x)|2 + |u(x)|2)dx

]1/2

. (1.115)

If we use Lebesgue integrals then Y turns out to be a Banach space. A problem now arises
with the boundary conditions, because (1.115) might still make sense even if u(0), u(1)

were undefined or if u(x) were discontinuous at 0 or 1 (or elsewhere). However, by using
the Cauchy-Schwartz inequality for integrals (e.g., see Royden (1968)), we can see that
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for u ∈ Y ,

|u(x1) − u(x2)| =
∫ x2

x1

u′(x)dx

≤
(∫ x2

x1

dx

)1/2 (∫ x2

x1

|u′(x)|2dx

)
≤ |x2 − x1|1/2||u||Y .

(1.116)

Thus, if u ∈ Y , then u is continuous, so it makes sense to talk about u(0) and u(1),
and we may define the space Y0 = {u ∈ Y : u(0) = u(1) = 0}. We can now define an
operator B as B = d2/dx2 with domain Y0. The operator B is different from A because
it acts on a different space, although Au and Bu represent the same function for those
choices of u where both make sense. It is clear from (1.115) that B maps Y0 into L2([0, 1])
continuously, and it is not too hard to show that (1.110) defines an inverse operator B−1

that maps L2([0, 1]) continuously into Y0. It is also true (but harder to show) that the
embedding operator E0 that maps Y0 to L2([0, 1]) by taking E0u = u maps bounded sets
in Y0 to sets with compact closures in L2([0, 1]). Thus, the mapping from L2([0, 1]) into
itself defined by E0B

−1 has the same type of mapping properties as the operator EA−1 on
C[0, 1]). This means that we could use many of the same analytic methods while working
in either C([0, 1]) or L2([0, 1]). The reason for wanting to have both spaces available for
use is that each has some advantages and disadvantages from the viewpoint of analysis. The
functions in C([0, 1]) are continuous, so they will always attain maximum and minimum
values, which is an observation that is sometimes useful. On the other hand, the norm in
L2([0, 1]) arises from an inner product (analogous to the dot product for vectors) given by

< u, v >=
∫ 1

0
u(x)v(x)dx, and having an inner product is also sometimes useful. In what

follows we use some state spaces which are generalizations of C([0, 1]) and C2([0, 1]),
and others that are generalizations of L2([0, 1]) and the space Y whose norm is defined in
(1.115).

To verify that C([0, 1]) is a Banach space requires only basic ideas from real analysis,
as discussed by Rudin (1976), for example. The key idea is that any sequence which
converges in the norm of C([0, 1]) is uniformly convergent, so taking the limit of a
sequence of continuous functions with respect to the norm on C([0, 1]) yields another
continuous function. To correctly define L2([0, 1]) and verify that it is a Banach space we
must interpret integrals in the sense of Lebesgue (see Royden (1968), for example.) The
reason is that there are sequences of functions fn(x) which are integrable in sense of the
usual Riemann integral defined in most calculus texts, and for which the sequence {fn(x)}
is a Cauchy sequence with respect to the metric defined by d(fn, fm) = ||fn − fm|| =(∫ 1

0
|fn(x) − fm(x)|2dx

)1/2

, which do not converge to a Riemann integrable function. The

problem is essentially that {fn} might converge pointwise to some function f (x) which is
so badly discontinuous that f (x) and [f (x)]2 are not integrable in the sense of Riemann.
Lebesgue integrals can handle functions which are too badly discontinuous to be Riemann
integrable; for example the function on [0, 1] which is zero for all rational numbers but one
for all irrational numbers is not Riemann integrable, but it is Lebesgue integrable. The two
notions of integral agree when both make sense. In what follows we will always interpret
integrals as Lebesgue integrals. If we use Lebesgue integrals to define L2([0, 1]) then the
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completeness of L2([0, 1]) (and hence the fact that L2([0, 1]) is a Banach space) follows
from the standard convergence theorems for Lebesgue integrals (see Royden (1968)).

When we try to formulate appropriate state spaces for reaction-diffusion models in more
than one space dimension we encounter a few more technical issues. The boundary of
an interval always consists of two points, but the boundary of a region in two or three
dimensions could be very complicated, even fractal. We usually impose some conditions
on the boundaries occurring in our models, typically requiring them to be smooth curves
or surfaces. Another problem is that the elliptic operators which occur in our models do
not have all the mapping properties we might want if we try to define them on C2(�).
(Here � ⊆ IRn is a bounded domain and � its closure). Finally, the formula (1.116) which
implies that functions in Y must be continuous is not valid in exactly the same form in
higher space dimensions. Since continuity is a desirable property we will sometimes want
to work in spaces whose norms are defined by integrals but whose elements are continuous
functions. To do that we must sometimes use spaces constructed from the space Lp(�),

whose norm is ||u|| =
(∫

�

|u(x)|pdx

)1/p

, where p ≥ 1 but p is not necessarily equal

to 2.
The problem with treating elliptic operators of the form L shown in (1.107) in C2(�) is

that although L will be continuous as a map from C2(�) into C(�), the inverse operator
L−1 (i.e. the solution operator for the equation Lu = f under suitable boundary conditions)
will not in general be continuous as a map from C(�) to C2(�). To define spaces on which
L will have a continuous inverse we need a notion of continuity for functions which is
stronger than simple continuity. The type of continuity we need is called Hölder continuity.
Let x0 be a point in IRn and let α be a real number with 0 < α ≤ 1. The function f (x)

is said to be Hölder continuous with exponent α at x0 if there exist a neighborhood of x0
and a constant C such that |f (x) − f (x0)| < C|x − x0|α for all x in the neighborhood of
x0. In the case α = 1 the function f (x) is said to be Lipschitz continuous. As an example,
(1.116) shows that the function u is Hölder continuous with exponent 1/2. Let � ⊆ IRn be
a bounded domain, and denote the closure of � by �. A function f (x) is Hölder continuous
with exponent α on � if the quantity

[f ]α = sup
x,y∈�
x �=y

|f (x) − f (y)|
|x − y|α (1.117)

is finite. The space of functions that are Hölder continuous on � with exponent α is denoted
by C0,α(�) or simply Cα(�). The norm on Cα(�) is

||u||α = ||u||0,α = sup
x∈�

|u(x)| + sup
x,y∈�
x �=y

|u(x) − u(y)|
|x − y|α

= ||u||0 + [u]α,

(1.118)

where ||u||0 = sup
�

|u(x)| is the norm for C(�). To describe the partial derivatives of

a function u defined on a subset of IRn, it is common to use the multi-index notation
β = (β1, . . . , βn) where β1, . . . , βn are integers, to define the order of β, denoted |β|, by
|β| = β1 +· · ·+βn and write ∂ |β|u/∂x

β1
1 ∂x

β2
2 . . . ∂x

βn
n as ∂βu. The space of functions on �

which have spatial derivatives up to order k that are continuous on �, with the derivatives
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of order k being Hölder continuous with exponent α, is denoted Ck,α(�) or Ck+α(�). The
norm on Ck+α(�) can be written as

||u||k+α = sup
x∈�

|u(x)| +
∑
|β|≤k

sup
x∈�

|∂βu(x)| +
∑
|β|=k

[∂βu]α (1.119)

where the notation [ ]α is defined in (1.117). The spaces Ck+α(�) are Banach spaces.
See Gilbarg and Trudinger (1977) and Friedman (1976) for additional discussion. As noted
at the beginning of this discussion, the reason for considering these spaces is that if an
elliptic operator L has the form shown in (1.107) and there is a solution operator or inverse
operator L−1 for L, the inverse operator will typically map Cα(�) into C2+α(�), but
will not necessarily map C(�) into C2(�) as was the case in one space dimension. Thus,
although L might make sense as a mapping form C2(�) into C(�), if we want L to have
a continuous inverse we will usually need to think of L as an operator from C2+α(�) into
Cα(�) instead. This point is discussed in some detail by Gilbarg and Trudinger (1977). To
correctly state the mapping properties for elliptic operators on spaces of Hölder continuous
functions we must put some restrictions on the boundary of the underlying domain �. To
derive some of the mapping properties of elliptic operators it is necessary to do calculations
that involve changes of coordinates which “flatten” parts of the boundary in the sense of
mapping them to hyperplanes. When a differential operator is written in terms of the
new coordinates derivatives of the functions defining the coordinate changes occur in
the coefficients because of the chain rule. Thus, the theory requires that the changes of
coordinates are smooth enough that the coefficients of the operator under consideration are
well defined and sufficiently smooth in the new coordinate system. Recall that a change
of coordinates is a function � which maps an open subset of IRn into another open subset
of IRn in such a way that � has an inverse function �−1 and � and �−1 are at least
continuous. We say that the boundary ∂� of a domain � ⊆ IRn is of class Ck+α if for
each point x0 ∈ ∂� there is a neighborhood U containing x0 and a change of coordinates
� on U such that

(i) if y = (y1, . . . , yn) = �(x), the image under � of ∂� ∩ U lies in the hyperplane
{y ∈ IRn : yn = 0} while the image of �∩U lies in the half-space {y ∈ IRn : yn > 0},
and

(ii) each of the coordinates functions y1(x), . . . , yn(x) defining � belongs to Ck+α(U)

and each of the functions x1(y), . . . , xn(y) defining �−1 belongs to Ck+α(�(U)),
where �(U) is the image of U under �.

We can now describe the mapping properties of operators of the form L shown in (1.107),
subject to the ellipticity condition (1.108), on spaces of Hölder continuous functions.

Theorem 1.1. Suppose that � ⊆ IRn is a bounded domain with ∂� of class C2+α for
some α ∈ (0, 1). Suppose that the coefficients of the operator L shown in (1.107) belong
to Cα(�), satisfy (1.108), and also satisfy c(x) ≤ 0. If f ∈ Cα(�) and g ∈ C2+α(�), the
problem

Lu = f (x) in �

u = g(x) on ∂�
(1.120)



MATHEMATICAL BACKGROUND 59

has a unique solution u ∈ C2+α(�) which satisfies the inequality

||u||2+α ≤ C(||f ||α + ||g||2+α) (1.121)

for a constant C independent of f and g where || · ||α and || ||2+α are the norms of Cα(�)

and C2+α(�) respectively, as defined in (1.119).

Remark: This result is a version of Theorem 6.14 of Gilbarg and Trudinger (1977) which
incorporates some of the remarks given in the discussion of that theorem. A number of
related results are derived in Chapter 6 of Gilbarg and Trudinger (1977). Note that the
boundary condition is formulated in terms of the restriction of a function g that is defined
on all of � to the boundary ∂�. If we started with a function g0 ∈ C2+α(∂�), then since
we are assuming ∂� is of class C2+α we could extend g0 to a function g ∈ C2+α(�) in
such a way that ||g||C2+α(�) ≤ C||g0||C2+α(∂�). The following in a version of Theorem 6.31
of Gilbarg and Trudinger (1977) which treats another type of boundary condition:

Theorem 1.2. Suppose that �, L and f are as in Theorem 1.1. Suppose that
g(x), γ (x), β(x) ∈ C1+α(∂�) with β(x) > 0 and γ (x) ≥ 0. Suppose that c(x) ≤ 0
and either c(x) �≡ 0 or γ (x) �≡ 0. Let ∂/∂ �n denote the outward normal derivative on ∂�.
The problem

Lu = f (x) on �

γ (x)u + β(x)
∂u

∂ �n = g(x) on ∂�
(1.122)

has a unique solution u ∈ C2+α(�), and there is a constant C independent of f and g so
that

||u||2+α ≤ C(||f ||α + ||g||1+α) (1.123)

where ||g||1+α is the norm of C1+α(∂�).

Remark: If c = γ = 0 then (1.22) may not be solvable for all choices of f . Something of
this sort already occurs in the problem d2u/dx2 = f (x), u′(0) = u′(1) = 0. If we integrate

the equation from 0 to 1 we obtain
∫ 1

0
f (x)dx =

∫ 1

0
u′′(x)dx = u′(1) − u′(0) = 0 so the

equation is not solvable unless
∫ 1

0
f (x)dx = 0. It is also the case that if c = γ = 0 in

(1.122) then the homogeneous problem with f = g = 0 has the nontrivial solutions u = k

where k is any constant. This is no accident.

Theorem 1.3. Suppose that L, �, γ , and β are as in Theorems 1.1. and 1.2., but without
the restrictions c ≤ 0 or γ ≥ 0. Then each of the problems (1.120), (1.122) satisfies one or
the other of the following alternatives. Either

(i) the homogeneous problem (i.e. the problem with f = 0 and g = 0) has only the trivial
solution u = 0 and the nonhomogeneous problem has a unique solution u ∈ C2+α(�)

for each f ∈ Cα(�) and (for 1.120) g ∈ C2+α(�) or (for 1.122) g ∈ C1+α(∂�);
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or

(ii) the homogeneous problem has nontrivial solutions; in that case the nullspace of L, i.e.
the set of solutions to the homogeneous problem, is a finite dimensional subspace of
C2+α(�).

Remark: Theorem 1.3 is a version of Theorem 6.15 of Gilbarg and Trudinger (1977). It is
a special case of a more general result about operators known as the Fredholm Alternative
which we discuss later in this section. A key point in establishing Theorem 1.3, which will
also arise in the derivation of other results, is that an operator satisfying the hypotheses
of Theorems 1.1 or 1.2 with homogeneous boundary conditions (i.e. g = 0) will have an
inverse L−1 which is compact as a linear operator on Cα(�); that is, L−1 maps bounded sets
in Cα(�) into sets with compact closures. More precisely, L−1 maps Cα(�) continuously
into C2+α(�), but C2+α(�) embeds compactly in C2(�) by Arzela’s theorem, and C2(�)

then embeds in Cα(�) by the mean value theorem, so if E : C2+α(�) → Cα(�) is given
by Eu = u then the mapping EL−1 : Cα(�) → Cα(�) is compact since L−1 is continuous
and E is a compact operator.

The reason for the conditions c ≤ 0 in Theorem 1.1 and c ≤ 0, γ ≥ 0, with c �≡ 0 or
γ �≡ 0 in Theorem 1.2 is that those conditions imply uniqueness for the trivial solutions
to (1.120) and (1.122), respectively, when f = 0, g = 0. Any other condition which
guarantees uniqueness of the trivial solutions to those problems could be combined with
Theorem 1.3 to yield an existence theorem for solution of the nonhomogeneous problem.
The condition c ≤ 0 implies that L satisfies a maximum principle, which means (among
other things) that solutions to Lu = 0 cannot have a positive maximum or negative
minimum inside � unless they are constant throughout �. The maximum principle can be
used to show uniqueness for the homogeneous problem. We discuss maximum principles
later in this section.

Theorems 1.1–1.3 provide a description of the mapping properties of elliptic operators
on spaces of Hölder continuous functions which will be adequate for our purposes, but
they do not address problems along the lines of (1.120) or (1.222) when f is continuous
but not Hölder continuous or when f is discontinuous. Some of the situations we want
to study are best described by models which have discontinuous terms. Moreover, even in
models with no discontinuities built into them having the ability to work with functions
that are merely continuous can facilitate our mathematical analysis. Thus, we consider
problems such as (1.120) and (1.122) in cases where f is only assumed to belong to some
space of integrable functions such as the space L2([0, 1]) we considered in our simple one-
dimensional example. To do that requires an appropriate notion of weak derivatives, which
in turn is based on the notion of integration by parts in IRn, so we shall digress briefly to
discuss those topics and then return to the mapping properties of elliptic operators.

The result for functions on IRn which gives the closest analogue to the integration by
parts formula is the divergence theorem. Recall that if � ⊆ IRn is a bounded domain
with a C1 boundary and �F is a C1 vector field on � which is continuous on � (i.e.
�F ∈ [C1(�)]n ∩ [C(�)]n), then the divergence theorem states that∫

�

∇ · �Fdx =
∫

∂�

�F · �ndS, (1.124)

where dx = dx1 . . . dxn is the volume element on �, dS is the surface element on ∂�,
and �n is the outward unit normal on ∂�. Suppose that u and v are C1 functions on � with



MATHEMATICAL BACKGROUND 61

either u = 0 or v = 0 on ∂�, and let �ek be the unit vector in the xk direction. We have

0 =
∫

∂�

uv�ek · �ndS =
∫

�

∇ · (uv�ek)dx =
∫

�

(
∂u

∂xk

v + u
∂v

∂xk

)
dx

so that ∫
�

∂u

∂xk

v = −
∫

�

u
∂v

∂xk

dx. (1.125)

The formula (1.125) is the basis for the definition of weak derivatives in IRn. If the function
w(x) satisfies the relation ∫

�

wvdx = −
∫

�

u
∂v

∂xk

dx (1.126)

for all functions v that are smooth and are equal to zero outside a compact subset of �, then
w is said to be the weak derivative of u with respect to xk on �. Higher weak derivatives
are defined analogously; so w = ∂2u/∂xk∂xj in the weak sense if

∫
�

wvdx = (−1)2
∫

�

u
∂2v

∂xk∂xj

dx =
∫

�

u
∂2v

∂xk∂xj

dx

for all smooth functions v that are zero outside some compact subset of �, and so on.
Certain calculations based on the divergence theorem are widely used in partial differential
equations. Some of these are known as Green’s formulas. An example is the following.
Suppose u, v, ∈ C2(�). Then∫

�

v(∇ · d(x)∇u)dx =
∫

�

(∇ · [vd(x)∇u] − d(x)∇u · ∇v)dx

=
∫

∂�

vd(x)∇u · �ndS −
∫

�

d(x)∇u · ∇vdx

=
∫

∂�

vd(x)
∂u

∂ �v dS −
∫

�

d(x)∇u · ∇vdx.

Because weak derivatives are defined by (1.126) to satisfy the formula (1.125), they will
by definition also satisfy Green’s formulas and other formulas based on the divergence
theorem when all the derivatives exist and all the integrals make sense and are finite. Weak
derivatives are discussed in some detail by Adams (1975), Friedman (1976), and Gilbarg
and Trudinger (1977).

The state spaces we need to use to treat models with discontinuous terms can be
constructed by using the idea of weak derivatives in the setting of the spaces Lp(�)

of functions on � whose pth power is integrable in the sense of Lebesgue. The Lp spaces
will be familiar to most of those readers who have had a course on real analysis which
treats Lebesgue integration; they are discussed in detail, for example, by Royden (1968).
For those readers unfamiliar with Lebesgue integrals, one of their essential features is that
they agree with the ordinary Riemann integrals of elementary calculus when both types
of integrals make sense, but Lebesgue integrals make sense for some functions for which
Riemann integrals do not. As a consequence, it is possible to interchange integration with
taking the limit of a sequence of functions more readily in the context of Lebesgue integrals
than in the context of Riemann integrals. As an example, if the functions fn(x) are Lebesgue
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integrable on a bounded domain �, are bounded by a Lebesgue integrable function f0(x)

in the sense that |fn(x)| ≤ f0(x) for all n, and fn(x) → f (x) for each x ∈ �, then f (x) is

Lebesgue integrable on � and
∫

�

fndx →
∫

�

f dx as n → ∞. (See Royden (1968)). This

is not true in general for Riemann integrals, where convergence of the integrals
∫

�

fndx

normally requires uniform convergence of the functions.
Lebesgue integrals are defined in terms of what is known as Lebesgue measure. Lebesgue

measure is a generalization of the notion of length (in IR), area (in IR2), volume (in IR3),
etc. The Lebesgue measure of an interval is simply its length, but Lebesgue measure makes
sense for sets more complicated than intervals. For example, in one dimension, the set of
all rational numbers in [0, 1] has measure 0 while the set of all irrational numbers in [0, 1]
has measure 1. This reflects the fact that relatively few points (only countably many) in
[0, 1] are rational. Any surface or hypersurface of dimension n − 1 or lower in IRn will
have Lebesgue measure zero, and any finite or even countable union of sets with Lebesgue
measure zero will also have Lebesgue measure zero. Lebesgue integrals are actually defined
on equivalence classes of functions which are equal outside of a set of measure zero, and
if a function is Lebesgue integrable at all then its integral over any set of measure zero is
equal to zero. The appropriate notion of convergence for a sequence of functions relative
to Lebesgue integration is convergence almost everywhere, that is, pointwise convergence
outside of a set of measure zero. If {fn} is a sequence of Lebesgue integrable functions
with |fn| bounded by a Lebesgue integrable function f0(x) for all n and fn → f almost

everywhere in �, then f is Lebesgue integrable and
∫

�

fndx →
∫

�

f dx as n → ∞. When

fn → f almost everywhere it is standard to write “fn → f a.e.”. The significance of
the convergence properties of the Lebesgue integral is that they guarantee that spaces of
Lebesgue integrable functions are complete as metric spaces, i.e. they are Banach spaces.
To be specific, for 1 ≤ p < ∞ the space Lp(�) is the set of all functions f on � for
which |f |p is integrable, with the norm

||f ||p =
(∫

�

|f (x)|pdx

)1/p

. (1.127)

(Once again, to be precise, the elements in Lp(�) are actually equivalence classes of
functions, with each equivalence class consisting of functions which are equal outside a
set of measure zero.) To be Lebesgue integrable a function must have the property of
measurability, which means that if S ⊆ IR is a set such that the Lebesgue measure of S is
well defined in IR then the Lebesgue measure of the set {x ∈ � : f (x) ∈ S} is well defined
in IRn. In addition to the spaces Lp(�), we may sometimes want to consider the space
L∞(�) consisting of Lebesgue measurable functions which are bounded except perhaps on
a set of measure zero. The norm on L∞(�) is given by

||f ||∞ = inf{sup
�

|g(x)| : g is measurable on � and

g = f almost everywhere}.
(1.128)

If f ∈ C(�), then ||f ||∞ = sup
�

|f | so that C(�) is a closed subspace of L∞(�). (The

space C(�) is a subspace of Lp(�) for any p ≥ 1, but in general is not closed.)
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We can now define state spaces based on Lp spaces. Denote by Wk,p(�) the space
of functions whose weak derivatives of order up to k belong to Lp(�). The norm of f

in Wk,p(�) is denoted by || ||k,p. It is defined in terms of Lp(�) norms of the weak
derivatives of f in much the same way that the norm of f in Ck+α(�) is defined in terms
of the norms in C(�) and Cα(�) of derivatives of f in (1.119), namely

||f ||k,p =
∑
|β|≤k

||∂βf ||p, (1.129)

where once again β = (β1, . . . , βn), where β1, . . . , βn are nonnegative integers, |β| =
β1 + · · · + βn, and ∂βf denotes the derivative ∂ |β|f/∂x

β1
1 . . . ∂x

βn
n , now taken in the weak

sense as in (1.129). The spaces Wk,p(�) are called Sobolev spaces, and they are Banach
spaces; see Gilbarg and Trudinger (1997) or Adams (1975). An alternative way to define
them is to take the completion of Ck(�) (or Ck+α(�), for that matter) with respect to the
norm (1.129). A particular Sobolev space which we will use in our discussion of eigenvalues
for elliptic operators is the space W 1,2(�). That space is of interest partly because its norm
can be viewed as arising form the inner product

< u, v >=
∫

�

[∇u · ∇v + uv]dx (1.130)

(where again ∇u and ∇v are interpreted in the weak sense).
In some cases we will also want to work in the subspace W

1,2
0 (�) ⊆ W 1,2(�), which

is obtained by taking the completion in � relative to (1.130) of the space of continuously
differentiable functions that are zero outside a compact subset of � (which means that
they are zero on ∂�). The space W

1,2
0 (�) can be viewed as being the subspace of W 1,2(�)

consisting of functions which are zero on ∂�, but some care is required in that interpretation
since functions in W 1,2(�) are not necessarily continuous on �.

The fact that functions in Sobolev spaces need not be continuous on � means that some
care must be taken in formulating boundary conditions on them. For functions f (x) ∈ C(�)

the mapping from f to the restriction of f to ∂� maps C(�) continuously to C(∂�). In
the case of Sobolev spaces we need to use the notion of trace. If Y is a space of functions
on ∂�, the function u ∈ Wm,p(�) has trace y ∈ Y if for any sequence {un} of smooth (i.e.
infinitely differentiable) functions un on � which converge to u in the norm of Wm,p(�),
the functions obtained by restricting un to ∂� converge to y in the norm of Y , with
||y||Y ≤ C||u||m,p for some constant C independent of u. We have the following (see
Adams (1975, Theorems 5.22, 7.53, and 7.57)).

Lemma 1.4. Suppose � ⊆ IRn is a bounded domain with ∂� of class C2+α . For p ∈ (1, ∞)

functions in W 2,p(�) have traces in W 1,p(∂�). For m = 1, 2 and p < n/m, functions in
Wm,p(�) have traces in Lq(∂�) for q ∈ [p, (n − 1)p/(n − mp)]. For p ≥ n/m, functions
in W 2,p(�) have traces in Lq(∂�) for q ∈ [p, ∞).

Remarks: The spaces W 1,p(�) actually have traces which belong to the fractional order
Sobolev space W 1−1/p,p(∂�), as defined in Agmon et al. (1959) or Adams (1975); see
for example Adams (1975, Theorem 7.53). This is a relatively fine technical point but it is
relevant to the formulation of boundary conditions in Sobolev spaces.

We can now state results in Sobolev spaces which are analogous to Theorems 1.1 and 1.2.
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Theorem 1.5. Suppose that � ⊆ IRn is a bounded domain with ∂� of class C2+α , and
that L has the form (1.107), (1.108) holds, and the coefficients of L all belong to Cα(�).
Suppose further that c ≤ 0. Let p ∈ (1, ∞). If f ∈ Lp(�) and g ∈ W 2,p(�) then the
problem (1.120) (with the condition u = g on ∂� interpreted as meaning that the traces of
u and g on ∂� are equal almost everywhere) has a unique solution u ∈ W 2,p(�) satisfying
||u||2,p ≤ C(||f ||0,p + ||g||2,p) for some constant C independent of f and g.

Remarks: Results of this type are discussed by Agmon et al. (1959). The key idea is
that for any u ∈ W 2,p(�) with u = 0 on ∂� (i.e. trace of u on ∂� is 0), we have the
estimate ||u||2,p ≤ C1(||u||0,p +||Lu||0,p) for a constant C1 independent of u; see (Agmon
et al. 1959). Once this estimate is available we may take v = u − g so that v = 0 on
∂�, Lv = f − Lg ∈ Lp(�) in �, and then analyze the problem for v in much the same
way as in the case considered in Theorem 1.1, which is discussed in detail in Gilbarg and
Trudinger (1977, Chapter 6); see Agmon et al. (1959). A similar analysis can be applied
in the case of mixed boundary conditions:

Theorem 1.6. Suppose that L and � satisfy the hypotheses of Theorem 1.5. Suppose that
c, β and γ satisfy the hypotheses of Theorem 1.2, that f ∈ Lp(�) and g ∈ W 1,p(�).
Then the problem (1.122) has a unique solution u ∈ W 2,p(�), which satisfies ||u||2,p ≤
C(||f ||o,p + ||g||1,p) for some constant C independent of g or f .

Remarks: The “g” in the boundary condition in (1.122) should be interpreted as the trace
of g ∈ W 1,p(�) on ∂�. The key estimates by Agmon et al. (1959) are cast in terms of a
norm on g which is essentially the norm of the trace of g ∈ W 1,p(�) on ∂� in the space
W 1−1/p,1/p(∂�); see Agmon et al. (1959, Formula 14.2) and compare with the discussion
by Adams (1975, Chapter 7). If g0 ∈ W 1,p(∂�) then g0 can be extended to g ∈ W 1,p(�)

in such a way that ||g||W 1,p(�) ≤ C||g0||W 1,p(∂�). If we omit the condition c ≤ 0 from
Theorem 1.5 or the conditions on c, γ, and β from Theorem 1.6 we would still be able to
obtain a result analogous to Theorem 1.3.

An important feature of the Sobolev spaces Wm,p(�) is that they embed in the spaces
Ck,α(�) and Wj,q(�) under suitable conditions on ∂�, m, p, k, α, j , and q. Some of the
embeddings are compact. An appropriate condition on ∂� for bounded domains is the local
Lipschitz property. That property holds if ∂� is of class C2+α (or even just C1), but it
will also be true if in a neighborhood of each point x0 ∈ ∂� the boundary of � can be
expressed (possibly after rotating coordinates or interchanging the i and j coordinates for
some choices of i and j ) as the graph of a function xn = �(x1, . . . , xn−1) where � is
Lipschitz; that is, there is a constant such that |�(x1, . . . , xn−1) − �(y1, . . . , yn−1)| <

C|(x1 − y1, . . . , xn−1 − yn−1)|. These domains include domains whose boundaries consist
of finitely many smooth surfaces which meet at corners, such as polygons and polyhedra.
We have the following:

Theorem 1.7. Suppose that � ⊆ IRn is a bounded domain with ∂� locally Lipschitz. Let
m and k denote integers with k ≥ 0 and m ≥ 1, and let p ∈ [0, ∞).

(i) If mp < n, then Wm+k,p(�) embeds compactly in Wk,q(�) for q ∈ [1, np/(n−mp)).
(If q = np/(n − mp), the embedding is continuous but will not be compact.)

(ii) If mp = n, then Wm+k,p(�) embeds compactly in Wk,q(�) for q ∈ [1, ∞).

(iii) If mp > n, then Wm+k,p(�) embeds compactly in Ck(�). If (m − 1)p ≤ n < mp

and α ∈ (0, m − (n/p)) then Wm+k,p(�) embeds compactly in Ck+α(�).
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Remarks: This theorem is essentially Theorem 6.2 of Adams (1975); it is known as the
Rellich-Kondrachov Theorem. In particular, it implies that W 2,p(�) embeds compactly in
C1+α(�) for p > n and α ∈ (0, 1 − (n/p)) by taking m = k = 1. Note that Ck(�)

embeds in Wk,q(�) for any q ≥ 1, so in case (iii) Wm+k,p(�) also embeds compactly in
Wk,q(�) for q ∈ [1, ∞). There are a number of possible refinements and generalizations
of the embedding theorem. In particular, parts (i) and (ii) of Theorem 1.7 remain valid if
we merely require ∂� to satisfy a cone condition. The boundary ∂� of a bounded domain
� ⊆ IRn satisfies a cone condition if there is a fixed cone in IRn which can be moved by
rigid motions (rotations and translations) to a position where its vertex is at xo ∈ ∂� and
the cone itself lies inside �, where x0 ∈ ∂� is an arbitrary point on ∂�. The point of using
this type of condition instead of requiring ∂� to be C2+α is that we can treat domains with
corners, etc.

The way that we will typically use Theorem 1.7 is to formulate the solution operator for
L as a compact operator from C(�) into C(�), or from C1+α(�) into C1+α(�).

Theorem 1.8. Suppose L has the form (1.107), with (1.108) satisfied, with all the
coefficients of L belonging to Cα(�) and c ≤ 0. Suppose that � ⊆ IRn is bounded
and that ∂� is of class C2+α . The solution operator L−1 for the problem Lu = f in �,
u = 0 on ∂� can be extended to C(�) from Cα(�) (or restricted to C(�) from Lp(�))
to define a compact operator from C(�) into C(�); similarly, L−1 can be restricted from
Cα(�) to C1+α(�).

Proof: Suppose f ∈ C(�). Then f ∈ Lp(�) for any p. Choose p > n. Then by Theorem
1.5, there is a solution operator L−1 for L such that L−1 : Lp(�) → W 2,p(�) is continuous,
which is equivalent to the existence of a constant C such that ||L−1f ||2,p ≤ C||f ||0,p for
all f ∈ Lp(�). Since ||f ||0,p ≤ C1||f ||0 for some constant C1, where || · ||0 denotes the
norm of C(�), L−1 restricted to C(�) maps C(�) continuously into W 2,p(�). However,
the embedding E of W 2,p(�) into C(�) is compact, so the operator EL−1 is continuous
and maps bounded subsets of C(�) into subsets of C(�) with compact closure. Thus EL−1

defines a solution operator which is compact as an operator from C(�) to C(�). The case
of C1+α(�) is similar.

Remark: Analogous results hold under the boundary conditions of (1.122). In our treatment
of the equilibria of reaction-diffusion models the compactness of solution operators will play
an important (if technical) role in the analysis. An important feature of compact operators
is that they have eigenvalues. We have the following.

Lemma 1.9. A compact linear operator A from Banach space into itself has a countable
set of eigenvalues. The eigenvalues have no limit point other than zero. The multiplicity
of each nonzero eigenvalue is finite; that is, the dimension of the nullspace of A − σI is
finite for each eigenvalue σ .

Remarks: Lemma 1.9 is essentially Theorem 5.5 of Gilbarg and Trudinger (1977). It is a
standard result in functional analysis. So far we have generally considered Banach spaces
of real valued functions, but if we consider the analogous spaces of functions which may
be complex valued and allow multiplication by complex numbers then Theorem 1.8 still
applies. Thus, even if the operator A is originally defined only as a mapping from a space X

of real valued functions into itself, A can be extended to the space Z : {x+iy : x, y ∈ X}. If
viewed as an operator on Z, A may have complex eigenvalues. Such is precisely analogous
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to the case of matrices with real entries, which may also have complex eigenvalues. If
a linear operator is compact it must be continuous (another basic fact from functional
analysis), and thus bounded in the sense that ||A|| = sup{||Ax||/||x|| : x ∈ X, x �= 0} < ∞.
If σ is an eigenvalue of A there must be x ∈ X, x �= 0, such that Ax = σx, so
|σ | = ||Ax||/||x|| ≤ ||A|| < ∞. Thus, the set of eigenvalues of a compact operator is
bounded. If L is an elliptic operator such that L−1 exists as a compact operator on a
space X, then for each nonzero eigenvalue µ of L−1 we have L−1x = µx for some
x ∈ X, x �= 0, so that Lx = (1/µ)x. Thus, the elliptic operator L will have eigenvalues
corresponding to nonzero eigenvalues of EL−1. If L−1 : X → Y is combined with an
embedding E : Y → X so that EL−1 is compact then it turns out that it is still generally
true that L will have eigenvalues corresponding to nonzero eigenvalues of EL−1, but some
care must be taken in the rigorous mathematical analysis because even if EL−1 : X → X

the original operator L may only make sense on the subspace Y ⊆ X. This is not usually
a problem because if x ∈ X is an eigenvector for EL−1 corresponding to an eigenvalue
µ �= 0 then x = (1/µ)EL−1x = (1/µ)L−1x ∈ Y so Lx makes sense and (1/µ)x = Lx.

In some of the applications we study we encounter the problem of solving equations
of the form Lu − σu = f where σ is an eigenvalue of L. Since σ is an eigenvalue, the
operator L − σI is not invertible, so we cannot expect to solve Lu − σu = f for arbitrary
choices of f . On the other hand, the nullspace of L − σI is typically finite dimensional,
so there will be many functions f for which Lu − σu = f has a solution. To address
this problem we will need to use the notion of adjoint operators. Recall that if M is an
n × n matrix of real numbers and �v, �w ∈ IRn we have M �v · �w = �v · MT �w where MT

is the transpose of M . In general, if H is a Hilbert space (that is, a Banach space whose
norm || · || arises from the inner product < ·, · > as ||u|| = √

< u, u >) and A : H → H

is a continuous (i.e. bounded) linear operator, then the adjoint of A is the operator A∗
such that < Au, v >=< u, A∗v > for any u, v ∈ H . In the case of differential operators
there is an additional complication, which is that they generally cannot be formulated as
continuous linear operators from a given Hilbert or Banach space into itself. For example,
if we define the operator L as a differential operator of the form (1.107) acting on C2+α(�)

then L does not map C2+α(�) into itself but rather into Cα(�). If we attempt to define
L on Cα(�) we find that not all Hölder continuous functions have Hölder continuous
partial derivatives, so we cannot define L as a map of all of Cα(�) into Cα(�), either.
The problem of correctly formulating the adjoint operators of differential operators in a
rigorous way as maps between Hilbert or Banach spaces can be resolved (see Kato (1966)),
but we do not discuss it further here. In what follows we will sometimes need to use facts
about adjoint operators in a technical way, but for many purposes it will suffice to consider
the “formal” adjoints operators corresponding to differential operators. Roughly speaking,
the formal adjoint of a differential operator is the representation that the actual adjoint
operator relative to the Hilbert space L2(�) would have on its domain of definition. We
now introduce the notion of formal adjoint operators and discuss the relationship between
solvability of Lu − σu = f when σ is an eigenvalue of L and the eigenfunctions of the
formal adjoint operator. To do so we must also interpret the Sobolev space W 1,2(�) as a
Hilbert space and formulate the problem Lu = f in W 1,2(�).

The space L2(�) is a Hilbert space with respect to the inner product

< u, v >0,2=
∫

�

uvdx (1.131)

in the case where we require functions in L2(�) to be real valued and use only real scalars,
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or as

< u, v >0,2=
∫

�

uvdx

where v denotes the complex conjugate of v in the case where functions in L2(�) may
be complex valued. The space W 1,2(�) is also a Hilbert space with respect to the inner
product shown in (1.131) (or in the corresponding complex case, with v and ∇v replaced
by v and ∇v) where ∇ is understood in the weak sense. The inner product in W 1,2(�) is
sometimes denoted < , >1,2. All Sobolev spaces built upon L2(�), i.e. W 2,2(�), W 3,2(�),
etc., can be viewed as Hilbert spaces in an analogous way. To compute the adjoint for an
elliptic operator and to formulate an appropriate notion of a weak solution in W 1,2(�) we
rewrite < v, Lu >0,2 via the divergence theorem. For those purposes it is convenient to
write the elliptic operator in the form

Lu =
n∑

i,j=1

∂

∂xi

(
aij (x)

∂u

∂xj

)
+

n∑
i=1

∂

∂xi

(Bi(x)u)

+
n∑

i=1

bi(x)
∂u

∂xi

+ c(x)u.

(1.132)

We still assume aij = aji and that (1.108) holds. If the coefficients aij and Bi are
differentiable this form is equivalent to an operator of the form (1.107):

Lu =
n∑

i,j=1

aij

∂2u

∂xi∂xj

+
n∑

i=1


bi + Bi +

n∑
j=1

∂aij

∂xj


 ∂u

∂xi

+
(

c +
n∑

i=1

∂Bi

∂xi

)
u. (1.133)

Assuming for the moment that u and v are smooth, we have

∂

∂xi


v


 n∑

j=1

aij

∂u

∂xj

+ Biu




 =

v
∂

∂xi


 n∑

j=1

aij

∂u

∂xj

+ Biu


+ ∂v

∂xi


 n∑

j=1

aij

∂u

∂xj

+ Biu




so that by the divergence theorem

∫
�

v

n∑
i=1

∂

∂xi


 n∑

j=1

aij

∂u

∂xj

+ Biu


 dx

=
∫

∂�

v

n∑
i=1




 n∑

j=1

aij

∂u

∂xj


 · ni + Biniu


 dS

−
∫

�


 n∑

i,j=1

aij

∂u

∂xj

∂v

∂xi

+
n∑

i=1

Bi

∂v

∂xi

u


 dx

(1.134)
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where �n = (n1, . . . , nn) is the outward unit normal to ∂�. If (aij (x)) = d(x)I as in most
of the problems we consider, then (1.134) becomes∫

�

v∇ ·
[
d(x)∇u + �Bu

]
dx =

∫
∂�

v

[
d(x)

∂u

∂ �n + ( �B · �n)u

]
dS

−
∫

�

[d(x)∇u · ∇v + ( �B · ∇v)u]dx.

(1.135)

If we multiply Lu times v, integrate over �, and apply (1.134) to the first two terms we
obtain the relation

∫
�

vLudx =
∫

�


−

n∑
i,j=1

aij

∂u

∂xj

∂v

∂xi

−
n∑

i=1

Bi

∂v

∂xi

u +
n∑

i=1

vbi

∂u

∂xi

+ cuv


 dx

+
∫

∂�

v

n∑
i=1




 n∑

j=1

aij

∂u

∂xj


 ni + Biniu


 dS.

(1.136)

We can now define weak solutions of Lu = f in W 1,2(�). We will need to use the space
W

1,2
0 (�). (Recall that W

1,2
0 (�) is the closure in W 1,2(�) of the set C1

0(�) of continuously
differentiable functions on � which are zero except on some compact subset of �. Thus,
functions in W

1,2
0 (�) are zero on ∂� in a weak sense.) A function u ∈ W 1,2(�) is a weak

solution of the problem (1.120), i.e. Lu = f ∈ L2(�) and u = g on ∂� in the sense that
g ∈ W 1,2(�) and u − g ∈ W

1,2
0 (�), provided

∫
�


−

n∑
i,j=1

aij

∂u

∂xj

∂v

∂xi

−
n∑

i=1

Bi

∂v

∂xi

u +
n∑

i=1

bi

∂u

∂xi

v + cuv


 dx

=
∫

�

vf dx

(1.137)

holds for all v ∈ C1
0(�). The absence of a boundary term in (1.137) reflects the fact

that functions in C1
0(�) are zero in some neighborhood of ∂�. Since C1

0(�) is dense in

W
1,2
0 (�), the formula (1.137) extends to v ∈ W

1,2
0 (�). It turns out that if c +

n∑
i=1

∂Bi/∂xi

(the coefficient of the undifferentiated term in L as in (1.133)) is nonpositive in the weak
sense then the problem Lu = f in �, u = g on ∂�, will have a unique weak solution
in W 1,2(�) with no additional conditions on ∂�, but before stating a result to that effect
we will give a weak formulation of another boundary value problem and define the formal
adjoint L∗ for L. We need to define L∗ to state some of the results on the existence of
solutions to Lu = f and related problems.

The other boundary condition which is natural for an operator of the form L is

n∑
i=1


 n∑

j=1

aij

∂u

∂xj


 ni + ( �B · �n)u + γ (x)u = g on ∂�. (1.138)
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This condition may seem complicated but in the case Lu = ∇ · [d(x)∇u − �V (x)u] (which
is most relevant to our models) the condition simply states that the flux [−d(x)∇u+ �V u] · �n
out of � across ∂� is given by a term γ u proportional to the density together with an
external source term g. Thus, if γ = g = 0 the boundary condition is a no-flux boundary
condition while if γ > 0 but g = 0 the boundary condition says that the flux out of
� across ∂� is proportional to the local density. Thus, (1.138) is a boundary condition
which is relevant for our modeling purposes. The weak formulation for Lu = f under the
boundary condition (1.138) is

∫
−�


−

n∑
i,j=1

aij

∂u

∂xj

∂v

∂xi

−
n∑

i=1

Bi

∂v

∂xi

u +
∑

bi

∂u

∂xi

v + cuv


 dx

=
∫

�

vf dx +
∫

∂�

v[g − γ u]dS

(1.139)

for any v ∈ W 1,2(�). (For the boundary condition (1.138) we require ∂� to be piecewise
C1 so that �n is well defined almost everywhere on ∂�. It is also possible to formulate
boundary value problems where u is specified on part of ∂� and (1.138) holds on the
remainder of ∂�; see Gilbarg and Trudinger (1977).)

It is fairly easy to verify the form L∗ should have, but it is less obvious what boundary

conditions on v should be associated with L∗ to ensure that
∫

�

uL∗vdx =
∫

vLudx under

a given set of boundary conditions on u. If we take

L∗v =
n∑

i,j=1

∂

∂xi

(
aij

∂v

∂xj

)
−

n∑
i=1

∂

∂xi

(biv)

−
n∑

i=1

Bi

∂v

∂xi

+ cv

(1.140)

we can calculate as in the derivation of (1.136) to obtain

∫
�

uL∗vdx =
∫

�


−

n∑
i,j=1

aij

∂u

∂xi

∂v

∂xj

+
n∑

i=1

bi

∂u

∂xi

v −
n∑

i=1

uBi

∂v

∂xi

+ cuv


 dx

+
∫

∂�

u

n∑
i=1




 n∑

j=1

aij

∂v

∂xi


 ni − biniv


 dS.

(1.141)

Since aij = aji , the integrals over � on the right sides of (1.141) and (1.136) are the same.

Thus we shall have
∫

�

uL∗vdx =
∫

�

vLudx if we can impose boundary conditions on v that

correspond to those on u in such a way that the boundary integrals in (1.136) and (1.141) are
the same. The simplest case is when Lu is augmented with the boundary condition u = 0. In
that case we would simply restrict our attention to the subspace W

1,2
0 (�) of W 1,2(�). Since

functions in W
1,2
0 (�) are zero on ∂� as far as integral formulas such as (1.136) and (1.141)
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are concerned, the boundary integrals drop out so that
∫

�

vLudx =
∫

�

uL∗vdx if L∗ has

the form (1.140). For boundary conditions of the form (1.138) (but in the homogeneous case

where g = 0) the boundary integrals in (1.136) and (1.141) both reduce to −
∫

∂�

γ uvdS if

we impose the boundary condition

n∑
i=1




 n∑

j=1

aij

∂v

∂xj


 ni


−

n∑
i=1

biniv + γ (x)v = 0. (1.142)

In the case Lu = ∇ · [d(x)∇u − �V (x)u] with boundary conditions [d(x)∇u − �V (x)u] · �n+
γ (x)u = 0, the adjoint operator L∗ will have boundary conditions d(x)∂v/∂ �n+γ (x)v = 0
on ∂�. In particular, no-flux boundary conditions on L lead to Neumann conditions on
L∗. We can now state a result on solvability which embodies the eigenvalues of L. An
eigenvalue of L is a number σ such that Lσ = σφ for some nonzero φ satisfying the
boundary conditions of L. We will state the result in the case of homogeneous Dirichlet
boundary conditions and then remark on how it should be modified for other boundary
conditions.

Theorem 1.10. Suppose that � ⊆ IRn is a bounded domain, that L has the form (1.132)
with all coefficients bounded and measurable, and that (1.108) holds. The operator L

has a countable discrete set � ⊆ IR of real eigenvalues such that if σ �∈ �, then the
problems

Lu = σu + f in �, u = 0 on ∂� (1.143)

and

L∗v = σv + f in �, v = 0 on ∂� (1.144)

have unique solutions in W 1,2(�) for any f ∈ L2(�). If σ ∈ � then the operators L − σI

and L∗ − σI with homogeneous Dirichlet boundary conditions have finite dimensional
nullspaces which contain nonzero elements. If σ ∈ � the problem (1.143) is solvable if
and only if ∫

�

f φ∗dx = 0 (1.145)

for all φ∗ ∈ W
1,2
0 (�) with L∗φ∗ = σφ∗.

Remarks: Theorem 1.10 is a version of the Fredholm alternative. A similar version is
given as Theorem 8.6 of Gilbarg and Trudinger (1977), but the notation used there is
different. Note that Theorem 1.10 does not exclude the possibility of complex eigenvalues.
In fact, operators satisfying the theorem may indeed have complex eigenvalues. Usually
the condition of formal self-adjointness, i.e. L = L∗ in (1.136) and (1.141) and in their
boundary conditions, implies that the eigenvalues are real.

As in the case of Theorems 1.2, 1.3, 1.5 and 1.6, if the coefficient of the undifferentiated
term in Lu is nonpositive, then � ⊆ (−∞, 0) and in particular L is invertible. For operators
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of the form (1.132) that coefficient is c +
n∑

i=1

∂Bi/∂xi (see (1.133)). If c or ∂Bi/∂xi

are not continuous on � we may need to interpret nonpositivity in the weak sense; i.e.∫
�

[
cw −

n∑
i=1

Bi(∂w/∂xi)

]
dx ≤ 0 for all w ∈ C1

0(�) with w ≥ 0.

If we want to determine the solvability of Lu = σu + f in �, u = g on ∂�, we would
write ũ = u − g and apply the Fredholm alternative to the problem Lũ = σ ũ + f − Lg

(formulated in the appropriate weak sense). A version of the Fredholm alternative including
nonhomogeneous boundary conditions is given as part of Theorem 8.6 of Gilbarg and
Trudinger (1977).

The homogeneous Dirichlet conditions on L and L∗ may be replaced by homogeneous
boundary conditions (1.138) for L and (1.142) for L∗ and Theorem 1.10 will remain valid.
In that case we would require ∂� to be piecewise C1, and we would need to impose some

additional conditions to conclude that � ⊆ (−∞, 0). If c +
n∑

i=1

∂Bi/∂xi ≤ 0 and either this

last inequality is strict on an open subset of � or γ (x) > 0 on a relatively open subset of
∂� then we may conclude � ⊆ (−∞, 0).

The solutions whose existence is asserted in Theorem 1.10 may only be solutions in
the weak sense if f and the coefficients of L are not continuous or if ∂� is not smooth.
However, if L, f, and ∂� are smooth enough to apply the theory described in Theorems
1.2, 1.3, 1.5, and 1.6, then weak solutions are also classical solutions. Thus, if everything
is smooth, the problem Lu = σu + f has a solution u ∈ C2+α(�) if and only if it has a
solution in W 1,2(�). To see why this is so, note that if u ∈ W 1,2(�), then u ∈ Lp(�) for
all p < ∞ if n = 2 or for p < 2n/(n − 2) if n ≥ 3. (If n = 1, u ∈ W 1,2([a, b]) implies
that u ∈ C1/2([a, b]) by the calculation in (1.116).) If u ∈ Lp0(�) then Theorem 1.5 (or
1.6) implies u ∈ W 2,p0(�). Then by Theorem 1.7 we may conclude either u ∈ Lp1(�) for
some p1 > p0 or u ∈ Cα(�) depending on n. If we can only conclude that u ∈ Lp1(�)

we still have u ∈ W 2,p1(�) by Theorem 1.5 (or 1.6) so we have u ∈ Lp2(�) for some
p2 > p1 or u ∈ Cα(�) by Theorem 1.7, again depending on n. If we repeat this argument
enough times we eventually will get u ∈ W 2,pk (�) where pk is large enough that W 2,pk (�)

embeds in Cα(�). Then by Theorem 1.1 (or 1.2) we have u ∈ C2+α(�).
Even if the coefficients of L are merely bounded and measurable and � merely satisfies a

cone condition, the solution operator L−1 is a continuous map of L2(�) into W 1,2(�), and
W 1,2(�) embeds compactly in L2(�) by Theorem 1.7, so we can view the solution operator
as a compact operator on the Hilbert space L2(�). Generally if L is formally self-adjoint we
will have < L−1u, v >=< u, L−1v > where < , > is the inner product in L2(�). In other
words, L−1 is a symmetric compact operator on L2(�). Such operators have many nice
properties which we will sometimes exploit in our treatment of eigenvalues in Chapter 2.

For linear equations such as those defining eigenvalues for elliptic operators, the spaces
W 1,2(�) and L2(�) are adequate for most types of analysis. For nonlinear equations of
the form Lu = f (x, u) we generally want to work in either the Hölder spaces Cα(�)

or in W 2,p(�) for p large enough that W 2,p(�) embeds in Cα(�). The reason is that
nonlinear functions of u ∈ L2(�) are not necessarily in L2(�). (As an example consider
u(x) = x−1/3 on (0, 1). We have u ∈ L2(�) but u2 = x−2/3 �∈ L2(�).) However, if
u ∈ Cα(�) then f (x, u) ∈ Cα(�) if f is Cα in x and Lipschitz in u, and it follows that
f (x, u) ∈ Lp(�) for all p ∈ [1, ∞].
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1.6.5 Reaction-Diffusion Models as Dynamical Systems

The models we want to study will usually have the form

∂ui

∂t
= Liui + fi(x, u1, . . . , um) in � × (0, ∞)

Biui = 0 on ∂� × (0, ∞)

ui(x, 0) = wi(x) on �,

(1.146)

i = 1, . . . , m where for each i, Li is elliptic and has the form (1.107), the operator
Bi defines boundary conditions of the forms shown in (1.120) or (1.122), and L and
� satisfy the hypotheses of Theorem 1.3. In some cases we will allow Li and/or fi to
depend on t as well as x. Often we have Liu = ∇ · [di(x)∇u − �bi(x)u] or even simply
Liu = di∇2u = di�u. Systems such as (1.146) are called parabolic in the terminology of
partial differential equations. There are a number of ways to formulate the existence theory
for systems such as (1.146). A classical approach based on a priori estimates analogous
to those described in Theorems 1.1–1.3 is given by Friedman (1964). Treatments based on
the theory of analytic semigroups of operators are given by Friedman (1976), Pazy (1983),
and Henry (1981). A rather general version of existence theory has been developed by
Amann (1988, 1989, 1990, and the references therein). For our purposes the key issue will
be to verify that the system (1.146) generates a semiflow on an appropriate state space.
Results to that effect are derived by Mora (1983). Here we just give a sketch of how such
results are obtained, omitting the technical details, and state some of the most relevant
results. A similar discussion is given in Cantrell et al. (1993a). In the context of systems
such as (1.146) there is an important distinction between local and global solutions. A
local solution is one that exists for some time interval [0, T ) where T is finite. A global
solution exists for all t > 0. Generally, the way that a local solution can fail to be a
global solution is by becoming infinite in a finite time. This occurs, for example, in the
ordinary differential equation du/dt = u2 if u(0) > 0. For the models we treat densities
will generally remain bounded or at most grow exponentially, so the solutions will be
global.

Before stating the results we will need about the system (1.146) and related models, we
will briefly sketch the ideas behind the results. The usual setting for an abstract treatment
of (1.146) is a situation in which we have a pair of Banach spaces X and Y with X ⊆ Y

and a linear operator A : X → Y with certain properties, including the continuity of
A and of (A − λI)−1 for complex λ satisfying Reλ ≤ �0 for some �0. For models
such as (1.146) we would normally choose function spaces such as Y = [Lp(�)]m and
X = {u ∈ [W 2,p(�)]m : Biui = 0 on ∂� for i = 1, . . . , m}, but allow the functions in X

and Y to be complex. By subtracting a constant multiple cui of ui from Liui and adding
it to fi(x, �u) we can rearrange (1.146) (if it is necessary) so that each of the operators Li

satisfies the hypotheses of Theorem 1.5 or 1.6. If we let A denote the m × m matrix of
operators with the operators −Li on the diagonal and off diagonal entries all zero, it follows
from Theorems 1.5 and/or 1.6 that A−1 exists as a bounded (i.e. continuous) operator from
Y into X. Furthermore, the a priori estimates underlying Theorem 1.5 and 1.6, i.e. the
inequalities ||u||2,p ≤ C(||u||0,p + ||Liy||0,p), imply that for λ ∈ C| such that |λ| ≥ R0
for some fixed R0 and for −(π/2) − δ < argλ < (π/2) + δ for some δ > 0, we have the
estimate

||(A + λI)−1u||Y ≤ C||u||Y /|λ|, (1.147)
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for some constant C independent of u (see Friedman (1976)). It follows from (1.147) that
−A generates an analytic semigroup of operators on Y , which is usually denoted e−tA.
(If we had a single equation with L = ∇2 = � we might write the semigroup as et�.)
By a semigroup of operators we mean a family S(t) of operators defined for t ≥ 0 and
depending continuously on t such that for each t ≥ 0, S(t) is a continuous (i.e. bounded)
linear operator from Y to Y , S(0) = I , and for s, t ≥ 0, S(s)S(t) = S(s + t). The operator
−A is called the infinitesimal generator of e−tA. (The defining property of the infinitesimal
generator B of a semigroup S(t) is that lim

h→0+
([S(h)u−u]/h) = Bu for all u in the domain

of B, where the limit is taken in the metric induced by the norm on Y .) Results asserting
that elliptic operators generate analytic semigroups are discussed in detail by Friedman
(1976) and Pazy (1983); see also Henry (1981). The key properties of e−tA are that e−tA

defines a semigroup of operators which are continuous (i.e. bounded) on Y , and depend
analytically on t for t ∈ C| with |argt | < δ, and for any such t the operators d(e−tA)/dt and
Ae−tA are also continuous on Y with d(e−tAu)/dt = Ae−etAu for any u ∈ Y . Furthermore,
for t ∈ C| with |argt | < δ, we have

||Ae−tAu||Y ≤ (C/|t |)||u||Y (1.148)

for u ∈ Y , for some constant C independent of u. (Again, see Friedman (1976), Pazy
(1983), or Henry (1981).)

For the nonlinear case (1.146) it is natural to express the problem in an abstract form

du

dt
= −Au + F(u), u(0) = u0 ∈ Y, (1.149)

(where F(u) is the matrix with terms fi(x, �u) on the diagonal and with zeros everywhere
else) and express the solution as

u(t) = e−tAu0 +
∫ t

0
e−(t−s)AF (u(s))ds. (1.150)

The problem with (1.150) is that it is not clear that solutions to (1.150) actually make sense
in the context of (1.149). The difficulty is that if we apply A to both sides of (1.150) we
obtain

Au = Ae−tAu0 +
∫ t

0
Ae−(t−s)AF (u(s))ds, (1.151)

and all we can say about the size of the term in the integral is that ||Ae−(t−s)AF (u(s))|| ≤
(c/|t − s|)||F(u(s))||Y . That creates a problem because

∫ t

0
(1/|t − s|)ds does not converge.

(If u0 ∈ X then Ae−tAu0 = e−tA(Au0) is continuous as t → 0, but the integral term remains
a problem.) Fortunately, operators which generate analytic semigroups can be analyzed by
methods taken from complex variable theory and the theory of Laplace transforms, and
thus shown to have fractional powers which have some nice properties. Specifically, we
have ||Aγ e−tAu||Y ≤ (C/|t |γ )||u||Y . Thus, if we apply Aγ to (1.150) we obtain

Aγ u = Aγ e−tAu0 +
∫ t

0
Aγ e−(t−s)AF (u(s))ds, (1.152)
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and for 0 < γ < 1 the integral term is well behaved if F(u) is bounded in Y , because∫ t

0
[1/(t − s)γ ]ds converges if 0 < γ < 1. Furthermore, we can define Banach spaces

Xγ ⊆ Y by taking Xγ to be the completion of X in Y with respect to the norm
||u||γ = ||Aγ u||Y , and since A−1 is a compact operator on Y it follows that the embedding
of Xγ1 into Xγ2 is compact if γ1 > γ2. Thus, we can use (1.150) to define a semiflow on
Xγ for γ ∈ (0, 1) provided F(u(s)) is smooth by using standard fixed point theorems, just
as we might for a system of ordinary differential equations. Also, if we know that orbits
which are bounded in Xγ2 are also bounded in Xγ1 for some γ1 > γ2 then we can conclude
that bounded orbits in Xγ2 are precompact because of the compact embedding of Xγ1 into
Xγ2 . (See Friedman (1976), Pazy (1983), and Henry (1981).) In fact, we can arrange (1.146)
so that the operator e−tA satisfies an estimate of the form ||e−tAu||y ≤ Ce−βt ||u||Y and
||Aγ e−tAu||Y ≤ C(e−βt /|t |γ )||u||Y , so that if F(u) is bounded in Y we have u bounded
in Xγ via (1.151). In practice we will usually try to obtain bounds on �u(t) in [C(�)]m,
but such bounds imply bounds for fi(x, �u) in Lp(�) for any p ∈ [1, ∞] if the functions
fi are smooth, so it is generally sufficient to obtain bounds on �u in [C(�)]m to conclude
that orbits for the system defined in (1.150) are bounded in Xγ for any γ ∈ (0, 1) and
hence are precompact in each space Xγ . Again, the details of this approach to parabolic
equations and systems are discussed by Friedman (1976), Pazy (1983), and Henry (1981).

There are two remaining problems with this approach. First, it is not obvious what it
means to have �u ∈ Xγ in terms of the smoothness of �u; secondly, it is not obvious that
solutions to (1.150) are classical solutions to (1.146). The first problem is relatively easy
to resolve. If we start with Y = [Lp(�)]m and X ⊆ [W 2,p(�)]m then Xγ embeds in
[C1+α(�)]m if 0 < α < 2γ − (n/p) − 1. This fact and more precise results about the
embeddings of Xγ into Hölder and Sobolev spaces follow from (Pazy, 1983, Theorem
4.3). To be sure that solutions to (1.150) are classical solutions to (1.146) we would need
to assume that the functions fi(x, u) are Hölder continuous in x and at least Lipschitz in
u, but in that case there are à priori estimates for parabolic equations analogous to the
estimates underlying Theorems 1.1, 1.2, 1.5 and 1.6 for elliptic equations which show that
solutions as defined by (1.150) are indeed classical solutions. Such estimates are discussed
by Friedman (1964). The issue of smoothness is also discussed in Friedman (1976) and
Pazy (1983). Thus, while the semiflows defined by (1.150) may need to be defined in
Xγ , C1+α(�), or other subspaces of Xγ such as C(�) or C1(�), the orbits �u(t) will
represent classical solutions of (1.146) if the functions fi are smooth. All of the theoretical
considerations discussed above can be extended in a natural way to the case where the
operators Li and the functions fi depend on t , as long as all coefficients depending on
t are uniformly Hölder continuous; see Friedman (1964, 1976). In that case the models
will no longer generate semi-dynamical systems, because of the time dependence in the
coefficients, but as we shall see in later chapters, there are ways to circumvent that problem
in some cases.

We may now state some results on systems such as (1.146).

Theorem 1.11. Suppose that the domain �, operators Li , and boundary conditions Bi in
(1.146) satisfy the hypotheses of Theorem 1.3 for i = 1, . . . , m. Suppose that for each
i = 1, . . . , m the function fi(x, �u) is measurable and is bounded uniformly in x if �u is
restricted to any bounded subset of IRm, and fi(x, �u) is Lipschitz continuous in �u, uniformly
for x ∈ � and for �u restricted to any bounded subset of IRm. Let Y = [Lp(�)]m for some
p > n and let X = {�u ∈ [W 2,p(�)]m : Biui = 0 on ∂� for i = 1, . . . , m}. Let A

be the matrix of operators with −Li as the ith diagonal element and with all off-diagonal
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terms equal to zero. Let Xγ ⊆ Y denote the space generated by Aγ for γ ∈ (0, 1), so that
||u||Xγ = ||Aγ u||Y . Then there exists a γ0 ∈ (0, 1) such that for γ ∈ (γ0, 1) the system
(1.146) generates a local semiflow on Xγ . Bounded orbits in Xγ are precompact.

Remarks: This sort of result is discussed by Henry (1981, Ch. 3). The key points in the
proof are as follows: the a priori estimates of Agmon et al. (1959), as used in Theorem
1.5 and 1.6, imply that −A generates an analytic semigroup on [W 2,p(�)]m. The general
theory of analytic semigroups allows us to formulate (1.146) as (1.150), and to define Xγ .
Since p > n we can choose γ0 so that for γ ∈ (γ0, 1) we have 0 < 2γ − (n/p) − 1 and
hence Xγ embeds in [C1+α(�)]m for some α > 0 by Theorem 4.3 of Pazy (1983). The
hypotheses on fi imply that if �u ∈ [C1+α(�)]m then fi ∈ Lp(�) for all p ≥ 1, so in
particular (f1, . . . , fm) ∈ Y . Thus, (1.152) makes sense and shows that (1.150) defines a
semi-dynamical system on Xγ . Finally, since (λI −A)−1 exists as a linear compact operator
on [Lp(�)]n for λ real and sufficiently large (by Theorem 1.5 or 1.6), the embeddings
Xγ1 ↪→ Xγ2 for γ>γ2 > γ0 are compact, and the compactness of bounded orbits follows.

We may sometimes prefer to work in the more concrete spaces C(�) or C1(�). We have
the following.

Theorem 1.12. (Mora, 1983) Suppose that the hypotheses of Theorem 1.11 hold and that
in addition the functions fi are all C2 in both x and �u, i.e. fi ∈ C2(� × IRm) for each i.
Then (1.146) generates a local semiflow on [C(�)]m under Neumann boundary conditions.
Under Dirichlet boundary conditions (1.146) generates a local semiflow on the subspaces of
[C(�)]m and of [C1(�)]m consisting of functions that are zero on ∂�. Under Neumann or
Robin conditions (1.146) generates a local semiflow on the subspace of [C1(�)]m consisting
of functions satisfying the boundary conditions. In each case bounded orbits are precompact.

We usually work with semilinear models of the form (1.146), but we also consider logistic
models with nonlinear diffusion of the form

∂u

∂t
= ∇ · d(x, u)∇u + f (x, u) in �

u = 0 on ∂�.

(1.153)

It turns out that these models also generate local semiflows on fractional order Sobolev
spaces Ws,p(�) where s is not necessarily an integer (see Adams, 1975), which have the
property of embedding in C1+α(�), provided that d(x, u) and f (x, u) are C2 in both x and
u and that d0 ≤ d(x, u) for some d0 > 0. Such a result is derived by Amann (1986). Much
more general results on quasilinear systems are given in more recent work by Amann (1988,
1989, 1990). Some other sources for discussions of reaction-diffusion models as dynamical
systems are Hirsch (1988) and Smith (1995).

The results we have discussed so far on reaction-diffusion models as dynamical systems
are local in time. In general, some additional information is required to conclude that a
given orbit exists globally in time. For a semi-dynamical system on a Banach space Z

in which bounded orbits are precompact it suffices to show that for each T > 0 there
is a B(T ) < ∞ so that sup{||�u(t)||Z : 0 ≤ t < T } ≤ B(T ) to conclude that the
orbit u(t) exists for all t > 0. In the models we consider it will suffice to show that
sup{|�u(x, t)| : x ∈ �, 0 ≤ t < T } < B(T ) because the bound on |�u| implies a bound in
[Lp(�)]m for any p ∈ [1, ∞] and then (1.152) or analogous formulas imply boundedness in
spaces Xγ which either play the role of state spaces for the semi-dynamical system or which
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embed in [C1+α(�)]m, which in turn embeds in state spaces constructed from [C(�)]m or
[C1(�)]m. For most of the models we consider it is relatively easy to get bounds on |�u|
via arguments based on the maximum principle or related comparison theorems, but in a
few cases some work is required. Issues related to global existence are discussed by Henry
(1981). See also Amann (1985, 1989), Fitzgibbon et al. (1992), Hollis and Morgan (1991),
or Morgan (1990).

1.6.6 Classical Regularity Theory for Parabolic Equations

In some cases we may want to treat solutions to systems such as (1.146) from the viewpoint
of classical partial differential equations. To that end we now discuss some results analogous
to Theorems 1.1 and 1.2 for parabolic equations. Recall the definitions (1.117)–(1.119) for
Cα(�) and Ck+α(�). For functions on � × [0, T ] define

[f ]α,α/2 = sup
(x,t),(y,s)∈�×[0,T ]

(x,t)�=(y,s)

( |f (x, t) − f (y, s)|
|x − y|α + |t − s|α/2

)
. (1.154)

Functions with [ ]α,α/2 finite form a Banach space Cα,α/2(� × [0, T ]) under the norm

||u||α,α/2 = sup
�×[0,T ]

|u(x, t)| + [u]α,α/2. (1.155)

Let ∂
β
x denote the derivative with respect to x corresponding to the multi-index β =

(β1, . . . , βn), as in (1.119), and let ∂t denote the derivative with respect to t . Define
C2+α,1+α/2(� × [0, T ]) to be the space of functions on � × [0, T ] whose derivatives
up to order two in x and order one in t are Hölder continuous, with norm

||u||2+α,1+α/2 = sup(x,t)∈�×[0,T ] |u(x, t)| +
∑
|β|≤2

sup
(x,t)∈�×[0,1]

|∂β
x u(x, t)|

+ sup
(x,t)∈�×[0,T ]

|∂tu(x, t)| +
∑
|β|=2

[∂β
x u(x, t)]α,α/2 + [∂tu(x, t)]α,α/2.

(1.156)

The spaces Cα,α/2(�×[0, T ]) and C2+α,1+α/2(�×[0, T ]) are Banach spaces; see Friedman
(1964). We also will need to use the space C1+δ,δ/2(� × [0, T ]) whose norm is given by

||u||1+δ,δ/2 = ||u||δ,δ/2 +
∑
|β|=1

||∂β
x u||δ,δ/2. (1.157)

We have:

Theorem 1.13. (Friedman, 1964) Suppose that ∂� is a bounded domain with ∂� of class
C2+α and that L is an elliptic operator of the form (1.107), satisfying (1.108), but with
coefficients aij , bi , and c which may depend on t as well as x. Suppose that aij , bi , and
c ∈ Cα,α/2(�× [0, T ]). If f (x, t) ∈ Cα,α/2(�× [0, T ]), g(x, t) ∈ C2+α,1+α/2(�× [0, T ]),
and Lg = f for t = 0 and x ∈ ∂�, then the problem

∂u

∂t
− Lu = f (x, t) in � × (0, T ]

u(x, t) = g(x, t) on ∂� × [0, T ] ∪ (� × {0})
(1.158)
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has a unique solution u ∈ C2+α,1+α/2(� × [0, T ]) which satisfies

||u||2+α,1+α/2 ≤ C(||f ||α,α/2 + ||g||2+α,1+α/2). (1.159)

where C is a constant independent of f and g.

Remarks: Theorem 1.13 result is a version of Theorems 6 and 7 of Friedman (1964, Ch.
3.) See also Ladyzhenskaya et al. (1968). If the compatibility condition Lg = f for t = 0
on ∂� is omitted the problem will still have a unique solution but it may not be smooth for
t = 0. Ladyzhenskaya et al. (1968) also treat the case of boundary conditions analogous to
(1.122). In that case we have the following result.

Theorem 1.14. Suppose that �, L, and f satisfy the hypotheses of Theorem 1.13. Suppose
that g(x) ∈ C2+α(�) and γ (x), β(x), and h(x) ∈ C1+α(∂�), with γ ≥ 0 and β > 0 on
∂�. Suppose also that γ (x)g(x) + β(x)∂g/∂ �n = h(x) on ∂�. Then the problem

∂u

∂t
− Lu = f (x, t) in � × (0, T ]

u(x, 0) = g(x) in �

γ (x)u(x, t) + β(x)
∂u

∂ �n(x, t) = h(x) on ∂� × [0, T ]

(1.160)

has a unique solution in C2+α,1+α/2(� × [0, T ]) which satisfies

||u||2+α,1+α/2 ≤ C(||f ||α,α/2 + ||g||2+α + ||h||1+α) (1.161)

where the norm on h is taken C1+α(∂�) and the norm of g is taken in C2+α(�), and the
constant C independent of f, g, and h.

For certain convergence arguments an additional a priori estimate called a 1+ δ estimate
(Friedman, 1964, Theorem 4 of Ch. 7) is also needed. A version of this result is:

Lemma 1.15. (Friedman, 1964) Suppose that � and L satisfy the hypotheses of Theorem
1.13 with the additional condition that the coefficients aij are uniformly Lipschitz in
� × [0, T ]. Suppose that f (x, t) is continuous on � × [0, T ] with f (x, 0) = 0 on ∂�.
Then for any δ < 1 there is a constant C independent of f (x, t) such that any solution of

∂u

∂t
− Lu = f (x, t) in � × (0, T ]

u(x, t) = 0 on (∂� × (0, T ]) ∪ (� × {0})
(1.162)

satisfies

||u||1+δ,δ/2 ≤ C sup
(x,t)∈�×[0,T ]

|f (x, t)|. (1.163)

Remarks: The analogous result is valid if the boundary condition u = 0 on ∂� × (0, T ] is
replaced with the boundary condition γ (x)u + β(x)∂u/∂ �n = 0 on ∂� × (0, T ] with γ and
β as in Theorem 1.14. See Friedman (1964, Ch. 7).

Theorem 1.13 and Lemma 1.15 and the corresponding results for Robin boundary
conditions imply that the trajectories of the semi-dynamical systems whose existence is
asserted in Theorem 1.11 actually correspond to classical solutions of (1.146) if ∂�, fi ,
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and the coefficients of Li and Bi are sufficiently smooth. (Theorem 1.13 and Lemma
1.15 are stated for a single parabolic equation but can be applied to (1.146) componentwise
because in the system (1.146) there is no coupling between equations in the terms involving
derivatives.)

1.6.7 Maximum Principles and Monotonicity

Methods based on comparisons between different solutions of a reaction-diffusion model or
between solutions of different models play an important role in the mathematical theory of
reaction-diffusion models. Comparisons between solutions are made possible by maximum
principles, which typically place restrictions on the nature and location of maximum and
minimum points of solutions to partial differential equations. Maximum principles for
classical solutions are treated in detail by Protter and Weinberger (1967) and Walter (1970).
Extensions to weak solutions are discussed by Gilbarg and Trudinger (1977). Maximum
principles are the basis of theoretical approaches to reaction-diffusion models based on
monotone iteration (Leung, 1989, Pao, 1992) or monotone semi-dynamical systems (Hirsch,
1988b; Hess, 1991; Smith, 1995).

A version of the maximum principle for elliptic equations is as follows (see Protter and
Weinberger (1967)).

Theorem 1.16. Suppose that the operator L has the form (1.107) and satisfies (1.108),
with c(x) ≤ 0. Suppose that � ⊆ IRn is a bounded domain and the coefficients of L are
uniformly bounded on �.

(i) Suppose that u ∈ C2(�) and Lu ≥ 0 in �. If u attains a maximum M ≥ 0 at any
point in the interior of � then u(x) ≡ M in �.

(ii) Suppose further that u ∈ C2(�)∩C(�) and that each point on ∂� lies on the boundary
of some ball contained in �. If u(x) = M at some point x0 ∈ ∂� for which ∂u/∂ �n
exists, then either ∂u/∂ �n > 0 at x0 or u(x) ≡ M in �.

Remark: The geometric condition on ∂� in (ii) will hold if ∂� is of class C2+α . If
u ∈ C2+α(�) then u ∈ C2(�) ∩ C(�). The corresponding results hold in the case of a
minimum M ≤ 0. In that case if u(x) = M ≤ 0 at a point x0 ∈ ∂� then either ∂u/∂ �n < 0
at x0 or u(x) ≡ M in �. In some cases the condition c ≤ 0 can be weakened but counter-
examples show that some restrictions on c are necessary; see Protter and Weinberger (1967).

The maximum principle has various implications. Suppose u1, u2 ∈ C2(�) ∩ C(�) are
solutions of Lu = f (x) in � and u1 − u2 = 0 on ∂�. If L satisfies the hypotheses of
Theorem 1.16 then u1 −u2 cannot have a positive maximum M inside �, because then we
would have u1 − u2 ≡ M > 0 in � so that u1 − u2 ≡ M > 0 on ∂�. Hence u1 − u2 ≤ 0
in �. Similarly, u1 − u2 cannot have a negative minimum inside �, so that u1 − u2 ≥ 0
in �. It follows that u1 = u2, so that the solution to Lu = f is unique. A similar analysis
using part (ii) of Theorem 1.16 applies to the case of boundary conditions of the form
γ (x)u + β(x)∂u/∂ �n = g on ∂� if γ ≥ 0 and β > 0 on ∂�. These observations explain
the condition c(x) ≤ 0 in Theorems 1.1 and 1.3. If c(x) ≤ 0 then the maximum principle
implies that the solution u ≡ 0 to the homogeneous problem Lu = 0 in �, u = 0 (or
γ u + β∂u/∂ �n = 0) on ∂� is unique, so in that case Theorems 1.1 and 1.2 follow from
Theorem 1.3. If −Lu ≥ 0 in � then since Lu ≤ 0 in � the maximum principle implies
that u cannot have a nonpositive minimum M inside � unless u ≡ M . If u ≥ 0 on ∂�
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then we must have u ≥ 0 on �, with u > 0 on � unless u ≡ 0. If Lu1 ≤ Lu2 in � and
u1 ≥ u2 on ∂�, then −L(u1 − u2) ≥ 0 in � and u1 − u2 ≥ 0 on ∂�, so u1 ≥ u2 on �.
These applications of the maximum principle are representative but far from exhaustive. In
some cases it is convenient to use the ideas behind Theorem 1.16 rather than the theorem
itself. For example, suppose that u is an equilibrium of a diffusive logistic equation, so
that 0 = ∇ · d(x)∇u + r[1 − (u/K)]u in �, and that u = 0 on ∂�. If u is continuous
on � then u must attain a maximum somewhere in �. If u has a maximum M > K at
some point x∗ ∈ � then for x = x∗ we must have ∂u/∂xi = 0 and ∂2u/∂x2

i ≤ 0 for
i = 1, . . . , n; but then for x = x∗ we have 0 ≤ −∇ · d(x)∇u = r[1 − (M/K)]M < 0,
which is a contradiction. Thus, since u = 0 < K on ∂�, we must have u ≤ K for x ∈ �.

The maximum principle extends to parabolic equations. In fact, some results based on the
maximum principle for parabolic equations are valid without the hypothesis c ≤ 0 required
for the elliptic case.

Theorem 1.17. Suppose that L has the form (1.107) but with coefficients that may depend
on t . Suppose that (1.108) holds and c(x, t) ≤ 0. Let � ⊆ IR be a bounded domain and
suppose that the coefficients of L are uniformly bounded on � × (0, T ].

(i) Suppose that u ∈ C2,1(� × (0, T ]), that is, the first derivative of u with respect to t

and the derivatives of u of order 2 or less in the space variables are continuous on
� × (0, T ]. Suppose that ∂u/∂t − Lu ≤ 0 in � × (0, T ]. If u attains a maximum
M ≥ 0 at a point (x0, t0) ∈ � × (0, T ], then u(x, t) ≡ M on � × (0, t0].

(ii) Suppose further that u ∈ C2,1(�× (0, T ])∩C(�× (0, T ]), and that each point of ∂�

lies on the boundary of some ball lying inside �. If u(x0, t0) = M at some point of
∂� × (0, T ] for which ∂u/∂ �n exists, then either ∂u/∂ �n > 0 at (x0, t0) or u ≡ M on
� × (0, t0].

Remarks: Clearly if u ∈ C(� × [0, T ]) then the conclusion u ≡ M extends to � × [0, t0]
in (i) and (ii). Results of this type are discussed by Protter and Weinberger (1967); see also
Friedman (1964) and Leung (1989). As in the elliptic case, if ut − Lu ≥ 0 then u cannot
attain a minimum M ≤ 0 at a point (x0, t0) ∈ � × (0, T ] unless u ≡ M on � × (0, t0],
and similarly if u(x0, t0) = M at a point (x0, t0) ∈ ∂� × (0, T ] then either ∂u/∂ �n < 0 at
(x0, t0) or u(x, t) ≡ M in � × (0, t0].

Corollary 1.18. Suppose that L and � × (0, T ] satisfy the hypotheses of Theorem 1.17
except for the requirement c(x, t) ≤ 0. Suppose that γ (x) and β(x) are bounded functions
on ∂� with γ (x) ≥ 0 and β(x) > 0. If u(x, t) ∈ C2,1(� × (0, T ]) ∩ C(� × [0, T ]) with
ut − Lu ≥ 0 on � × (0, T ] and γ (x)u(x, t) + β(x)∂u(x, t)/∂ �n ≥ 0 on ∂� × (0, T ] or
u ≥ 0 on ∂� × (0, T ], then either u(x, t) > 0 on � × (0, T ] or u(x, t) ≡ 0 on � × [0, t0]
for some t0 > 0. If u(x, 0) > 0 for some x ∈ �, or if there is a t1 > 0 such that for
each t ∈ (0, t1) either u(x, t) > 0 or γ u(x, t) + β∂u(x, t)/∂ �n > 0 for some x ∈ ∂�, then
u(x, t) > 0 in � × (0, T ].

Remarks: To eliminate the requirement c ≤ 0 introduce the new variable w = e−ktu. Then
w satisfies wt −(Lw−kw) = e−kt (ut −Lu) ≥ 0. If we choose k large enough then c−k ≤ 0
so that Theorem 1.17 applies to w. If w < 0 then w must have a negative minimum M

on � × (0, T ], but then w ≡ M < 0 on [0, t0] × � for some t0 > 0, contradicting the
hypothesis w(x, 0) = u(x, 0) ≥ 0. Hence w ≥ 0, and thus u ≥ 0. If w = 0 at any point
(x, t) ∈ � × (0, T ] then Theorem 1.17 implies w ≡ 0 on � × [0, t0], which implies u ≡ 0
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on � × [0, t0]. If u(x, 0) > 0 for some x ∈ � or either u(x, t) > 0 or γ u + β∂u/∂ �n > 0
for some x ∈ ∂� for t ∈ [0, t1] then u �≡ 0 on � × [0, t0] so we must have w > 0 and
hence u > 0 on � × (0, T ].

An important feature of maximum principles is that they permit comparisons between
solutions.

Theorem 1.19. Suppose that L and � satisfy the hypotheses of Theorem 1.17 with
c(x, t) ≡ 0. Suppose that f (x, t, u), ∂f (x, t, u)/∂u ∈ C(� × [0, T ] × IR). If u, u ∈
C2,1(� × (0, T ]) ∩ C(� × [0, T ] with

∂u

∂t
− Lu ≥ f (x, t, u) in � × (0, T ], (1.164)

∂u

∂t
− Lu ≤ f (x, t, u) in � × (0, T ], (1.165)

u(x, 0) ≥ u(x, 0) on �, and either u(x, t) ≥ u(x, t) or

γ (x)u + β(x)
∂u

∂ �n ≥ γ (x)u + β(x)
∂u

∂ �n (γ ≥ 0, β > 0)

on ∂� × (0, T ], then either u ≡ u or u > u on � × (0, T ].

Remarks: Theorem 1.19 follows from Corollary 1.18 by setting u = u − u so that
∂u/∂t − Lu − c(x, t)u ≥ 0, where c(x, t) = [f (x, t, u) − f (x, t, u)]/(u − u) is
bounded because ∂f/∂u is continuous. Results of this type are discussed by Protter and
Weinberger (1967), Walter (1970), Fife (1979), Smoller (1982), Leung (1989) and Pao
(1992). Comparison theorems such as Theorem 1.19 provide the technical basis for applying
the theory of monotone dynamical systems to reaction-diffusion models, as in the work
of Hirsch (1988), Smith (1995) and others. Similar results can be obtained for elliptic
equations but in that case the condition c(x) ≤ 0 cannot be completely eliminated, so
some additional condition on f is needed. It suffices to assume that ∂f/∂u ≤ 0 since
f (x, u) − f (x, u) = [∂f (x, ξ)/∂u](u − u) by the mean value theorem. (In general ξ

depends on x.) Analogous results hold for systems of reaction-diffusion equations.

Theorem 1.20. Suppose that � and the operators Li, i = 1, . . . , m satisfy the hypotheses
of Theorem 1.17, with the coefficient ci of the undifferentiated term in Li equal to zero for
each i. Suppose that for each i the functions fi(x, t, �u) and ∂fi(x, t, �u)/∂uj , j = 1, . . . , m,
belong to C(� × [0, T ] × IR), and that

∂fi/∂uj ≥ 0 for i �= j. (1.166)

If �w = (w1, . . . , wm) and �v = (v1, . . . vm) satisfy

∂wi

∂t
− Liwi ≥ fi(x, t, �w) in � × (0, T ], (1.167)

∂vi

∂t
− Livi ≤ fi(x, t, �v) in � × (0, T ], (1.168)

with

wi(x, 0) ≥ vi(x, 0) on �,
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and either

wi ≥ vi on ∂� × (0, T ]

or

γi(x)wi + βi(x)
∂wi

∂ �n ≥ γi(x)vi + βi(x)
∂vi

∂ �n (γi ≥ 0, βi > 0) on ∂� × (0, T ]

for i = 1, . . . , m, then wi ≥ vi in � × (0, T ] for i = 1, . . . , m.

Remarks: Condition (1.166) is sometimes called a Kamke condition or quasimonotone
condition. Systems satisfying (1.166) are called cooperative. Condition (1.166) is used in
the theory of systems of ordinary differential equations in results analogous to Theorem
1.20; see Hirsch (1982) or Smith (1995). In Theorem 1.20 it is possible to have wi > vi

for some components but wj ≡ vj for others. Results analogous to Theorem 1.20 can be
derived for elliptic systems but require some additional hypotheses on the functions fi ;
see Protter and Weinberger (1967). Other references include Walter (1970), Fife (1979),
Smoller (1982), and Smith (1995).

Certain systems which do not satisfy (1.166) still admit comparison principles. Those
include many models for two competing species. Suppose that u1 and u2 satisfy

∂ui/∂t − Liui = fi(x, t, u1, u2) for i = 1, 2, (1.169)

with ∂f1/∂u2 ≤ 0 and ∂f2/∂u1 ≤ 0 and with the operators Li as in Theorem 1.20. If we
let ũ2 = k − u2 for some constant k then we have

∂u1/∂t − L1u1 = f̃1(x, t, u1, ũ2) = f1(x, t, u1, k − ũ2)

∂ũ2/∂t − L2ũ2 = f̃2(x, t, u1, ũ2) = −f2(x, t, u1, k − ũ2)
(1.170)

so that ∂f̃1/∂ũ2 = −∂f1/∂u2 ≥ 0 and ∂f̃2/∂u1 = −∂f2/∂u1 ≥ 0. Thus the system (1.169)
can be converted to a system (1.170) which satisfies Theorem 1.20. Thus, if (w1, w2) and
(v1, v2) are solutions of (1.169) satisfying homogeneous boundary conditions and w1 ≥ v1,
w2 ≤ v2 for t = 0 then w1 ≥ v1 and w2 ≤ v2 for all t > 0. Models for more than two
competitors and predator-prey models usually cannot be converted into forms satisfying
Theorem 1.20.

If the functions u, u satisfy the hypotheses of Theorem 1.19, or if the vector valued
functions �v, �w satisfy the hypotheses of Theorem 1.20, we say that u and �v are subsolutions
(or lower solutions) and u and �w are supersolutions (or upper solutions) for their respective
models. Sub- and supersolutions can be used in various ways to show the existence of
solutions to reaction-diffusion equations and systems and the elliptic equations and systems
describing their equilibria. Some versions of the existence theory for systems do not require
the condition (1.166). Existence theory via sub- and supersolutions is treated in detail by
Leung (1989) and Pao (1992). In the case of equations or systems satisfying comparison
principles such as Theorems 1.19 and 1.20, sub- and supersolutions can be used to construct
iteration schemes consisting of sequences of linear problems whose solutions converge
monotonically to solutions of the original nonlinear problem; see Leung (1989) and Pao
(1992). If each of the functions fi is either monotone increasing or monotone decreasing
in uj for j �= i then it may still be possible to construct monotone iteration schemes from
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sub- and supersolutions but such schemes may be more complicated. (Systems in which
each function fi is monotone increasing or monotone decreasing in uj for j �= i can be
embedded in larger systems for which (1.166) is satisfied; see for example Cosner (1997).)
Finally, existence of solutions can be deduced from the existence of sub- and supersolutions
without any monotonicity assumptions on fi by methods based on the Schauder fixed
point theorem. (Applications of the Schauder fixed point theorem typically require that the
solution operators (∂/∂t − L)−1 or L−1 be compact, but that follows from the regularity
properties of elliptic and parabolic operators.) All of these ideas and more are discussed by
Leung (1989) and Pao (1992). A simple result on existence via sub- and supersolutions is
the following.

Proposition 1.21. Suppose that L, �, and f satisfy the hypotheses of Theorem 1.19.
Suppose that L and � also satisfy the hypotheses of Theorem 1.13 and that f (x, t, u)

is Hölder continuous with exponent α with respect to x and exponent α/2 with respect to
t . Suppose that h(x) ∈ C2+α(�) with Lh = f (x, 0, 0) on ∂�, and that u and u satisfy
(1.164), (1.165) respectively with

u(x, 0) ≤ h(x) ≤ u(x, 0) on � × {0}

and

u(x, t) ≤ 0 ≤ u(x, t) on ∂� × [0, T ].

Then the problem

∂u

∂t
− Lu = f (x, t, u) in � × (0, T ]

u = 0 ∂� × (0, T ]

u(x, 0) = h(x) on � × {0}
(1.171)

has a solution u∗ ∈ C2+α,1+α/2(� × [0, T ]) with u(x, t) ≤ u∗(x, t) ≤ u(x, t).

Remarks: If the compatibility condition Lh = f (x, 0, 0) on ∂� is omitted then u∗ still
will exist but may not be smooth for t = 0. Analogous results hold for boundary conditions
γ u + β∂u/�n = 0. Theorem 1.19 implies that u ≤ u on � × [0, T ] and that u∗ is
unique. Results similar to Proposition 1.21 hold for the corresponding elliptic problems
−Lu = f (x, u) in �, u = g(x) on ∂� (or γ (x)u + β(x)∂u/∂ �n = g(x) on ∂�) but in
the elliptic case we must require u(x) ≤ u(x) as an additional hypothesis, and u∗ is not
necessarily unique.

Sketch of Proof: Choose a constant C large enough that ∂f/∂u + C ≥ 0 on � × [0, T ] for
u ≤ u ≤ u. To construct the iteration let u0 = u, u0 = u, and define uk and uk recursively
as the solutions of

∂u

∂t
− Lu + Cu = f (x, t, uk−1) + Cuk−1 in � × (0, T ]

u = 0 on ∂� × (0, T ]

u(x, 0) = h(x) in � × {0}
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and

∂u

∂t
− Lu + Cu = f (x, t, uk−1) + Cuk−1 in � × (0, T ]

u = 0 on ∂� × (0, T ]

u(x, 0) = h(x) in � × {0}

respectively. If we let vk = uk − uk−1 then we have

∂v1

∂t
− Lv1 + Cv1 ≥ 0 in � × (0, T ]

v1 ≥ 0 on (∂� × (0, T ]) ∪ (� × {0})

so v1 ≥ 0 in � × (0, T ] by Theorem 1.19. If vk ≥ 0 then uk ≥ uk−1 so

∂vk+1

∂t
− Lvk+1 + Cvk+1 = f (x, t, uk) − f (x, t, uk−1) + C(uk − uk−1)

≥ 0 in � × (0, T ]

and vk+1 = 0 on (∂� × (0, T ]) ∪ (� × {0}) so vk+1 ≥ 0 by Theorem 1.19. Hence by
induction vk ≥ 0 for all k ≥ 1, so that uk ≥ uk−1. Similarly, since ūk is the solution of

∂u

∂t
− Lu + Cu = f (x, t, uk−1) + Cuk−1 in � × (0, T ]

u = 0 on ∂� × (0, T ]

u(x, 0) = h(x) on � × {0},

arguments similar to those shown above imply via induction that uk+1 ≤ uk and that for
each k uk ≤ uk . Since {uk} is increasing and bounded above, {uk} converges pointwise.
The convergence of {uk} in C2+α,1+α/2(� × [0, T ]) follows via parabolic regularity, i.e.
by Lemma 1.17 and Theorem 1.13. Hence {uk} converges to a solution of (1.171). (The
sequence {uk} also converges to a solution of (1.171).)

Remarks: In the elliptic case we would require u ≤ u on �, and the inequalities (1.164) and
(1.165) would be replaced by −Lu ≥ f (x, u) on �, −Lu ≤ f (x, u) on �. The iterations
will still be monotone because even in the elliptic case the operator −L + CI will satisfy
a comparison principle if C > 0. Analogous results hold for systems satisfying (1.166),
with sub- and supersolutions defined by (1.168) and (1.167) respectively. Again, the case of
elliptic systems is quite similar to the parabolic case, except that we must require wi ≥ vi

on � as a hypothesis and solutions to elliptic systems of the form −Lui = f (x, �u) are
not necessarily unique, even under the condition (1.166). Another approach to obtaining
solutions of elliptic problems via monotonicity can be developed by explicitly considering
the solutions of elliptic problems as equilibria of parabolic models. Such an approach was
introduced by Aronson and Weinberger (1975, 1978) and has been applied and extended
by many others.

Theorem 1.22. Suppose that L has the form (1.107) and satisfies (1.108), and that L and
� satisfy the hypotheses of Theorem 1.1, but without the restriction c ≤ 0. Suppose that
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the coefficients aij of L are uniformly Lipschitz in �, and that f (x, u) and ∂f (x, u)/∂u

are Hölder continuous in x and continuous in u on � × IR. Finally, suppose that u and u

are super- and subsolutions to the problem

Lu + f (x, u) = 0 in �

u = 0 on ∂�;
(1.172)

that is, −Lu ≥ f (x, u) and −Lu ≤ f (x, u) on � with u ≤ 0 ≤ u on ∂� and u ≤ u on �.
Let v be the solution to

∂v

∂t
= Lv + f (x, v) on � × (0, ∞)

v = 0 on ∂� × (0, ∞)

v(x, 0) = u(x).

(1.173)

Then v(x, t) is monotonically increasing with respect to t , and as t → ∞ v(x, t)

converges to an equilibrium u∗ of (1.173) which is the minimal equilibrium that satisfies
u(x) ≤ u∗(x) ≤ u(x). If w satisfies (1.173) but with w(x, 0) = u(x) then w(x)

is monotonically decreasing with respect to t and converges to u∗∗(x), the maximal
equilibrium for (1.173) which satisfies u∗(x) ≤ u∗∗(x) ≤ u(x).

Proof: If u(x) is a solution to (1.172) then v(x, t) = u(x) so we have u∗(x) = u(x). If
u(x) is not a solution to (1.172) then we cannot have v = u we so must have v(x, t) >

u(x) = v(x, 0) for any t > 0 by Theorem 1.19. Thus, v(x, ε) > v(x, 0) for any ε > 0.
However, vε(x, t) = v(x, t + ε) satisfies (1.173) but with vε(x, 0) = v(x, ε) > v(x, 0).
Thus, vε(x, t) > v(x, t) for all t > 0 by Theorem 1.19, so v(x, t + ε) > v(x, t), i.e.
v(x, t) is increasing in t . (Since v(x, 0) ≤ u(x) it follows by Theorem 1.19 that v(x, t) is
bounded, so that v(x, t) exists for all t > 0.) Since v(x, t) is bounded above and increasing
with t , we must have v(x, t) → u∗(x) for each x ∈ �, where u∗(x) ≤ u(x). It remains
to verify that u∗(x) is indeed a solution of (1.172). Let un(x, t) = v(x, t + n − 1). Then
un(x, 1) = v(x, n). Also, ∂un/∂t = Lun + f (x, un) on � × [0, 1]. Let ρ1(t) be a smooth
function with ρ1(t) = 0 for t ≤ 1/4 and ρ1(t) = 1 for t ≥ 1/2. (Such functions are
used in the construction of partitions of unity and mollifiers; see Friedman (1976) and
Gilbarg and Trudinger (1977).) We have ∂(ρ1un)/∂t − L(ρ1un) = ρ1f (x, un) − un∂ρ1/∂t

in � × [0, 1]. Moreover, ρ1f − un∂ρ1/∂t is bounded uniformly in C(� × [0, 1]) since
u ≤ un ≤ u for all n and is zero for t < 1/4. So Lemma 1.15 applies to ρ1un, and
thus the sequence {ρ1un} is uniformly bounded in C1+δ,δ/2(� × [0, 1]) for some δ > 0.
It follows that the sequence {un} is uniformly bounded in C1+δ,δ/2(� × [1/2, 1]). Let
ρ2(t) be a smooth function with ρ2(t) = 0 for t ≤ 1/2 and ρ2(t) = 1 for t ≥ 3/4.
Then ∂(ρ2un)/∂t − L(ρ2un) = ρ2f (x, un) − un∂ρ2/∂t in � × [1/2, 1] and ρ2un = 0
for t = 1/2. Since {un} is uniformly bounded in C1+δ,δ/2(� × [1/2, 1]), so is the
expression ρ2f (x, un) − un∂ρ2/∂t . Thus it follows from Theorem 1.13 that {ρ2un} is
uniformly bounded in C2+δ,1+δ/2(� × [1/2, 1]) so that {un} is uniformly bounded in
C2+δ,1+δ/2(� × [3/4, 1]). Hence, un, ∂un/∂t , and the derivatives of un of order two or
less in the space variables are uniformly bounded and equicontinuous on � × [3/4, 1].
The Arzela-Ascoli Theorem implies that {un} must have a subsequence which converges
uniformly along with its first derivative in t and derivatives of order up to two in the
space variables on � × [3/4, 1]. Passing to the subsequence, we have un → ũ in
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� × [3/4, 1] where ũ satisfies ∂ũ/∂t − Lũ = f (x, ũ) in � × [3/4, 1] because of the
convergence of the derivatives of un and the fact that ∂un/∂t − Lun = f (x, un) for
each n. However, un(x, t) = v(x, t + n − 1) → u∗(x) as n → ∞ for any fixed
(x, t) ∈ � × [3/4, 1] so we must have ũ = u∗. Thus, u∗(x) satisfies the equation
∂u/∂t−Lu = f (x, u), but since ∂u∗/∂t = 0 we have that u∗ satisfies (1.172). If z(x) is any
equilibrium for (1.173) with z(x) ≥ u(x) then z(x) ≥ v(x, t) by Theorem 1.19, but since
v(x, t) → u∗(x) as t → ∞ we must have z(x) ≥ u∗(x). The proof that w(x, t) → u∗∗(x)

is analogous.

Remarks: Theorem 1.22 can be extended to systems which have the appropriate
monotonicity properties. Such systems include those that satisfy the cooperativity condition
(Kamke condition) (1.166), and those which can be converted into systems satisfying
(1.166). An important class of examples are models for two competing species such as
(1.169). Suppose that ∂f1/∂u2 < 0 and ∂f2/∂u1 < 0 in (1.169) and that f1, f2 do not
depend on t . It follows from (1.170) and the related discussion that if (v1, v2) and (w1, w2)

satisfy

∂v1

∂t
− L1v1 ≤ f1(x, v1, v2)

∂v2

∂t
− L2v2 ≥ f2(x, v1, v2)

∂w1

∂t
− L1w1 ≥ f1(x, w1, w2)

∂w2

∂t
− L2w2 ≤ f2(x, w1, w2)

in � × (0, T ] with v1 ≤ w1, v2 ≥ w2 on (∂� × (0, T ]) ∪ (� × {0}) then v1 ≤ w1 and
v2 ≥ w2 on � × [0, T ]. Suppose that (u1, u2) and (u1, u2) depend only on x, with ui ≤ ui

for i = 1, 2, and

−L1u1 ≤ f1(x, u1, u2)

−L2u2 ≥ f2(x, u1, u2)

−L1u1 ≥ f1(x, u1, u2)

−L2u2 ≤ f2(x, u1, u2) on �

with ui = 0 on ∂�, ui ≥ 0 on ∂�. Let (v1, v2) and (w1, w2) be solutions to
(1.169) which are zero on ∂� × (0, ∞) with v1(x, 0) = u1(x), v2(x, 0) = u2(x),
and w1(x, 0) = u1(x), w2(x, 0) = u2(x). Then as t → ∞, we have v1(x, t) ↑
v∗

1(x), v2(x, t) ↓ v∗
2(x); w1(x, t) ↓ w∗

1(x), and w2(x, t) ↑ w∗
2(x) where (v∗

1 , v∗
2) and

(w∗
1, w∗

2) are equilibria for (1.169) with v∗
1 ≤ w∗

1 and v∗
2 ≥ w∗

2 . The same result would
hold under Robin or Neumann boundary conditions. We return to this point later in our
discussion of competition models.

Sometimes we consider models where the reaction term is not continuous with respect
to x, so that we must work with weak solutions in W 2,p(�) or even W 1,2(�). There are
versions of the maximum principle that apply in that situation. The following is a version
of Theorems 8.1 and 8.19 of Gilbarg and Trudinger (1977):
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Theorem 1.23. Suppose that L has the form (1.132) and that L and � satisfy the hypotheses

of Theorem 1.10. Suppose further that the coefficient c+
n∑

i=1

∂Bi/∂xi of the undifferentiated

term in L is nonpositive in the sense that

∫
�

[
cw −

n∑
i=1

Bi

∂w

∂xi

]
dx ≤ 0

for all w ∈ C1
0(�) with w ≥ 0. If u ∈ W 1,2(�) and Lu ≥ 0 on � (in the weak sense) then

sup
�

u ≤ sup
∂�

u+, where u+ denotes the positive part of u on ∂�, i.e. u+ = (1/2)(|u| + u).

If there is an open ball B with B ⊆ � such that sup
B

u = sup
�

u ≥ 0 then u is constant on �.

Remarks: Analogous results can be obtained in the parabolic case. Evidently this has been
done by Liang et al. (1983), but we have not read that paper. This type of maximum
principle can be used to extend the method of super-and subsolutions to models where the
reaction terms are not smooth. The following result can be obtained by the methods used
by Berestycki and Lions (1980).

Theorem 1.24. Suppose that L and � satisfy the hypotheses of Theorem 1.5, and that
f (x, u) is measurable in x for all u, continuous in u for almost all x ∈ �, and bounded on
bounded subsets of � × IR. Suppose that for any finite interval I ⊆ IR there is a constant
C such that f (x, u) + Cu is increasing in u on � × I . If u, u ∈ W 2,p(�) for some p > n

and u, u satisfy

−Lu ≤ f (x, u) on �, u ≤ 0 on ∂�

and

−Lu ≥ f (x, u) on �, u ≥ 0 on ∂�

in the weak sense, then there exists a solution u∗ ∈ W 2,p(�) to the problem Lu = f (x, u)

in �, u = 0 on ∂�, with u ≤ u∗ ≤ u.

Remarks: This result and various related results can be derived by using the methods of
Berestycki and Lions (1980). Several examples are treated in that paper. An advantage of
working in Sobolev space is that neither f nor u and u need to be as smooth as would
be necessary if we were working in spaces of Hölder continuous functions. In particular,
this fact makes it possible to use sub- and supersolutions which are constructed by piecing
together sub- and supersolutions defined on subdomains of �. We have the following result.

Theorem 1.25. (Berestycki and Lions, 1980) Suppose that L and � satisfy the hypotheses
of Theorem 1.5 and that �1 is a subdomain of � with �1 ⊆ � and ∂�1 of class
C2+α . Let �2 = �\�1 and let �n = (ν1, . . . , νn) be the outward normal to �1. If
ui ∈ W 2,2(�i) and fi(x) ∈ L1(�i) satisfy −Lui ≤ fi on �i for i = 1, 2, with u1 = u2

and
n∑

i,j=1

aij νj (∂u1/∂xi) ≤
n∑

i,j=1

aij νj (∂u2/∂xi) on ∂�1 then the function u defined by

u(x) ≡ ui(x) for x ∈ �i, i = 1, 2, belongs to W 1,2(�) and satisfies −Lu ≤ f in �,
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where f (x) = fi(x) on �i . Similarly, if ui ∈ W 2,2(�i) and −Lui ≥ fi on �i for

i = 1, 2 with u1 = u2 and
n∑

i,j=1

aij νj (∂u1/∂xi) ≥
n∑

i,j=1

aij νj (∂u2/∂xi) on ∂�1 then the

function u(x) ≡ ui(x) on �i , i = 1, 2, belongs to W 1,2(�) and satisfies −Lu ≥ f

on �.

Remarks: The inequalities are to be interpreted in the weak sense. The point of the result
is that it provides a way to link together local sub- and supersolutions to form global ones.
In solving problems like −Lu = f (x, u) we would choose fi(x) = f (x, ui) when defining
u and fi(x) = f (x, ui) when defining u.

There are many possible variations and extensions of the maximum principle, comparison
theorems, and the method of sub- and supersolutions, but those we have discussed are
adequate for the purposes of this book. There are also a number of alternative ways to
obtain results on positivity of solutions, comparison principles, etc. An elliptic or parabolic
operator will satisfy a maximum principle if and only if it has a positive Green’s function.
Green’s functions sometimes can be formulated in terms of integral kernels, which may
make sense even when applied to functions that are not continuous. Green’s functions for
parabolic problems are treated in detail by Friedman (1964). Alternatively, if L is an elliptic
operator of the form (1.107) then for � sufficiently large the resolvent operator (λI −L)−1

will exist and be positive, in the sense of mapping positive functions to positive functions.
The semigroup etL corresponding to L, which gives the solution to ∂u/∂t = Lu, can be
expressed as a limit of a series of powers of the resolvent of L which all have positive
coefficients. See Friedman (1976, Part 2, Section 1). Thus, the semigroup inherits some
of the positivity properties of the resolvent (λI − L)−1. Finally, there are some types of
models other than reaction-diffusion systems which satisfy results analogous to maximum
principles. In later chapters, we discuss how some of them can be treated by methods
similar to those used to study reaction-diffusion models.




