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Local Statistics and
Local Models for Spatial Data

1.1 Introduction

Imagine reading a book on the climate of the United States which contained only
data averaged across the whole country, such as mean annual rainfall, mean annual
number of hours of sunshine, and so forth. Many would feel rather short-changed
with such a lack of detail. We would suspect, quite rightly, that there is a great
richness in the underlying data on which these averages have been calculated; we
would probably want to see these data, preferably drawn on maps, in order to
appreciate the spatial variations in climate that are hidden in the reported averages.
Indeed, the averages we have been presented with may be practically useless in
telling us anything about climate in any particular part of the United States. It is
known, for instance, that parts of the north-western United States receive a great
deal more precipitation than parts of the Southwest and that Florida receives more
hours of sunshine in a year than New York. In fact, it might be the case that not a
single weather station in the country has the characteristics depicted by the mean
climatic statistics.

The average values in this scenario can be termed global observations: in the
absence of any other information, they are assumed to represent the situation in
every part of the study region. The individual data on which the averages are calcu-
lated can be termed local observations: they describe the situation at the local level.!

! There is at least one other slightly different definition of ‘local’ and ‘global’ in the literature. Thiou-
louse et al. (1995) define a local statistic as one which is calculated on pairs of points or areas which
are adjacent and a global statistic as one calculated over all possible pairs of points or areas. Their use
of the term ‘local’, however, is not the same as used throughout this book because it still produces a
global model; it merely separates the model applications into different spatial regimes.
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Only if there is little or no variation in the local observations do the global observa-
tions provide any reliable information on the local areas within the study area. As
the spatial variation of the local observations increases, the reliability of the global
observation as representative of local conditions decreases.

While the above scenario might appear rather ludicrous (surely no one would
publish a book containing average climatic data without describing at least some of
the local data?), consider a second scenario which is much more plausible and indeed
describes a methodology which is exceedingly common in spatial analysis. Suppose
we had data on house prices and their determinants across the whole of England and
that we wanted to model house price as a function of these determinants (such
models are often referred to as hedonic price models and an example of the calibra-
tion of these models is provided in Chapter 2). Typically, we might run a regression
of house prices on a set of structural attributes of each house, such as the age and
floor area of the house; a set of neighbourhood attributes, such as crime rate or
unemployment rate; and a set of locational attributes, such as distance to a major
road or to a certain school. The output from this regression would be a set of
parameter estimates, each estimate reflecting the relationship between house price
and a particular attribute of the house. It would be quite usual to publish the results
of such an analysis in the form of a table describing the parameter estimates for each
attribute and commenting on their sign and magnitude, possibly in relation to some
a priori set of hypotheses. In fact this is the standard approach of the vast majority
of empirical analyses of spatial data.

However, the parameter estimates in this second scenario are global statistics and
are possibly just as inadequate at representing local conditions as are the average
climatic data described above. Each parameter estimate describes the average rela-
tionship between house price and a particular attribute of the house across the study
region (in this case, the whole of England). This average relationship might not be
representative of the situation in any particular part of England and may hide some
very interesting and important local differences in the determinants of house prices.
For example, suppose one of the determinants of house prices in our model is the age
of the house and the global parameter estimate is close to zero. Superficially this
would be interpreted as indicating that house prices are relatively independent of the
age of the property. However, it might well be that there are contrasting relationships
in different parts of the study area which tend to cancel each other out in the calcula-
tion of the global parameter estimate. For example, in rural parts of England, old
houses might have character and appeal, thus generating higher prices than newer
houses, ceteris paribus, whereas in urban areas, older houses, built to low standards
to house workers in rapidly expanding cities at the middle of the nineteenth century,
might be in poor condition and have substantially lower prices than newer houses.
This local variation in the relationship between house price and age of the house
would be completely lost if all that is reported is the global parameter estimate.
It would be far more informative to produce a set of local statistics, in this case local
parameter estimates, and to map these than simply to rely on the assumption that a
single global estimate will be an accurate representation of all parts of the study area.

The only difference between the examples of the US climate and English house
prices presented above is that the first describes the representation of spatial data,
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whereas the second describes the representation of spatial relationships. It would
seem that while we generally find it unhelpful to report solely global observations
on spatial data, we are quite happy to accept global statements of spatial relation-
ships. Indeed, as hinted at above, journals and textbooks in a variety of disciplines
dealing with spatial data are filled with examples of global forms of spatial analy-
sis. Local forms of spatial analysis or spatial models are very rare exceptions to the
overwhelming tide of global forms of analysis that dominates the literature.

In this book, through a series of examples and discussions, we hope to convince
the reader of the value of local forms of spatial analysis and spatial modelling, and
in particular, the value of one form of local modelling which we term Geographic-
ally Weighted Regression (GWR). We hope to show that in many instances under-
taking a global spatial analysis or calibrating a global spatial model can be as
misleading as describing precipitation rates across the USA with a single value.

1.2 Local Aspatial Statistical Methods

Spatial data contain both attribute and locational information: aspatial data contain
only attribute information. For instance, data on the manufacturing output of firms
graphed against the number of their employees are aspatial, whereas the numbers of
people suffering from a certain type of disease in different parts of a country are
spatial. Unemployment rates measured for one location over different time periods
are aspatial but unemployment rates at different locations are spatial and the spatial
component of the data might be very useful in understanding why the rates vary.
The difference between aspatial and spatial data is important because many statis-
tical techniques developed for aspatial data are not valid for spatial data. The latter
have unique properties and problems that necessitate a different set of statistical
techniques and modelling approaches (for more on this, see Fotheringham et al.
2000, particularly Chapter 2). This is also true in local analysis.

There is a growing literature and an expanding array of techniques for examining
local relationships in aspatial data. For example, there are techniques such as the
use of spline functions (Wahba 1990; Friedman 1991; Green and Silverman 1994);
LOWESS regression (Cleveland 1979); kernel regression (Cleveland and Devlin
1988; Wand and Jones 1995; Fan and Gijbels 1996; Thorsnes and McMillen 1998);
and variable parameter models in the econometric literature (Maddala 1977; John-
son and Kau 1980; Raj and Ullah 1981; Kmenta 1986; Casetti 1997) that are
applicable to the local analysis of aspatial data. Good general discussions of local
regression techniques for aspatial data are given by Hardle (1990), Barnett et al.
(1991), Loader (1999) and Fox (2000a; 2000b).

The basic problem that local statistics attempt to solve is shown in Figure 1.1.
Here there is a relationship between two aspatial variables, Y and X, which needs
to be determined from the observed data. A global linear regression model, for
example, would produce a relationship such as that depicted by line A4; although
the model gives a reasonable fit to the data, it clearly misses some important local
variations in the relationship between Y and X. Here, notice, ‘local’ means in terms
of attribute space, in this case that of the X variable, rather than geographical
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Figure 1.1 Global and local aspatial relationships

space.” A local technique, such as a linear spline function, depicted by line B,
would give a more accurate picture of the relationship between Y and X. This
would be obtained by essentially running four separate regressions over different
ranges of the X variable with the constraint that the end points of the local regres-
sion lines meet at what are known as ‘knots’.® Finally, a very localised technique
such as LOWESS regression would yield line C where the relationship between Y
and X is evaluated at a large number of points along the X axis and the data points
are weighted according to their ‘distance’ from each of these regression points.* For
example, suppose the regression point were at x;. Then the data points for the
regression of Y on X would be weighted according to their distance from the point
x1 with points closer to x; being weighted more heavily than points further away.
This weighted regression yields a local estimate of the slope parameter for the
relationship between Y and X. The regression point is moved along the X axis in
small intervals until a line such as that in C can be constructed from the set of local
parameter estimates.

[§)

For something of a hybrid application of local modelling the reader is referred to McMillan (1996) in
which land values in Chicago are regressed on distance to various features within the city. Although this
is essentially an aspatial model because the local regressions are calibrated only in attribute space and
not in geographical space, the use of distance as an independent variable does allow a spatial interpret-
ation of the results to be made. As such, McMillan’s application can be thought of as ‘semi-spatial’.
Although a linear spline function is depicted in this example, cubic spline functions are often used in
curve fitting exercises. The linear spline is shown here to distinguish it from the LOWESS fit.

The terms LOWESS and LOESS are used interchangeably in the literature; use is based on personal
preference.

w
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The difference between applying local techniques to aspatial data and to spatial
data is that the relationship between Y and X, as shown in Figure 1.1 might vary
depending on the location at which the regression is undertaken. That is, instead of
simply having the problem of fitting a non-linear function to a set of data, this
non-linear function itself might vary over space as shown for two locations in
Figure 1.2. Consequently, local statistical analyses for spatial data have to cope

(a) Location 1

1.0 A o o o

Figure 1.2 Local relationships in attribute space for two geographical locations
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with two potential types of local variation: the local relationship being measured in
attribute space and the local relationship being measured in geographical space.
Compounding the problem of measuring spatial variations in relationships is the
fact that the relationships in geographical space can vary in two dimensions rather
than just in one. That is, local variations in attribute space, such as those shown in
Figure 1.1, take place along a line and the dependency between relationships is
easier to establish than in the two-dimensional equivalent of geographical space.

Because local statistical techniques for aspatial data are already fairly well estab-
lished and because such techniques do not always translate easily to spatial data,
the remainder of this book concentrates almost exclusively on the local analysis of
spatial data. Henceforth, any discussion of local analysis is assumed to refer to
spatial data unless otherwise stated.

1.3 Local versus Global Spatial Statistics

Local statistics are treated here as spatial disaggregations of global statistics. For
instance, the mean rainfall across the USA is a global statistic; the measured rain-
fall in each of the recording stations, i.e. the data from which the mean is calcu-
lated, represent the local statistics. A model calibrated with data equally weighted
from across a study region is a global model that yields global parameter estimates.
A model calibrated with spatially limited sets of data is a local model that yields
local parameter estimates. Local and global statistics differ in several respects as
shown in Table 1.1.

Global statistics are typically single-valued: examples include a mean value, a
standard deviation and a measure of the spatial autocorrelation in a data set.
Local statistics are multi-valued: different values of the statistic can occur in differ-
ent locations within the study region. Each local statistic is a measure of the attri-
bute or the relationship being examined in the vicinity of a location within the study

Table 1.1 Differences between local and global statistics

Global Local

Summarise data for whole region Local disaggregations of global statistics
Single-valued statistic Multi-valued statistic

Non-mappable Mappable

GIS — unfriendly GIS — friendly

Aspatial or spatially limited Spatial

Emphasise similarities across space Emphasise differences across space
Search for regularities or ‘laws’ Search for exceptions or local ‘hot-spots’
Example: Example:

Classic Regression Geographically Weighted Regression (GWR)
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region: as this location changes, the local statistic can take on different values.’
Consequently, global statistics are unmappable or ‘GIS-unfriendly’, meaning they
are not conducive to being analysed within a Geographic Information System
(GIS) because they consist of a single value. Local statistics, on the other hand,
can be mapped and further examined within a GIS. For instance, it is possible to
produce a map of local parameter estimates showing how a relationship varies over
space and then to investigate the spatial pattern of the local estimates to establish
some understanding of possible causes of this pattern. Indeed, given that very large
numbers of local parameter estimates can be produced, it is almost essential to map
them in order to make some sense of the pattern they display. Local statistics are
therefore spatial statistics whereas global statistics are aspatial or spatially limited.

By their nature, local statistics emphasise differences across space whereas global
statistics emphasise similarities across space.® Global statistics lead one into think-
ing that all parts of the study region can be accurately represented by a single value
whereas local statistics can show the falsity of this assumption by depicting what is
actually happening in different parts of the region. Consequently, local statistics
are useful in searching for exceptions or what are known as local ‘hot spots’ in the
data. This use places them in the realm of exploratory spatial data analysis where
the emphasis is on developing hypotheses from the data, as opposed to the more
traditional confirmatory types of analysis in which the data are used to test a priori
hypotheses (Unwin and Unwin 1998; Fotheringham et al. 2000). It also suggests
the techniques are not rooted fully in the positivist school of thought where the
search for global models and ‘laws’ is important. However, this issue is not as
clear-cut as it might seem because local statistics can also play an important role in
confirmatory analyses as well as in building more accurate global models, a point
expanded upon below.

The extent to which global estimates of relationships can present very misleading
interpretations of local relationships is shown in Figure 1.3, a spatial example of
Simpson’s Paradox (Simpson 1951).7 Simpson’s paradox refers to the reversal of
results when groups of data are analysed separately and then combined. In the
spatial example presented in Figure 1.3, data are plotted showing the relationship
between the price of a house and the population density of the area in which the
house is located. In Figure 1.3(a) data from more than one location are aggregated

5 This is the case even for statistics which measure the degree to which observations vary, such as a
standard deviation, or the degree to which they covary, such as a covariance. A standard deviation
presents a global average degree of variation in the data; it supplies no information on whether the
degree of variation in the data varies spatially. For example, in some parts of the region, the data
could be very stable, whereas in other parts, the data might vary wildly. A similar statement can be
made for covariance. The traditional measure of covariance is a global statistic because it measures the
degree of covariance between two variables averaged over a region. One could produce a local covar-
iance measure that describes how the covariance between two variables differs across the region; in
some areas, the two variables might exhibit considerable covariation, whereas in others the covariance
might be negligible.

Again, this statement is true even with statistics that measure the degree to which data vary over space.
In such cases it is the degree of variation that is measured globally and we are led into thinking that
this degree of variation is constant over space when in fact it might not be.

7 For an example of Simpson’s Paradox in aspatial data, see Appleton ez al. (1996).

=N
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Figure 1.3 A spatial example of Simpson’s Paradox

and the relationship, shown by the included linear regression line, is a positive one
which suggests that house prices rise with increasing population density. However,
in Figure 1.3(b) the data are separated by location and in both locations the
relationship between house price and population density is a negative one. That is,
for both individual locations, there is a negative relationship between house price
and density but when the data from the two locations are aggregated, the relation-
ship appears to be a positive one. Simpson’s Paradox highlights the dangers of
analysing aggregate data sets. Whilst it is normally demonstrated in aspatial data
sets where the aggregation is over population subgroups, the paradox applies

O Location 1
Bl Location 2

equally to spatial data where the aggregation is over locations.
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1.4 Spatial Non-stationarity

Social scientists have long been faced with a difficult question and a potential
dilemma: are there any ‘laws’ that govern social processes, and if there are not,
does a quantitative approach have any validity? The problem is more clearly seen
as two sub-problems. The first is that models in social sciences are not perfectly
accurate. There is always some degree of error (sometimes quite large) indicating
that a model has not captured fully the process it is being used to examine. We
continually strive to produce more accurate models but the goal of a perfect model
is elusive. The second is that the results derived from one system can rarely, if ever,
be replicated exactly in another. An explanatory variable might be highly relevant
in one application but seemingly irrelevant in another; parameters describing the
same relationship might be negative in some applications but positive in others;
and the same model might replicate data accurately in one system but not in
another. These issues set social science apart from other sciences where the goal of
attaining a global statement of relationships is a more realistic one. Physical pro-
cesses tend to be stationary whereas social processes are often not. For instance, in
physics, the famous relationship relating energy and mass, E = mc?, is held to be
the same no matter where the measurement takes place: there is not a separate
relationship depending on which country or city you are in.® Social processes, on
the other hand, appear to be non-stationary: the measurement of a relationship
depends in part on where the measurement is taken. In the case of spatial pro-
cesses, we refer to this as spatial non-stationarity. In essence, the process we are
trying to investigate might not be constant over space. Clearly, any relationship
that is not stationary over space will not be represented particularly well by a
global statistic and, indeed, this global value may be very misleading locally. It is
therefore useful to speculate on why relationships might vary over space; in the
absence of a reason to suspect that they do vary, there is little or no need to
develop local statistical methods.

There are several reasons why we might expect measurements of relationships
to vary over space. An obvious one relates to sampling variation. Suppose we
were to take spatial subsets of a data set and then calibrate a model separately
with each of the subsets. We would not expect the parameter estimates obtained
in such calibrations to be exactly the same: variations would exist because of the
different samples of data used. This variation is relatively uninteresting in that it
relates to a statistical artefact and not to any underlying spatial process, but it
does need to be accounted for in order to identify more substantive causes of
spatial non-stationarity.

A second possible cause of observed spatial non-stationarity in relationships is
that, for whatever reasons, some relationships are intrinsically different across
space. Perhaps, for example, there are spatial variations in people’s attitudes or
preferences or there are different administrative, political or other contextual issues

8 Even with this equation there is a controversy over whether the speed of light is actually a constant
everywhere. However, the argument is only about extreme conditions not met in any practical circum-
stances and the argument has far from universal acceptance.
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that produce different responses to the same stimuli over space. Contextual effects
appear to be well documented, for example, in studies of voting behaviour as
evidenced by, inter alia, Cox (1969); Agnew (1996) and Pattie and Johnston (2000).
The idea that human behaviour can vary intrinsically over space is consistent with
post-modernist beliefs on the importance of place and locality as frames for under-
standing such behaviour (Thrift 1983). Within this framework the identification of
local variations in relationships would be a useful precursor to more intensive
studies that might highlight why such differences occur.

A third possible cause of observed spatial non-stationarity is that the model from
which the relationships are estimated is a gross misspecification of reality and that
one or more relevant variables are either omitted from the model or are represented
by an incorrect functional form. This view, more in line with the positivist school
of thought and very much in line with that in econometrics, runs counter to that
discussed above: it assumes a global statement of behaviour can be made but that
the structure of the model is not sufficiently well formed to allow this global
statement to be made. Within this framework, mapping local statistics is useful in
order to understand more clearly the nature of the model misspecification. The
spatial pattern of the measured relationship can provide a good clue as to what
attribute(s) might have been omitted from the model and what might therefore be
added to the global model to improve its accuracy. For example, if the local
parameter estimates for a particular relationship tend to have different signs for
rural and urban areas, this would suggest the addition of some variable denoting
the ‘urban-ness’ or the ‘rural-ness’ of an area. In this sense, local analysis can be
seen as a model-building procedure in which the ultimate goal is to produce a
global model that exhibits no significant spatial non-stationarity. In such instances,
the role of local modelling is essentially that of a diagnostic tool which is used to
indicate a problem with the global model; only when there is no significant spatial
variation in measured relationships can the global model be accepted.

Alternatively, it might not be possible to reduce or remove the misspecification
problem with the global model by the addition of one or more variables: for
example, it might be impossible to collect data on such variables. In such a case,
local modelling then serves the purpose of allowing these otherwise omitted effects
to be included in the model through locally varying parameter estimates.

The above discussion on the possible causes of spatial non-stationarity raises an
interesting and, as yet unsolved puzzle in spatial analysis. If we do observe spatial
variations in relationships, are they due simply to model misspecification or are
they due to intrinsically different local spatial behaviour? In a nutshell, can all
contextual effects be removed by a better specification of our models (Hauser 1970;
Casetti 1997)? Is the role of place simply a surrogate for individual-level effects
which we cannot recognise or measure? If the nature of the misspecification could
be identified and corrected, would the local variations in relationships disappear?
We can only speculate on whether, if one were to achieve such a state, all signifi-
cant spatial variations in local relationships would be eliminated (see also Jones
and Hanham 1995 for a useful discussion on this and the role of local analysis in
both realist and positivist schools of thought). We can never be completely confi-
dent that our models are correct specifications of reality because of our lack of
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theoretical understanding of the processes governing human spatial behaviour. In
some ways, this is a chicken-and-egg dilemma. We can never completely test theor-
ies of spatial behaviour because of model misspecification, but model misspecifica-
tion is the product of inadequate spatial theory.

However, the picture is not so bleak: in specific applications of any form of
spatial model, we can ask whether the current form of the model we are using
produces significant local variations in any of the relationships in which we are
interested. If the answer is ‘yes’, then an examination of the nature of the spatial
variation can suggest to us a more accurate model specification or the nature of
some intrinsic variation in spatial behaviour. In either case, our knowledge of the
system under investigation will be improved, in some cases dramatically.

Given the potential importance of local statistics and local models to the under-
standing of spatial processes, it is surprising that local forms of spatial analysis are
not more frequently encountered. However, there have been some notable contri-
butions to the literature on spatially varying parameter models that we now de-
scribe. These developments can be divided into three categories: those that are
focussed on local statistics for univariate spatial data, including the analysis of
point patterns; those that are focussed on more complex multivariate spatial data;
and those that are focussed on spatial patterns of movement. We now describe
some of the literature on local models and local statistics prior to a full description
in Chapter 2 of one local modelling technique, Geographically Weighted Regres-
sion, that forms the focus of this book.

1.5 Examples of Local Univariate Methods for Spatial Data Analysis

Four types of local univariate analysis for spatial data can be identified. These are:
local forms of point pattern analysis; local graphical analysis; local filters; and local
measures of spatial dependency.

1.5.1 Local Forms of Point Pattern Analysis

Many data, such as the locations of various facilities, or the incidence of a particu-
lar disease, consist of a set of geocoded points that make up a spatial point pattern.
The analysis of spatial point patterns has long been an important concern in geo-
graphical enquiry (inter alia, Getis and Boots 1978; Boots and Getis 1988). Trad-
itionally, most methods of spatial point pattern analysis, such as quadrat analysis
and neighbour statistics, have involved the calculation of a global statistic that
describes aspects of the whole point pattern (inter alia Dacey 1960; King 1961;
Tinkler 1971; Boots and Getis 1988). From this global analysis, a judgement would
be reached as to whether the overall pattern of points was clustered, dispersed or
random. Clearly, such analyses are potentially flawed because interesting spatial
variations in the point pattern might be subsumed in the calculation of the average
or global statistic. In many instances, particularly in the study of disease, such an
approach would appear to be contrary to the purpose of the study, which is to
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identify any interesting local clusters of disease incidence (see, for example, Lin and
Zeng 1999). Typically, we are not interested in some general statistic referring to
the whole point pattern: it is more useful to be able to identify particular parts
of the study region in which there is a raised incidence of the disease. Conse-
quently, there has been a growing interest in developing local forms of point pat-
tern analysis.

One of the first of these was the Geographical Analysis Machine (GAM) de-
veloped by Openshaw er al. (1987) and updated by Fotheringham and Zhan
(1996). As Fotheringham and Brunsdon (1999) note, the basic components of a
GAM are:

—_—

a method for defining sub-regions of the data;

2. ameans of describing the point pattern within each of these sub-regions;

3. a procedure for assessing the statistical significance of the observed point pat-
tern within each sub-region considered independently of the rest of the data;

4. a procedure for displaying the sub-regions in which there are significant pat-

terns as defined in 3.

The basic idea outlined in Fotheringham and Zhan (1996) demonstrates the em-
phasis of this type of technique on identifying interesting local parts of the data set
rather than simply providing a global average statistic. Within the study region
containing a spatial point pattern, random selection is made initially of a location,
and then of a radius of a circle to be centred at that location. Within this random
circle, the number of points is counted and this observed value compared with an
expected value based on an assumption about the process generating the point
pattern (usually that it is random). The population-at-risk within each circle is then
used as a basis for generating an expected number of points which is compared to
the observed number. The circle can then be drawn on a map if it contains a
statistically interesting count (that is, a much higher or lower observed count of
points than expected). The process is repeated many times so that a map is pro-
duced which contains a set of circles centred on parts of the region where interest-
ing clusters of points appear to be located. The GAM and similar statistics are a
subset of a much broader class of statistics known as ‘Scan Statistics’ of which
there are several notable spatial applications, particularly in the identification of
disease clusters (inter alia Kulldorf and Nagarwalla 1995; Hjalmars et al. 1996;
Kulldorf 1997; Kulldorf ef al. 1997; Gangnon and Clayton 2001).”

1.5.2 Local Graphical Analysis

One of the by-products of the enormous increases in computer power that have
taken place is the rise of techniques for visualising data (Fotheringham, 1999a;
Fotheringham et al. 2000, Chapter 4). Within spatial data analysis, exploratory

At the time of writing, software for calculating spatial, temporal and space-time scan statistics can be
downloaded from http://dcp.nci.nih.gov/bb/SaTScan.html
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graphical techniques which emphasise the local nature of relationships have become
popular. For example, using software such as MANET (Unwin et al. 1996), or
XLispstat (Tierney 1990; Brunsdon and Charlton 1996), it is possible to link maps of
spatial data with other non-cartographical representations (such as scatterplots or
dotplots). Selecting an object on one representation highlights the corresponding
object on the other (an early example of this is Monmonier 1969). For example, if a
scatterplot reveals a number of outlying observations, selecting these points will
highlight their locations on a map. Similarly, selecting a set of points or zones on
a map will highlight the corresponding points on a scatterplot. In this way, the
spatial distribution of an attribute for a locally selected region can be compared to
the distribution of the same attribute across the study area as a whole. Using tech-
niques of this sort, combined with a degree of numerical pre-processing, it is possible
to carry out a wide range of exploratory tasks on spatial data which are essentially
local. For example, one can identify local clusters in data and investigate whether
these are also associated with spatial clusters. Equally, one can also identify spatial
outliers, cases that are locally unusual even if not atypical for the data set as a whole.
More complex graphical techniques for depicting local relationships in univariate
data sets include the spatially lagged scatterplot (Cressie 1984), the variogram cloud
plot (Haslett ez al. 1991) and the Moran scatterplot (Anselin 1996).

1.5.3 Local Filters

A number of techniques exist in image-processing that can be considered as ‘local’.
The data for an image is usually presented as a regular array of intensity values
each value referring to a single cell of known area (or a pixel). In order to deter-
mine which pixels are likely to represent edges in the image, a high-pass filter can
be applied; this acts to increase high-intensity values, and decrease low ones. To
remove isolated high values, a low-pass filter can be employed; its action is to make
the values in nearby pixels more similar. Other filters may be applied to enhance
the values of linear objects in the image; these are known as directional filters. Such
filters are usually a square array of weights, often 3 x 3 pixels. The output from a
filter is a weighted mean value of the pixel at its centre and its immediate neigh-
bours; the filter is applied to each pixel in the input image to produce an output
image. The reader is referred to Lilliesand and Kiefer (1995) for further informa-
tion on the use of filters in image processing.

These filtering techniques have also been applied to raster GIS data (i.e., data
stored as a regular lattice). Tomlin (1990) proposed a wide variety of functions that
can be applied to local neighbourhoods in such data. Examples of these include the
‘focalmean’, the ‘focalmedian’ and the ‘focalvariety’. The focalmean function pro-
vides a weighted mean of the values in the raster which are immediate neighbours
of the central one; in this way both high-pass and low-pass filters can be applied to
raster GIS data. The focalmedian will return the median of the nine values in the
surrounding 3 x 3 matrix (in some implementations the filter size can be varied). If
the values in the raster are categorical (for example, they may represent land uses),
then focalvariety will count the number of different values in the 3 x 3 matrix.
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Some early examples of the use of filters for spatial analysis are contained in
Schmid and MacCannell (1955) and Unwin (1981). More sophisticated examples
are given by Cheng et al. (1996) who use variable window sizes and shapes for the
local filtering of geochemical images. Rushton et al. (1995) apply a spatial filter to
student enrolment projections.'® A similar technique, popular in fields such as
geodesy and meteorology, is that of optimal interpolation in which data weighted
by spatial proximity are used to estimate unknown values (Liu and Gauthier 1990;
Daley 1991, Reynolds and Smith 1995). The technique is also known as objective
analysis (Cressman 1959).

1.5.4 Local Measures of Spatial Dependency

Spatial dependency is the extent to which the value of an attribute in one location
depends on the values of the attribute in nearby locations. Although statistics for
measuring the degree of spatial dependency in a data set have been formulated for
almost three decades (inter alia Cliff and Ord 1972; Haining 1979), until very
recently these statistics were only applied globally. Typically a single statistical
measure is calculated which describes an overall degree of spatial dependency
across the whole data set. Recently, however, local statistics for this purpose have
been developed by Getis and Ord (1992), Ord and Getis (1995; 2001), Anselin
(1995; 1998) and Rogerson (1999). Getis and Ord (1992), for example, develop a
global measure of spatial association inherent within a data set that measures the
way in which values of an attribute are clustered in space. A local variation of this
global statistic is then formulated to depict trends in the data around each point in
space. There are two variants of this localised value depending on whether or not
the calculation includes the point i, around which the clustering is measured, al-
though both are equivalent to spatially moving averages (Ord and Getis 2001). The
local spatial association statistic allows that different trends in the distribution of
one variable might exist over space. In some parts of the study area, for example,
high values might be clustered; in other parts there might be a mix of high and low
values. Such differences would not be apparent in the calculation of a single global
statistic. In their empirical example, Getis and Ord (1992) find several significant
local clusters of sudden infant death syndrome in North Carolina although the
global statistic fails to identify any significant clustering.

Another local statistic for measuring spatial dependency is a local variant of the
classic measure of spatial autocorrelation, Moran’s I (Anselin 1995). When spatial
data are distributed so that high values are generally located in close proximity to
other high values and low values are generally located near to other low values,
the data are said to exhibit positive spatial autocorrelation. When the data are

10" At the time of writing, details of the application of spatial filters to health data, plus a downloadable
copy of software for this purpose, DMAP, are provided by Rushton and his colleagues at http://
www.uiowa.edu/%7Egeog/health/index11.html
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distributed such that high and low values are generally located near each other,
the data are said to exhibit negative spatial autocorrelation. However, it is pos-
sible that within the same data set, different degrees of spatial autocorrelation
could be present; both positive and negative spatial autocorrelation could even
exist within the same data set. Global measures of spatial autocorrelation would
fail to pick up these different degrees of spatial dependency within the data. A
global statistic might therefore misleadingly indicate that there is no spatial auto-
correlation in a data set, when in fact there is strong positive autocorrelation in
one part of the region and strong negative autocorrelation in another. The devel-
opment of a localised version of spatial autocorrelation allows spatial variations
in the spatial arrangement of data to be examined. Anselin (1995) presents an
application of the localised Moran’s [ statistic to the spatial distribution of con-
flict in Africa and Sokal er al. (1998) demonstrate its use on a set of simulated
data sets. Other studies of local Moran’s [ include those of Bao and Henry (1996),
Tiefelsdorf and Boots (1997), and Tiefelsdorf (1998). Rosenberg (2000) provides a
partially local measure of spatial autocorrelation through a directionally varying
Moran’s I coefficient and Brunsdon et al. (1998) describe a different method of
estimating local spatial autocorrelation through Geographically Weighted Regres-
sion.

Finally, Rogerson (1999) derives a local version of the chi-square goodness-of-fit
test and applies this to the problem of identifying relevant spatial clustering. This
local statistic is related to Oden’s (1995) modification of Moran’s I that accounts
for spatial variations in population density and is a special case of a test suggested
by Tango (1995). The local statistic incorporates a spatially weighted measure of
the degree of dissimilarity across regions.

1.6 Examples of Local Multivariate Methods for Spatial Data Analysis

The local univariate statistical methods described above are of limited use in the
large and complex spatial data sets that are increasingly available. There is a need
to understand local variations in more complex multivariate relationships (see, for
example, the attempts by Ver Hoef and Cressie, 1993 and Majure and Cressie, 1997
to extend some of the local visual techniques described above to the multivariate
case). Consequently, several attempts have been made to produce localised versions
of traditionally global multivariate techniques. Perhaps the greatest challenge,
given its widespread use, has been to produce local versions of regression analysis.
The subject matter of this book, Geographically Weighted Regression, is one re-
sponse to this challenge but there have been others. Here we describe five of these:
the spatial expansion method; spatially adaptive filtering; multilevel modelling;
random coefficient models; and spatial regression models. We leave the description
of GWR to Chapter 2. Each of the five techniques described below has limited
application to the analysis of spatially non-stationary multivariate relationships for
reasons we now explain.
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1.6.1 The Spatial Expansion Method

The Expansion Method (Casetti 1972; 1997; Jones and Casetti 1992) recognises
explicitly that the parameters in a regression model can be functions of the context
in which the regression model is calibrated. It allows the parameter estimates to
vary locally by making the parameters functions of other attributes. If the param-
eters are functions of location (that is, if the relationships depicted by the param-
eter estimates are assumed to vary over space), a spatial expansion model results in
which trends in parameter estimates over space can be measured (Brown and Jones
1985; Brown and Kodras 1987; Brown and Goetz 1987; Fotheringham and Pitts
1995; Eldridge and Jones 1991). Initially, suppose a global model is proposed such
as:

yvi=o 4+ Pxaq + ... tXim + & (1.1)

where y represents a dependent variable, the xs are independent variables, o,f, ...t
represent parameters to be estimated, ¢ represents an error term and 7 represents a
point in space at which observations on the ys and xs are recorded. This global
model can be expanded by allowing each of the parameters to be functions of other
variables. While most applications of the expansion method (see Jones and Casetti
1992) have undertaken aspatial expansions, Brown and Jones (1985), Eldridge and
Jones (1991) and McMillen (1996) show that it is relatively straightforward to
allow the parameters to vary over geographic space so that, for example:

o = olg + o + oy (1.2)

Bi = Po + Prui + Bavi (1.3)
and

T, = To + T1U; + ToV; (1.4)

where u; and v; represent the spatial coordinates of location i. Equations (1.2)—(1.4)
represent very simple linear expansions of the global parameters over space but
more complex, non-linear, expansions can easily be accommodated.

Once a suitable form for the expansion has been chosen, the original parameters
in the global model are replaced with their expansions. For instance, if it is as-
sumed that parameter variation over space can be captured by the simple linear
expansions in equations (1.2)—(1.4), the expanded model would be:

yi= o+ oqu; + opv; + Boxi + Pruixi + Pavixi
T+ TOXin T+ TIUX g + T2ViXim + &;

(1.5)

This model can then be calibrated by ordinary least squares regression to produce
estimates of the parameters which are then fed back in to equations (1.2)—(1.4) to
obtain spatially varying parameter estimates. These estimates, being specific to
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location i, can then be mapped to display spatial variations in the relationships
represented by the parameters.

The expansion method has been very important in promoting awareness of spatial
non-stationarity. However, it does have some limitations. One is that the technique
is restricted to displaying trends in relationships over space with the complexity of
the measured trends being dependent upon the complexity of the expansion equa-
tions. Consequently, the distributions of the spatially varying parameter estimates
obtained through the expansion method might obscure important local variations to
the broad trends represented by the expansion equations. A second limitation is that
the form of the expansion equations needs to be assumed a priori, although more
flexible functional forms than those shown above could be used. A third is that the
expansion equations are assumed to be deterministic in order to remove problems of
estimation in the terminal model.

1.6.2 Spatially Adaptive Filtering

Another approach to regression modelling that allows coefficients to vary locally is
that of adaptive filtering (Widrow and Hoff 1960; Trigg and Leach 1968). When
applied to multivariate time series data this method is used to compensate for drift
of regression parameters over time. Essentially, this works on a ‘predictor-corrector’
basis. Suppose a model is assumed of the form

Vi = Zj X4By + & (1.6)

where ¢ is an index of discrete time points. When a new multivariate observation
occurs at time ¢, the existing regression coefficients, B,_l, are used to predict the
dependent variable. However, if the prediction does not perform well, the values of
the regression coefficient are ‘adjusted’ to improve the estimate. The adjusted coef-
ficients are referred to as [Zt. The degree of adjustment applied has to be ‘damped’
in some way to avoid problems of overcompensation. That is, in most cases a set of
estimates of the f8; values could be found which gave a perfect prediction, but
which also fluctuate wildly and do not give a good indication of the true values of
B at time 7. A typical damping approach is to use an update rule of the form

Bjt = Bjtfl + ‘thlb‘j(yt =30/ 134 (1.7)

where Bjt is the jth element of fi‘t, ¥, is the predicted value of y, based on fi‘t,l and
o; is a damping factor controlling the extent to which the correction is applied for
coefficient j.

Foster and Gorr (1986) and Gorr and Olligschlacger (1994) suggest applying
adaptive filtering ideas to spatial data to investigate the ‘drift’ of regression param-
eters. With spatial data the predictor-corrector approach then becomes iterative.
With time series data, B,,l is simply updated in terms of its nearest temporal
neighbour at time #; a given case has a unique neighbour and the flow of updating
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is only one way. However, when dealing with a spatial arrangement of data, zones
(or points) typically do not have unique neighbours and the coefficient estimates
have to be updated several times. In addition, the flow of updating is two-way
between a pair of neighbouring zones which requires the process to iterate between
coefficient estimates until some form of convergence is achieved. If convergence
does occur, then the result should be a unique estimate of the regression coefficient
vector B for each case. The fact that the casewise correction procedure is damped
and based on incremental corrections applied between adjacent zones, suggests that
some degree of spatial smoothing of the estimates of the individual elements of B8
must take place. Thus, the method tends to produce models in which regression
parameters slowly ‘drift’ across geographical space. Local and regional effects may
be investigated by mapping the coefficient estimates.

1.6.3 Multilevel Modelling

The typical spatial application of multilevel modelling attempts to separate the
effects of personal characteristics and place characteristics (contextual effects) on
behaviour (Goldstein 1987; Jones 1991a; 1991b; Duncan and Jones 2000). It is
claimed that modelling spatial behaviour solely at the individual level is prone to
what is known as the atomistic fallacy, missing the context in which individual
behaviour occurs (Alker 1969). Equivalently, modelling behaviour solely at the
aggregate or contextual level is prone to the ecological fallacy, that the results
might not apply to individual behaviour (Robinson 1950). Multilevel modelling
tries to avoid both these problems by combining an individual-level model repre-
senting disaggregate behaviour with a macro-level model representing contextual
variations in behaviour. The resulting model has the form

Yij = o + B;xij + & (1.8)
where y; represents the behaviour of individual i living in place j; x; is the ith
observation of attribute x at place j; and o; and f3; are place-specific parameters
where

o = o+ pf (1.9)
and
— B
B =P+u (1.10)
Each place-specific parameter is therefore viewed as consisting of an average value

plus a random component. Substituting (1.9) and (1.10) into (1.8) yields the multi-
level model,

Vi = o+ By + (e + 1 + 1 xy) (1.11)
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This model cannot be calibrated by OLS regression unless x; and ,uf are zero so
that specialised software is needed such as HLM (Bryk et al. 1986), MIn (Rasbash
and Woodhouse 1995) or MIwiN (Goldstein et al. 1998). Place-specific parameter
estimates can be obtained by estimating separate variance effects and substituting
these into equations (1.9) and (1.10).

Several refinements to the basic multilevel model described above are possible
and are probably necessary for the accurate estimation of individual and contextual
effects, making the modelling framework highly complex. These include adding
place attributes in the specifications for ¢; and f;; extending the number of levels
in the hierarchy beyond two (Jones et al. 1996); and the development of cross-
classified multilevel models where each lower unit can nest into more than one
higher order unit (Goldstein 1994). Although there are numerous examples of
the application of multilevel modelling to spatial data, including those of Con-
gdon (1995), Charnock (1996), Jones (1997), Verheij (1997), Duncan et al. (1996),
Jones and Bullen (1993), Smit (1997), Duncan (1997), Reijneveld (1998) and
Duncan and Jones (2000), Duncan and Jones (2000: 298) offer the following
warning:

Importantly, there are also other, more general, issues surrounding the use of multi-
level models that require careful consideration. Until recently, researchers in many
disciplines seem to have been carried away in an enthusiastic rush to use the new
technique and such issues have tended to be ignored.

One particular problem with the application of multilevel modelling to spatial
processes is that it relies on an a priori definition of a discrete set of spatial units at
each level of the hierarchy. While this may not be an issue in many aspatial appli-
cations, such as the definition of what constitutes the sets of public and private
transportation options, or what constitutes the sets of brands of decaffeinated and
regular coffees, it can pose a serious problem in many spatial contexts. The defin-
ition of discrete spatial units in which spatial behaviour is modified by certain
attributes of those units obviously depends critically on the units themselves being
accurately identified. It also implies that the nature of whatever spatial process is
being modelled is discontinuous. That is, it is assumed that the process is modified
in exactly the same way throughout a particular spatial unit but that the process is
modified in a different way as soon as the boundary of that spatial unit is reached.
Most spatial processes do not operate in this way because the effects of space are
continuous. Hence, imposing a discrete set of boundaries on most spatial processes
is unrealistic. One exception would be where administrative boundaries enclose
regions in which a policy that affects the behaviour of individuals is applied evenly
throughout the region and where such policies vary from region to region. Duncan
and Jones (2000) and de Leeuw and Kreft (1995) raise other issues with the appli-
cation of multilevel models. Consequently, the application of the multilevel model-
ling framework to most spatial processes appears limited and the application to
continuous processes awaits development (see Langford et al., 1999, for a start in
this direction).
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1.6.4 Random Coefficient Models

While many local statistical techniques assume that the local relationships being
measured vary smoothly, an alternative approach allows coefficients to vary ran-
domly for each case (Rao 1965; Hildreth and Houck 1968; Raj and Ullah 1981;
Swamy et al. 1988a; 1988b; 1989). While most applications of random coefficients
models have been aspatial, Swamy (1971) presents an early example of parameter
estimates that are allowed to vary cross-sectionally. To see how the random coeffi-
cients approach is applied, consider a study of house sales specifying a regression
model where the dependent variable is house price, and the independent variables
are characteristics of the houses. The classical linear regression approach would
assume that the regression coefficient for a given variable would be the same for all
cases — so that, say, the presence of a second bathroom had an identical effect on
house price for any house in the study. The form this model would take, in matrix
algebra, is the familiar

y=XB+e¢ (1.12)

where X is a matrix of predictor variables (in this case house characteristics), 8 is a
vector of regression coefficients, y is a vector of response variables and € is a vector
of independent random error terms with distribution N(0,6?). In terms of individ-
ual cases, the model can be written as

yi=2; XiB; + e (1.13)

In random coefficients modelling, the parameters of this model are not assumed to
be constant over space but are assumed to vary from case to case, and are drawn
from some random distribution, typically the normal. The model can then be
written as

Yi= Zj leﬂlj + &i (114)

where f8; is now a random variable. For each variable j there are i draws of the
random regression coefficient from some distribution. Assuming this distribution to
be normal,

By ~ N(B;,07). (1.15)

Calibrating a random coefficients model is then a task of estimating the parameters
of the distributions from which casewise parameters are drawn — in this case
{ [)f,,o'_/z} for all j and ¢?, the error term variance. Then, using Bayes’ theorem, it is
possible to estimate the value of the regression coefficient actually drawn for each
case. A further, non-parametric, extension of the technique is to drop the assump-
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tion that the coefficients are drawn from a pre-specified distribution and to esti-
mate the distribution itself from the data (Aitkin 1997).

An alternative approach is used in Besag (1986). Here it is assumed that local
observations are governed by local parameters, but are independent of one another
given these parameters. However, in a Bayesian framework it is also assumed that
the parameters have a prior distribution which does exhibit spatial autocorrelation.
Using a technique referred to as Iterated Conditional Modes (ICM), local param-
eter estimates are obtained. As with the Aitkin approach, coefficients are thought
of as random, but here the interpretation is Bayesian: randomness is interpreted as
beliefs about the coefficient values prior to data collection and analysis. The spatial
autocorrelation in the prior distribution represents the belief that nearby coeffi-
cients are likely to have similar values.

The random coefficient modelling approach is not intrinsically spatial — local
regression coefficients are drawn independently from some univariate distribution
and no attention is paid to the location to which the parameters refer. Locations
that are in close proximity to each other can have regression coefficients drawn
from very different-looking distributions. However, once the local parameter esti-
mates are obtained, they can be mapped and their spatial pattern explored. In this
way, local variability of certain types of models can be considered. Brunsdon,
Aitkin et al. (1999), for example, provide an empirical comparison of the applica-
tion of GWR and the random coefficients model to a data set in which the spatial
distribution of a health variable is related to the spatial variability of a set of socio-
economic indicators.

1.6.5 Spatial Regression Models

Recognising that spatial data are not generally independent, so that statistical infer-
ence in ordinary regression models applied to spatial data is suspect, a number of
attempts have been made to provide a regression framework in which spatial de-
pendency is taken into account. These approaches may generally be described as
spatial regression models. While such models are generally not thought of as local
models, they do recognise the local nature of spatial data, for instance by relaxing
the assumption that the error terms for each observation are independent. In par-
ticular, if each observation is associated with a location in space, it is assumed that
the error terms for observations in close spatial proximity to one another are correl-
ated. The vector of error terms, £, is assumed to have a multivariate Gaussian
distribution with a zero mean and a variance—covariance matrix having non-zero
terms away from the leading diagonal. This implies that although any given ¢; will
have a marginal distribution centred on zero, its conditional distribution will depend
on the values of the error terms for surrounding observations. For example, if
nearby error terms tend to be positively correlated, then given a set of positive error
terms one would expect the error term of another observation close to these to be
positive also. That is, its conditional distribution would be centred on some positive
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quantity rather than zero. Although the output from such models still consists of a
set of global parameter estimates, local relationships are incorporated into the mod-
elling framework through the covariance structure of the error terms. In this sense,
these models can be thought of as ‘semi-local’ rather than fully local.

There are a number of examples of models that can be classed as ‘semi-local’.
Perhaps the oldest such technique is that of Kriging (Krige 1966). Here, it is
assumed that the spatial data are a set of measurements taken at n points. Suppose
one of the data is a dependent variable and the others are predictor variables. Then
one could fit an OLS regression model, but this would ignore the spatial arrange-
ment of the locations at which the data are measured. An alternative is to assume
that the covariance between any two error terms will be a function of the distance
between them. That is, if C is the variance—covariance matrix for the »n error terms,
and D is the distance matrix for the sampling points, then

Cyj = f(dy) (1.16)

where f is some distance-decay function and dj; is an element of D. There are a
number of restrictions on the possible functional form of f, mainly due to the fact
that C must be positive definite in order for the model to be well-defined. Typical
functions might be the exponential

Cy = a’exp(—3d;/k) (1.17)
or the Gaussian
Cy = aexp(—3d;* /k?) (1.18)

where the parameter o> determines the level of variation of the error terms and k
determines the spatial scale over which notable covariance between pairs of meas-
urements occurs. Essentially, & controls the degree of locality in the model with
small values of k suggesting that correlation only occurs between very close point
pairs and large values of k suggesting that such effects exist on a larger spatial
scale.

Calibrating such a model is typically treated as a two-stage problem. First, one
has to estimate o> and k, and once this has been done, the regression model itself is
calibrated using the formula

B=X"Ccx)'X"Cy (1.19)

where B is a vector of estimated regression coefficients, X is a matrix of independ-
ent variables and X7 is its transpose, y is a vector of dependent variables. C is the
covariance matrix from the error term estimated using the parameter estimates
described above. However, this approach is not without its shortcomings. In par-
ticular, it is assumed here that C is known exactly, whereas in reality it is itself
estimated from the data. It is also assumed that C is constant over space, which
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differentiates much of Kriging from GWR.'! Further, the estimation of the semi-
variogram, from which estimates of ¢> and k are derived, is controversial: a good
discussion of the estimation procedure is given in Bailey and Gatrell (1995) which
reveals it to be something of a ‘black art’.!? Although useful results can be obtained
from this approach, caution should be exercised when drawing formal statistical
inferences.

Recently, these objections have been addressed to some extent by Diggle et al.
(1998). Here, the analytically awkward form of the likelihood function for B, ¢?
and k is dealt with in a Bayesian context. In particular, drawings from the posterior
probability function for these unknown parameters are simulated using Monte
Carlo Markov Chain (MCMC) techniques (Besag and Green 1993).

The last quarter century has also seen the growth of other kinds of spatial
regression models, particularly those applied to zonal data such as states, counties
or electoral wards. As with Kriging, one would expect that ordinary linear regres-
sion models applied to data aggregated in this way would fail to encapsulate any
spatial interactions taking place because local relationships in the error terms are
not represented in the simple non-spatial model. In spatial regression models, zonal
proximities are taken as surrogates for local relationships and are typically meas-
ured by a contiguity matrix — an n by n matrix whose (i, j)th element is one if zones
i and j are contiguous, and zero otherwise. Clearly this matrix is symmetrical and
encapsulates the relative spatial arrangement of the zones. Note that this approach
does not take into account the size or shape or absolute location of the zones; the
information is solely topological. In most applications the contiguity matrix is
standardised so that the rows sum to one and referred to as W. A number of such
spatial regression models exist: for example, the spatial autoregressive model of
Ord (1975):

y=ul+pWy—ul)+e (1.20)

where p is an overall mean level of the random variate y multiplied by 1, a vector
of ones; € is a vector of independent normal error terms; and p is a coefficient
determining the degree of spatial dependency of the model. The model can be
extended so that the error vector £ also exhibits spatial autocorrelation. In this case,
the coefficient p does not determine the distance decay rate of the spatial autocor-
relation, but the degree to which the values at individual locations depend on their
neighbours. A problem with this type of modelling is that neighbourhood influence
is not calibrated in terms of the data but is generally prescribed by the specification

' Note that block Kriging is an attempt to overcome the problem of having to assume C is a constant
over space by obtaining estimates of C separately for different spatial units. However, this is akin to
running separate regressions in different spatial units and suffers from the same problems as this
procedure, namely that the processes being modelled are likely to be continuous and not discrete; the
processes are likely to vary within spatial units as well as between them and that there is usually no «
priori justification for the selection of the spatial units in which the process is assumed to be station-
ary.

12 Further discussion of the estimation procedure followed in Kriging, along with a worked example,
can be found in Fotheringham ez al. (2000: 171-8).
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of W. Similar arguments may also be applied to pre-whitening procedures (Kendall
and Ord 1973). With this approach, spatial filters to remove autocorrelation effects
are applied to all variables (dependent and independent) prior to fitting a regres-
sion model. Again, however, the model being calibrated is a global one. Autore-
gressive models were also considered in a more general form by Besag (1974) for
spatial data arranged on a regular lattice.

As mentioned above, spatial regression models are really mixed models in the
sense that although they recognise the impact of local relationships between data,
such relationships are almost always measured with a global autocorrelation statistic
and the output of the model is a set of global parameter estimates. Brunsdon ez al.
(1998) provide an interesting example where GWR is applied to a spatially autore-
gressive model such as that in equation (1.20) so that the output from the model is a
locally varying set of parameter estimates which includes a locally varying autocor-
relation coefficient. GWR applied to spatially autoregressive models is therefore an
alternative, and perhaps simpler, method of deriving local measures of spatial auto-
correlation.

1.7 Examples of Local Methods for Spatial Flow Modelling

Although not directly applicable to what follows in this book because the disaggre-
gations are for discrete points rather than for a continuous space, it is still worth-
while mentioning the literature on local models of spatial interaction because of its
relatively long history. It was recognised quite early that global calibrations of
spatial interaction models hid large amounts of spatial information on interaction
behaviour and that localised parameters yielded much more useful information
(Linneman 1966; Greenwood and Sweetland 1972; Gould 1975). This was very
obvious when distance-decay parameters were estimated separately for each origin
in a system instead of a single global estimate being provided (see Fotheringham
1981, for further discussion). The origin-specific parameter estimates could then be
mapped to provide visual evidence of spatial variations and spatial patterns in their
values.

Interestingly, it was the consistent, but counter-intuitive, spatial patterns of
origin-specific distance-decay parameters in these local studies that led to the
realisation that the global models were gross misspecifications of reality (Fother-
ingham 1981; 1984; 1986; Meyer and Eagle 1982; Fotheringham and O’Kelly
1989). This, in turn, led to the development of the competing destinations frame-
work from principles of spatial information processing and a new set of spatial
interaction models from which more accurate parameter estimates can be
obtained (Fotheringham 1984; 1991). It is worth stressing that the global model
misspecification only came to light through local parameter estimates being
obtained and then mapped. The diagnostic spatial pattern of the local distance-
decay parameter estimates would be completely missed in the calibration of a
global model.



Local Statistics and Local Models for Spatial Data 25
1.8 Summary

Interest in local forms of spatial analysis and spatial modelling is not new. The
recognition that the calibration of global models produces parameter estimates
which represent an ‘average’ type of behaviour, and are therefore of very limited
use when behaviour does vary over space, dates back at least to Linneman’s cali-
bration of origin-specific models of international trade flows (Linneman 1966).
Johnston (1973) also provides an early example of local analysis in the context of
voting behaviour. However, as Fotheringham (1997) notes, the current high level
of interest in the ‘local’ rather than the ‘global’ and the emergence of a battery of
techniques for local modelling is notable for several reasons.'?

Among these are that it refutes the criticism that those adopting a quantitative
approach to investigate spatial processes are only concerned with the search for
broad generalisations and have little interest in identifying local exceptions, an
observation also made by Jones and Hanham (1995). Local forms of spatial analy-
sis also provide a linkage between the outputs of spatial techniques and the power-
ful visual display capabilities of GIS and some statistical graphics packages.
Perhaps most importantly though, they provide much more information on spatial
relationships as an aid to both model development and the better understanding of
spatial processes. Local statistics and local models provide us with the equivalent
of a microscope or a telescope; they are tools with which we can see so much more
detail. Without them, the picture presented by global statistics is one of uniformity
and lack of variation over space; with them, we are able to see the spatial patterns
of relationships that are masked by the global statistics.

To this point, we have discussed several types of local analytical techniques for
spatial data. However, none of these is without problems. In the remainder of this
book we turn our attention to a very general local modelling technique developed
for spatial data termed Geographical Weighted Regression. In the next chapter we
describe the development of GWR through an empirical example of house price
determinants across London. We also describe another local modelling technique,
moving-window regression, in Chapter 2 because this is shown to be a stepping
stone towards GWR. Indeed, moving-window regression is a rudimentary form of
GWR.

13" As an example of the high level of interest in local techniques, see the two special issues of Geograph-
ical and Environmental Modelling devoted to this topic, details of which can be found in Fothering-
ham (1999b) and Flowerdew (2001).






